
Analysis of Highly Reliable
Repairable Fault Trees

via Simulation

Pedro R. D’Argenio
Universidad Nacional de Córdoba – CONICET (AR)

Joint work with Carlos Budde, Raúl Monti, & Mariëlle Stoelinga

QEST 2022, Warsaw

Fault Tolerant Systems: You know the drill

Failover mechanisms

Voting mechanisms

Spare parts

Failsafe mechanisms

Contingency plans

…etc.

Fault Tolerant Systems: You know the drill

Failover mechanisms

Voting mechanisms

Spare parts

Failsafe mechanisms

Contingency plans

…etc.

Fault Tolerant Systems: You know the drill
Repairable non-Markovian DFTs

BE₄ BE₇ BE₈ BE₁₁BE₁ BE₃

4/7 6/8

10/18

Fault Tree
Analysis

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Fully Automatic

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Fully Automatic

Arbitrary Distributions

Large Systems

Dynamic Behaviour

Elements can be repaired

Highly Reliable

(Static) Fault Trees
Fault Trees

Static FTs

BE1 BEn

AND

BE1 BEn

OR

k/n

BE1 BEn

VOT

Dynamic FTs Repairable FTs

2/18

Boolean semantics

Dynamic Fault Trees
Fault Trees

Static FTs

BE1 BEn

AND

BE1 BEn

OR

k/n

BE1 BEn

VOT

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs

BE1 BE2

PAND

S1 SmP

SPARE FDEP

T BE1 BEn

Repairable FTs

RBOX

2/18

Have a notion of state

Dynamic Behaviour

Repairable Fault Trees
Fault Trees

Static FTs

BE1 BEn

AND

BE1 BEn

OR

k/n

BE1 BEn

VOT

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs

BE1 BE2

PAND

S1 SmP

SPARE FDEP

T BE1 BEn

Repairable FTs

RBOX

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

RBOX
BE1 BEn

2/18

Have a notion of state

Includes cyclic behaviour

Elements can be repaired

RFT are described in KEPLER
(an extension of GALILEO)Fault Trees declarative language

1 toplevel "FAIL";

2 "FAIL" and "S1" "S2";

3 "S1" or "SS1" "PS1";

4 "S2" or "SS2" "PS2";

5 "SS1" pand "SW1" "M1";

6 "PS1" sg "M1" "AUX";

7 "SS2" pand "SW2" "M2";

8 "PS2" sg "M2" "AUX";

9 "M1" exponential(0.01) uniform(1,5);

10 "M2" exponential(0.01) uniform(1,5);

11 "AUX" exponential(0.01) exponential(0.0025) uniform(1,5);

12 "SW1" exponential(0.003) uniform(1,2);

13 "SW2" exponential(0.003) uniform(1,2);

14 "RBOX" priority_rbox "M1" "M2" "SW1" "SW2" "AUX";

5/18

Semantics of RFT

Arbitrary Distributions

Large Systems

Semantics of RFT

Arbitrary Distributions

Large Systems

Excludes
Markov Chains

Semantics of RFT

Arbitrary Distributions

Large Systems

Excludes
Markov Chains

Requires
Compositionality

Semantics of RFT

Arbitrary Distributions

Large Systems

Excludes
Markov Chains

Requires
Compositionality

Input/Output

Stochastic Automata

with Urgency

IOSA + Urgency

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

A = Ai]Ao

Au ✓ A

1

IOSA

Input/Output Stochastic Automata

(S, A, C, ≠æ, C0, s0)

I S are states

I A are actions

I C are clocks

I ≠æ ™ S ◊2 C◊A◊2 C◊S

’c œ C ÷!µ œ �(R) µ(R>0) = 1

OFF ON

?, on?, {x}

?
,o

�
?
,?

{x}, tOut!,?

?, o�?,?

?
,
o
n
?,{x}

OUT IN

{y}, on!, {z}

{z}, o�!, {y}

3/18

IOSA

Input/Output Stochastic Automata

(S, A, C, ≠æ, C0, s0)

I S are states

I A are actions

I C are clocks

I ≠æ ™ S ◊2 C◊A◊2 C◊S

’c œ C ÷!µ œ �(R) µ(R>0) = 1

OFF ON

?, on?, {x}

?
,o

�
?
,?

{x}, tOut!,?

?, o�?,?
?

,
o
n
?,{x}

OUT IN

{y}, on!, {z}

{z}, o�!, {y}

3/18

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

IOSA + Urgency

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

A = Ai]Ao

Au ✓ A

1

IOSA

Input/Output Stochastic Automata

(S, A, C, ≠æ, C0, s0)

I S are states

I A are actions

I C are clocks

I ≠æ ™ S ◊2 C◊A◊2 C◊S

’c œ C ÷!µ œ �(R) µ(R>0) = 1

OFF ON

?, on?, {x}

?
,o

�
?
,?

{x}, tOut!,?

?, o�?,?

?
,
o
n
?,{x}

OUT IN

{y}, on!, {z}

{z}, o�!, {y}

3/18

IOSA

Input/Output Stochastic Automata

(S, A, C, ≠æ, C0, s0)

I S are states

I A are actions

I C are clocks

I ≠æ ™ S ◊2 C◊A◊2 C◊S

’c œ C ÷!µ œ �(R) µ(R>0) = 1

OFF ON

?, on?, {x}

?
,o

�
?
,?

{x}, tOut!,?

?, o�?,?
?

,
o
n
?,{x}

OUT IN

{y}, on!, {z}

{z}, o�!, {y}

3/18

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

1

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

1

IOSA + Urgency

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

A = Ai]Ao

Au ✓ A

1

IOSA

Input/Output Stochastic Automata

(S, A, C, ≠æ, C0, s0)

I S are states

I A are actions

I C are clocks

I ≠æ ™ S ◊2 C◊A◊2 C◊S

’c œ C ÷!µ œ �(R) µ(R>0) = 1

OFF ON

?, on?, {x}

?
,o

�
?
,?

{x}, tOut!,?

?, o�?,?

?
,
o
n
?,{x}

OUT IN

{y}, on!, {z}

{z}, o�!, {y}

3/18

IOSA

Input/Output Stochastic Automata

(S, A, C, ≠æ, C0, s0)

I S are states

I A are actions

I C are clocks

I ≠æ ™ S ◊2 C◊A◊2 C◊S

’c œ C ÷!µ œ �(R) µ(R>0) = 1

OFF ON

?, on?, {x}

?
,o

�
?
,?

{x}, tOut!,?

?, o�?,?
?

,
o
n
?,{x}

OUT IN

{y}, on!, {z}

{z}, o�!, {y}

3/18

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

1

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

1

Analysis
through

simulation

IOSA: weak determinism

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

IOSA: weak determinism

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

Input enabledness

IOSA: weak determinism

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

Input enabledness

Input and urgent
determinism

IOSA: weak determinism

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

Input enabledness

Input and urgent
determinism

Output determinism
(non-urgent)

IOSA: weak determinism

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

Input enabledness

Input and urgent
determinism

Output determinism
(non-urgent)

The rest ensures that clocks do
not introduce non determinism

IOSA: weak determinism

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [C 0
.

(
A = Ai]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1

Input enabledness

Input and urgent
determinism

Output determinism
(non-urgent)

The rest ensures that clocks do
not introduce non determinism

Ensures that
non-urgent behaviour is

deterministic

IOSA: weak determinism

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

closed IOSA is weakly deterministic if (i) almost surely at most one discrete
non-urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not a↵ect the non urgent-behavior of the model, and
(iii) no non-urgent output and urgent output are enabled simultaneously. To
avoid referring explicitly to time in (i), we say instead that a closed IOSA is
weakly deterministic if it almost never reaches a state in which two di↵erent
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we define
the following weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to ⌧ .

Definition 7. For a non stable state s, and v 2 RN
, we define (s,~v)

C
=)n µ

inductively by the following rules:

(T1)

s
?,⌧,C����! s

0

st(s0)

(s,~v)
C
=)1 µ

~v
C,s0

(T2)

s
?,⌧,C0

����! s
0

8~v0 2 RN : 9C 00
, µ

0 : (s0,~v0)
C00
==)n µ

0

(s,~v)
C0[C00
=====)n+1 µ̂

where µ
~v
C,s is defined as in Def. 2 and µ̂ =

R
S⇥RN f

C00

n dµ
~v
C0,s0 , with f

C00

n (t, ~w) = ⌫,

if (t, ~w)
C00
==)n ⌫, and f

C00

n (t, ~w) = 0 otherwise. We define the weak transition

(s,~v) =) µ if (s,~v)
C
=)n µ for some n � 1 and C ✓ C.

As given above, there is no guarantee that
C
=)n is well defined. In particular,

there is no guarantee that fC00

n is a well defined measurable function. We postpone
this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,~v) 2 S,
a 2 Ao

and d, d
0 2 R>0, (i) Ta(s,~v) 6= ?) Td(s,~v) = ? (maximal progress),

IOSA: weak determinism

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

closed IOSA is weakly deterministic if (i) almost surely at most one discrete
non-urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not a↵ect the non urgent-behavior of the model, and
(iii) no non-urgent output and urgent output are enabled simultaneously. To
avoid referring explicitly to time in (i), we say instead that a closed IOSA is
weakly deterministic if it almost never reaches a state in which two di↵erent
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we define
the following weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to ⌧ .

Definition 7. For a non stable state s, and v 2 RN
, we define (s,~v)

C
=)n µ

inductively by the following rules:

(T1)

s
?,⌧,C����! s

0

st(s0)

(s,~v)
C
=)1 µ

~v
C,s0

(T2)

s
?,⌧,C0

����! s
0

8~v0 2 RN : 9C 00
, µ

0 : (s0,~v0)
C00
==)n µ

0

(s,~v)
C0[C00
=====)n+1 µ̂

where µ
~v
C,s is defined as in Def. 2 and µ̂ =

R
S⇥RN f

C00

n dµ
~v
C0,s0 , with f

C00

n (t, ~w) = ⌫,

if (t, ~w)
C00
==)n ⌫, and f

C00

n (t, ~w) = 0 otherwise. We define the weak transition

(s,~v) =) µ if (s,~v)
C
=)n µ for some n � 1 and C ✓ C.

As given above, there is no guarantee that
C
=)n is well defined. In particular,

there is no guarantee that fC00

n is a well defined measurable function. We postpone
this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,~v) 2 S,
a 2 Ao

and d, d
0 2 R>0, (i) Ta(s,~v) 6= ?) Td(s,~v) = ? (maximal progress),

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

Theorem: Every closed confluent IOSA is weakly deterministic.

2

IOSA: weak determinism

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

closed IOSA is weakly deterministic if (i) almost surely at most one discrete
non-urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not a↵ect the non urgent-behavior of the model, and
(iii) no non-urgent output and urgent output are enabled simultaneously. To
avoid referring explicitly to time in (i), we say instead that a closed IOSA is
weakly deterministic if it almost never reaches a state in which two di↵erent
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we define
the following weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to ⌧ .

Definition 7. For a non stable state s, and v 2 RN
, we define (s,~v)

C
=)n µ

inductively by the following rules:

(T1)

s
?,⌧,C����! s

0

st(s0)

(s,~v)
C
=)1 µ

~v
C,s0

(T2)

s
?,⌧,C0

����! s
0

8~v0 2 RN : 9C 00
, µ

0 : (s0,~v0)
C00
==)n µ

0

(s,~v)
C0[C00
=====)n+1 µ̂

where µ
~v
C,s is defined as in Def. 2 and µ̂ =

R
S⇥RN f

C00

n dµ
~v
C0,s0 , with f

C00

n (t, ~w) = ⌫,

if (t, ~w)
C00
==)n ⌫, and f

C00

n (t, ~w) = 0 otherwise. We define the weak transition

(s,~v) =) µ if (s,~v)
C
=)n µ for some n � 1 and C ✓ C.

As given above, there is no guarantee that
C
=)n is well defined. In particular,

there is no guarantee that fC00

n is a well defined measurable function. We postpone
this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,~v) 2 S,
a 2 Ao

and d, d
0 2 R>0, (i) Ta(s,~v) 6= ?) Td(s,~v) = ? (maximal progress),

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

Theorem: Every closed confluent IOSA is weakly deterministic.

2

All communications have
been resolved (i.e. no inputs left)

IOSA: weak determinism

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

closed IOSA is weakly deterministic if (i) almost surely at most one discrete
non-urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not a↵ect the non urgent-behavior of the model, and
(iii) no non-urgent output and urgent output are enabled simultaneously. To
avoid referring explicitly to time in (i), we say instead that a closed IOSA is
weakly deterministic if it almost never reaches a state in which two di↵erent
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we define
the following weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to ⌧ .

Definition 7. For a non stable state s, and v 2 RN
, we define (s,~v)

C
=)n µ

inductively by the following rules:

(T1)

s
?,⌧,C����! s

0

st(s0)

(s,~v)
C
=)1 µ

~v
C,s0

(T2)

s
?,⌧,C0

����! s
0

8~v0 2 RN : 9C 00
, µ

0 : (s0,~v0)
C00
==)n µ

0

(s,~v)
C0[C00
=====)n+1 µ̂

where µ
~v
C,s is defined as in Def. 2 and µ̂ =

R
S⇥RN f

C00

n dµ
~v
C0,s0 , with f

C00

n (t, ~w) = ⌫,

if (t, ~w)
C00
==)n ⌫, and f

C00

n (t, ~w) = 0 otherwise. We define the weak transition

(s,~v) =) µ if (s,~v)
C
=)n µ for some n � 1 and C ✓ C.

As given above, there is no guarantee that
C
=)n is well defined. In particular,

there is no guarantee that fC00

n is a well defined measurable function. We postpone
this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,~v) 2 S,
a 2 Ao

and d, d
0 2 R>0, (i) Ta(s,~v) 6= ?) Td(s,~v) = ? (maximal progress),

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

Theorem: Every closed confluent IOSA is weakly deterministic.

2

All communications have
been resolved (i.e. no inputs left)

s0||s3||s6 s1||s3||s6 s2||s3||s7

s0||s4||s6 s1||s4||s6 s2||s4||s7

s0||s5||s9 s1||s5||s9 s2||s5||s9 s2||s5||s8

{x}, a!,?

{y}, b!,?

?, c!!,?

{y}, b!,?
{y}, b!,?

{x}, a!,?

?, d!!,?

?, c!!,?

?, d!!,? ?, d!!,?
{x}, a!,? ?, c!!,? {x}, e!,?

Fig. 3. IOSA resulting from the composition I1||I2||I3 of IOSAs in Fig. 2.

Theorem 1. Let ⇠ denote the bisimulation equivalence relation on NLMPs [14]

properly lifted to IOSA [13], and let I1, I 0
1, I2, I 0

2 be IOSAs such that I1 ⇠ I 0
1

I2 ⇠ I 0
2. Then, I1||I2 ⇠ I 0

1||I 0
2.

5 Confluence

8

9

s s1

s2 s3

?, a, C1

?
,
b
,
C

2

?
,
b
,
C

2

?, a, C1

Fig. 4. Confluence in IOSA.

Confluence, as studied by Milner [23], is related to
a form of weak determinism: two silent transitions
taking place on an interleaving manner do not alter
the behaviour of the process regardless of which
happens first. In particular, we will eventually as-
sume that urgent actions in a closed IOSA are silent as they do not delay the
execution. Thus we focus on confluence of urgent actions only. The notion of
confluence is depicted in Fig. 4 and formally defined as follows.

Definition 5. An IOSA I is confluent with respect to actions a, b 2 Au
if, for

every state s 2 S and transitions s
?,a,C1����! s1 and s

?,b,C2����! s2, there exists a

state s3 2 S such that s1
?,b,C2����! s3 and s2

?,a,C1����! s3. I is confluent if it is

confluent with respect to every pair of urgent actions.

Note that we are asking that the two actions converge in a single state, which
is stronger than Milner’s strong confluence, where convergence takes place on
bisimilar but potentially di↵erent states.

Confluence is preserved by parallel composition:

Proposition 2. If both I1 and I2 are confluent w.r.t. actions a, b 2 Au
, then so

is I1||I2. Therefore, if I1 and I2 are confluent, I1||I2 is also confluent.

However, parallel composition may turn non-confluent components into a
confluent composed system.

By looking at the IOSA in Fig. 5, one can notice that the non-determinism
introduced by confluent urgent output actions is spurious in the sense that it
does not change the stochastic behaviour of the model after the output urgent
actions have been abstracted. Indeed, since time does not progress, it is the same
to sample first clock x and then clock y passing through state s1, or first y and

IOSA: weak determinism

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

closed IOSA is weakly deterministic if (i) almost surely at most one discrete
non-urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not a↵ect the non urgent-behavior of the model, and
(iii) no non-urgent output and urgent output are enabled simultaneously. To
avoid referring explicitly to time in (i), we say instead that a closed IOSA is
weakly deterministic if it almost never reaches a state in which two di↵erent
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we define
the following weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to ⌧ .

Definition 7. For a non stable state s, and v 2 RN
, we define (s,~v)

C
=)n µ

inductively by the following rules:

(T1)

s
?,⌧,C����! s

0

st(s0)

(s,~v)
C
=)1 µ

~v
C,s0

(T2)

s
?,⌧,C0

����! s
0

8~v0 2 RN : 9C 00
, µ

0 : (s0,~v0)
C00
==)n µ

0

(s,~v)
C0[C00
=====)n+1 µ̂

where µ
~v
C,s is defined as in Def. 2 and µ̂ =

R
S⇥RN f

C00

n dµ
~v
C0,s0 , with f

C00

n (t, ~w) = ⌫,

if (t, ~w)
C00
==)n ⌫, and f

C00

n (t, ~w) = 0 otherwise. We define the weak transition

(s,~v) =) µ if (s,~v)
C
=)n µ for some n � 1 and C ✓ C.

As given above, there is no guarantee that
C
=)n is well defined. In particular,

there is no guarantee that fC00

n is a well defined measurable function. We postpone
this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,~v) 2 S,
a 2 Ao

and d, d
0 2 R>0, (i) Ta(s,~v) 6= ?) Td(s,~v) = ? (maximal progress),

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

Theorem: Every closed confluent IOSA is weakly deterministic.

2

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Input/Output Stochastic Automata with Urgency 149

Proof. Because of Lemma 6 there is a vertex v of EGI such that {b1, . . . , bn} ⊆ v.
Because of the inductive construction of E and V , there is a path from some
v′ ∈ V0 to v in EGI . From Lemma7, for each 1 ≤ j ≤ m, there is an aj ∈ v′ such
that aj !∗ bj . Because v′ ∈ V0, then either v′ =

⋃n
i=1 uen(s

0
i) ∩ Ao

i or there is
some e ∈ A such that v′ =

⋃n
i=1 Bi with Bi spontaneously enabled by e in Ii "

The following theorem is the main result of this section and provides sufficient
conditions to guarantee that a closed composed IOSA is confluent or, as stated
in the theorem, necessary conditions for the IOSA to be non-confluent.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Proof. Suppose I potentially reaches a non confluent state s. Then there are
necessarily a, b ∈ uen(s) that show it and hence I is not confluent w.r.t. a and b.
By Proposition 2, there is necessarily a component Ii that is not confluent w.r.t.
a and b. Since {a, b} is an enabled set in I, the rest of the theorem follows by
Lemma8. "

Because of Proposition 4 and Theorem3, if all potentially reachable states in
a closed IOSA I are confluent, then I is weakly deterministic. Thus, if no pair
of actions satisfying conditions in Theorem5 are found in I, then I is weakly
deterministic.

Notice that the IOSA I = I1||I2||I3 of Example 2 (see also Figs. 2 and 3) is an
example that does not meet the conditions of Theorem5, and hence detected as
confluent. c and d are the only potential non-confluent actions, which is noticed
in state s6 of I3. The approximate indirect triggering relation can be calculated
to !∗= {(c, c), (d, d)}. Also, {c} is spontaneously enabled by a in I1 and {d} is
spontaneously enabled by b in I2. Since both sets are spontaneously enabled by
different actions and c and d are not initial, the set {c, d} does not appear in V0

of EGI which would be required to meet the conditions of the theorem.

I1

I2

I3

a? b!!

a? c!!

b??

c??

c??

b??

a!

Fig. 6. I1||I2||I3 meets conditions
in Theorem5

Conditions in Theorem5 are not suffi-
cient and confluent IOSAs may satisfy them.
Consider the IOSAs in Fig. 6. I1||I2||I3 is
a closed IOSA with a single state and no
outgoing transition. Hence, it is confluent.
However, I3 is not confluent w.r.t. b and
c, !∗= {(b, b), (c, c)}, B1 = {b} is sponta-
neously enabled by a in I1, and B2 = {c}
is spontaneously enabled by a in I2. Hence
b, c ∈

⋃n
i=1 Bi, thus meeting the conditions of

Theorem5.

Sufficient conditions for confluency

IOSA: weak determinism

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

closed IOSA is weakly deterministic if (i) almost surely at most one discrete
non-urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not a↵ect the non urgent-behavior of the model, and
(iii) no non-urgent output and urgent output are enabled simultaneously. To
avoid referring explicitly to time in (i), we say instead that a closed IOSA is
weakly deterministic if it almost never reaches a state in which two di↵erent
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we define
the following weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to ⌧ .

Definition 7. For a non stable state s, and v 2 RN
, we define (s,~v)

C
=)n µ

inductively by the following rules:

(T1)

s
?,⌧,C����! s

0

st(s0)

(s,~v)
C
=)1 µ

~v
C,s0

(T2)

s
?,⌧,C0

����! s
0

8~v0 2 RN : 9C 00
, µ

0 : (s0,~v0)
C00
==)n µ

0

(s,~v)
C0[C00
=====)n+1 µ̂

where µ
~v
C,s is defined as in Def. 2 and µ̂ =

R
S⇥RN f

C00

n dµ
~v
C0,s0 , with f

C00

n (t, ~w) = ⌫,

if (t, ~w)
C00
==)n ⌫, and f

C00

n (t, ~w) = 0 otherwise. We define the weak transition

(s,~v) =) µ if (s,~v)
C
=)n µ for some n � 1 and C ✓ C.

As given above, there is no guarantee that
C
=)n is well defined. In particular,

there is no guarantee that fC00

n is a well defined measurable function. We postpone
this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,~v) 2 S,
a 2 Ao

and d, d
0 2 R>0, (i) Ta(s,~v) 6= ?) Td(s,~v) = ? (maximal progress),

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

Theorem: Every closed confluent IOSA is weakly deterministic.

2

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Input/Output Stochastic Automata with Urgency 149

Proof. Because of Lemma 6 there is a vertex v of EGI such that {b1, . . . , bn} ⊆ v.
Because of the inductive construction of E and V , there is a path from some
v′ ∈ V0 to v in EGI . From Lemma7, for each 1 ≤ j ≤ m, there is an aj ∈ v′ such
that aj !∗ bj . Because v′ ∈ V0, then either v′ =

⋃n
i=1 uen(s

0
i) ∩ Ao

i or there is
some e ∈ A such that v′ =

⋃n
i=1 Bi with Bi spontaneously enabled by e in Ii "

The following theorem is the main result of this section and provides sufficient
conditions to guarantee that a closed composed IOSA is confluent or, as stated
in the theorem, necessary conditions for the IOSA to be non-confluent.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Proof. Suppose I potentially reaches a non confluent state s. Then there are
necessarily a, b ∈ uen(s) that show it and hence I is not confluent w.r.t. a and b.
By Proposition 2, there is necessarily a component Ii that is not confluent w.r.t.
a and b. Since {a, b} is an enabled set in I, the rest of the theorem follows by
Lemma8. "

Because of Proposition 4 and Theorem3, if all potentially reachable states in
a closed IOSA I are confluent, then I is weakly deterministic. Thus, if no pair
of actions satisfying conditions in Theorem5 are found in I, then I is weakly
deterministic.

Notice that the IOSA I = I1||I2||I3 of Example 2 (see also Figs. 2 and 3) is an
example that does not meet the conditions of Theorem5, and hence detected as
confluent. c and d are the only potential non-confluent actions, which is noticed
in state s6 of I3. The approximate indirect triggering relation can be calculated
to !∗= {(c, c), (d, d)}. Also, {c} is spontaneously enabled by a in I1 and {d} is
spontaneously enabled by b in I2. Since both sets are spontaneously enabled by
different actions and c and d are not initial, the set {c, d} does not appear in V0

of EGI which would be required to meet the conditions of the theorem.

I1

I2

I3

a? b!!

a? c!!

b??

c??

c??

b??

a!

Fig. 6. I1||I2||I3 meets conditions
in Theorem5

Conditions in Theorem5 are not suffi-
cient and confluent IOSAs may satisfy them.
Consider the IOSAs in Fig. 6. I1||I2||I3 is
a closed IOSA with a single state and no
outgoing transition. Hence, it is confluent.
However, I3 is not confluent w.r.t. b and
c, !∗= {(b, b), (c, c)}, B1 = {b} is sponta-
neously enabled by a in I1, and B2 = {c}
is spontaneously enabled by a in I2. Hence
b, c ∈

⋃n
i=1 Bi, thus meeting the conditions of

Theorem5.

Sufficient conditions for confluencyInput/
Output

Stocha
stic Automata

Compositio
nality

and Determinism

Pedro R. D’Argenio
1 , Matias David Lee2 , and

Raúl E.
Monti

1(B)

1 CONICET,
Universid

ad Nacional
de Córdob

a, Córd
oba, Argentin

a

{dargeni
o,rmon

ti}@fama
f.unc.

edu.ar

2 LIP, Universit
é de Lyon, C

NRS, EN
S de Lyon, I

nria, U
CBL, L

yon, Fr
ance

Abstrac
t. Stochas

tic automata provide
a way to symbolicall

y model

system
s in which the occurre

nce time of even
ts may respond

to any con-

tinuous
random

variable
. We introdu

ce here an input/o
utput v

ariant o
f

stochas
tic automata that, o

nce the model is
closed

—i.e., all
synchro

-

nization
s are resolved

—, the resultin
g automaton does no

t conta
in non-

determ
inistic

choices
. This is important

since fully probab
ilistic models

are amenable
to simulation

in the general
case and to much more effi-

cient analysi
s if restrict

ed to Markov models. W
e present

here a the-

oretical
introdu

ction to input/o
utput stochas

tic automata (IOSA) for

which we (i) prov
ide a concret

e semantics i
n terms of non

-determ
inistic

labeled
Markov process

es (NLMP), (ii)
prove that bis

imulation
is a con-

gruence
for parallel

composition
both in NLMP and IOSA, (iii) show

that parallel
composition

commutes in the symbolic and concret
e level,

and (iv) pro
vide a proof t

hat a closed IOSA is indee
d determ

inistic.

1 Introd
uction

The difficulty of the modeling and analysis
of a system grows rapidly with the

size and complexity of the system itself. In
this sense the advantag

es of com-

positiona
l approa

ches to modeling complex systems are unquesti
onable: t

hey

facilitate
systematic desig

n and the inter
change o

f components,
enable co

mposi-

tional an
alysis an

d help for the co
mpact repr

esentatio
n of state s

paces and
other

ways of attack
ing the state explosion

problem. Compositiona
l modeling allows

the desig
ner to foc

us on the modeling o
f the rath

er discern
ible oper

ational b
ehav-

iour of th
e components

and the evident s
ynchroni

zation among them (compare

to the difficulty of figurin
g out the whole behaviou

r in a monolithic
model).

If these models are
aimed at perfor

mance and dependab
ility analysis,

there

is a need to consider
general d

istributio
ns. Altho

ugh (negative
) expone

ntial dis-

tribution
s yield analytica

lly tractable
models (na

mely, conti
nuous tim

e Markov

chains), a
nd are usefu

l for many applicati
ons, they

are not r
ealistic fo

r modeling

many phenomena. Phe
nomena such as timeouts in communication

protocols
,

hard deadlines
in real-time systems, human response

times or the
variabilit

y of

the delay of sound
and video frames (so-called

jitter) in modern multi-media

Suppor
ted by ANPCyT

PICT-2
012-182

3 and SeCyT-
UNC 05/BP1

2 and 05/B49
7.

c© Spring
er Interna

tional
Publishi

ng Switzerla
nd 2016

M. Fränz
le and N. Markey

(Eds.): F
ORMATS 2016, L

NCS 9884, p
p. 53–6

8, 2016
.

DOI: 10.1
007/97

8-3-319
-44878

-7 4

Input/
Output

Stocha
stic Automata

with Urgency
: Confluen

ce and Weak

Determinism

Pedro R. D’Argenio
1,2,3(B) and Raúl E.

Monti
1,2

1 Universid
ad Nacional

de Córdob
a, FAMAF, Córd

oba, Argentin
a

{dargeni
o,rmon

ti}@fama
f.unc.

edu.ar

2 CONICET,
Córdob

a, Argentin
a

3 Saarlan
d Universit

y, Departm
ent of C

omputer S
cience,

Saarbrü
cken, G

ermany

Abstrac
t. In a previo

us work
, we int

roduced
an input/o

utput v
ariant o

f

stochas
tic automata (IOSA) that,

once the model is
closed (i.e., al

l syn-

chroniz
ations

are resolved
), the resultin

g automaton is fully stochas
tic,

that is,
it does

not con
tain non-det

erministic c
hoices.

However,
such vari-

ant is n
ot sufficiently

versatil
e for co

mposition
al modelling

. In this art
icle,

we exte
nd IOSA with urgent

actions
. This e

xtensio
n greatly

increas
es the

modulari
zation of the m

odels, a
llowing

to take be
tter adv

antage
on com-

position
ality than its predece

ssor. However,
this extensi

on introdu
ces

non-det
erminism even in closed

models. We first show that conflue
nt

models are weakly
determ

inistic
in the sense that, re

gardles
s the reso-

lution of the non-det
erminism, the stochas

tic behavio
ur is the same. In

additio
n, we provide

sufficient conditi
ons to ensure

that a network
of

interact
ing IOSAs is conflue

nt withou
t the need to analyse

the larger

composed IOSA.

1 Introd
uction

The advantag
es of compositiona

l modelling
complex systems can hardly be

overestim
ated. On the one hand, co

mpositiona
l modelling

facilitate
s system

atic

design, a
llowing the desig

ner to focus on
the const

ruction of small models for
the

components
whose operation

al behav
ior is mostly well und

erstood,
and on the

synchron
ization between

the components,
which are in general q

uite evid
ent. On

the other han
d, it facil

itates the
interchan

ge of components
in a model, ena

bles

compositiona
l analysis

, and helps on
attacking

the state explosion
problem.

In particula
r we focus on modelling

of stocha
stic system for dependab

ility

and performance ana
lysis, and

aim to general m
odels tha

t require
more than

the

usual neg
ative exp

onential
distribut

ion. Inde
ed, phen

omena such as timeouts in

communication
protocols

, hard deadlines
in real-time systems, human response

times or the
variabilit

y of the delay of sound
and video frames (so-ca

lled jitter)

This work was suppor
ted by grants

ANPCyT
PICT-2

017-389
4 (RAFTSys)

,

SeCyT-
UNC 336201

801003
54CB (ARES),

and the ERC Advanced
Grant 695614

(POWVER).

c© Spring
er Nature Switzerla

nd AG 2018

B. Fisch
er and T. Uustalu

(Eds.): IC
TAC 2018, L

NCS 11187,
pp. 13

2–152,
2018.

https:/
/doi.or

g/10.1
007/97

8-3-030
-02508

-3_8

[FORMATS 2016] [ICTAC 2018]

From RFT to IOSA

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Basic ElementFault Trees æ IOSA

Basic Element
0 1

fail ≥ µ

repair ≥ “
1 module BE_i

2 fc, rc : clock;

3 inform : [0..2] init 0;

4 broken : [0..2] init 0; // 0:up 1:down 2:repairing

5

6 [fl!] broken=0 @ fc -> (inform’=1) & (broken’=1);

7 [r??] broken=1 -> (broken’=2) & (rc’=“);

8 [up!] broken=2 @ rc -> (inform’=2) &

9 (broken’=0) & (fc’=µ);

10

11 [fi!!] inform=1 -> (inform’=0);

12 [ui!!] inform=2 -> (inform’=0);

13 endmodule

4/18

From RFT to IOSA

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Basic Element

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

Theorem: Every closed confluent IOSA is weakly deterministic.

module BE_i
fc, rc : clock;
inform : [0..2] init 0;
broken : [0..2] init 0; // 0: up, 1: down, 2: repairing

[fl!] broken=0 @ fc -> (inform=1) & (broken=1);
[r??] broken=1 -> (broken=2) & (rc=�);
[up!] broken=2 @ rc -> (inform=2) &

(broken=0) & (fc=µ);

[fi!!] inform=1 -> (inform=0);
[ui!!] inform=2 -> (inform=0);

endmodule

2

Fault Trees æ IOSA

Basic Element
0 1

fail ≥ µ

repair ≥ “
1 module BE_i

2 fc, rc : clock;

3 inform : [0..2] init 0;

4 broken : [0..2] init 0; // 0:up 1:down 2:repairing

5

6 [fl!] broken=0 @ fc -> (inform’=1) & (broken’=1);

7 [r??] broken=1 -> (broken’=2) & (rc’=“);

8 [up!] broken=2 @ rc -> (inform’=2) &

9 (broken’=0) & (fc’=µ);

10

11 [fi!!] inform=1 -> (inform’=0);

12 [ui!!] inform=2 -> (inform’=0);

13 endmodule

4/18

Textual form of IOSA
for the tool FIG

From RFT to IOSA

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Basic Element

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

Theorem: Every closed confluent IOSA is weakly deterministic.

module BE_i
fc, rc : clock;
inform : [0..2] init 0;
broken : [0..2] init 0; // 0: up, 1: down, 2: repairing

[fl!] broken=0 @ fc -> (inform=1) & (broken=1);
[r??] broken=1 -> (broken=2) & (rc=�);
[up!] broken=2 @ rc -> (inform=2) &

(broken=0) & (fc=µ);

[fi!!] inform=1 -> (inform=0);
[ui!!] inform=2 -> (inform=0);

endmodule

2

Fault Trees æ IOSA

Basic Element
0 1

fail ≥ µ

repair ≥ “
1 module BE_i

2 fc, rc : clock;

3 inform : [0..2] init 0;

4 broken : [0..2] init 0; // 0:up 1:down 2:repairing

5

6 [fl!] broken=0 @ fc -> (inform’=1) & (broken’=1);

7 [r??] broken=1 -> (broken’=2) & (rc’=“);

8 [up!] broken=2 @ rc -> (inform’=2) &

9 (broken’=0) & (fc’=µ);

10

11 [fi!!] inform=1 -> (inform’=0);

12 [ui!!] inform=2 -> (inform’=0);

13 endmodule

4/18

Textual form of IOSA
for the tool FIG

Assume
self-loops for undefined

inputs

From RFT to IOSA

(Binary) AND gate

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

❖ if both inputs fail

signal fault

❖ if one input repairs

signal repair

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

Theorem: Every closed confluent IOSA is weakly deterministic.

module BE_i
fc, rc : clock;
inform : [0..2] init 0;
broken : [0..2] init 0; // 0: up, 1: down, 2: repairing

[fl!] broken=0 @ fc -> (inform=1) & (broken=1);
[r??] broken=1 -> (broken=2) & (rc=�);
[up!] broken=2 @ rc -> (inform=2) &

(broken=0) & (fc=µ);

[fi!!] inform=1 -> (inform=0);
[ui!!] inform=2 -> (inform=0);

endmodule

module AND
singalf: bool init false;
signalu: bool init false;
count: [0..2] init 0;

[f1??] count=1 -> (count=2) & (signalf=true);
[f1??] count=0 -> (count=1);
[f2??] count=1 -> (count=2) & (signalf=true);
[f2??] count=0 -> (count=1);

[u1??] count=2 -> (count=1) & (signalu=true);
[u1??] count=1 -> (count=0);
[u2??] count=2 -> (count=1) & (signalu=true);
[u2??] count=1 -> (count=0);

[f!!] signalf & count=2 -> (signalf=false);
[u!!] signalu & count!=2 -> (signalu=false);

endmodule

2

From RFT to IOSA
module OR

signalf: bool init false;

signalu: bool init false;

count: [0..2] init 0;

[f1??] count=0 -> (count’=1) & (signalf’=true);

[f1??] count=1 -> (count’=2);

[f2??] count=0 -> (count’=1) & (signalf’=true);

[f2??] count=1 -> (count’=2);

[u1??] count=2 -> (count’=1);

[u1??] count=1 -> (count’=0) & (signalu’=true);

[u2??] count=2 -> (count’=1);

[u2??] count=1 -> (count’=0) & (signalu’=true);

[f!!] signalf & count!=0 -> (signalf’=false);

[u!!] signalu & count=0 -> (signalu’=false);

endmodule

module VOTING_3_1

count: [0..3] init 0;

inform: bool init false;

[f0??] -> (count’=count+1) & (inform’=(count+1=2));

[f1??] -> (count’=count+1) & (inform’=(count+1=2));

[f2??] -> (count’=count+1) & (inform’=(count+1=2));

[u0??] -> (count’=count-1) & (inform’=(count=2));

[u1??] -> (count’=count-1) & (inform’=(count=2));

[u2??] -> (count’=count-1) & (inform’=(count=2));

[f!!] inform & count >= 2 -> (inform’=false);

[u!!] inform & count < 2 -> (inform’=false);

endmodule

3

module OR

signalf: bool init false;

signalu: bool init false;

count: [0..2] init 0;

[f1??] count=0 -> (count’=1) & (signalf’=true);

[f1??] count=1 -> (count’=2);

[f2??] count=0 -> (count’=1) & (signalf’=true);

[f2??] count=1 -> (count’=2);

[u1??] count=2 -> (count’=1);

[u1??] count=1 -> (count’=0) & (signalu’=true);

[u2??] count=2 -> (count’=1);

[u2??] count=1 -> (count’=0) & (signalu’=true);

[f!!] signalf & count!=0 -> (signalf’=false);

[u!!] signalu & count=0 -> (signalu’=false);

endmodule

module VOTING_3_1

count: [0..3] init 0;

inform: bool init false;

[f0??] -> (count’=count+1) & (inform’=(count+1=2));

[f1??] -> (count’=count+1) & (inform’=(count+1=2));

[f2??] -> (count’=count+1) & (inform’=(count+1=2));

[u0??] -> (count’=count-1) & (inform’=(count=2));

[u1??] -> (count’=count-1) & (inform’=(count=2));

[u2??] -> (count’=count-1) & (inform’=(count=2));

[f!!] inform & count >= 2 -> (inform’=false);

[u!!] inform & count < 2 -> (inform’=false);

endmodule

3

module PAND

f1: bool init false;

f2: bool init false;

st: [0..4] init 0; // 0:up, 1:inform fail, 2:failed,

// 3:inform up, 4:unbreakable

[_?] st=0 & f1 & !f0 -> (st’=4);

[f0??] st=0 & !f0 & !f1 -> (f0’=true);

[f0??] st=0 & !f0 & f1 -> (st’=1) & (f0’=true);

[f0??] st!=0 & !f0 -> (f0’=true);

[f0??] f0 ->;

[f1??] st=0 & !f0 & !f1 -> (f1’=true);

[f1??] st=0 & f0 & !f1 -> (st’=1) & (f1’=true);

[f1??] st=3 & !f1 -> (st’=2) & (f1’=true);

[f1??] (st==1|st==2|st=4) & !f1 -> (f1’=true);

[f1??] f1 ->;

[u0??] st!=1 & f0 -> (f0’=false);

[u0??] st=1 & f0 -> (st’=0) & (f0’=false);

[u0??] !f0 ->;

[u1??] (st=0|st=3) & f1 -> (f1’=false);

[u1??] (st=1|st=4) & f1 -> (st’=0) & (f1’=false);

[u1??] st=2 & f1 -> (st’=3) & (f1’=false);

[f!!] st=1 -> (st’=2);

[u!!] st=3 -> (st’=0);

endmodule

module RBOX

broken[n]: bool init false;

busy: bool init false;

[fl0?] -> (broken[0]’=true);

...

[fln�1?] -> (broken[n-1]’=true);

[r0!!] !busy & broken[0] -> (busy’=true);

...

[rn�1!!] !busy & broken[n-1]
& !broken[n-2] & ... & !broken[0] -> (busy’=true);

[up0?] -> (broken[0]’=false) & (busy’=false);

...

[upn�1?] -> (broken[n-1]’=false) & (busy’=false);

endmodule

4

module PAND

f1: bool init false;

f2: bool init false;

st: [0..4] init 0; // 0:up, 1:inform fail, 2:failed,

// 3:inform up, 4:unbreakable

[_?] st=0 & f1 & !f0 -> (st’=4);

[f0??] st=0 & !f0 & !f1 -> (f0’=true);

[f0??] st=0 & !f0 & f1 -> (st’=1) & (f0’=true);

[f0??] st!=0 & !f0 -> (f0’=true);

[f0??] f0 ->;

[f1??] st=0 & !f0 & !f1 -> (f1’=true);

[f1??] st=0 & f0 & !f1 -> (st’=1) & (f1’=true);

[f1??] st=3 & !f1 -> (st’=2) & (f1’=true);

[f1??] (st==1|st==2|st=4) & !f1 -> (f1’=true);

[f1??] f1 ->;

[u0??] st!=1 & f0 -> (f0’=false);

[u0??] st=1 & f0 -> (st’=0) & (f0’=false);

[u0??] !f0 ->;

[u1??] (st=0|st=3) & f1 -> (f1’=false);

[u1??] (st=1|st=4) & f1 -> (st’=0) & (f1’=false);

[u1??] st=2 & f1 -> (st’=3) & (f1’=false);

[f!!] st=1 -> (st’=2);

[u!!] st=3 -> (st’=0);

endmodule

module RBOX

broken[n]: bool init false;

busy: bool init false;

[fl0?] -> (broken[0]’=true);

...

[fln�1?] -> (broken[n-1]’=true);

[r0!!] !busy & broken[0] -> (busy’=true);

...

[rn�1!!] !busy & broken[n-1]
& !broken[n-2] & ... & !broken[0] -> (busy’=true);

[up0?] -> (broken[0]’=false) & (busy’=false);

...

[upn�1?] -> (broken[n-1]’=false) & (busy’=false);

endmodule

4

module SBE

fc, dfc, rc : clock;

inform : [0..2] init 0;

active : bool init false;

broken : [0..2] init 0;

[e??] !active -> (active’=true) & (fc’=);

[d??] active -> (active’=false) & (dfc’=);

[fl!] active & broken=0 @ fc -> (inform’=1) & (broken’=1);

[fl!] !active & broken=0 @ dfc -> (inform’=1) & (broken’=1);

[r??] -> (broken’=2) & (rc’=);

[up!] active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (fc’=);

[up!] !active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (dfc’=);

[f!!] inform=1 -> (inform’=0);

[u!!] inform=2 -> (inform’=0);

endmodule

module MUX

queue[n]: [0..3] init 0; // idle, requesting, reject, using

avail: bool init true;

broken: bool init false;

enable: [0..2] init 0;

[fl?] -> (broken’=true);

[up?] -> (broken’=false);

[e!!] enable=1 -> (enable’=0);

[d!!] enable=2 -> (enable’=0);

[rq0??] queue[0]=0 & (broken | !avail) -> (queue[0]’=2);

[rq0??] queue[0]=0 & !broken & avail -> (queue[0]’=1);

[asg0!!] queue[0]=1 & !broken & avail -> (queue[0]’=3) & (avail’=false);

[rj0!!] queue[0]=2 -> (queue[0]’=1);

[rel0??] queue[0]=3 -> (queue[0]’=0) & (avail’=true)

& (enable’=2);

[acc0??] -> (enable’=1);

...

[rqn�1??] queue[n-1]=0 & (broken | !avail) -> (queue[n-1]’=2);

[rqn�1??] queue[n-1]=0 & !broken & avail -> (queue[n-1]’=1);

[asgn�1!!] queue[n-1]=1 & queue[n-2]=0 & ...

& queue[0]=0 & !broken & avail -> (queue[n-1]’=3) & (avail’=false);

[rjn�1!!] queue[n-1]=2 -> (queue[n-1]’=1);

[reln�1??] queue[n-1]=3 -> (queue[n-1]’=0) & (avail’=true)

& (enable’=2);

[accn�1??] -> (enable’=1);

endmodule

5

module SBE

fc, dfc, rc : clock;

inform : [0..2] init 0;

active : bool init false;

broken : [0..2] init 0;

[e??] !active -> (active’=true) & (fc’=);

[d??] active -> (active’=false) & (dfc’=);

[fl!] active & broken=0 @ fc -> (inform’=1) & (broken’=1);

[fl!] !active & broken=0 @ dfc -> (inform’=1) & (broken’=1);

[r??] -> (broken’=2) & (rc’=);

[up!] active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (fc’=);

[up!] !active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (dfc’=);

[f!!] inform=1 -> (inform’=0);

[u!!] inform=2 -> (inform’=0);

endmodule

module MUX

queue[n]: [0..3] init 0; // idle, requesting, reject, using

avail: bool init true;

broken: bool init false;

enable: [0..2] init 0;

[fl?] -> (broken’=true);

[up?] -> (broken’=false);

[e!!] enable=1 -> (enable’=0);

[d!!] enable=2 -> (enable’=0);

[rq0??] queue[0]=0 & (broken | !avail) -> (queue[0]’=2);

[rq0??] queue[0]=0 & !broken & avail -> (queue[0]’=1);

[asg0!!] queue[0]=1 & !broken & avail -> (queue[0]’=3) & (avail’=false);

[rj0!!] queue[0]=2 -> (queue[0]’=1);

[rel0??] queue[0]=3 -> (queue[0]’=0) & (avail’=true)

& (enable’=2);

[acc0??] -> (enable’=1);

...

[rqn�1??] queue[n-1]=0 & (broken | !avail) -> (queue[n-1]’=2);

[rqn�1??] queue[n-1]=0 & !broken & avail -> (queue[n-1]’=1);

[asgn�1!!] queue[n-1]=1 & queue[n-2]=0 & ...

& queue[0]=0 & !broken & avail -> (queue[n-1]’=3) & (avail’=false);

[rjn�1!!] queue[n-1]=2 -> (queue[n-1]’=1);

[reln�1??] queue[n-1]=3 -> (queue[n-1]’=0) & (avail’=true)

& (enable’=2);

[accn�1??] -> (enable’=1);

endmodule

5

module SPAREGATE

state: [0..4] init 0; // on main, request, wait, on spare, broken

inform: [0..2] init 0;

release: [-n..n] init 0;

idx: [1..n] init 1;

[fl0?] state=0 -> (state=1) & (idx=1);

[up0?] state=4 -> (state=0) & (inform=2);

[up0?] state=3 & idx=1 -> (state=0) & (idx=1) & (release=1);

...

[up0?] state=3 & idx=n -> (state=0) & (idx=1) & (release=n);

[fl1?] state=3 & idx=1 -> (release=1);

...

[fln?] state=3 & idx=n -> (release=n);

[rq1!!] state=1 & idx=1 -> (state=2);

...

[rqn!!] state=1 & idx=n -> (state=2);

[asg1??] state=0 | state=1 | state=3 -> (release=1);

[asg1??] state=2 & idx=1 -> (release=-1) & (state=3);

[asg1??] state=4 -> (release=-1) & (state=3)

& (idx=1) & (inform=2);

...

[asgn??] state=0 | state=1 | state=3 -> (release=n);

[asgn??] state=2 & idx=n -> (release=-n) & (state=3);

[asgn??] state=4 -> (release=-n) & (state=3)

& (idx=n) & (inform=2);

[rj1??] state=2 & idx=1 -> (idx=2) & (state=1);

[rj2??] state=2 & idx=2 -> (idx=3) & (state=1);

...

[rjn??] state=2 & idx=n -> (state=4) & (idx=1) & (inform=1);

[rel1!!] release=1 & !(state=3 & idx=1) -> (release= 0);

[rel1!!] release=1 & state=3 & idx=1 -> (release= 0) & (state=1) & (idx=1);

...

[reln!!] release=n & !(state=3 & idx=n) -> (release=0);

[reln!!] release=n & state=3 & idx=n -> (release= 0) & (state=1) & (idx=1);

[acc1!!] release=-1 -> (release= 0);

...

[accn!!] release=-n -> (release=0);

[f!!] inform = 1 -> (inform=0);

[u!!] inform = 2 -> (inform=0);

endmodule

6

From RFT to IOSA+Urgency
Given a RFT T = (V, i, si, l) the semantic of T is defined by

[[T]] = ||v2V [[v]]

where

[[v]] =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

[[l(v)]](flv, upv, fv, uv, rv) if l(v) = (be, 0, µ, �)

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], ..., fi(v)[n�1], ui(v)[n�1]) if l(v) 2 {(and, n), (or, n)}

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], fi(v)[1], ui(v)[1]) if l(v) = (pand, 2)

[[l(v)]](fli(v)[0], upi(v)[0], ri(v)[0], ..., fli(v)[n�1], upi(v)[n�1], ri(v)[n�1]) if l(v) = (rbox, n)

[[l(v)]](flv, upv, fv, uv, rv, ev, dv, rq(si(v)[0],v), asg(v,si(v)[0]),

rel(si(v)[0],v), acc(si(v)[0],v), rj(v,si(v)[0]), .., rj(v,si(v)[n�1])) if l(v) = (sbe, n, µ, ⌫, �)

[[l(v)]](fv, uv, fli(v)[0], upi(v)[0], fli(v)[1], upi(v)[1], rq(v,i(v)[1]), asg(i(v)[1],v),

acc(v,i(v)[1]), rj(i(v)[1],v), rel(v,i(v)[1]), ..., rel(v,i(v)[n�1])) if l(v) = (sg, n)

8

From RFT to IOSA+Urgency
Given a RFT T = (V, i, si, l) the semantic of T is defined by

[[T]] = ||v2V [[v]]

where

[[v]] =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

[[l(v)]](flv, upv, fv, uv, rv) if l(v) = (be, 0, µ, �)

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], ..., fi(v)[n�1], ui(v)[n�1]) if l(v) 2 {(and, n), (or, n)}

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], fi(v)[1], ui(v)[1]) if l(v) = (pand, 2)

[[l(v)]](fli(v)[0], upi(v)[0], ri(v)[0], ..., fli(v)[n�1], upi(v)[n�1], ri(v)[n�1]) if l(v) = (rbox, n)

[[l(v)]](flv, upv, fv, uv, rv, ev, dv, rq(si(v)[0],v), asg(v,si(v)[0]),

rel(si(v)[0],v), acc(si(v)[0],v), rj(v,si(v)[0]), .., rj(v,si(v)[n�1])) if l(v) = (sbe, n, µ, ⌫, �)

[[l(v)]](fv, uv, fli(v)[0], upi(v)[0], fli(v)[1], upi(v)[1], rq(v,i(v)[1]), asg(i(v)[1],v),

acc(v,i(v)[1]), rj(i(v)[1],v), rel(v,i(v)[1]), ..., rel(v,i(v)[n�1])) if l(v) = (sg, n)

8

The encodings
given before with
proper relabeling

From RFT to IOSA+Urgency
Given a RFT T = (V, i, si, l) the semantic of T is defined by

[[T]] = ||v2V [[v]]

where

[[v]] =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

[[l(v)]](flv, upv, fv, uv, rv) if l(v) = (be, 0, µ, �)

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], ..., fi(v)[n�1], ui(v)[n�1]) if l(v) 2 {(and, n), (or, n)}

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], fi(v)[1], ui(v)[1]) if l(v) = (pand, 2)

[[l(v)]](fli(v)[0], upi(v)[0], ri(v)[0], ..., fli(v)[n�1], upi(v)[n�1], ri(v)[n�1]) if l(v) = (rbox, n)

[[l(v)]](flv, upv, fv, uv, rv, ev, dv, rq(si(v)[0],v), asg(v,si(v)[0]),

rel(si(v)[0],v), acc(si(v)[0],v), rj(v,si(v)[0]), .., rj(v,si(v)[n�1])) if l(v) = (sbe, n, µ, ⌫, �)

[[l(v)]](fv, uv, fli(v)[0], upi(v)[0], fli(v)[1], upi(v)[1], rq(v,i(v)[1]), asg(i(v)[1],v),

acc(v,i(v)[1]), rj(i(v)[1],v), rel(v,i(v)[1]), ..., rel(v,i(v)[n�1])) if l(v) = (sg, n)

8

Good news
everyone!!

From RFT to IOSA+Urgency
Given a RFT T = (V, i, si, l) the semantic of T is defined by

[[T]] = ||v2V [[v]]

where

[[v]] =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

[[l(v)]](flv, upv, fv, uv, rv) if l(v) = (be, 0, µ, �)

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], ..., fi(v)[n�1], ui(v)[n�1]) if l(v) 2 {(and, n), (or, n)}

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], fi(v)[1], ui(v)[1]) if l(v) = (pand, 2)

[[l(v)]](fli(v)[0], upi(v)[0], ri(v)[0], ..., fli(v)[n�1], upi(v)[n�1], ri(v)[n�1]) if l(v) = (rbox, n)

[[l(v)]](flv, upv, fv, uv, rv, ev, dv, rq(si(v)[0],v), asg(v,si(v)[0]),

rel(si(v)[0],v), acc(si(v)[0],v), rj(v,si(v)[0]), .., rj(v,si(v)[n�1])) if l(v) = (sbe, n, µ, ⌫, �)

[[l(v)]](fv, uv, fli(v)[0], upi(v)[0], fli(v)[1], upi(v)[1], rq(v,i(v)[1]), asg(i(v)[1],v),

acc(v,i(v)[1]), rj(i(v)[1],v), rel(v,i(v)[1]), ..., rel(v,i(v)[n�1])) if l(v) = (sg, n)

8

Good news
everyone!!

It satisfies the sufficient conditions
that guarantee confluence.

Hence, it is weakly deterministic!

From RFT to IOSA+Urgency
Given a RFT T = (V, i, si, l) the semantic of T is defined by

[[T]] = ||v2V [[v]]

where

[[v]] =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

[[l(v)]](flv, upv, fv, uv, rv) if l(v) = (be, 0, µ, �)

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], ..., fi(v)[n�1], ui(v)[n�1]) if l(v) 2 {(and, n), (or, n)}

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], fi(v)[1], ui(v)[1]) if l(v) = (pand, 2)

[[l(v)]](fli(v)[0], upi(v)[0], ri(v)[0], ..., fli(v)[n�1], upi(v)[n�1], ri(v)[n�1]) if l(v) = (rbox, n)

[[l(v)]](flv, upv, fv, uv, rv, ev, dv, rq(si(v)[0],v), asg(v,si(v)[0]),

rel(si(v)[0],v), acc(si(v)[0],v), rj(v,si(v)[0]), .., rj(v,si(v)[n�1])) if l(v) = (sbe, n, µ, ⌫, �)

[[l(v)]](fv, uv, fli(v)[0], upi(v)[0], fli(v)[1], upi(v)[1], rq(v,i(v)[1]), asg(i(v)[1],v),

acc(v,i(v)[1]), rj(i(v)[1],v), rel(v,i(v)[1]), ..., rel(v,i(v)[n�1])) if l(v) = (sg, n)

8

Good news
everyone!!

It satisfies the sufficient conditions
that guarantee confluence.

Hence, it is weakly deterministic!

EPiC Series in Computing

Volume 73, 2020, Pages 354–372

LPAR23. LPAR-23: 23rd International

Conference on Logic for Programming,

Artificial Intelligence and Reasoning

A compositional semantics for Repairable Fault Trees

with general distributions ∗

Raúl Monti1 , Carlos E. Budde1 , Pedro R. D’Argenio2,3,
4

1 University of Twente, Formal Methods and Tools, Enschede, the Netherlands

2 Universidad Nacional de Córdoba, FAMAF, Córdoba, Argentina

3 CONICET, Córdoba, Argentina

4 Saarland University,
Department of Computer Science, Saarbrücken, Germany

Abstract

Fault Tree Analysis (FTA) is a prominent technique in industrial and scientific risk

assessment. Repairable Fault Trees (RFT) enhance the classical
Fault Tree (FT) model by

introducing the possibility to describe complex dependent repairs of system components.

Usual frameworks for analyzing FTs such as BDD, SBDD, and Markov chains fail to assess

the desired properties over RFT complex models, either because these become too large,

or due to cyclic behaviour introduced by dependent repairs. Simulation is another way

to carry out this kind of analysis. In this paper we review the RFT model with Repair

Boxes as introduced by Daniele Codetta-Raiteri. We present compositional semantics for

this model in terms of Input/Output Stochastic Automata, which allows for the modelling

of events occurring according to general continuous distribution. Moreover,
we prove that

the semantics generates (weakly) deterministic models, hence suitable for discrete event

simulation, and prominently for rare event simulation using the FIG tool.

1 Introduction

Fault Tree Analysis is a prominent technique for dependability assessment of complex industrial

systems. Standard or Static
Fault

Trees
(SFTs [41]) are directed acyclic graphs whose leaves

are called Basic Events, and usually represent the failure of a physical system component. Each

leaf is equipped with a failure rate or discrete probability, indicating the frequency at which the

component breaks. The other FT nodes are called gates, and they model how basic components

failures combine to induce more complex system failures, until the failure of interest (the top

event of the tree) occurs. SFTs thus encode a logical formula. One of the most efficient analysis

techniques uses Binary Decision Diagrams (BDD) to represent the formula, and then perform

dependability studies using specialised
algorithms. This assumes the absence of stochastic

dependency among BEs.

∗Partia
lly supported

by NWO project 1547
4 (SEQUOIA), EU project 1021

12 (SUCCESS), ERC gran
t 6956

14

(POWVER), ANPCyT PICT-2017
-3894

(RAFTSys),
and SeCyT project

3362
0180

1003
54CB (ARES).

E. Albert and L. Kovacs
(eds.), LPAR23 (EPiC Series

in Computing, vol. 73),
pp. 354–

372

[LPAR-23 (2020)]

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Reliability: (transient)

Availability: (steady-state)

1� P(3TTLE)

E(¬TLE)

9

P(2T¬TLE)

E(¬TLE)

9

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Reliability: (transient)

Availability: (steady-state)

1� P(3TTLE)

E(¬TLE)

9

1� P(3TTLE)

E(¬TLE)

9

Monte Carlo Simulation

Prob (unsafe U fail)

time

st
at

es

fail

unsafe

safe

?

Monte Carlo Simulation

Prob (unsafe U fail)

time

st
at

es

fail

unsafe

safe

#✘ =

#total =

2

7
≈ p = #✘

#total
^

Monte Carlo Simulation

Prob (unsafe U fail)

time

st
at

es

fail

unsafe

safe

#✘ =

#total =

2

7
≈ p = #✘

#total
^

Highly Reliable

Monte Carlo Simulation

Prob (unsafe U fail)

time

st
at

es

fail

unsafe

safe

#✘ =

#total =

2

7
≈ p = #✘

#total
^

Highly Reliable

Too small

Monte Carlo Simulation

Prob (unsafe U fail)

time

st
at

es

fail

unsafe

safe

#✘ =

#total =

2

7
≈ p = #✘

#total
^

Highly Reliable

Too small

Too few

Monte Carlo Simulation

Prob (unsafe U fail)

time

st
at

es

fail

unsafe

safe

#✘ =

#total =

2

7
≈ p = #✘

#total
^

Highly Reliable

Too small

Too few

Needs to be huge

Monte Carlo Simulation

Prob (unsafe U fail)

time

st
at

es

fail

unsafe

safe

#✘ =

#total =

2

7
≈ p = #✘

#total
^

Highly Reliable

Too small

Too few

Needs to be huge

Rare event simulation through Importance Splitting

time

st
at

es
fail

unsafe

safe

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

Prob (unsafe U fail) ≈ p ̂

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

Prob (unsafe U fail) ≈ p ̂ #✘
#total

=

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

Prob (unsafe U fail) ≈ p ̂ #✘=#✘
#total

=

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

S0

Prob (unsafe U fail) ≈ p ̂ #✘
S0

=#✘
#total

=

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

S1

S0

Prob (unsafe U fail) ≈ p ̂ #✘=#✘
#total

=
S0 * S1

rare event

Ideally indicates
the “proximity” to the

rare event

Rare event simulation through Importance Splitting

time

im
po

rt
an

ce
fail

unsafe

safe

T1

T2

✘ ✘

S1

S2

S0

Prob (unsafe U fail) ≈ p ̂ #✘=#✘
#total

=
S0 * S1 * S2

rare event

Ideally indicates
the “proximity” to the

rare event

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

➡ importance function

➡ thresholds placing

➡ number of splittings

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

➡ importance function

➡ thresholds placing

➡ number of splittings

⎧
⎨
⎩

There are good
strategies,

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

➡ importance function

➡ thresholds placing

➡ number of splittings

⎧
⎨
⎩

There are good
strategies, but
they need

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

➡ importance function

➡ thresholds placing

➡ number of splittings

⎧
⎨
⎩

There are good
strategies, but
they need

Provided in an
ad hoc manner

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

➡ importance function

➡ thresholds placing

➡ number of splittings

⎧
⎨
⎩

There are good
strategies, but
they need

Provided in an
ad hoc manner

Fully Automatic

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

➡ importance function

➡ thresholds placing

➡ number of splittings

⎧
⎨
⎩

There are good
strategies, but
they need

Provided in an
ad hoc manner

Fully Automatic

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

Fault Trees

Static FTs

BE1 BEn

AND

Dynamic FTs Repairable FTs

2/18

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

Fault Trees

Static FTs

BE1 BEn

AND

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1 BEn

OR

Dynamic FTs Repairable FTs

2/18

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

Fault Trees

Static FTs

BE1 BEn

AND

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1 BEn

OR

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

1 2 3 4 5 6

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR)(Iw(~x))

IAND(~x) =
P

w2chil(AND)(Iw(~x))

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

Fault Trees

Static FTs

BE1 BEn

AND

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1 BEn

OR

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

1 2 3 4 5 6

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR)(Iw(~x))

IAND(~x) =
P

w2chil(AND)(Iw(~x))

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

✘

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

Fault Trees

Static FTs

BE1 BEn

AND

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1 BEn

OR

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

1 2 3 4 5 6

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR)(Iw(~x))

IAND(~x) =
P

w2chil(AND)(Iw(~x))

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

✘

1

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

Fault Trees

Static FTs

BE1 BEn

AND

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1 BEn

OR

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

1 2 3 4 5 6

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR)(Iw(~x))

IAND(~x) =
P

w2chil(AND)(Iw(~x))

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

✘ ✘

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

Fault Trees

Static FTs

BE1 BEn

AND

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1 BEn

OR

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

1 2 3 4 5 6

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR)(Iw(~x))

IAND(~x) =
P

w2chil(AND)(Iw(~x))

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

✘ ✘

2

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18

Fault Trees

Static FTs

BE1 BEn

AND

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1 BEn

OR

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

1 2 3 4 5 6

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR)(Iw(~x))

IAND(~x) =
P

w2chil(AND)(Iw(~x))

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

✘ ✘

2

Normalize

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise

where

maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where

maxIv = max~x2S Iv(~x)

lcmv = lcm
�
maxIw

��w 2 chil(v)

ord =

8
<

:
1 if ~xv 2 {1, 4}
�1 otherwise

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where

maxIv = max~x2S Iv(~x)

lcmv = lcm
�
maxIw

��w 2 chil(v)

ord =

8
<

:
1 if ~xv 2 {1, 4}
�1 otherwise

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Deriving the importance function from RFT
(the structural way)

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where

maxIv = max~x2S Iv(~x)

lcmv = lcm
�
maxIw

��w 2 chil(v)

ord =

8
<

:
1 if ~xv 2 {1, 4}
�1 otherwise

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

P(2T¬TLE)

E(¬TLE)

t[v] Iv(~x)

be, sbe ~xv

and lcmv ·
P

w2chil(v)
Iw(~x)
maxI

w

or lcmv · max
w2chil(v)

nIw(~x)
maxI

w

o

votk lcmv · max
W✓chil(v),|W |=k

nP
w2W

Iw(~x)
maxI

w

o

sg lcmv ·max
⇣P

w2chil(v)
Iw(~x)
maxI

w
, ~xv ·m

⌘

pand lcmv ·max
⇣ Il(~x)
maxI

l
+ ord

Ir(~x)
maxI

r
, ~xv · 2

⌘

where

maxIv = max~x2S Iv(~x)

lcmv = lcm
�
maxIw

��w 2 chil(v)

ord =

8
<

:
1 if ~xv 2 {1, 4}
�1 otherwise

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)

9

Rare event simulation for

non-Markovian
repairabl

e fault trees
!

Carlos E.
Budde

1 , Marco Biagi
2 , Raúl E.

Monti1 ,

Pedro R. D’Argenio
3,4,5 , and Mariëlle Stoelinga

1,6

1 Formal Methods an
d Tools, University of Twente

, Ensched
e, the Netherlands

2 Department of Info
rmation Engineerin

g, University of Florenc
e, Florenc

e, Italy

3 FAMAF, Universidad
Nacional de

Córdoba,
Córdoba,

Argentina

4 CONICET, Có
rdoba, Argentina

5 Department of Com
puter Scie

nce, Saarl
and University,

Saarbrück
en, Germany

6 Department of Sof
tware Science, R

adboud University,
Nijmegen, the

Netherlands

Abstract.
Dynamic fault trees (dft) are widely adopted in industry

to assess the
dependab

ility of safety-c
ritical equ

ipment. Since
many sys-

tems are too large to be studied
numerically, df

ts dependa
bility is often

analysed using Monte Carlo simulation. A
bottleneck

here is that many

simulation samples are required in the case of rare events, e.g
. in highly

reliable systems where components fail seldom
ly. Rare event simulation

(res) provi
des techni

ques to reduce the
number of sam

ples in the case o
f

rare events. W
e present a

res technique
based on importance splitting,

to study failures in
highly reliable dft

s. Whereas res
usually requires

meta-inform
ation from an expert, our method is fully automatic: By

cleverly exploiting
the fault tree structure

we extract the so-called im-

portance f
unction. W

e handle df
ts with Markovian and non-Markovian

failure and
repair dist

ributions—
for which

no numerical methods exi
st—

and show the efficiency of our app
roach on several ca

se studies.

1 Introduct
ion

Reliability
engineerin

g is an important field that provides methods and tools

to assess and mitigate the risks related to complex systems. Fault tree analy-

sis (fta) is a prominent technique
here. Its applicatio

n encompasses a large

number of indu
strial dom

ains that r
ange from

automotive and
aerospace

system

engineerin
g, to energy and telecommunication

systems and protocols.

Fault trees. A fault tree (ft) describes
how component failures occur and

propagate
through the system

, eventuall
y leading to

system failures. T
echnically,

an ft is a directed acyclic graph whose leaves model component failures, a
nd

whose other nodes (called gates) model failur
e propagatio

n. Using fault trees

one can compute dependabi
lity metrics to quantify how a system fares w.r.t.

! This work was partially
funded by NWO, NS, and ProRail project 15474 (SE-

QUOIA), ERC grant 6956
14 (POWVER), EU project 10

2112 (SUC
CESS), A

NPCyT

PICT-201
7-3894 (RAFTSys), a

nd SeCyT project 33
620180100

354CB (ARES).

c© The Author(s) 2020

A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078,
pp. 463–48

2, 2020.

https://doi.org/
10.100

7/978-
3-030-4

5190-5
_
26

[TACAS 2020]

Deriving the importance function from RFT
(via minimal cut sets)

❖ Cut set: a set of BE that triggers a TLE (Top Level Event)

❖ It is minimal if removing any BE there is no TLE

❖ Originally defined for static fault trees

❖ We adapt them and extended to repairable fault trees but…

❖ If no PAND and Spare gates, all MCS can be collected

❖ If Spare gates but no PAND some MCS maybe lost for some configurations

❖ We did not include PAND

Deriving the importance function from RFT
(via minimal cut sets)

Name Expression Description

IMCS(~x) = max
mcs2M(4⇤)

(
X

v2mcs
~xb

) For each mcs of the tree, IMCS counts the number of bes that have failed in the

current state ~x. The importance IMCS(~x) of the current state of the tree is the

maximum among these counts.

IMCS-P(~x) = max
mcs2M<N (4⇤)

(
X

v2mcs
~xb

)
IMCS-P operates similarly to function IMCS above, but here the maximum ranges

over a pruned set of mcs, discarding cut sets with N or more bes.

IMCS-PR(~x) = max
mcs2M>�(4⇤)

(
X

v2mcs
~xb

) Similar to IMCS-P but using the failure rates for pruning, IMCS-PR considers only

mcs where the product of the failure rate of all bes is greater than �. Applicable

only to fts whose failure and dormancy distributions are Markovian.

IMCSN(~x) = max
mcs2M(4⇤)

(
lcm ·

X

v2mcs

~xb

|mcs|

) IMCSN is a normalised version of IMCS. The normalisation follows a similar pro-

cedure to the structured case, where lcm is the least common multiple of the

cardinality of every mcs in M(4⇤).

10

Deriving the importance function from RFT
(via minimal cut sets)

Name Expression Description

IMCS(~x) = max
mcs2M(4⇤)

(
X

v2mcs
~xb

) For each mcs of the tree, IMCS counts the number of bes that have failed in the

current state ~x. The importance IMCS(~x) of the current state of the tree is the

maximum among these counts.

IMCS-P(~x) = max
mcs2M<N (4⇤)

(
X

v2mcs
~xb

)
IMCS-P operates similarly to function IMCS above, but here the maximum ranges

over a pruned set of mcs, discarding cut sets with N or more bes.

IMCS-PR(~x) = max
mcs2M>�(4⇤)

(
X

v2mcs
~xb

) Similar to IMCS-P but using the failure rates for pruning, IMCS-PR considers only

mcs where the product of the failure rate of all bes is greater than �. Applicable

only to fts whose failure and dormancy distributions are Markovian.

IMCSN(~x) = max
mcs2M(4⇤)

(
lcm ·

X

v2mcs

~xb

|mcs|

) IMCSN is a normalised version of IMCS. The normalisation follows a similar pro-

cedure to the structured case, where lcm is the least common multiple of the

cardinality of every mcs in M(4⇤).

10

Automated Rare Event Simulation for

Fault Tree Analysis via Minimal Cut Sets

Carlos E.
Budde

1(B) and Mariëlle Stoelinga
1,2

1 Formal Methods an
d Tools, University of Twente

, Ensched
e, The Netherlands

{c.e.bud
de,m.i.a

.stoelin
ga}@utwe

nte.nl

2 Department of Sof
tware Science, R

adboud University,
Nijmegen, The

Netherlands

Abstract.
Monte Carlo simulation is a common technique

to estimate

dependab
ility metrics for f

ault trees.
A bottleneck

in this techn
ique is the

number of sam
ples neede

d, especia
lly when the interes

ting event
s are rare

and occur with
low probabilit

y. Rare Ev
ent Simulation (res) reduc

es the

number of sam
ples when

analysing
rare events. Im

portance splitting is a

res method that spawns more simulation runs from promising system

states. How promising a state is, is
indicated

by an importance f
unction,

which concentra
tes the information that makes this method efficient.

Importance
functions

are given by domain and res experts. T
his hin-

ders re-ut
ilisation and involves d

ecisions en
tailing potential

human error.

Focusing
in (general)

fault trees, in this paper we automatically derive

importance
functions

based on the tree structure.
For this we exploit a

common fault tree concept, n
amely cut sets: the more elements from a

cut set ha
ve failed,

the higher
the importance.

We show that the c
ut-set-

derived importance f
unction is an easy-to-im

plement and simple concep
t,

that can nonethele
ss compete again

st another
(more involv

ed) autom
atic

importance function for res.

Keywords: Minimal cut sets
· Rare event simulation · Dynamic fault

trees · Importance splitting · F
ault tree analysis

1 Introduct
ion

Classical M
onte Carlo simulation (cmc) is a common technique

to evaluate

stochastic
models. Its

applicatio
ns range from systems biology,

climate models,

and social inte
raction, to

reliability
analysis, p

erformance evaluation
, network

security, a
nd many more.

By taking a large number of ran
dom samples, cmc estimates the metric of

interest, s
uch as the average package loss in a network. W

hile this technique

is very flexible in the stochastic
models it ca

n handle, as
well as th

e metrics it

can analyse, it
suffers from

a major drawb
ack: to get accura

te estimates, a large

This work
was partia

lly funded by EU project 10
2112 (SUCCES

S), and NS, ProRai
l,

and NWO project 15
474 (SEQUOIA).

c© Springer
Nature Switzerland

AG 2020

H. Hermanns (Ed.): MMB 2020, LN
CS 12040, pp

. 259–277
, 2020.

https://d
oi.org/10

.1007/97
8-3-030-4

3024-5_1
6

[MMB 2020]

Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Fully Automatic!

Experiments (Case Studies)Repairable non-Markovian DFTs

BE₄ BE₇ BE₈ BE₁₁

BE₁ BE₃

4/7 6/8

2/4
HVC

HVC₁

BE₁

HVC₄

BE₄

SBE₁ SBE₄

10/18

Repairable non-Markovian DFTs

T₁ T₂ T₃

B₁ B₂ B₃NE₁

NE₂

NE₃

2/3
FTPP

SBE₄SBE₁

10/18

Repairable non-Markovian DFTs

RC₁

BE₁ SBE₁

RC₅

BE₅ SBE₅

HVC₁

BE₁

HVC₄

BE₄

SBE₁ SBE₄

3/5
RC

2/4
HVC

2/3
RWC

3/6
MIX

10/18

Repairable non-Markovian DFTs

HECS

SW HW

IF

PROC

PROC1 PROC2

P₁ P₂

PS₁ PS₂

BUS

B₁ B₄

MI₂

MI₁

MEM 3/5

MI₃

M₁

M₄

M5

M₂

M₃

10/18

Repairable non-Markovian DFTs

BE₄ BE₇ BE₈ BE₁₁

BE₁ BE₃

4/7 6/8

2/4
HVC

HVC₁

BE₁

HVC₄

BE₄

SBE₁ SBE₄

10/18

Experiments

(Case Studies)

Repairable non-Markovian DFTs

Basic
element Fail time PDF Repair PDF Dormancy PDF

VOT:
BE-A lnor(4.37, 0.33) uni(0.4, 0.95)
BE-B wei(4.5, 0.0125) uni(0.4, 0.95)

DSPARE:
BE exp(0.07) uni(1.0, 2.0)
SBE exp(0.07) uni(1.0, 2.0) exp(0.035)

HECS:
SW exp(4.5◊10-12) uni(28.0, 56.0)
HW exp(1.0◊10-10) uni(28.0, 56.0)
MIi exp(5.0◊10-9) uni(21.0, 28.0)
Mj exp(6.0◊10-8) uni(21.0, 28.0)
Bk exp(8.7◊10-4) lnor(4.45, 0.24)
Pa exp(1.0◊10-3) lnor(4.45, 0.24)
PSb exp(1.5◊10-3) lnor(4.45, 0.24) dir(Œ)

FTPP:
NEi lnor(6.5, 0.5) nor(150.0, 50.0)
Bj exp(2.8◊10-2) nor(15.0, 3.0)

SBEk exp(2.8◊10-2) nor(15.0, 3.0) dir(Œ)
RC:

BEi exp(0.04) nor(2.0, 0.7)
SBEj exp(0.04) nor(2.0, 0.7) exp(0.5)

HVC:
BEi ray(1.999) uni(0.15, 0.45)
SBEj ray(1.999) uni(0.15, 0.45) erl(3.0, 0.25)

Abbrev: Distribution:
dir(x) Dirac(x)
exp(⁄) exponential(⁄)
erl(k, ⁄) Erlang(k, ⁄)
uni(a, b) uniform([a, b]R)
ray(‡) Rayleigh(‡)
wei(k, ⁄) Weibull(k, ⁄)
nor(µ, ‡) normal(µ, ‡)
lnor(µ, ‡) log-normal(µ, ‡)

10/18

Experiments

CMC
vs

RESTART

Availability
Reliability

14 Budde, Monti, D’Argenio, Stoelinga

DSPARER HVCR RWCR FTPPR HECSR

VOTA RCA RWCA HECSA

(2)

(5)

(es)

STR MCS MCSN

Fig. 7: CI precision of CMC vs. RESTART.
A column of plots indicates the impor-
tance function used for experimentation with
RESTART: structural (ISTR), minimal cut
sets (IMCS), or normalised MCS (IMCSN). A
row indicates the thresholds-building method
used with that function: sequential Monte
Carlo with global splitting 2 or 5, or Expected
Success (ES). Darker marks in a scatter plot
correspond to UNAVA experiments, for the
case studies VOT, RC, RWC, HECS, repre-
sented with an A superscript in the legend of
the plots (VOTA . . .). Lighter marks correspond
to UNREL103 experiments, for the case stud-
ies DSPARE, HVC, RWC, FTPP, HECS, rep-
resented with an R superscript (DSPARER . . .).
A mark above the solid diagonal line means
that RESTART built a narrower CI than
CMC in the same simulation time. Dotted di-
agonal lines indicate 10⇥ narrower CIs. Both
axes are in logarithmic scale.

Fig. 7 shows that in general and as expected, RESTART
performs at least as well as CMC to estimate the depend-
ability metrics, with an efficiency gap that increases as the
RFT gains on resilience. However, this relative gain con-
cerns UNAVA studies, which are the first-row models in the
legend of Fig. 7, that have an A superscript and blue-tainted
colour marks. For UNREL1000 RESTART fails to surpass
CMC significantly: we will show next that Fixed Effort is a
much better ISPLIT algorithm in these cases.

When comparing importance functions, Fig. 7 shows a
tendency that favours ISTR, evidenced in (each row of) plots
by the higher mass of marks above the diagonal that occur
on the column corresponding to ISTR. Nevertheless, there
are two outliers in this trend that we discuss here.

First, RESTART with ISTR and Expected Success failed
to build any CI for UNAVA of the RFT VOT3 (mark on
the right-most bar of the bottom-left scatter plot). Studying
the output logs of ��� it was found that Expected Success
failed in the selection of a threshold at importance value 44
(out of 70). Although ��� has recovery heuristics for such
situations, the result for this case was the selection of a split-
ting value = 2234. This is in contrast to the values observed
for all other experiments, that seldom go over 200 and never
over 400. Therefore, an oversampling occurred in the Sk re-
gion built above such threshold, which produced a bottle-

neck that could not be overcome in the 30 min of runtime
allowed for this experiment, producing the lack of results.

Second, RESTART with ISTR and Sequential Monte
Carlo for global splitting 5 failed to build any CI for HVC7
when studying UNREL1000. This is less surprising given the
lower efficiency of RESTART to study unreliability in our
experiments, and the nature of this case study that we dis-
cuss next when analysing Fixed Effort. Still we studied the
output logs of ���, and in this case found an undersampling
caused by thresholds set too far apart by Sequential Monte
Carlo. This is a known issue for this algorithm, that uses a
single splitting value for all thresholds.

Thus, both outliers have roots on a combination of the
algorithms to build thresholds, and their current implemen-
tation in ���. The better performance of RESTART with
ISTR, for the rest of the instances when compared to the
columns of IMCS and IMCSN, tilt the scale in favour of the
structural function ISTR defined in Sec. 4.1.

Fig. 8 shows our experimental results for RESTART-P2,
which essentially delays the truncation of simulation retrials
for 2 threshold levels. In comparison RESTART can be de-
fined as RESTART-P0, which truncates a retrial as soon as
it visits a state whose importance is below the level of cre-
ation of the retrial. Empirical and theoretical studies have
shown RESTART-P1 and RESTART-P2 to be more effi-
cient than RESTART in the analysis of queueing systems

Experiments

CMC
vs

RESTART-P2

Availability

Analysis of non-Markovian repairable fault trees through rare event simulation 15

VOTA RCA RWCA HECSA

(2)

(5)

(es)

STR MCS MCSN

Fig. 8: CI precision of CMC vs. RESTART-P2.
A column of plots indicates the impor-
tance function used for experimentation with
RESTART-P2: structural (ISTR), minimal cut
sets (IMCS), or normalised MCS (IMCSN). A
row indicates the thresholds-building method
used with that function: sequential Monte
Carlo with global splitting 2 or 5, or Expected
Success (ES). These are UNAVA experiments
on the parameterised case studies VOT, RC,
RWC, HECS. A mark above the solid diago-
nal line means that RESTART-P2 built a nar-
rower CI than CMC in the same simulation
time. Dotted diagonal lines indicate 10⇥ nar-
rower CIs. Both axes are in logarithmic scale.

[61, 17]. Here we experiment with the latter, within the cur-
rent capabilities of ��� (UNAVA properties only), to further
validate our previous discussion for ISTR.

For that function, Fig. 8 shows a similar trend than Fig. 7,
with the following difference. When thresholds are selected
with Sequential Monte Carlo for global splitting 2 (upper-
left scatter plots in the figures), RESTART-P2 managed to
build narrower CIs than RESTART, most notably for the
RWCp case studies. The opposite effect is observed (but to
a lower degree) when thresholds are selected with the Ex-
pected Success algorithm.

However interesting, this does not change the fact that
for any row of scatter plots, those produced with the ISTR
function in Fig. 8 generally produced the narrower CIs. Also,
being more sensitive than RESTART to the choice of thresh-
olds via Expected Success, RESTART-P2 puts in evidence
that IMCS can result in ISPLIT algorithms that perform
worse than CMC, e.g. the lower-central scatter plot of Fig. 8.
Thus, all in all these results increase the evidence in favour
of ISTR as the most efficient of the three importance func-
tions tested, at least for steady-state analysis.

Finally, Fig. 9 shows our experimental results when us-
ing Fixed Effort to study UNREL1000. Something that jumps
to sight is the high number of failures of the algorithm for
all importance functions, but exclusively for the HVCp case
studies (plus some RWCp), and paradoxically for the less
rare instances of those models.

To understand this we study the structure of these RFTs,
whose smallest instance (HVC4) require 6 basic elements to
fail in order to trigger a top event. This is not too favourable
for ISPLIT, specially considering the fast repair times (uni-
formly distributed in [0.15,0.45]) with respect to failure times
(Erlang(3,0.25) and Rayleigh(1.999)). Still this did not stop
RESTART to at least match the performance of CMC.

In general, the issue with Fixed Effort is that it is more
structured, and thus more brittle than RESTART (and CMC),
as shown here. By conditioning the success of the whole run
on the chained success on every Sk region, a single failed
step produces a 0 estimate and starts all estimations anew.
This can be very efficient—see e.g. the CIs ⇡ 100⇥ nar-
rower than CMC for HECS5—as it avoids to waste effort in
unpromissing simulations. In HVC however, where repair
times are extremely faster than failures, such reset condition
happens almost always before the top event of the tree. This
does not affect RESTART and CMC so badly, which con-
tinue simulations as before. But for Fixed Effort and given
the short runtimes allowed for the smallest instances—HVC4
and HVC5 are truncated after 90 and 300 s respectively—it
results in null estimates as observed in Fig. 9. This is related
to the fact that none of our importance functions considers
time—the value of IOSA clocks—as a factor for splitting.
We touch upon this subject in the conclusions.

For the rest of the cases, where redundancy (rather than
fail vs. repair time) is the root factor for resilience, Fig. 9
shows an excellent performance of Fixed Effort to estimate

Experiments

CMC
vs

Fixed Effort

Reliability

16 Budde, Monti, D’Argenio, Stoelinga

DSPARER HVCR RWCR FTPPR HECSR

(8)

(16)

(es)

STR MCS MCSN

Fig. 9: CI precision of CMC vs. Fixed Effort.
A column of plots indicates the importance
function used for experimentation with Fixed
Effort: structural (ISTR), minimal cut sets
(IMCS), or normalised MCS (IMCSN). A row
indicates the thresholds-building method used
with that function: sequential Monte Carlo
with global effort 8 or 16, or Expected Suc-
cess (ES). These are UNREL1000 experiments
on the parameterised case studies DSPARE,
HVC, RWC, FTPP, HECS. A mark above the
solid diagonal line means that Fixed Effort
built a narrower CI than CMC in the same
simulation time. Dotted diagonal lines indi-
cate 10⇥ narrower CIs. Both axes are in loga-
rithmic scale.

unreliability. The dominance of ISTR is not as clear here as
it is for UNAVA studies via RESTART and RESTART-P2;
however, neither of the other two functions is clearly su-
perior. Consider e.g. DSPAREp, where ISTR shows consis-
tent better results than IMCS and IMCSN; and also the best-
performance cases, namely HECSp, where all functions per-
form similarly for the different ways of choosing thresholds.

Therefore, our general observations remain favourable
for ISTR, as the importance function that produces the most
efficient ISPLIT implementations in general scenarios.

6.3 Experimental results: bar plots

Unlike the scatter plots in Figs. 7 to 9, the bar plots in this
section show the variance of the CI widths produced by
each algorithm. These are plotted as whiskers on top of the
bars, where the height of a bar indicates the width of the
CI achieved by the corresponding instance. Numbers in the
range [0,10] at the base of the bars tell how many of the
10 experimental repetitions managed to build a not-null CI.
The label “pp ⇡ µ ±s2” at the right of each plot shows the
robust mean and variance estimated for the corresponding
dependability metric, computed from the complete series of
runs (190 independent experiments per case study).

Steady-state studies for RC. Fig. 10 shows the widths of the
CIs produced for unavailability estimation on the RCp case

studies. The plots illustrate how ISTR performs better than
both IMCS and IMCSN in every one of the ISPLIT vari-
ants tested. This difference between the RES implementa-
tions resulting from ISTR and the other functions increases
for lower values of the steady-state property, and the vari-
ance of these results remains among the lowest of all cases.
Moreover, here ISTR is the only function with which all
RESTART algorithms maintain or increase the efficiency
gap that sets them apart from CMC.

Transient studies for DSPARE. Fig. 11 shows the widths of
the CIs produced for unreliability estimation on the case
studies DSPAREp. Once again we see ISTR outperforming
the other two functions in general, with an efficiency gap
and accuracy that increases as the event becomes more rare.
However and as discussed in Sec. 6.2, in this case this only
happens with Fixed Effort variants, since RESTART fails
to perform better than CMC. Yet the difference between the
Fixed Effort implementations and the rest (specially with the
ISTR function) is remarkable, and in particular Fixed Effort
is the only algorithm capable of producing consistently use-
ful CIs (i.e. that exclude 0).

7 Related work

Most work on DFT analysis assumes discrete [57, 4] or
exponentially distributed [23, 40] components failure. Fur-

Experiments

Availability

Case study:
RC

Analysis of non-Markovian repairable fault trees through rare event simulation 17

CMC STR MCS MCSN

6.0e-6
8.0e-6
1.0e-5
1.2e-5
1.4e-5
1.6e-5
1.8e-5

10 10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

1.0e-6

1.5e-6

2.0e-6

2.5e-6

3.0e-6

10 10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC RES-2 RES-5 RES-ES RES2-2 RES2-5 RES2-ES

1.0e-7
2.0e-7
3.0e-7
4.0e-7
5.0e-7
6.0e-7
7.0e-7

10 10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

5.0e-5

7.0e-5

9.0e-5

1.1e-4

1.3e-4

1.5e-4

10 10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

Fig. 10: CI widths for UNAVA studies of RCp.
The height of the bars indicates the width of (the robust
mean of) the CI width, achieved with 10 runs of Crude
Monte Carlo (CMC), RESTART with global splitting 2
(RES-2), . . . , or RESTART-P2 with Expected Success
(RES2-ES). Lower is better. The whiskers on top of the bars
indicate the standard deviation of these widths. The bars are
clustered per importance function used with RESTART and
RESTART-P2: ISTR, IMCS, and IMCSN. The plots show
experiments on RC3 (top plot) through RC6 (bottom plot).

thermore, components repair is seldom studied in conjunc-
tion with dynamic gates [7, 4, 54, 40, 44]. In this work we
addressed repairable DFTs, whose failure and repair times
can follow arbitrary PDFs. More in detail, RFTs were first
formally introduced as stochastic Petri nets in [7, 20]. Our
work stands on [45, 46], which reviews [20] in the context
of stochastic automata with arbitrary PDFs. In particular
we also address non-Markovian continuous distributions: in
Sec. 6 we experimented with exponential, Erlang, uniform,
Rayleigh, Weibull, normal, and log-normal PDFs. Further-
more and for the first time (with the exclusion of [19, 12]
on which this work stands), we consider the application of
[20, 45] to study rare events.

Much effort in RES has been dedicated to study highly
reliable systems, deploying either importance splitting or
sampling. Typically, importance sampling can be used when

Fig. 11: CI widths for UNREL1000 studies of DSPAREp.
The height of the bars indicates the width of (the ro-
bust mean of) the CI width, achieved with 10 runs of
Crude Monte Carlo (CMC), RESTART with global split-
ting 2 (RES-2), . . . , or Fixed Effort with Expected Success
(FE-ES). Lower is better. The whiskers on top of the bars
indicate the standard deviation of these widths. The bars are
clustered per importance function used with RESTART and
Fixed Effort: ISTR, IMCS, and IMCSN. The plots show ex-
periments on RC3 (top plot) through RC6 (bottom plot).

the system takes a particular shape. For instance, a common
assumption is that all failure (and repair) times are exponen-
tially distributed with parameters l i, for some l 2 R and
i 2 N>0. In these cases, a favourable change of measure can
be computed analytically [29, 33, 47, 48, 65, 53].

In contrast, when events occur at times following less-
structured or even arbitrary distributions, importance split-
ting is more easily applicable. As long as a full system fail-
ure can be broken down into several smaller failures, an im-
portance splitting method can be devised. Of course, its ef-
ficiency relies heavily on the choice of importance function.
This choice is typically done ad hoc for the model under
study [58, 43, 60]. In that sense [35, 36, 14, 15] are among
the first to attempt a heuristic derivation of all parameters re-
quired to implement splitting, for which they exploit formal
specifications of the model and property query.

Here we extended [14, 15, 10] in two different ways.
One is the natural way in which we use the structure of
the fault tree to define composition operands. With these
operands we aggregate the automatically-computed local im-
portance functions of the tree nodes. This aggregation re-

Experiments

Reliability

Case study:
DSPARE

Analysis of non-Markovian repairable fault trees through rare event simulation 17

Fig. 10: CI widths for UNAVA studies of RCp.
The height of the bars indicates the width of (the robust
mean of) the CI width, achieved with 10 runs of Crude
Monte Carlo (CMC), RESTART with global splitting 2
(RES-2), . . . , or RESTART-P2 with Expected Success
(RES2-ES). Lower is better. The whiskers on top of the bars
indicate the standard deviation of these widths. The bars are
clustered per importance function used with RESTART and
RESTART-P2: ISTR, IMCS, and IMCSN. The plots show
experiments on RC3 (top plot) through RC6 (bottom plot).

thermore, components repair is seldom studied in conjunc-
tion with dynamic gates [7, 4, 54, 40, 44]. In this work we
addressed repairable DFTs, whose failure and repair times
can follow arbitrary PDFs. More in detail, RFTs were first
formally introduced as stochastic Petri nets in [7, 20]. Our
work stands on [45, 46], which reviews [20] in the context
of stochastic automata with arbitrary PDFs. In particular
we also address non-Markovian continuous distributions: in
Sec. 6 we experimented with exponential, Erlang, uniform,
Rayleigh, Weibull, normal, and log-normal PDFs. Further-
more and for the first time (with the exclusion of [19, 12]
on which this work stands), we consider the application of
[20, 45] to study rare events.

Much effort in RES has been dedicated to study highly
reliable systems, deploying either importance splitting or
sampling. Typically, importance sampling can be used when

3.0e-4
4.0e-4
5.0e-4
6.0e-4
7.0e-4
8.0e-4
9.0e-4
1.0e-3

10 10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

2.0e-5

4.0e-5

6.0e-5

8.0e-5

1.0e-4

1.2e-4

10 10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

5.0e-6

1.0e-5

1.5e-5

2.0e-5

10 10 9 1010 8 1010 9 1010 10 1010 10 1010 10 10

FE-8 FE-16 FE-ESCMC RES-2 RES-5 RES-ES

CMC STR MCS MCSN

Fig. 11: CI widths for UNREL1000 studies of DSPAREp.
The height of the bars indicates the width of (the ro-
bust mean of) the CI width, achieved with 10 runs of
Crude Monte Carlo (CMC), RESTART with global split-
ting 2 (RES-2), . . . , or Fixed Effort with Expected Success
(FE-ES). Lower is better. The whiskers on top of the bars
indicate the standard deviation of these widths. The bars are
clustered per importance function used with RESTART and
Fixed Effort: ISTR, IMCS, and IMCSN. The plots show ex-
periments on RC3 (top plot) through RC6 (bottom plot).

the system takes a particular shape. For instance, a common
assumption is that all failure (and repair) times are exponen-
tially distributed with parameters l i, for some l 2 R and
i 2 N>0. In these cases, a favourable change of measure can
be computed analytically [29, 33, 47, 48, 65, 53].

In contrast, when events occur at times following less-
structured or even arbitrary distributions, importance split-
ting is more easily applicable. As long as a full system fail-
ure can be broken down into several smaller failures, an im-
portance splitting method can be devised. Of course, its ef-
ficiency relies heavily on the choice of importance function.
This choice is typically done ad hoc for the model under
study [58, 43, 60]. In that sense [35, 36, 14, 15] are among
the first to attempt a heuristic derivation of all parameters re-
quired to implement splitting, for which they exploit formal
specifications of the model and property query.

Here we extended [14, 15, 10] in two different ways.
One is the natural way in which we use the structure of
the fault tree to define composition operands. With these
operands we aggregate the automatically-computed local im-
portance functions of the tree nodes. This aggregation re-

Final discussion

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Final discussion

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics

Property query (metric)

IOSA semantic model

RFT model
(Kepler)

RFT IOSA
converter FIG 3.0e-4

4.0e-4

5.0e-4

6.0e-4

7.0e-4

8.0e-4

9.0e-4

1.0e-3
CMC

10

RES-2 RES-5 RES-ES FE-8 FE-16 FE-ES

10 10 1010 10 1010 10 1010 10 1010 10 1010 10 10

CMC STR MCS MCSN

Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Fully Automatic

Arbitrary Distributions

Large Systems
Dynamic Behaviour

Elements can be repaired

Highly Reliable

Final discussion

❖ In general structural importance function showed the best performance

❖ MCS based important function occasionally performs worst than Monte Carlo

❖ Fixed effort showed better performance than RESTART (limited to reliability)

❖ … and work also well in combination with MCS based IF

❖ Still… not good enough (compare to importance sampling)

❖ Our importance functions are discrete

❖ Conjecture:

if time and stochastics info is considered, continuous versions should work better

Final discussion

❖ In general structural importance function showed the best performance

❖ MCS based important function occasionally performs worst than Monte Carlo

❖ Fixed effort showed better performance than RESTART (limited to reliability)

❖ … and work also well in combination with MCS based IF

❖ Still… not good enough (compare to importance sampling)

❖ Our importance functions are discrete

❖ Conjecture:

if time and stochastics info is considered, continuous versions should work better

This work will
appear in STTT

Analysis of Highly Reliable
Repairable Fault Trees

via Simulation

Pedro R. D’Argenio
Universidad Nacional de Córdoba – CONICET (AR)

Joint work with Carlos Budde, Raúl Monti, & Mariëlle Stoelinga

QEST 2022, Warsaw

Analysis of Highly Reliable
Repairable Fault Trees

via Simulation

Pedro R. D’Argenio
Universidad Nacional de Córdoba – CONICET (AR)

Joint work with Carlos Budde, Raúl Monti, & Mariëlle Stoelinga

QEST 2022, Warsaw

