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Overview

Motivation

Reachability analysis on deterministic models

Reachability analysis on non-deterministic models

LTL

The process of probabilistic model checking 

Quick and partial overview of the state of the art



Why verification?
Ariane 5:

64 bits fp


vs 16 bits int

Heartbleed:

Integridad/Confidencialidad

Mars Climate Orbiter:

Métrico vs Imperial

Pentium:

FDIV

Therac-25:

Race condition

Northeast blackout 
in 2003:


Race condition



Model Checking

send

rcv

ack

retry

to

send

G ( send(msg) => F rcv(msg) )⊨

Non-deterministic 
behavior

Properties 
are either true or 

false



Limitations of this approach

Many algorithms proposed (better) solutions using 
randomization.

E.g.


Leader election protocol in IEEE 1394 “Firewire”

Binary exponential backoff on IEEE 802.3 
“Ethernet”
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Limitations of this approach

Root contention!

E.g.: IEEE 1394 Leader election protocol



Limitations of this approach

It is solved by “flipping coins”

E.g.: IEEE 1394 Leader election protocol



Limitations of this approach

Many times, correction cannot be established in a 
usual bivalued (modal) logic.

Nevertheless, the validity of a property can be 
quantified through a probability value.

E.g.


Bounded Retransmission Protocol en Philips RC6

Binary Exponential Backoff Algorithm en IEEE 
802.3 “Ethernet”



Limitations of this approach

✔

Sender Receiver
Unreliable
medium

Suppose that a file is transmitted using the ABP or 
a sliding window protocol

G ( send(msg) => F rcv(msg) )

but this is under the 
assumption that an infinite 
number of retrials is allowed !



Limitations of this approach

✗

Sender Receiver
Unreliable
medium

Suppose that a file is transmitted using the ABP or 
a sliding window protocol

G ( send(msg) => F rcv(msg) )

What if only a bounded number of 
retransmissions is allowed? (e.g. BRP)



Limitations of this approach
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Limitations of this approach

send

rcv

ack

retry

to

send

G ( send(msg) => F rcv(msg) )⊨

Non-
deterministic behavior

Properties 
are either true or 

false

Probabilistic 
behavior should also be 

considered

The truth value 
should be probabilistically 

quantified 



PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

Fully probabilistic systems (Markov Chain)

s0

s1s3 s2

{start}

{try}{delivered}

{lost}
1

1
10

9
10

1

1

S = {s0, s1, s2, s3}

s0 is the initial state

set of states with initial state s0

P : S ⇥ S ! [0, 1]
is the probabilistic transition function,

s.t. 8s 2 S,

P
s02S P(s, s0) = 1, and

L : S ! P(AP) labelling function,

where AP is the set of

atomic propositions.

(S,P, s0, L)

Markov Chains 749

infinite) paths in the underlying digraph. They are defined as infinite state sequences
π = s0 s1 s2 · · · ∈ Sω such that P(si, si+1) > 0 for all i ! 0. For path π in M, inf(π)
denotes the set of states that are visited infinitely often in π. For finite Markov chains,
inf(π) is nonempty for all paths π.

Markov chains are depicted by their underlying digraph where edges are equipped with
the transition probabilities in ]0,1]. If a state s has a unique successor s′, i.e., P(s, s′) = 1,
the transition probability may be omitted.

Example 10.2. A Simple Communication Protocol

Consider a simple communication protocol operating with a channel. It is error-prone
in the sense that messages may be lost, see the Markov chain depicted in Figure 10.1.
Here, ιinit(start) = 1 and ιinit(s) = 0 for s ̸= start, i.e., start is the unique initial state.
In the state start, a message is generated that is senf off along the channel in its unique
successor state try. The message is lost with probability 1

10 , in which case the message
will be sent off again, until it is eventually delivered. As soon as the message has been
delivered correctly, the system returns to its initial state.

start

try lostdelivered

1 1
10

1

1

9
10

Figure 10.1: Markov chain for a simple communication protocol.

Using the enumeration start, try, lost, delivered for the states, the transition probability
function P viewed as a 4×4 matrix and the initial distribution viewed as a column vector
are

P =

⎛

⎜⎜⎝

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

⎞

⎟⎟⎠ ιinit =

⎛

⎜⎜⎝

1
0
0
0

⎞

⎟⎟⎠

An example of a path is

π = (start try lost try lost try delivered)ω.

Along this path each message has to be retransmitted two times before delivery. It follows
that inf(π) = S. For T = { lost,delivered }, we have P(try, T ) = 1.



Probability of a property

Models contain probabilistic information (e.g. a decision 
made by tossing a coin, the probability of loosing a 
message).

The validity of a temporal fomula (e.g. LTL) is quantified 
with a probability value in [0,1] (instead of a boolean).

Prob( F • ) = 
= 0.5*0.4 + 0.5*0.2 + 0.5*0.7

= 0.65

0.5
0.5

0.7

0.3

0.20.4

0.4



750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.
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s′1,2,3 s2,3 s4,5 s′4,5,6
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Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

Probability of a property

s1 s2

s3 s4 s5 s6

¿P ( F 2 )?

A dice with a coin
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Probability of a property

s1 s2

s3 s4 s5 s6

P(s0, s1) ·P(s1, s4) ·P(s4, 2)

⎧ ⎪ ⎨ ⎪ ⎩

P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

A dice with a coin
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A dice with a coin

Ps0( F 2 ) =
X

n>0

P(s0s1(s3s1)
ns42) =

X

n>0

1

22n+1
=

1
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Probabilistic Model Checking 
in fully probabilistic models
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Using DFS, we 
can calculate whether 2 

is reachable with 
probability 0

s2

s5 s6

Ps2(F 2) = Ps5(F 2) = Ps6(F 2) = 0

P1(F 2) = P3(F 2) = P4(F 2) = 0

P5(F 2) = P6(F 2) = 0

P2(F 2) = 1

Ps0(F 2) =
1

2
Ps1(F 2) +

1

2
Ps2(F 2)

Ps1(F 2) =
1

2
Ps3(F 2) +

1

2
Ps4(F 2)

Ps3(F 2) =
1

2
Ps1(F 2) +

1

2
P1(F 2)

Ps4(F 2) =
1

2
P2 (F 2) +

1

2
P2 (F 2)
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s3 s4
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Probabilistic Model Checking 
in fully probabilistic models

In general:

xs =
P

t2S P(s, t) · xt if s 2 Pr>0(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pr>0(B)

The set of states 
that reach B with some 

probability

B is the set of 
goal states

It is solved with 
standard numeric techniques 

(Jacobi, Gauss-Seidel)



The need of non-determinism

Parallel composition / Distributed components

probabilities within a single component are easy to estimate,

relative probabilities of events located geographically distant 
depend on a highly unpredictable global state.


Underspecification

some probabilities are unknown at early stage of modeling.


Abstraction

models are abstract representations of the system under study.


Control synthesis

intentional underspecification to synthesize optimal decisions.



Probability of a property

To calculate probabilities in this setting, non-
determinism has to be resolved.

Schedulers are functions that select the next 
transition according to the past execution.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.81 0.2



Probability of a property

To calculate probabilities in this setting, non-
determinism has to be resolved.

Schedulers are functions that select the next 
transition according to the past execution.

A scheduler 
constructs a fully 
probabilistic tree0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.81 0.2

(There are also 
randomized 

variants)



An LTL formula has associated two values:

The maximum probability under all schedulers


Pmax( F • ) = 0.96

The minimun probability under all schedulers


Pmin( F • ) = 0.65

Probability of a property

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.81 0.2



An LTL formula has associated two values:

The maximum probability under all schedulers


Pmax( F • ) = 0.96

The minimun probability under all schedulers


Pmin( F • ) = 0.65

Probability of a property

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.81 0.2



An LTL formula has associated two values:

The maximum probability under all schedulers


Pmax( F • ) = 0.96

The minimun probability under all schedulers


Pmin( F • ) = 0.65

Probability of a property

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.81 0.2



An LTL formula has associated two values:

The maximum probability under all schedulers


Pmax( F • ) = 0.96

The minimun probability under all schedulers


Pmin( F • ) = 0.65

Probability of a property

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.81 0.2

Randomized and deterministic 
schedulers are equally expressive for 
max/min prob. of reach. properties



Markov decision processes

1 2 4 8
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(S, {Pa}a2A, s0, L)

The structure is as before, only that we have a 
family of matrices, one for each posible decision 



Markov decision processes
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What is the maximum probability of 
obtaining the desired amount of money?



Model checking 
Markov decision processes
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Markov decision processes
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Markov decision processes
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In general:

The set of states 
that may reach B with some 

probability

B is the set of 
goal states

Linear optimization problem.

Solved with standard numerical analysis 

techniques

xs = max

a2A

P
t2S Pa(s, t) · xt if s 2 Pr>0

(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pr>0
(B)



LTL reduced to reachability

LTL = propositional logic + temporal modalities:

Gϕ : “ϕ holds globally”

Fϕ : “Finally ϕ holds”

ϕU ψ : “ϕ holds until ψ holds”


E.g.:
G ( send-msg  ⇒  F rcv-msg )



LTL reduced to reachability

Every LTL formula can be translate to a Büchi Automaton 
that represents the accepting behaviour.

G pF p p U q
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4.2.3 Representación de Propiedades como Autómatas de Büchi

Teorema: Dada una fórmula LTL φ, se puede construir un autómata de BüchiAφ

tal que

L(Aφ) = L(φ).

La demostración de este teorema es compleja. Para formarse una idea de lo

establecido por el teorema daremos algunos ejemplos:

C

♦p "p p U q

C {p} ∪ C {p} ∪ C

{q} ∪ C{p} ∪ C

C

donde C cualquier subconjunto de PA.

FaMAF Universidad Nacional de Córdoba
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� ⇥ crit1 � � ⇥ crit2� :

PS(φ) = ?

dtmc

module die
  s : [0..7] init 0;
  d : [0..6] init 0;
  [] s=0 -> 0.5 : (s'=1) + 0.5 : (s'=2);
  [] s=1 -> 0.5 : (s'=3) + 0.5 : (s'=4);
  [] s=2 -> 0.5 : (s'=5) + 0.5 : (s'=6);
  [] s=3 -> 0.5 : (s'=1) + 0.5 : (s'=7) & (d'=1);
  [] s=4 -> 0.5 : (s'=7) & (d'=2) + 0.5 : (s'=7) & (d'=3);
  [] s=5 -> 0.5 : (s'=7) & (d'=4) + 0.5 : (s'=7) & (d'=5);
  [] s=6 -> 0.5 : (s'=2) + 0.5 : (s'=7) & (d'=6);
  [] s=7 -> (s'=7);
endmodule
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Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.
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Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

S

AφMS

Compose MS with Aφ

Calculate probability of reaching 
accepting BSCCs in MS × Aφ
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Highlights on Fundamentals 
of Probabilistic Model Checking

Vardi ’85

Qualitative MC on deterministic and non-deterministic PTSs


Courcoubetis & Yanakakis ’88

Quantitative MC on non-deterministic PTSs using LTL and lower/
upper bounds


Hansson & Jonsson ’90

Quantitative MC on deterministic PTSs introducing PCTL


Bianco & de Alfaro ’95

Quantitative MC on non-deterministic PTSs using PCTL*


de Alfaro, Kwiatkowska, Norman, Parker, & Segala ’2000

Symbolic quantitative MC on non-deterministic PTSs



Highlights on Fundamentals 
of Probabilistic Model Checking

Vardi ’85

Qualitative MC on deterministic and non-deterministic PTSs


Courcoubetis & Yanakakis ’88

Quantitative MC on non-deterministic PTSs using LTL and lower/
upper bounds


Hansson & Jonsson ’90

Quantitative MC on deterministic PTSs introducing PCTL


Bianco & de Alfaro ’95

Quantitative MC on non-deterministic PTSs using PCTL*


de Alfaro, Kwiatkowska, Norman, Parker, & Segala ’2000

Symbolic quantitative MC on non-deterministic PTSs

1st. algorithm to 
qualitative MC MDPs

1st. modalities with 
probabilities

1st. “clever” 
algorithm

1st. efficient 
tool: PRISM

1st. algorithm for 
probabilistic MC



… and more

Model Checking Rewards properties

[Andova, Hermanns & Katoen 2003]

Model Checking CTMC & steady state properties

[Baier, Havenkort, Hermanns & Katoen 2002]

Model Checking CTMDP

[Baier, Hermanns, Katoen & Havenkort 2004 / Baier, Hahn, Havenkort, 
Hermanns & Katoen 2013]

Counterexample derivation

[Aljazzar, Hermanns & Leue, 2005 / Han & Katoen 2007 / Andrés, 
D’Argenio, van Rossum 2008 / Damman, Han & Katoen 2008 / Jansen 2015]



… and more

Attacking the state explosion problem

Abstraction techniques

[D’Argenio, Jeannet, Jensen, & Larsen, 2001 / Kwiatkowska, Norman, & 
Parker, 2006 / Wachter, Zhang, & Hermanns, 2007, 2008]

Partial order reduction

[Baier, Ciesinski, & Größer, 2004 / D’Argenio & Niebert, 2004 / Baier, 
D’Argenio, & Größer, 2006 / Giro, D’Argenio, & Ferrer Fioriti, 2009]


and much more:

Controller synthesis and games

Partial observation & distributed schedulers

Statistical Model Checking
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