
Is your software on dope?
Formal analysis of surreptitiously “enhanced” programs

Gilles Barthe, Sebastian Biewer, Pedro R. D’Argenio,
Bernd Finkbeiner, and Holger Hermanns

IMDEA Software (ES) UN Córdoba – CONICET (AR) Saarland University (DE)

http://www.cs.famaf.unc.edu.ar/~dargenio/

FMT, UT, January 2017

Motivation

❖ Refuses to work

❖ Shows a warning sign

❖ Informs “low toner” earlier than needed

You get a third party
technically compatible

cartridge but …

Motivation

Refuses third party
battery and chargers

Refuses or changes
your vote!!!

Motivation

❖ “Chip tuning”:

The electronic control unit (ECU) is
reprogrammed to change characteristics
(e.g. power, emissions, fuel consumption)

Motivation

Volkswagen emissions scandal

A general characterization

❖ Why characterizations?

A general characterization

❖ Why characterizations?

To formulate and enforce rigid requirements on software driven
by public interest, so as to effectively ban software doping.

Clearly not in the
interest of the manufacturer

A general characterization

❖ Why characterizations?

To formulate and enforce rigid requirements on software driven
by public interest, so as to effectively ban software doping.

❖ A software system is doped if:

the manufacturer has included a hidden functionality in such a
way that the resulting behaviour intentionally favors a designated
party, against the interest of society or of the software licensee.

Clearly not in the
interest of the manufacturer

A general characterization

❖ Why characterizations?

To formulate and enforce rigid requirements on software driven
by public interest, so as to effectively ban software doping.

❖ A software system is doped if:

the manufacturer has included a hidden functionality in such a
way that the resulting behaviour intentionally favors a designated
party, against the interest of society or of the software licensee.

Clearly not in the
interest of the manufacturer

E.g. iPhone 6Not possible to formalize

Doping by discrimination

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

Doping by discrimination

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

parameters

inputs

outputs

Doping by discrimination

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

parameters

inputs

outputs

A clean program

Doping by discrimination

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

parameters

inputs

outputs

Doping by discrimination

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

parameters

inputs

outputs

A doped program

Doping by discrimination

❖ A program is clean (or doping-free) if for every parameter of
interest it exhibits the same visible outputs when supplied with
the same inputs.

Doping by discrimination

❖ A program is clean (or doping-free) if for every parameter of
interest it exhibits the same visible outputs when supplied with
the same inputs.

❖ Formally:
S : Param ! In ! 2Out

non-deterministic

S is clean (or doping-free) if for all

p, p0 2 PIntrst and i 2 In, S(p)(i) = S(p0)(i)

Doping by discrimination

❖ A program is clean (or doping-free) if for every parameter of
interest it exhibits the same visible outputs when supplied with
the same inputs.

❖ Formally:
S : Param ! In ! 2Out

non-deterministic

Defined by a
contract

E.g. all compatible
cartridges

S is clean (or doping-free) if for all

p, p0 2 PIntrst and i 2 In, S(p)(i) = S(p0)(i)

Doping by discrimination

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

✔ ✗

Doping and extended functionality

procedure Printer(cartridge info)
read(document)
if ¬newType(document) _ supportsNewType(cartridge info) then

(· · · proceed to print as in Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 3. A clean printer.

given input in two di↵erent instances of the same (parameterized) program. Ob-
viously, “all parameter values” refers to all values within a given domain. In the
case of the printer, we expect that it works with any compatible cartridge. Such
compatibility domain defines a first scope within which a software is evaluated
to be clean or doped. So, we could say the following.

(2)A program is clean (or doping-free) if for every standard parameter it
exhibits the same visible outputs when supplied with the same inputs.

Under this view, the program of Fig. 2 is indeed doped. Also, note that this char-
acterisation entails the existence of a contract which defines the set of standard
parameters.

3.2 Doping vs. extended functionality

We could imagine, nonetheless, that the printer manufacturer may like to pro-
vide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more e�cient at the time
of printing, but this requires some new technology on the cartridge. The man-
ufacturer still wants to provide the usual functionality for standard file formats
that works with standard compatible cartridges and comes up with the program
of Fig. 3. Notice that this program does not conform to the specification of a
clean program given by (2) since it behaves di↵erently when a document of the
new (non-standard) type is given. This is clearly not in the spirit of the pro-
gram in Fig. 3 which is actually conforming to the standard specification. Thus,
we relax the previous characterisation and only require that two instances of
the program behave similarly if the provided inputs adhere to some expected
standard. Therefore we propose the following weaker notion of clean program:

(3)A program is clean if for every standard parameter it exhibits the same
visible outputs when supplied with any possible input complying with
a given standard.

This characterisation is based on a comparison of the behaviour of two in-
stances of a program, each of them responding to di↵erent parameter values.

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

procedure Printer(cartridge info)
read(document)
if ¬newType(document) _ supportsNewType(cartridge info) then

(· · · proceed to print as in Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 3. A clean printer.

given input in two di↵erent instances of the same (parameterized) program. Ob-
viously, “all parameter values” refers to all values within a given domain. In the
case of the printer, we expect that it works with any compatible cartridge. Such
compatibility domain defines a first scope within which a software is evaluated
to be clean or doped. So, we could say the following.

(2)A program is clean (or doping-free) if for every standard parameter it
exhibits the same visible outputs when supplied with the same inputs.

Under this view, the program of Fig. 2 is indeed doped. Also, note that this char-
acterisation entails the existence of a contract which defines the set of standard
parameters.

3.2 Doping vs. extended functionality

We could imagine, nonetheless, that the printer manufacturer may like to pro-
vide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more e�cient at the time
of printing, but this requires some new technology on the cartridge. The man-
ufacturer still wants to provide the usual functionality for standard file formats
that works with standard compatible cartridges and comes up with the program
of Fig. 3. Notice that this program does not conform to the specification of a
clean program given by (2) since it behaves di↵erently when a document of the
new (non-standard) type is given. This is clearly not in the spirit of the pro-
gram in Fig. 3 which is actually conforming to the standard specification. Thus,
we relax the previous characterisation and only require that two instances of
the program behave similarly if the provided inputs adhere to some expected
standard. Therefore we propose the following weaker notion of clean program:

(3)A program is clean if for every standard parameter it exhibits the same
visible outputs when supplied with any possible input complying with
a given standard.

This characterisation is based on a comparison of the behaviour of two in-
stances of a program, each of them responding to di↵erent parameter values.

Doping and extended functionality

procedure Printer(cartridge info)
read(document)
if ¬newType(document) _ supportsNewType(cartridge info) then

(· · · proceed to print as in Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 3. A clean printer.

given input in two di↵erent instances of the same (parameterized) program. Ob-
viously, “all parameter values” refers to all values within a given domain. In the
case of the printer, we expect that it works with any compatible cartridge. Such
compatibility domain defines a first scope within which a software is evaluated
to be clean or doped. So, we could say the following.

(2)A program is clean (or doping-free) if for every standard parameter it
exhibits the same visible outputs when supplied with the same inputs.

Under this view, the program of Fig. 2 is indeed doped. Also, note that this char-
acterisation entails the existence of a contract which defines the set of standard
parameters.

3.2 Doping vs. extended functionality

We could imagine, nonetheless, that the printer manufacturer may like to pro-
vide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more e�cient at the time
of printing, but this requires some new technology on the cartridge. The man-
ufacturer still wants to provide the usual functionality for standard file formats
that works with standard compatible cartridges and comes up with the program
of Fig. 3. Notice that this program does not conform to the specification of a
clean program given by (2) since it behaves di↵erently when a document of the
new (non-standard) type is given. This is clearly not in the spirit of the pro-
gram in Fig. 3 which is actually conforming to the standard specification. Thus,
we relax the previous characterisation and only require that two instances of
the program behave similarly if the provided inputs adhere to some expected
standard. Therefore we propose the following weaker notion of clean program:

(3)A program is clean if for every standard parameter it exhibits the same
visible outputs when supplied with any possible input complying with
a given standard.

This characterisation is based on a comparison of the behaviour of two in-
stances of a program, each of them responding to di↵erent parameter values.

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

procedure Printer(cartridge info)
read(document)
if ¬newType(document) _ supportsNewType(cartridge info) then

(· · · proceed to print as in Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 3. A clean printer.

given input in two di↵erent instances of the same (parameterized) program. Ob-
viously, “all parameter values” refers to all values within a given domain. In the
case of the printer, we expect that it works with any compatible cartridge. Such
compatibility domain defines a first scope within which a software is evaluated
to be clean or doped. So, we could say the following.

(2)A program is clean (or doping-free) if for every standard parameter it
exhibits the same visible outputs when supplied with the same inputs.

Under this view, the program of Fig. 2 is indeed doped. Also, note that this char-
acterisation entails the existence of a contract which defines the set of standard
parameters.

3.2 Doping vs. extended functionality

We could imagine, nonetheless, that the printer manufacturer may like to pro-
vide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more e�cient at the time
of printing, but this requires some new technology on the cartridge. The man-
ufacturer still wants to provide the usual functionality for standard file formats
that works with standard compatible cartridges and comes up with the program
of Fig. 3. Notice that this program does not conform to the specification of a
clean program given by (2) since it behaves di↵erently when a document of the
new (non-standard) type is given. This is clearly not in the spirit of the pro-
gram in Fig. 3 which is actually conforming to the standard specification. Thus,
we relax the previous characterisation and only require that two instances of
the program behave similarly if the provided inputs adhere to some expected
standard. Therefore we propose the following weaker notion of clean program:

(3)A program is clean if for every standard parameter it exhibits the same
visible outputs when supplied with any possible input complying with
a given standard.

This characterisation is based on a comparison of the behaviour of two in-
stances of a program, each of them responding to di↵erent parameter values.

✗
!

The cartridge is
standard

Doping and extended functionality

procedure Printer(cartridge info)
read(document)
if ¬newType(document) _ supportsNewType(cartridge info) then

(· · · proceed to print as in Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 3. A clean printer.

given input in two di↵erent instances of the same (parameterized) program. Ob-
viously, “all parameter values” refers to all values within a given domain. In the
case of the printer, we expect that it works with any compatible cartridge. Such
compatibility domain defines a first scope within which a software is evaluated
to be clean or doped. So, we could say the following.

(2)A program is clean (or doping-free) if for every standard parameter it
exhibits the same visible outputs when supplied with the same inputs.

Under this view, the program of Fig. 2 is indeed doped. Also, note that this char-
acterisation entails the existence of a contract which defines the set of standard
parameters.

3.2 Doping vs. extended functionality

We could imagine, nonetheless, that the printer manufacturer may like to pro-
vide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more e�cient at the time
of printing, but this requires some new technology on the cartridge. The man-
ufacturer still wants to provide the usual functionality for standard file formats
that works with standard compatible cartridges and comes up with the program
of Fig. 3. Notice that this program does not conform to the specification of a
clean program given by (2) since it behaves di↵erently when a document of the
new (non-standard) type is given. This is clearly not in the spirit of the pro-
gram in Fig. 3 which is actually conforming to the standard specification. Thus,
we relax the previous characterisation and only require that two instances of
the program behave similarly if the provided inputs adhere to some expected
standard. Therefore we propose the following weaker notion of clean program:

(3)A program is clean if for every standard parameter it exhibits the same
visible outputs when supplied with any possible input complying with
a given standard.

This characterisation is based on a comparison of the behaviour of two in-
stances of a program, each of them responding to di↵erent parameter values.

interest. It thereby favors a certain brand, vendor, manufacturer, or other market
participant. This happens intentionally, and not by accident.

However, the question whether a certain behaviour is intentional or not is
very di�cult to decide. To illustrate this, we recall that the above mentioned
iPhone-6 case, where “non-authorized” repair rendered the phone unusable [5]
after an iOS update, seemed to be intentional when it surfaced, but was actually
tracked down to a software glitch of the update and fixed later. Notably, if
the iOS designers would have had the particular intention to mistreat licensees
who went elsewhere for repair, the same behaviour could well have qualified as
software doping in the above sense (1).

As a result, we will look at software doping according to the above char-
acterisation, but without any attempt to take into account considerations of
intentionality.

In the sequel, we shall investigate this phenomenon by synthetic examples,
that however are directly inspired by the real cases of software doping reviewed
above.

3.1 Doping by discrimination

procedure Printer(cartridge info)
read(document)
while pagesToPrint(document) > 0 do

read(paper available?)
if ¬paper available? then

turnOn(alert signal)
waitUntil(paper available?)
turnOff(alert signal)

end if

printNextPage(page out,document)
end while

end procedure

Fig. 1. A simple printer.

procedure Printer(cartridge info)
if brand(cartridge info) = my-brand then

(· · · same code as Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 2. A doped printer.

Think of a program as a func-
tion that accepts some ini-
tial parameters and, given (par-
tial) inputs, it produces (par-
tial) outputs. As an example,
(an abstraction of) the embed-
ded software in a printer is
given in Fig. 1. The program
Printer has the parameter
cartridge info (which is not yet
used within the function), two
input variables (document and
paper available?) and two out-
put variables (alert signal and
page out).

A printer manufacturer may
manipulate this program in or-
der to favor its own cartridge
brand. An obvious way is dis-
played in Fig. 2. This is a sort of
discrimination based on parame-
ter values. Therefore, a first for-
mal approach to characterising
a program as clean (or doping-

free) is that it should behave in a similar way for all parameter values, where by
similar behaviour we mean that the visible output should be the same for any

procedure Printer(cartridge info)
read(document)
if ¬newType(document) _ supportsNewType(cartridge info) then

(· · · proceed to print as in Fig. 1 · · ·)
else

turnOn(alert signal)
end if

end procedure

Fig. 3. A clean printer.

given input in two di↵erent instances of the same (parameterized) program. Ob-
viously, “all parameter values” refers to all values within a given domain. In the
case of the printer, we expect that it works with any compatible cartridge. Such
compatibility domain defines a first scope within which a software is evaluated
to be clean or doped. So, we could say the following.

(2)A program is clean (or doping-free) if for every standard parameter it
exhibits the same visible outputs when supplied with the same inputs.

Under this view, the program of Fig. 2 is indeed doped. Also, note that this char-
acterisation entails the existence of a contract which defines the set of standard
parameters.

3.2 Doping vs. extended functionality

We could imagine, nonetheless, that the printer manufacturer may like to pro-
vide extra functionalities for its own product which is outside of the standard
for compatibility. For instance (and for the sake of this discussion) suppose the
printer manufacturer develops a new file format that is more e�cient at the time
of printing, but this requires some new technology on the cartridge. The man-
ufacturer still wants to provide the usual functionality for standard file formats
that works with standard compatible cartridges and comes up with the program
of Fig. 3. Notice that this program does not conform to the specification of a
clean program given by (2) since it behaves di↵erently when a document of the
new (non-standard) type is given. This is clearly not in the spirit of the pro-
gram in Fig. 3 which is actually conforming to the standard specification. Thus,
we relax the previous characterisation and only require that two instances of
the program behave similarly if the provided inputs adhere to some expected
standard. Therefore we propose the following weaker notion of clean program:

(3)A program is clean if for every standard parameter it exhibits the same
visible outputs when supplied with any possible input complying with
a given standard.

This characterisation is based on a comparison of the behaviour of two in-
stances of a program, each of them responding to di↵erent parameter values.

✗
!

The cartridge is
standard

The input is not

❖ A program is clean if for every parameter of interest it exhibits the
same visible outputs when supplied with any possible standard
input.

❖ Formally

Doping and extended functionality

S is clean if for all p, p0 2 PIntrst

and i 2 In \ StdIn, S(p)(i) = S(p0)(i)

❖ A program is clean if for every parameter of interest it exhibits the
same visible outputs when supplied with any possible standard
input.

❖ Formally

Doping and extended functionality

Also defined by
a contract

S is clean if for all p, p0 2 PIntrst

and i 2 In \ StdIn, S(p)(i) = S(p0)(i)

Doping by switching

❖ The Volkswagen emissions scandal:

❖ The emission control part of the ECU regulates the emission of
NOx (Mono-nitrogen oxides)

❖ The selective catalytic reduction (SCR) model determines the
diesel exhaust fluid (DEF) dosage

❖ Volkswagen used two models

❖ Standard

❖ Alternate

Doping by switching
The Volkswagen case

0

5

10

15

20

25

30

0 240 480 720 960 1200 1440

time [s]

di
st

an
ce

 [k
m

]

* Image from Felix Domke

Doping by switching
The Volkswagen case

0

5

10

15

20

25

30

0 240 480 720 960 1200 1440

time [s]

di
st

an
ce

 [k
m

]
Standard SCR modelStandard SCR modelStandard SCR model

Alternate SCR model
(everywhere else)

* Image from Felix Domke

Doping by switching
The Volkswagen case

NEDC

Prof. Kolke, ADAC

NEDC also requires the car to have driven the
extra-urban cycle on the previous day, and to be
pre-heated to 20C overnight for a “cold-start".

* Image from Felix Domke

Test for
emission

verification

Doping by switching

0

5

10

15

20

25

30

0 240 480 720 960 1200 1440

time [s]

di
st

an
ce

 [k
m

]

The Volkswagen case

* Image from Felix Domke

Doping by switching
The Volkswagen case

* Image from Felix Domke

0

5

10

15

20

25

30

0 240 480 720 960 1200 1440

time [s]

di
st

an
ce

 [k
m

]

While under the test,
only standard SCR

model !!!

Doping by switching
The Volkswagen case

* Image from Felix Domke

0

5

10

15

20

25

30

0 240 480 720 960 1200 1440

time [s]

di
st

an
ce

 [k
m

]

Notice:
the test last 20 min

FIAT cheated by
switching from the standard SCR
model to an alternate SC model

after 22 min !!!

While under the test,
only standard SCR

model !!!

Doping by switching
The Volkswagen case

* Image from Felix Domke

0

5

10

15

20

25

30

0 240 480 720 960 1200 1440

time [s]

di
st

an
ce

 [k
m

]

Notice:
the test last 20 min

FIAT cheated by
switching from the standard SCR
model to an alternate SC model

after 22 min !!!

While under the test,
only standard SCR

model !!!

…and Opel
also cheats!!

Doping by switching

❖ The standard inputs are defined by the test

❖ The spirit of the emission tests is to verify that the amount of NOx
in the car exhaust gas does not go high in general

❖ Therefore one expects that:

❖ if the input values deviates within a “reasonable distance” from
the standard, the output values are also within a “reasonable
distance” from the expected output value produced by the
standard input

Volkswagen and
FIAT and Opel and…

NEDC

Prof. Kolke, ADAC

NEDC also requires the car to have driven the
extra-urban cycle on the previous day, and to be
pre-heated to 20C overnight for a “cold-start".

* Image from Felix Domke

❖ Formally

Doping by switching

The distances and the
thresholds are also defined by

the contract

S is robustly clean if for all p, p0 2 PIntrst and i, i0 2 In,

whenever i 2 StdIn and dIn(i, i0)  i,

1. for all o 2 S(p)(i) there exists o

0 2 S(p0)(i0)
such that dOut(o, o0)  o, and

2. for all o

0 2 S(p0)(i0) there exists o 2 S(p)(i)
such that dOut(o, o0)  o.

❖ Using Hausdorff distance

where

Doping by switching

S is robustly clean if for all p, p0 2 PIntrst and i, i0 2 In,

whenever i 2 StdIn and dIn(i, i0)  i, then

H(dOut)(S(p)(i), S(p
0)(i0))  o

H(d)(A,B) = max

8
<

:

sup

a2A
inf

b2B
d(a, b),

sup

b2B
inf

a2A
d(a, b)

9
=

;

Doping by switching

❖ Formally (more general)

Function f is also
defined by the contract

S is f -clean if for all p, p0 2 PIntrst and i, i0 2 In,

whenever i 2 StdIn,

1. for all o 2 S(p)(i) there exists o

0 2 S(p0)(i0)
such that dOut(o, o0)  f(dIn(i, i0)), and

2. for all o

0 2 S(p0)(i0) there exists o 2 S(p)(i)
such that dOut(o, o0)  f(dIn(i, i0)).

❖ Using Hausdorff distance

Doping by switching

S is f -clean if for all p, p0 2 PIntrst and i, i0 2 In,

whenever i 2 StdIn,

H(dOut)(S(p)(i), S(p
0)(i0))  f(dIn(i, i

0))

Analysis with Self-Composition
(deterministic programs)

S is clean if for all p, p0 2 PIntrst

and i 2 In \ StdIn, S(p)(i) = S(p0)(i)

{PIntrst ^ StdIn ^ (PIntrst ^ StdIn)[~x/~x0] ^ ~x

i

= ~x

0
i

}

S ;S[~x/~x0]

{ ~x
o

= ~x

0
o

}

Not quite right:
fails if S does not terminate

but S[x/x’] does

Analysis with Self-Composition
(deterministic programs)

❖ S is clean iff

0

BBB@

(PIntrst ^ StdIn)

^ (PIntrst ^ StdIn)[~x/~x0]

^ ~x

i

= ~x

0
i

^ wp(S, true)

1

CCCA
) wp(S;S[~x/~x0], ~x

o

= ~x

0
o

)

Analysis with Self-Composition
(deterministic programs)

❖ S is robustly clean iff

0

BBB@

PIntrst ^ StdIn

^ PIntrst[~x/~x0]

^ di(~xi, ~x
0
i)  i

^ wp(S, true)

1

CCCA
) wp(S;S[~x/~x0], dOut(~xo, ~x

0
o)  o)

0

BBB@

PIntrst ^ StdIn

^ PIntrst[~x/~x0]

^ di(~xi, ~x
0
i)  i

^ wp(S[~x/~x0], true)

1

CCCA
) wp(S[~x/~x0];S, dOut(~xo, ~x

0
o)  o)

Analysis with Self-Composition
(deterministic programs)

❖ S is f-clean iff for all Y

0

BBB@

PIntrst ^ StdIn

^ PIntrst[~x/~x0]

^ f(di(~xi, ~x
0
i)) = Y

^ wp(S, true)

1

CCCA
) wp(S;S[~x/~x0], dOut(~xo, ~x

0
o)  Y)

0

BBB@

PIntrst ^ StdIn

^ PIntrst[~x/~x0]

^ f(di(~xi, ~x
0
i)) = Y

^ wp(S[~x/~x0], true)

1

CCCA
) wp(S[~x/~x0];S, dOut(~xo, ~x

0
o)  Y)

Reactive Systems

❖ A program is interpreted as a function

❖ and the set of standard inputs as a language

S : Param ! In! ! 2(Out!)

StdIn ✓ In!

S is clean if for all p, p0 2 PIntrst

and i 2 In! \ StdIn, S(p)(i) = S(p0)(i)

Reactive Systems

❖ Distances run on finite words:

dIn : (In
⇤ ⇥ In⇤) ! R�0 and dOut : (Out

⇤ ⇥ Out⇤) ! R�0

S is robustly clean if for all p, p0 2 PIntrst and i, i0 2 In! ,

if i 2 StdIn, for all k � 0,

(8j  k : dIn(i[..j], i
0[..j])  i)

) H(dOut)(S(p)(i)[..k], S(p
0)(i0)[..k])  o

Reactive Systems

❖ Distances run on finite words:

dIn : (In
⇤ ⇥ In⇤) ! R�0 and dOut : (Out

⇤ ⇥ Out⇤) ! R�0

S is f -clean if for all p, p0 2 PIntrst and i, i0 2 In! ,

if i 2 StdIn, for all k � 0,

H(dOut)(S(p)(i)[..k], S(p
0)(i0)[..k])  f(dIn(i[..k], i

0[..k]))

❖ S is clean iff it satisfies

Analysis with HyperLTL

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

❖ S is clean iff it satisfies

Analysis with HyperLTL

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

Like LTL but adds
quantification on traces

❖ S is clean iff it satisfies

Analysis with HyperLTL

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

PIntrs: a propositional
formula identifying the
parameter of interests

StdIn: an LTL formula
identifying the traces with
standard input sequences

^

a2APp

a⇡2 $ a⇡0
2

^

a2APi

a⇡1 $ a⇡0
2

^

a2AP

o

a⇡1 $ a⇡0
2

❖ S is clean iff it satisfies

Analysis with HyperLTL

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

S is clean if for all p, p0 2 PIntrst

and i 2 In! \ StdIn, S(p)(i) = S(p0)(i)

❖ S is clean iff it satisfies

Analysis with HyperLTL

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

S is clean if for all p, p0 2 PIntrst

and i 2 In! \ StdIn, S(p)(i) = S(p0)(i)⊆

❖ S is robustly clean iff it satisfies

Analysis with HyperLTL

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

mapped to the trace t. For k 2 N, let t[k], t[k..], and t[..k] denote respectively
the k-th element of t, the k-th su�x of t, and the k-th prefix of t. The trace
assignment su�x ⇧[k..] is defined by ⇧[k..](⇡) = ⇧(⇡)[k..]. By ⇧ |=

S

 we
mean that formula � is satisfied by the program S under the trace assignment
⇧. Satisfaction is recursively defined as follows.

⇧ |=
S

9⇡. i↵ ⇧[⇡ 7! t] |=
S

 for some t 2 S

⇧ |=
S

8⇡. i↵ ⇧[⇡ 7! t] |=
S

 for every t 2 S

⇧ |=
S

a

⇡

i↵ a 2 ⇧(⇡)[0]
⇧ |=

S

¬� i↵ ⇧ 6|=
S

�

⇧ |=
S

�1 _ �2 i↵ ⇧ |=
S

�1 or ⇧ |=
S

�2

⇧ |=
S

X� i↵ ⇧[1..] |=
S

�

⇧ |=
S

�1 U �2 i↵ there exists k � 0 s.t. ⇧[k..] |=
S

�2 and
for all 0  j < k,⇧[j..] |=

S

�1

We say that a program S satisfies a HyperLTL formula if it is satisfied
under the empty trace assignment, that is, if ? |=

S

 .
In the following, we give the di↵erent characterisations of cleanness for reac-

tive programs in terms of HyperLTL. For this, let AP = APp [APi [APo where
APp, APi, and APo are the atomic propositions that define the parameter values,
the input values, and the output values respectively. Thus, we take Param = 2APp ,
In = 2APi and Out = 2APo . Therefore, a program S ✓ (2AP)! can be seen as a
function Ŝ : Param ! In! ! 2(Out!) where

t 2 S if and only if (t # APo) 2 Ŝ(t[0] \ APp)(t # APi), (5)

with t # A defined by (t # A)[k] = t[k] \A for all k 2 N.
For the propositions appearing in the rest of this sections, we will assume that

distances between traces are defined only according to its last element. That is,
for the distance dIn : (In

⇤⇥In⇤) ! R�0 there exists a distance d̂In : (In⇥In) ! R�0

such that dIn(i, i0) = d̂In(last(i), last(i0)) for every i, i0 2 In⇤, and similarly for
dOut : (Out

⇤ ⇥ Out⇤) ! R�0. Let us call these type of distances past-forgetful.
Moreover, we will need the abbreviations given in Table 1 for a clear presentation
of the formulas.

The set of parameters of interest PIntrs ✓ Param defines a Boolean formula
which we ambiguously call PIntrs. Also, we let StdIn be an LTL formula with
atomic propositions in APi, that is, a formula obtained with the grammar in the
second line of (4) where atomic propositions have the form a 2 APi (instead
of a

⇡

). Thus StdIn characterises the set of all input sequences through an LTL
formula. With StdIn

⇡

we represent the HyperLTL formula that is exactly like
StdIn but where each occurrence of a 2 APi has been replaced by a

⇡

. Likewise,
we let PIntrs

⇡

represent the Boolean formula that is exactly like PIntrs with each
occurrence of a 2 APp replaced by a

⇡

. We are now in conditions to state the
characterisation of a clean program in terms of HyperLTL.

❖ S is robustly clean iff it satisfies

Analysis with HyperLTL

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

S is robustly clean if for all p, p0 2 PIntrst and i, i0 2 In! ,

if i 2 StdIn, for all k � 0,

(8j  k : dIn(i[..j], i
0[..j])  i)

) H(dOut)(S(p)(i)[..k], S(p
0)(i0)[..k])  o

H(d)(A,B) = max

8
<

:

sup

a2A
inf

b2B
d(a, b),

sup

b2B
inf

a2A
d(a, b)

9
=

;

❖ S is robustly clean iff it satisfies

Analysis with HyperLTL

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

Table 1. Syntactic sugar for comparisons between traces

p

⇡

= p

⇡

0 i↵
^

a2APp

a
⇡

$ a
⇡

0

i

⇡

= i

⇡

0 i↵
^

a2APi

a
⇡

$ a
⇡

0

o

⇡

= o

⇡

0 i↵
^

a2APo

a
⇡

$ a
⇡

0

d̂In(i⇡, i
⇡

0)  i i↵
_

i,i02In

d̂(i,i0)i

^

a2i

a
⇡

^
^

a2i0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  o i↵
_

o,o02Out

d̂(o,o0)o

^

a2o

a
⇡

^
^

a2o0

a
⇡

0

d̂Out(o⇡, o
⇡

0)  f(d̂In(i⇡, i
⇡

0)) i↵
_

o,o02Out,i,i02In

d̂(o,o0)f(d̂(i,i0))

^

a2i

a
⇡

^
^

a2i0

a
⇡

0 ^
^

a2o

a
⇡

^
^

a2o0

a
⇡

0

Proposition 18. A reactive program S is clean if and only if it satisfies the
HyperLTL formula

8⇡1. 8⇡2. 9⇡0
2. (PIntrs⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1) (6)

! �
p
⇡2 = p

⇡

0
2
^ G(i

⇡1 = i
⇡

0
2
^ o

⇡1 = o
⇡

0
2
)
�

As it is given, the formula actually states that

8p1 : 8p2 : 8i : p1, p2 2 PIntrs ^ i 2 StdIn : Ŝ(p1)(i) ✓ Ŝ(p2)(i)

Because of the symmetry of this definition (namely, interchanging p1 and p2),
this is indeed equivalent to Definition 6. The proofs of Propositions 18 to 20
follow the same structures. So we only provide the proof of Proposition 19 which
is the most involved, and defer to the appendix the other two.

In fact, Proposition 19 below states the characterisation of a robustly clean
program in terms of two HyperLTL formulas (or as a single HyperLTL formula
by taking the conjunction).

Proposition 19. A reactive program S is robustly clean under past-forgetful
distances dIn and dOut if and only if S satisfies the following two HyperLTL
formulas

8⇡1. 8⇡2. 9⇡0
2. (7)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ �

(d̂Out(o⇡1 , o⇡0
2
)  o)W (d̂In(i⇡1 , i⇡0

2
) > i)

�⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ �

(d̂Out(o
⇡

0
1
, o

⇡2)  o)W (d̂In(i
⇡

0
1
, i
⇡2) > i)

�⌘

The di↵erence between the first and second formula is subtle, but reflects the
fact that, while the first formula has the universal quantification on the outputs
of the program that takes standard input and the existential quantification on

❖ S is f-clean iff it satisfies

Analysis with HyperLTL

H(d)(A,B) = max

8
<

:

sup

a2A
inf

b2B
d(a, b),

sup

b2B
inf

a2A
d(a, b)

9
=

;

By (5) and the fact that distances are past-forgetful, the previous equation is
equivalent to

8p1 : 8p2 : 8i1 : 8i2 : 8o1 :
⇣
p1, p2 2 PIntrs ^ i1 2 StdIn ^ 8k � 0 : (8j  k : dIn(i1[..j], i2[..j])  i)

^ o1 2 Ŝ(p1)(i1)
⌘
! �9o2 2 Ŝ(p2)(i2) : dOut(o1[..k], o2[..k])  o

�

which in turns corresponds to bound the left sup-inf term of the Hausdor↵
distance (see (2)) in Definition 7,

8p1 : 8p2 : 8i1 : 8i2 :
�
p1, p2 2 PIntrs ^ i1 2 StdIn ^ 8k � 0 : (8j  k : dIn(i1[..j], i2[..j])  i)

�

! �
supo12Ŝ(p1)(i1)

info22Ŝ(p2)(i2)
dOut(o1[..k], o2[..k])

�  o

thus proving this part of the proposition. ut
Finally, we also give the characterisation of an f -clean program in terms of

HyperLTL.

Proposition 20. A reactive program S is f -clean under past-forgetful distances
dIn and dOut if and only if S satisfies the following two HyperLTL formulas

8⇡1. 8⇡2. 9⇡0
2. (9)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ G

⇣
d̂Out(o⇡1 , o⇡0

2
)  f(d̂In(i⇡1 , i⇡0

2
))
⌘⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ G

⇣
d̂Out(o

⇡

0
1
, o

⇡2)  f(d̂In(i
⇡

0
1
, i
⇡2))

⌘⌘

As before, the di↵erence between the first and second formula is subtle and
can be noticed again by following the existentially quantified variables in each
of the formulas.

We remark that the HyperLTL characterisations presented in Propositions 19
and 20 can be extended to any distance of bounded memory, that is, distances
such that d(t, t0) = d(t[k..], t0[k..]) for every finite traces t and t

0 and a fixed
bound k 2 N. The solution proceeds by basically using the same formulas on an
expanded and annotated model (with the expected exponential blow up w.r.t.
to the original one).

Example 21. In our running example of the emission control system (see Exam-
ples 8 and 10), the property of robustly cleanness reduces to checking formula

8⇡1. 8⇡2. 9⇡0
2. (10)

StdIn
⇡1 !

⇣
G(t

⇡2 = t
⇡

0
2
) ^ �

(d̂Out(n⇡1 ,n⇡0
2
)  o)W (d̂In(t⇡1 , t⇡0

2
) > i)

�⌘

S is f -clean if for all p, p0 2 PIntrst and i, i0 2 In,

whenever i 2 StdIn,

H(dOut)(S(p)(i), S(p
0)(i0))  f(dIn(i, i

0))

❖ S is f-clean iff it satisfies

Analysis with HyperLTL

By (5) and the fact that distances are past-forgetful, the previous equation is
equivalent to

8p1 : 8p2 : 8i1 : 8i2 : 8o1 :
⇣
p1, p2 2 PIntrs ^ i1 2 StdIn ^ 8k � 0 : (8j  k : dIn(i1[..j], i2[..j])  i)

^ o1 2 Ŝ(p1)(i1)
⌘
! �9o2 2 Ŝ(p2)(i2) : dOut(o1[..k], o2[..k])  o

�

which in turns corresponds to bound the left sup-inf term of the Hausdor↵
distance (see (2)) in Definition 7,

8p1 : 8p2 : 8i1 : 8i2 :
�
p1, p2 2 PIntrs ^ i1 2 StdIn ^ 8k � 0 : (8j  k : dIn(i1[..j], i2[..j])  i)

�

! �
supo12Ŝ(p1)(i1)

info22Ŝ(p2)(i2)
dOut(o1[..k], o2[..k])

�  o

thus proving this part of the proposition. ut
Finally, we also give the characterisation of an f -clean program in terms of

HyperLTL.

Proposition 20. A reactive program S is f -clean under past-forgetful distances
dIn and dOut if and only if S satisfies the following two HyperLTL formulas

8⇡1. 8⇡2. 9⇡0
2. (9)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ G

⇣
d̂Out(o⇡1 , o⇡0

2
)  f(d̂In(i⇡1 , i⇡0

2
))
⌘⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ G

⇣
d̂Out(o

⇡

0
1
, o

⇡2)  f(d̂In(i
⇡

0
1
, i
⇡2))

⌘⌘

As before, the di↵erence between the first and second formula is subtle and
can be noticed again by following the existentially quantified variables in each
of the formulas.

We remark that the HyperLTL characterisations presented in Propositions 19
and 20 can be extended to any distance of bounded memory, that is, distances
such that d(t, t0) = d(t[k..], t0[k..]) for every finite traces t and t

0 and a fixed
bound k 2 N. The solution proceeds by basically using the same formulas on an
expanded and annotated model (with the expected exponential blow up w.r.t.
to the original one).

Example 21. In our running example of the emission control system (see Exam-
ples 8 and 10), the property of robustly cleanness reduces to checking formula

8⇡1. 8⇡2. 9⇡0
2. (10)

StdIn
⇡1 !

⇣
G(t

⇡2 = t
⇡

0
2
) ^ �

(d̂Out(n⇡1 ,n⇡0
2
)  o)W (d̂In(t⇡1 , t⇡0

2
) > i)

�⌘

By (5) and the fact that distances are past-forgetful, the previous equation is
equivalent to

8p1 : 8p2 : 8i1 : 8i2 : 8o1 :
⇣
p1, p2 2 PIntrs ^ i1 2 StdIn ^ 8k � 0 : (8j  k : dIn(i1[..j], i2[..j])  i)

^ o1 2 Ŝ(p1)(i1)
⌘
! �9o2 2 Ŝ(p2)(i2) : dOut(o1[..k], o2[..k])  o

�

which in turns corresponds to bound the left sup-inf term of the Hausdor↵
distance (see (2)) in Definition 7,

8p1 : 8p2 : 8i1 : 8i2 :
�
p1, p2 2 PIntrs ^ i1 2 StdIn ^ 8k � 0 : (8j  k : dIn(i1[..j], i2[..j])  i)

�

! �
supo12Ŝ(p1)(i1)

info22Ŝ(p2)(i2)
dOut(o1[..k], o2[..k])

�  o

thus proving this part of the proposition. ut
Finally, we also give the characterisation of an f -clean program in terms of

HyperLTL.

Proposition 20. A reactive program S is f -clean under past-forgetful distances
dIn and dOut if and only if S satisfies the following two HyperLTL formulas

8⇡1. 8⇡2. 9⇡0
2. (9)

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡2 = p

⇡

0
2
^ G(i

⇡2 = i
⇡

0
2
) ^ G

⇣
d̂Out(o⇡1 , o⇡0

2
)  f(d̂In(i⇡1 , i⇡0

2
))
⌘⌘

8⇡1. 8⇡2. 9⇡0
1.

(PIntrs
⇡1 ^ PIntrs

⇡2 ^ StdIn
⇡1)

!
⇣
p
⇡1 = p

⇡

0
1
^ G(i

⇡1 = i
⇡

0
1
) ^ G

⇣
d̂Out(o

⇡

0
1
, o

⇡2)  f(d̂In(i
⇡

0
1
, i
⇡2))

⌘⌘

As before, the di↵erence between the first and second formula is subtle and
can be noticed again by following the existentially quantified variables in each
of the formulas.

We remark that the HyperLTL characterisations presented in Propositions 19
and 20 can be extended to any distance of bounded memory, that is, distances
such that d(t, t0) = d(t[k..], t0[k..]) for every finite traces t and t

0 and a fixed
bound k 2 N. The solution proceeds by basically using the same formulas on an
expanded and annotated model (with the expected exponential blow up w.r.t.
to the original one).

Example 21. In our running example of the emission control system (see Exam-
ples 8 and 10), the property of robustly cleanness reduces to checking formula

8⇡1. 8⇡2. 9⇡0
2. (10)

StdIn
⇡1 !

⇣
G(t

⇡2 = t
⇡

0
2
) ^ �

(d̂Out(n⇡1 ,n⇡0
2
)  o)W (d̂In(t⇡1 , t⇡0

2
) > i)

�⌘

Model checked a toy
version of the emission

control case study

A general contract

Normal
or

Standard

Committed

Others

Inputs

A general contract

S is clean if for all p, p0 2 PIntrst and i, i0 2 In,

1. if i 2 StdIn, S(p)(i) = S(p0)(i)

2. if i 2 StdIn and i

0 2 Comm

H(dOut)(S(p)(i), S(p
0)(i0))  f(dIn(i, i

0))

3. if i

0 /2 StdIn [Comm, then for all ✏, exists � s.t. for all i 2 In,

dIn(i, i
0) < �) H(dOut)(S(p)(i), S(p

0)(i0)) < ✏

Concluding remark

❖ We discussed what is software doping

❖ and motivate it with concrete examples

❖ Several formal characterizations of software doping

❖ They can be analyzed using self-composition

(for deterministic programs)

❖ We also studied characterizations for reactive
(non-deterministic) systems

Is your software on dope?
?

Formal ana
lysis of surr

eptitio
usly “enha

nced”
progra

ms

Pedro R. D’Argeni
o1,

2 , Gilles Ba
rthe

3 , Sebas
tian Biewer

2 ,

Bernd Finkbei
ner

2 , and Holger
Hermanns

2

1 FaMAF, Universid
ad Nacional

de Córdob
a – CONICET

2 Saarlan
d Universit

y – Computer S
cience,

Saarlan
d Informatics C

ampus

3 IMDEA Softwar
e

A

b

s

t

r

a

c

t

.

Usually,
it is the

softwar
e manufact

urer wh
o employs v

erifi-

cation or testi
ng to ensure

that th
e softw

are embedded
in a device

meets

its main objecti
ves. However,

these days w
e are confron

ted with the sit-

uation
that ec

onomical or
technol

ogical r
easons

might make a manufac-

turer b
ecome interest

ed in the softwar
e slightly

deviati
ng from its main

objecti
ve for dubiou

s reasons
. Exam

ples include
lock-in

strateg
ies and

the NOx

emission scandal
s in automotive industr

y. This
phenom

enon is

what w
e call sof

t

w

a

r

e

d

o

p

i

n

g

. It is t
urning

more widespr
ead as softw

are

is embedded
in ever more devices

of daily
use.

The pri
mary contrib

utions o
f this a

rticle is
to provide

a hierarc
hy of sim-

ple but sol
id formal defin

itions t
hat ena

ble to distingu
ish whethe

r a pro-

gram is c

l

e

a

n

or d

o

p

e

d

. Moreover
, we show that these charact

erisatio
ns

provide
an immediate

framework for analysi
s by using already

existing

verifica
tion techniq

ues. W
e exemplify this by applyin

g self-com
position

on sequent
ial prog

rams and model ch
ecking

of HyperLT
L formulas on

reactive
models.

1 Introd
uction

The Volksw
agen exhaust

emissions
scandal

[43] has
put sof

tware doping
in the

spotligh
t: Prop

rietary
embedded

control
softwar

e does no
t alway

s explo
it func-

tionalit
y o↵ered

by a device i
n the bes

t intere
st of th

e device
owner.

Instead
the

softwar
e may be tweaked

in various
manners,

driven
by interest

s di↵ere
nt from

those o
f the ow

ner or o
f societ

y. This
is indee

d a common charact
eristics

for the

manner how di↵eren
t manufact

urers circumvented
[12, 25]

the diesel e
mission

regulat
ions around

the world.
The exhaust

softwar
e was manufact

ured in such

a way that it
heavily

polluted
the env

ironment, un
less the

softwar
e detect

ed the

car to be (likely)
fixed on a particu

lar test setup used to determ
ine the NOx

footprin
t data o�cially publish

ed. Phe
nomena resembling the emission scandal

? This work is partly
suppor

ted by the ERC Grants 683300
(OSARES) and 695614

(POWVER), by the Saarbrü
cken Graduate

School
of Computer Science

, by the

Sino-G
erman CDZ project

1023 (CAP), by
ANPCyT

PICT-2
012-182

3, by SeCyT
-

UNC 05/BP1
2 and 05/B49

7, and
by the Madrid Region

project
S2013/

ICE-27
31

N-GREENS Softwar
e-CM.

ESOP 2017
to appear

Is your software on dope?
Formal analysis of surreptitiously “enhanced” programs

Gilles Barthe, Sebastian Biewer, Pedro R. D’Argenio,
Bernd Finkbeiner, and Holger Hermanns

IMDEA Software (ES) UN Córdoba – CONICET (AR) Saarland University (DE)

http://www.cs.famaf.unc.edu.ar/~dargenio/

FMT, UT, January 2017

