An Introduction to Probabilistic Model Checking

Pedro R. D’Argenio

Dependable Systems Group - FaMAF Universidad Nacional de Córdoba
CONICET
http://dsg.famaf.unc.edu.ar
11○ ERPEM, Rio Cuarto, Dec-2015

Overview

- Motivation
- Reachability analysis on deterministic models
- Reachability analysis on non-deterministic models
. LTL
- The process of probabilistic model checking
. Quick and partial overview of the state of the art

Why verification?

Pentium:
FDIV

Ariane 5:

64 bits fp vs 16 bits int

Therac-25:
Race condition

Mars Climate Orbiter:
Métrico vs Imperial
Northeast blackout in 2003:
Race condition
Heartbleed:
Integridad/Confidencialidad

Model Checking

UNC

Limitations of this approach

- Many algorithms proposed (better) solutions using randomization.
- E.g.
- Leader election protocol in IEEE 1394 "Firewire"
- Binary exponential backoff on IEEE 802.3 "Ethernet"

Limitations of this approach

E.g.: IEEE 1394 Leader election protocol

Limitations of this approach

E.g.: IEEE 1394 Leader election protocol

Limitations of this approach

E.g.: IEEE 1394 Leader election protocol

Limitations of this approach

E.g.: IEEE 1394 Leader election protocol

Root contention!

5
cicis
UNC

Limitations of this approach

E.g.: IEEE 1394 Leader election protocol

It is solved by "flipping coins"

Limitations of this approach

- Many times, correction cannot be established in a usual bivalued (modal) logic.
- Nevertheless, the validity of a property can be quantified through a probability value.
- E.g.
- Bounded Retransmission Protocol en Philips RC6
- Binary Exponential Backoff Algorithm en IEEE 802.3 "Ethernet"

Limitations of this approach

Suppose that a file is transmitted using the ABP or a sliding window protocol

$G($ send $(\mathrm{msg}) \Rightarrow F \operatorname{rcv}(\mathrm{msg}))$
but this is under the assumption that an infinite number of retrials is allowed

Limitations of this approach

Suppose that a file is transmitted using the ABP or a sliding window protocol

$$
G(\text { send }(\mathrm{msg}) \Rightarrow F \operatorname{rcv}(\mathrm{msg}))
$$

> What if only a bounded number of retransmissions is allowed? (e.g. BRP)

Limitations of this approach

Limitations of this approach

The truth value
should be probabilistically quantified

$$
\equiv G(\operatorname{send}(\mathrm{msg}) \Rightarrow F r c v(\mathrm{msg}))
$$

'eterministic behavior

Probabilistic

behavior should also be

Fully probabilistic systems (Markov Chain)

$$
S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}
$$

$\left(S, \mathbf{P}, s_{0}, L\right)$
set of states with initial state s_{0}
$\mathbf{P}: S \times S \rightarrow[0,1]$
is the probabilistic transition function, s.t. $\forall s \in S, \sum_{s^{\prime} \in S} \mathbf{P}\left(s, s^{\prime}\right)=1$, and
$L: S \rightarrow \mathscr{P}(A P)$ labelling function, where $A P$ is the set of atomic propositions.

$$
\begin{aligned}
& L\left(s_{0}\right)=\{\text { start }\} \\
& L\left(s_{1}\right)=\{\text { try }\} \\
& L\left(s_{2}\right)=\{\text { lost }\} \\
& L\left(s_{3}\right)=\{\text { delivered }\}
\end{aligned}
$$

Probability of a property

- Models contain probabilistic information (e.g. a decision made by tossing a coin, the probability of loosing a message).
- The validity of a temporal fomula (e.g. LTL) is quantified with a probability value in $[0,1]$ (instead of a boolean).

Probability of a property

A dice with a coin

¿P(F2)?

Probability of a property

A dice with a coin

$$
\begin{aligned}
& \underbrace{P\left(s_{1} s_{4} 2\right)}_{\mathbf{P}\left(s_{0}, s_{1}\right) \cdot \mathbf{P}\left(s_{1}, s_{4}\right) \cdot \mathbf{P}\left(s_{4}, 2\right)}+P\left(s_{0} s_{1} s_{3} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)+\cdots
\end{aligned}
$$

Probability of a property

A dice with a coin

$$
\underbrace{P\left(s_{0} s_{1} s_{4} 2\right)}_{\frac{1}{8}}+\underbrace{P\left(s_{0} s_{1} s_{3} s_{1} s_{4} 2\right)}_{\frac{1}{32}}+\underbrace{P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)}_{\frac{1}{128}}+\underbrace{P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)}_{\frac{1}{512}}+\cdots
$$

Probability of a property

A dice with a coin

$$
P_{s_{0}}(\mathrm{~F} 2)=\sum_{n>0} \mathbf{P}\left(s_{0} s_{1}\left(s_{3} s_{1}\right)^{n} s_{4} 2\right)=\sum_{n>0} \frac{1}{2^{2 n+1}}=\frac{1}{6}
$$

Probabilistic Model Checking in fully probabilistic models

Using DFS, we can calculate whether 2 is reachable with probability 0

$$
\begin{aligned}
\left.P_{s_{2}}(\mathrm{~F} 2)\right) & =P_{s_{5}}(\mathrm{~F} 2)=P_{s_{6}}(\mathrm{~F} 2)=0 \\
P_{1}(\mathrm{~F} 2) & =P_{3}(\mathrm{~F} 2)=P_{4}(\mathrm{~F} 2)=0 \\
P_{5}(\mathrm{~F} 2) & =P_{6}(\mathrm{~F} 2)=0 \\
P_{2}(\mathrm{~F} 2) & =1 \\
P_{s_{0}}(\mathrm{~F} 2) & =\frac{1}{2} P_{s_{1}}(\mathrm{~F} 2)+\frac{1}{2} P_{s_{2}}(\mathrm{~F} 2) \\
P_{s_{1}}(\mathrm{~F} 2) & =\frac{1}{2} P_{s_{3}}(\mathrm{~F} 2)+\frac{1}{2} P_{s_{4}}(\mathrm{~F} 2) \\
P_{s_{3}}(\mathrm{~F} 2) & =\frac{1}{2} P_{s_{1}}(\mathrm{~F} 2)+\frac{1}{2} P_{1}(\mathrm{~F} 2) \\
P_{s_{4}}(\mathrm{~F} 2) & =\frac{1}{2} P_{2}\left(\mathrm{~F}_{2}\right)+\frac{1}{2} P_{3}(\mathrm{~F} 2)
\end{aligned}
$$

Probabilistic Model Checking in fully probabilistic models

In general:

B is the set of goal states

$$
\begin{aligned}
& x_{s}=\sum_{t \in S} \mathbf{P}(s, t) \cdot x_{t} \\
& x_{s}=1 \\
& x_{s}=0
\end{aligned}
$$

if $s \in \operatorname{Pr}^{>0}(B) \backslash B$
if $s \in B$
if $s \notin P r^{>0}(B)$

The set of states that reach B with some probability

It is solved with standard numeric techniques (Jacobi, Gauss-Seidel)

The need of non-determinism

- Parallel composition / Distributed components
- probabilities within a single component are easy to estimate,
- relative probabilities of events located geographically distant depend on a highly unpredictable global state.
- Underspecification
- some probabilities are unknown at early stage of modeling.
- Abstraction
- models are abstract representations of the system under study.
- Control synthesis
- intentional underspecification to synthesize optimal decisions.

UNC

Probability of a property

- To calculate probabilities in this setting, nondeterminism has to be resolved.
- Schedulers are functions that select the next transition according to the past execution.

Probability of a property

- To calculate probabilities in this setting, nondeterminism has to be resolved.
- Schedulers are functions that select the next transition according to the past execution.

Probability of a property

An LTL formula has associated two values:

- The maximum probability under all schedulers

$$
P_{\max }(F \circ)=0.96
$$

- The minimun probability under all schedulers

$$
P_{\min }(F \circ)=0.65
$$

$$
5
$$

UNC

Probability of a property

An LTL formula has associated two values:

- The maximum probability under all schedulers

$$
P_{\max }(F \circ)=0.96
$$

- The minimun probability under all schedulers

$$
0
$$

Probability of a property

An LTL formula has associated two values:

- The maximum probability under all schedulers

$$
P_{\max }(F \circ)=0.96
$$

- The minimun probability under all schedulers

4

Probability of

An LTL formula has associated ty values:

- The maximum probability ander all schedulers

$$
P_{\max }(F \circ)=0.96
$$

- The minimun probability under all schedulers

$$
0
$$

Markov decision processes

The structure is as before, only that we have a family of matrices, one for each posible decision

Markov decision processes

What is the maximum probability of obtaining the desired amount of money?

Model checking Markov decision processes

P_{s}^{+}is a shorthand for
$P_{s}^{\max }(\mathrm{F} a l)$

$$
\begin{aligned}
& P_{l_{s}}^{+}=P_{l_{c}}^{+}=0 \\
& P_{a l}^{+}=1
\end{aligned}
$$

Model checking Markov decision processes

P_{s}^{+}is a shorthand for
$P_{s}^{\max }(\mathrm{F} a l)$

$$
\begin{aligned}
& P_{l_{s}}^{+}=P_{l_{c}}^{+}=0 \\
& P_{a l}^{+}=1 \\
& P_{1}^{+}=\quad 0.7 P_{1}^{+}+0.2 P_{2}^{+}+0.1 P_{l_{s}}^{+}
\end{aligned}
$$

Model checking Markov decision processes

P_{s}^{+}is a shorthand for
$P_{s}^{\max }(\mathrm{F} a l)$

$$
\begin{aligned}
& P_{l_{s}}^{+}=P_{l_{c}}^{+}=0 \\
& P_{a l}^{+}=1 \\
& P_{1}^{+}=
\end{aligned}
$$

$$
0.3 P_{1}^{+}+0.2 P_{8}^{+}+0.5 P_{l_{c}}^{+}
$$

Model checking Markov decision processes

P_{s}^{+}is a shorthand for
$P_{s}^{\max }$ (Fal)

$$
\begin{aligned}
& P_{l_{s}}^{+}=P_{l_{c}}^{+}=0 \\
& P_{a l}^{+}=1 \\
& P_{1}^{+}=\max \left(0.7 P_{1}^{+}+0.2 P_{2}^{+}+0.1 P_{l_{s}}^{+}, 0.3 P_{1}^{+}+0.2 P_{8}^{+}+0.5 P_{l_{c}}^{+}\right)
\end{aligned}
$$

Model checking Markov decision processes

P_{s}^{+}is a shorthand for
$P_{s}^{\max }(\mathrm{F} a l)$

$$
\begin{aligned}
& P_{l_{s}}^{+}=P_{l_{c}}^{+}=0 \\
& P_{a l}^{+}=1 \\
& P_{1}^{+}=\max \left(0.7 P_{1}^{+}+0.2 P_{2}^{+}+0.1 P_{l_{s}}^{+}, 0.3 P_{1}^{+}+0.2 P_{8}^{+}+0.5 P_{l_{c}}^{+}\right) \\
& P_{2}^{+}=\max \left(0.55 P_{2}^{+}+0.25 P_{4}^{+}+0.1 P_{1}^{+}+0.1 P_{l_{s}}^{+}, 0.3 P_{2}^{+}+0.2 P_{a l}^{+}+0.5 P_{l_{c}}^{+}\right) \\
& P_{4}^{+}=\max \left(0.55 P_{4}^{+}+0.25 P_{8}^{+}+0.1 P_{2}^{+}+0.1 P_{l_{s}}^{+}, 0.3 P_{4}^{+}+0.2 P_{a l}^{+}+0.5 P_{l_{c}}^{+}\right) \\
& P_{8}^{+}=\max \left(0.55 P_{8}^{+}+0.25 P_{a l}^{+}+0.1 P_{4}^{+}+0.1 P_{l_{s}}^{+}, 0.3 P_{8}^{+}+0.2 P_{a l}^{+}+0.5 P_{l_{c}}^{+}\right)
\end{aligned}
$$

Model checking

Markov decision processes

In general:

B is the set of goal states

$$
\begin{array}{ll}
x_{s}=\max _{a \in A} \sum_{t \in S} \mathbf{P}_{a}(s, t) \cdot x_{t} & \text { if } s \in P r^{>0}(B) \backslash B \\
x_{s}=1 & \text { if } s \in B \\
x_{s}=0 & \text { if } s \notin \operatorname{Pr}^{>0}(B)
\end{array}
$$

The set of states
Linear optimization problem.
Solved with standard numerical analysis techniques
that may reach B with some probability

5

LTL reduced to reachability

LTL = propositional logic + temporal modalities:

- G φ : " φ holds globally"
- F φ : "Finally φ holds"
- $\varphi \cup \psi$: " φ holds until ψ holds"
E.g.:

$$
\mathrm{G}(\text { send-msg } \Rightarrow \mathrm{F} r c v-m s g)
$$

LTL reduced to reachability

Every LTL formula can be translate to a Büchi Automaton that represents the accepting behaviour.

Fp
G p
$p \cup q$

$$
P_{S}(\phi)=\text { ? }
$$

```
dtmc
module die

\section*{\(\phi: \quad \square \diamond c r i t_{1} \wedge \square \diamond \operatorname{crit}_{2}\)}


Compose \(M_{S}\) with \(A_{\phi}\)

\section*{Calculate probability of reaching accepting BSCCs in \(M_{S} \times A_{\phi}\)}
\[
P_{S}(\phi)=\text { ? }
\]
```

dtmc
module die
s : [0..7] init 0;
d : [0..6] init 0;
[] s=0 -> 0.5:(s'=1) + 0.5 : (s'=2);
[] s=1 -> 0.5:((s'=3) + 0.5 : (s'=4);
[] s=3 -> 0.5:(S ' =1) + 0.5: (s'=7); \& (d'=1);

```

```

 [] s=5 -> 0.5: (s'=7)& (d'=4) + 0.5 : (S'=7)

$\phi: \square \diamond c r i t_{1} \wedge \square \diamond c r i t_{2}$

Modelling

Automatic

A_{ϕ}

Compose M_{S} with A_{ϕ}

Calculate probability of reaching

Highlights on Fundamentals of Probabilistic Model Checking

- Vardi '85
- Qualitative MC on deterministic and non-deterministic PTSs
- Courcoubetis \& Yanakakis '88
- Quantitative MC on non-deterministic PTSs using LTL and lower/ upper bounds
- Hansson \& Jonsson '90
- Quantitative MC on deterministic PTSs introducing PCTL
- Bianco \& de Alfaro '95
- Quantitative MC on non-deterministic PTSs using PCTL*
- de Alfaro, Kwiatkowska, Norman, Parker, \& Segala '2000
- Symbolic quantitative MC on non-deterministic PTSs

Highlights on Fundamentals

 of Probabilistic Model Che 1st. algorithm to- Vardi '85
- Qualitative MC on deterministic and non-deterr
- Courcoubetis \& Yanakakis '88

1st. algorithm for probabilistic MC

- Quantitative MC on non-deterministic PTSs using LTI upper bounds
- Hansson \& Jonsson '90

1st. modalities with probabilities

- Quantitative MC on deterministic PTSs introducing PC 1st. "clever"
- Bianco \& de Alfaro '95
- Quantitative MC on non-deterministic PTSs using PCTL*
- de Alfaro, Kwiatkowska, Norman, Parker, \& Segala '2000
- Symbolic quantitative MC on non-deterministic PTSs

... and more

- Model Checking Rewards properties
[Andova, Hermanns \& Katoen 2003]
- Model Checking CTMC \& steady state properties
[Baier, Havenkort, Hermanns \& Katoen 2002]
- Model Checking CTMDP
[Baier, Hermanns, Katoen \& Havenkort 2004 / Baier, Hahn, Havenkort, Hermanns \& Katoen 2013]
- Counterexample derivation
[Aljazzar, Hermanns \& Leue, 2005 / Han \& Katoen 2007 / Andrés, D’Argenio, van Rossum 2008 / Damman, Han \& Katoen 2008 / Jansen 2015]

... and more

- Attacking the state explosion problem
- Abstraction techniques
[D'Argenio, Jeannet, Jensen, \& Larsen, 2001 / Kwiatkowska, Norman, \& Parker, 2006 / Wachter, Zhang, \& Hermanns, 2007, 2008]
- Partial order reduction
[Baier, Ciesinski, \& Größer, 2004 / D’Argenio \& Niebert, 2004 / Baier, D'Argenio, \& Größer, 2006 / Giro, D’Argenio, \& Ferrer Fioriti, 2009]
- and much more:
- Controller synthesis and games
- Partial observation \& distributed schedulers
- Statistical Model Checking

An Introduction to Probabilistic Model Checking

Pedro R. D’Argenio

Dependable Systems Group - FaMAF Universidad Nacional de Córdoba
CONICET
http://dsg.famaf.unc.edu.ar
11○ ERPEM, Rio Cuarto, Dec-2015

