Analysis of Highly Reliable Repairable Fault Trees via Simulation

Pedro R. D'Argenio

Universidad Nacional de Córdoba – CONICET (AR)

Joint work with Carlos Budde, Raúl Monti, & Mariëlle Stoelinga

QEST 2022, Warsaw

Fault Tolerant Systems: You know the drill

Failover mechanismsVoting mechanismsSpare partsFailsafe mechanismsContingency plans...etc.

CONICET

Fault Tolerant Systems: You know the drill

Failover mechanismsVoting mechanismsSpare partsFailsafe mechanismsContingency plans...etc.

Fault Tolerant Systems: You know the drill

Fault Tree Analysis

(Static) Fault Trees

Boolean semantics

Dynamic Fault Trees

Dynamic Behaviour

Have a notion of state

Repairable Fault Trees

Elements can be repaired

Have a notion of state

Includes cyclic behaviour

RFT are described in KEPLER (an extension of GALILEO)

```
toplevel "FAIL";
"FAIL" and "S1" "S2";
"S1" or "SS1" "PS1":
"S2" or "SS2" "PS2";
"SS1" pand "SW1" "M1";
"PS1" sg "M1" "AUX";
"SS2" pand "SW2" "M2";
"PS2" sg "M2" "AUX";
"M1" exponential(0.01) uniform(1,5);
"M2" exponential(0.01) uniform(1,5);
"AUX" exponential(0.01) exponential(0.0025) uniform(1,5);
"SW1" exponential(0.003) uniform(1,2);
"SW2" exponential(0.003) uniform(1,2);
"RBOX" priority_rbox "M1" "M2" "SW1" "SW2" "AUX";
```


Arbitrary Distributions

Arbitrary Distributions

Excludes Markov Chains

Arbitrary Distributions

Excludes Markov Chains

Requires Compositionality

Large Systems

IOSA + Urgency

 $(\mathcal{S}, \mathcal{A}, \mathcal{C}, \rightarrow, C_0, s_0)$

• S is a set of states

•
$$\mathcal{A}$$
 is a set of labels $\begin{cases} \mathcal{A} = \mathcal{A}^{i} \uplus \mathcal{A}^{o} \\ \mathcal{A}^{u} \subseteq \mathcal{A} \end{cases}$

- C is a set of clocks and each $x \in C$ has an asociated CDF μ_x
- $\rightarrow \subseteq \mathcal{S} \times \mathcal{C} \times \mathcal{A} \times \mathcal{C} \times S$

IOSA + Urgency

 $(\mathcal{S}, \mathcal{A}, \mathcal{C}, \rightarrow, C_0, s_0)$

- S is a set of states
- \mathcal{A} is a set of labels $\begin{cases} \mathcal{A} = \mathcal{A}^{i} \uplus \mathcal{A}^{o} \\ \mathcal{A}^{u} \subseteq \mathcal{A} \end{cases}$
- C is a set of clocks and each $x \in C$ has an asociated CDF μ_x
- $\rightarrow \subseteq \mathcal{S} \times \mathcal{C} \times \mathcal{A} \times \mathcal{C} \times S$

$$\frac{s_1 \xrightarrow{C,a,C'} s_1'}{s_1 || s_2 \xrightarrow{C,a,C'} s_1' || s_2} a \in (\mathcal{A}_1 \backslash \mathcal{A}_2)$$

$$\frac{s_1 \xrightarrow{C_1, a, C_1'} s_1 s_2 \xrightarrow{C_2, a, C_2'} s_2 s_2'}{s_1 || s_2 \xrightarrow{C_1 \cup C_2, a, C_1' \cup C_2'} s_1' || s_2'} a \in (\mathcal{A}_1 \cap \mathcal{A}_2)$$

provided $\begin{cases} \mathcal{A}_{1}^{o} \cap \mathcal{A}_{2}^{o} = \varnothing \\ \mathcal{C}_{1} \cap \mathcal{C}_{2} = \varnothing \\ \mathcal{A}_{1} \cap \mathcal{A}_{2}^{u} = \mathcal{A}_{2} \cap \mathcal{A}_{1}^{u} \end{cases}$

An IOSA should satisfy:

(a) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{u}$, then $C = \emptyset$. (b) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{\circ} \setminus \mathcal{A}^{\mathsf{u}}$, then C is a singleton set. (c) If $s \xrightarrow{\{x\}, a_1, C_1} s_1$ and $s \xrightarrow{\{x\}, a_2, C_2} s_2$ then $a_1 = a_2, C_1 = C_2$ and $s_1 = s_2$. (d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\emptyset, a, C} s'$. (e) For every $a \in \mathcal{A}^{i}$, if $s \xrightarrow{\varnothing, a, C'_{1}} s_{1}$ and $s \xrightarrow{\varnothing, a, C'_{2}} s_{2}$, $C'_{1} = C'_{2}$ and $s_{1} = s_{2}$. There exists a function active : $S \rightarrow 2^{\mathcal{C}}$ such that: (i) active(s_0) $\subseteq C_0$, (ii) enabling(s) \subset active(s), (iii) if s is stable, active(s) = enabling(s), and (iv) if $t \xrightarrow{C,a,C'} s$ then $\operatorname{active}(s) \subset (\operatorname{active}(t) \setminus C) \cup C'$. CONICET

An IOSA should satisfy:

(a) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{u}$, then $C = \emptyset$. (b) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{\circ} \setminus \mathcal{A}^{\mathsf{u}}$, then C is a singleton set. (c) If $s \xrightarrow{\{x\}, a_1, C_1} s_1$ and $s \xrightarrow{\{x\}, a_2, C_2} s_2$ then $a_1 = a_2, C_1 = C_2$ and $s_1 = s_2$. (d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\emptyset, a, C} s'$. (e) For every $a \in \mathcal{A}^{i}$, if $s \xrightarrow{\varnothing, a, C'_{1}} s_{1}$ and $s \xrightarrow{\varnothing, a, C'_{2}} s_{2}$, $C'_{1} = C'_{2}$ and $s_{1} = s_{2}$. There exists a function active : $S \rightarrow 2^{\mathcal{C}}$ such that: (i) active(s_0) $\subseteq C_0$, enabling(s) \subseteq active(s), (ii) (iii) if s is stable, active(s) = enabling(s), and (iv) if $t \xrightarrow{C,a,C'} s$ then $\operatorname{active}(s) \subset (\operatorname{active}(t) \setminus C) \cup C'$.

Input enabledness

An IOSA should satisfy:

(a) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{u}$, then $C = \emptyset$. (b) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{\circ} \setminus \mathcal{A}^{\mathsf{u}}$, then C is a singleton set. Input enabledness (c) If $s \xrightarrow{\{x\}, a_1, C_1} s_1$ and $s \xrightarrow{\{x\}, a_2, C_2} s_2$ then $a_1 = a_2, C_1 = C_2$ and $s_1 = s_2$. (d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\emptyset, a, C} s'$. (e) For every $a \in \mathcal{A}^{i}$, if $s \xrightarrow{\emptyset, a, C'_{1}} s_{1}$ and $s \xrightarrow{\emptyset, a, C'_{2}} s_{2}$, $C'_{1} = C'_{2}$ and $s_{1} = s_{2}$. Input and urgent There exists a function active : $S \rightarrow 2^{\mathcal{C}}$ such that: determinism (i) $\operatorname{active}(s_0) \subseteq C_0,$ enabling(s) \subseteq active(s), (ii) (iii) if s is stable, active(s) = enabling(s), and (iv) if $t \xrightarrow{C,a,C'} s$ then $\operatorname{active}(s) \subseteq (\operatorname{active}(t) \setminus C) \cup C'$. CONICET

An IOSA should satisfy:

CONICET

(non-urgent) (a) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{u}$, then $C = \emptyset$. (b) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{\circ} \setminus \mathcal{A}^{\mathsf{u}}$, then C is a singleton set. Input enabledness (c) If $s \xrightarrow{\{x\}, a_1, C_1} s_1$ and $s \xrightarrow{\{x\}, a_2, C_2} s_2$ then $a_1 = a_2, C_1 = C_2$ and $s_1 = s_2$. (d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\emptyset, a, C} s'$. (e) For every $a \in \mathcal{A}^{i}$, if $s \xrightarrow{\emptyset, a, C'_{1}} s_{1}$ and $s \xrightarrow{\emptyset, a, C'_{2}} s_{2}$, $C'_{1} = C'_{2}$ and $s_{1} = s_{2}$. Input and urgent There exists a function active : $S \rightarrow 2^{\mathcal{C}}$ such that: determinism (i) active(s_0) $\subseteq C_0$, enabling(s) \subseteq active(s), (ii) (iii) if s is stable, active(s) = enabling(s), and (iv) if $t \xrightarrow{C,a,C'} s$ then $\operatorname{active}(s) \subseteq (\operatorname{active}(t) \setminus C) \cup C'$.

Output determinism

An IOSA should satisfy:

CONICET

(non-urgent) (a) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{u}$, then $C = \emptyset$. (b) If $s \xrightarrow{C,a,C'} s'$ and $a \in \mathcal{A}^{\circ} \setminus \mathcal{A}^{\mathsf{u}}$, then C is a singleton set. Input enabledness (c) If $s \xrightarrow{\{x\}, a_1, C_1} s_1$ and $s \xrightarrow{\{x\}, a_2, C_2} s_2$ then $a_1 = a_2, C_1 = C_2$ and $s_1 = s_2$. (d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\emptyset, a, C} s'$. (e) For every $a \in \mathcal{A}^{i}$, if $s \xrightarrow{\emptyset, a, C'_{1}} s_{1}$ and $s \xrightarrow{\emptyset, a, C'_{2}} s_{2}$, $C'_{1} = C'_{2}$ and $s_{1} = s_{2}$. Input and urgent There exists a function active : $S \rightarrow 2^{\mathcal{C}}$ such that: determinism (i) active(s_0) $\subseteq C_0$, enabling(s) \subseteq active(s), (ii) The rest ensures that clocks do (iii) if s is stable, active(s) = enabling(s), and not introduce non determinism (iv) if $t \xrightarrow{C,a,C'} s$ then $\operatorname{active}(s) \subseteq (\operatorname{active}(t) \setminus C) \cup C'$.

Output determinism

Definition 8. A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow is well defined in \mathcal{I} and, in $P(\mathcal{I})$, any state $(s, v) \in S$ that satisfies one of the following conditions is almost never reached from any $(init, v_0) \in S$: (a) s is stable and $\bigcup_{a \in A \cup \{init\}} \mathcal{T}_a(s, v)$ contains at least two different probability measures, (b) s is not stable, $(s, v) \Rightarrow \mu$, $(s, v) \Rightarrow \mu'$ and $\mu \neq \mu'$, or (c) s is not stable and $(s, v) \xrightarrow{a} \mu$ for some $a \in A^{\circ} \setminus A^{*}$.

Definition 8. A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow is well defined in \mathcal{I} and, in $P(\mathcal{I})$, any state $(s, v) \in S$ that satisfies one of the following conditions is almost never reached from any $(init, v_0) \in S$: (a) s is stable and $\bigcup_{a \in A \cup \{init\}} \mathcal{T}_a(s, v)$ contains at least two different probability measures, (b) s is not stable, $(s, v) \Rightarrow \mu$, $(s, v) \Rightarrow \mu'$ and $\mu \neq \mu'$, or (c) s is not stable and $(s, v) \xrightarrow{a} \mu$ for some $a \in \mathcal{A}^o \setminus \mathcal{A}^v$.

Theorem: Every closed confluent IOSA is weakly deterministic.

Definition 8. A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow is well defined in \mathcal{I} and, in $P(\mathcal{I})$, any state $(s, v) \in S$ that satisfies one of the following conditions is almost never reached from any $(init, v_0) \in S$: (a) s is stable and $\bigcup_{a \in A \cup \{init\}} \mathcal{T}_a(s, v)$ contains at least two different probability measures, (b) s is not stable, $(s, v) \Rightarrow \mu$, $(s, v) \Rightarrow \mu'$ and $\mu \neq \mu'$, or (c) s is not stable and $(s, v) \xrightarrow{a} \mu$ for some $a \in \mathcal{A}^o \setminus \mathcal{A}^v$.

Theorem: Every closed confluent IOSA is weakly deterministic.

All communications have been resolved (i.e. no inputs left)

Definition 8. A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow is well defined in \mathcal{I} and, in $P(\mathcal{I})$, any state $(s, v) \in S$ that satisfies one of the following conditions is almost never reached from any $(init, v_0) \in S$: (a) s is stable and $\bigcup_{a \in A \cup \{init\}} \mathcal{T}_a(s, v)$ contains at least two different probability measures, (b) s is not stable, $(s, v) \Rightarrow \mu$, $(s, v) \Rightarrow \mu'$ and $\mu \neq \mu'$, or (c) s is not stable and $(s, v) \xrightarrow{a} \mu$ for some $a \in \mathcal{A}^o \setminus \mathcal{A}^v$.

Theorem: Every closed confluent IOSA is weakly deterministic.

All communications have been resolved (i.e. no inputs left)

Definition 8. A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow is well defined in \mathcal{I} and, in $P(\mathcal{I})$, any state $(s, v) \in S$ that satisfies one of the following conditions is almost never reached from any $(init, v_0) \in S$: (a) s is stable and $\bigcup_{a \in A \cup \{init\}} \mathcal{T}_a(s, v)$ contains at least two different probability measures, (b) s is not stable, $(s, v) \Rightarrow \mu$, $(s, v) \Rightarrow \mu'$ and $\mu \neq \mu'$, or (c) s is not stable and $(s, v) \xrightarrow{a} \mu$ for some $a \in \mathcal{A}^o \setminus \mathcal{A}^v$.

Theorem: Every closed confluent IOSA is weakly deterministic.

Theorem 5. Let $\mathcal{I} = (\mathcal{I}_1 || \cdots || \mathcal{I}_n)$ be a closed IOSA. If \mathcal{I} potentially reaches a non-confluent state then there are actions $a, b \in \mathcal{A}^{u} \cap \mathcal{A}^{o}$ such that some \mathcal{I}_{ii} is not confluent w and, either (ii) Sufficient conditions for confluency or (iii) there is some $e \in \mathcal{A}$ and (possibly empty) sets $\mathcal{B}_1, \ldots, \mathcal{B}_m$ spontaneously enabled by e in $\mathcal{I}_1, \ldots, \mathcal{I}_m$ respectively, such that $c, d \in \bigcup_{i=1}^n \mathcal{B}_i$.

Definition 8. A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow is well defined in \mathcal{I} and, in $P(\mathcal{I})$, any state $(s, v) \in S$ that satisfies one of the following conditions is almost never reached from any (init, v_0) $\in S$: (a) s is stable and $\bigcup_{a \in A \cup \{init\}} \mathcal{T}_a(s, v)$ contains at least two different probability measures, (b) s is not stable, $(s, v) \Rightarrow \mu$, $(s, v) \Rightarrow \mu'$ and $\mu \neq \mu'$, or (c) s is not stable and $(s, v) \xrightarrow{a} \mu$ for some $a \in \mathcal{A}^o \setminus \mathcal{A}^v$.

Theorem: Every closed confluent IOSA is weakly deterministic.

Theorem 5.	Let $\mathcal{I} = (\mathcal{I}_1 \cdots \mathcal{I}_n)$	$(be \ a \ close)$	sed IOSA. Iff I	pottemticallly reache	S OU
mæm-cæmffluæmtt	stuatte tilhem tilher	s @	$b \in A^{w} \cap A^{w}$	mæ I _i	i ÜS
mætt cæmffluv en ti	(Output Stochastic Auto	sm	stochas	stic Automata	· 10,,
andl, citthen	Compositionality and Decor	I.E. Monti ^{1(⊠)}	Input/Output Stor	ence and We	e üs
some e E A	Pedro R. D'Argenio ¹ , Matias David Lee ² , and Cord	doba, Argentina I	WILL Determin	nd Baúl E. Monti ^{1,2}	. ÜMA
They,, The me	CONICET, Universidad Nacco format. universidad (Nacco format. universidad (UCBF' F2	Pedro R. D'Argenio ^{1,2,3(E3)} a	FAMAF, Córdoba, Argentina	
	2 LIP, Universite at FORM ATS ² m ²	symbolically model	¹ Universidad Nacional or rmonti (ar { dargenio, rmonti { Contents, Conte	oba, Argentina _{Science} , _{Saarbrücken} , Gernaut p ? 018]	
	Abstract. Stoch the occurrence in the operation of the systems in which the occurrence with the model is close of the systems random variable. We introduce here an even of the system o	does not contain non- does not contain mon- a probabilistic models	3 Saarland University We in	troduced an input/output variant of the model is closed (i.e., all syn-	

UNC

CONICET

module BE_i
fc, rc : clock;
inform : [0..2] init 0;
broken : [0..2] init 0; // 0: up, 1: down, 2: repairing

```
[fi!!] inform=1 -> (inform=0);
[ui!!] inform=2 -> (inform=0);
endmodule
```


Textual form of IOSA for the tool FIG

Assume self-loops for undefined inputs

module BE_i
fc, rc : clock;
inform : [0..2] init 0;
broken : [0..2] init 0; // 0: up, 1: down, 2: repairing

```
[fi!!] inform=1 -> (inform=0);
[ui!!] inform=2 -> (inform=0);
endmodule
```


Textual form of IOSA for the tool FIG

if both inputs fail
 signal fault
 if one input repairs
 signal repair

module AND

singalf: bool init false; signalu: bool init false; count: [0..2] init 0;

- [f1??] count=1 -> (count=2) & (signalf=true); [f1??] count=0 -> (count=1);
- [f2??] count=1 -> (count=2) & (signalf=true);

[f2??] count=0 -> (count=1);

[u1??] count=2 -> (count=1) & (signalu=true); [u1??] count=1 -> (count=0); [u2??] count=2 -> (count=1) & (signalu=true); [u2??] count=1 -> (count=0);

```
[f!!] signalf & count=2 -> (signalf=false);
[u!!] signalu & count!=2 -> (signalu=false);
endmodule
```


module OR

signalf: bool init false; signalu: bool init false; count: [0..2] init 0;

[f1??] count=0 -> (count'=1) & (signalf'=true); [f1??] count=1 -> (count'=2): [f2??] count=0 -> (count'=1) & (signalf'=true); [f2??] count=1 -> (count'=2):

[u1??] count=2 -> (count'=1); [u1??] count=1 -> (count'=0) & (signalu'=true); [u2??] count=2 -> (count'=1); [u2??] count=1 -> (count'=0) & (signalu'=true);

[f!!] signalf & count!=0 -> (signalf'=false); [u!!] signalu & count=0 -> (signalu'=false); endmodule

```
module VOTING_3_1
 count: [0..3] init 0;
 inform: bool init false;
```

[f0??] -> (count'=count+1) & (inform'=(count+1=2)); $[f1??] \rightarrow (count'=count+1) \& (inform'=(count+1=2));$ [f2??] -> (count'=count+1) & (inform'=(count+1=2));

 $[u0??] \rightarrow (count'=count-1) \& (inform'=(count=2)):$ $[u1??] \rightarrow (count'=count-1) \& (inform'=(count=2)):$ $[u2??] \rightarrow (count'=count-1) \& (inform'=(count=2));$

[f!!] inform & count >= 2 -> (inform'=false); [u!!] inform & count < 2 -> (inform'=false); endmodule

module PAND

f1: bool init false; f2: bool init false; st: [0..4] init 0; // 0:up, 1:inform fail, 2:failed, // 3:inform up, 4:unbreakable

[?] st=0 & f1 & !f0 -> (st'=4);

[f0??] st=0 & !f0 & !f1 -> (f0'=true); [f0??] st=0 & !f0 & f1 -> (st'=1) & (f0'=true); [f0??] st!=0 & !f0 -> (f0'=true); [f0??] f0 ->;

[f1??] st=0 & !f0 & !f1 -> (f1'=true); [f1??] st=0 & f0 & !f1 -> (st'=1) & (f1'=true); [f1??] st=3 & !f1 -> (st'=2) & (f1'=true); [f1??] (st==1|st==2|st=4) & !f1 -> (f1'=true); [f1??] f1 ->:

[u0??] st!=1 & f0 -> (f0'=false); [u0??] st=1 & f0 -> (st'=0) & (f0'=false); [u0??] !f0 ->:

[u1??] (st=0|st=3) & f1 -> (f1'=false); [u1??] (st=1|st=4) & f1 -> (st'=0) & (f1'=false); [u1??] st=2 & f1 -> (st'=3) & (f1'=false);

[f!!] st=1 -> (st'=2); [u!!] st=3 -> (st'=0); endmodule

module RBOX broken[n]: bool init false; busy: bool init false;

[fl₀?] -> (broken[0]'=true); $[fl_{n-1}?] \rightarrow (broken[n-1]'=true);$

[r0!!] !busy & broken[0] -> (busy'=true); [r_{n-1}!!] !busy & broken[n-1] & !broken[n-2] & ... & !broken[0] -> (busy'=true);

[up₀?] -> (broken[0]'=false) & (busy'=false);

 $[up_{n-1}?] \rightarrow (broken[n-1]'=false) \& (busy'=false);$ endmodule

module SBE

fc, dfc, rc : clock; inform : [0,.2] init 0: active : bool init false: broken : [0..2] init 0;

[e??] !active -> (active'=true) & (fc'=); [d??] active -> (active'=false) & (dfc'=);

[fl!] active & broken=0 @ fc -> (inform'=1) & (broken'=1); [fl!] !active & broken=0 @ dfc -> (inform'=1) & (broken'=1); [r??] -> (broken'=2) & (rc'=); [up!] active & broken=2 @ rc -> (inform'=2) & (broken'=0) & (fc'=); [up!] !active & broken=2 @ rc -> (inform'=2) & (broken'=0) & (dfc'=);

[f!!] inform=1 -> (inform'=0): [u!!] inform=2 -> (inform'=0): endmodule

module MUX

queue[n]: [0..3] init 0; // idle, requesting, reject, using avail: bool init true; broken: bool init false: enable: [0..2] init 0;

[f1?] -> (broken'=true); [up?] -> (broken'=false);

[e!!] enable=1 -> (enable'=0); [d!!] enable=2 -> (enable'=0);

[rq0??] queue[0]=0 & (broken | !avail) [rq0??] queue[0]=0 & !broken & avail [asg0!!] queue[0]=1 & !broken & avail [rio!!] gueue[0]=2 [rel₀??] queue[0]=3

[acc₀??]

 $[rq_{n-1}??]$ queue [n-1]=0 & (broken | !avail) -> (queue [n-1]'=2); $[rq_{n-1}??]$ queue [n-1]=0 & !broken & avail \rightarrow (queue [n-1]'=1); [asg_{n-1}!!] queue[n-1]=1 & queue[n-2]=0 & ... & queue[0]=0 & !broken & avail -> (queue[n-1]'=3) & (avail'=false);

[rj_{n-1}!!] queue[n-1]=2 [rel_{n-1}??] queue[n-1]=3

[acc.,_1??] endmodule

module SPAREGATE

state: [0..4] init 0; // on main, request, wait, on spare, broken inform: [0,.2] init 0; release: [-n..n] init 0; idx: [1..n] init 1;

[fl₀?] state=0 -> (state=1) & (idx=1); [up₀?] state=4 -> (state=0) & (inform=2); [up0?] state=3 & idx=1 -> (state=0) & (idx=1) & (release=1);

 $[up_0?]$ state=3 & idx=n -> (state=0) & (idx=1) & (release=n);

[fl₁?] state=3 & idx=1 \rightarrow (release=1);

[fl,?] state=3 & idx=n -> (release=n);

[rq1!!] state=1 & idx=1 -> (state=2);

 $[rq_n!!]$ state=1 & idx=n -> (state=2);

[asg1??] state=0 | state=1 | state=3 -> (release=1); [asg1??] state=2 & idx=1 -> (release=-1) & (state=3); [asg1??] state=4

-> (release=-1) & (state=3) & (idx=1) & (inform=2);

 $[asg_n??]$ state=0 | state=1 | state=3 -> (release=n); [asg,??] state=2 & idx=n [asg_n??] state=4

-> (release=-n) & (state=3); -> (release=-n) & (state=3) & (idx=n) & (inform=2);

[ri1??] state=2 & idx=1 -> (idx=2) & (state=1): [rj₂??] state=2 & idx=2 -> (idx=3) & (state=1); [rj_n??] state=2 & idx=n -> (state=4) & (idx=1) & (inform=1);

 $[rel_1!!]$ release=1 & !(state=3 & idx=1) -> (release= 0); [rel1!!] release=1 & state=3 & idx=1 -> (release= 0) & (state=1) & (idx=1);

 $[rel_n!!]$ release=n & !(state=3 & idx=n) -> (release=0); $[rel_n!!]$ release=n & state=3 & idx=n -> (release= 0) & (state=1) & (idx=1);

 $[acc_1!!]$ release=-1 -> (release= 0);

 $[acc_n!!]$ release=-n -> (release=0);

[f!!] inform = $1 \rightarrow$ (inform=0); [u!!] inform = 2 -> (inform=0); endmodule

-> (queue[n-1]'=1); -> (queue[n-1]'=0) & (avail'=true) & (enable'=2);

-> (queue[0]'=2):

-> (queue[0]'=1);

-> (queue[0]'=1):

-> (enable'=1);

-> (enable'=1):

& (enable'=2);

-> (queue[0]'=3) & (avail'=false);

-> (queue[0]'=0) & (avail'=true)

From RFT to IOSA+Urgency

Given a RFT T = (V, i, si, l) the semantic of T is defined by

 $[\![T]\!] = ||_{v \in V} [\![v]\!]$

where

$$\llbracket v \rrbracket = \begin{cases} \llbracket l(v) \rrbracket (\texttt{fl}_v, \texttt{up}_v, \texttt{f}_v, \texttt{u}_v, \texttt{r}_v) & \text{if } l(v) = (\texttt{be}, 0, \mu, \gamma) \\ \llbracket l(v) \rrbracket (\texttt{f}_v, \texttt{u}_v, \texttt{f}_{i(v)[0]}, \texttt{u}_{i(v)[0]}, \texttt{u}_{i(v)[0]}, \dots, \texttt{f}_{i(v)[n-1]}, \texttt{u}_{i(v)[n-1]}) & \text{if } l(v) \in \{(\texttt{and}, n), (\texttt{or}, n)\} \\ \llbracket l(v) \rrbracket (\texttt{f}_v, \texttt{u}_v, \texttt{f}_{i(v)[0]}, \texttt{u}_{i(v)[0]}, \texttt{u}_{i(v)[0]}, \texttt{f}_{i(v)[1]}, \texttt{u}_{i(v)[1]}) & \text{if } l(v) = (\texttt{pand}, 2) \\ \llbracket l(v) \rrbracket (\texttt{fl}_{i(v)[0]}, \texttt{up}_{i(v)[0]}, \texttt{r}_{i(v)[0]}, \dots, \texttt{fl}_{i(v)[n-1]}, \texttt{up}_{i(v)[n-1]}, \texttt{r}_{i(v)[n-1]}) & \text{if } l(v) = (\texttt{rbox}, n) \\ \llbracket l(v) \rrbracket (\texttt{fl}_v, \texttt{up}_v, \texttt{f}_v, \texttt{u}_v, \texttt{r}_v, \texttt{e}_v, \texttt{d}_v, \texttt{rq}_{(si(v)[0],v)}, \texttt{asg}_{(v,si(v)[0])}, \\ & \texttt{rel}_{(si(v)[0],v)}, \texttt{acc}_{(si(v)[0],v)}, \texttt{rl}_{i(v)[1]}, \texttt{up}_{i(v)[1]}, \texttt{rq}_{(v,i(v)[1])}, \texttt{asg}_{i(v)[1],v)}, \\ & \texttt{acc}_{(v,i(v)[1])}, \texttt{rj}_{i(v)[1],v)}, \texttt{rel}_{(v,i(v)[1])}, \dots, \texttt{rel}_{(v,i(v)[n-1])}) & \text{if } l(v) = (\texttt{sg}, n) \end{cases}$$

CONICET

From RFT to IOSA+Urgency

Given a RFT T = (V, i, si, l) the semantic of T is defined by

 $[\![T]\!] = ||_{v \in V} [\![v]\!]$

where

The encodings given before with proper relabeling

UNC

$$\llbracket v \rrbracket = \begin{cases} \llbracket l(v) \rrbracket (\texttt{fl}_v, \texttt{up}_v, \texttt{f}_v, \texttt{u}_v, \texttt{r}_v) & \text{if } l(v) = (\texttt{be}, 0, \mu, \gamma) \\ \llbracket l(v) \rrbracket (\texttt{f}_v, \texttt{u}_v, \texttt{f}_{i(v)[0]}, \texttt{u}_{i(v)[0]}, \texttt{u}_{i(v)[0]}, \dots, \texttt{f}_{i(v)[n-1]}, \texttt{u}_{i(v)[n-1]}) & \text{if } l(v) \in \{(\texttt{and}, n), (\texttt{or}, n)\} \\ \llbracket l(v) \rrbracket (\texttt{f}_v, \texttt{u}_v, \texttt{f}_{i(v)[0]}, \texttt{u}_{i(v)[0]}, \texttt{f}_{i(v)[1]}, \texttt{u}_{i(v)[1]}) & \text{if } l(v) = (\texttt{pand}, 2) \\ \llbracket l(v) \rrbracket (\texttt{fl}_{i(v)[0]}, \texttt{up}_{i(v)[0]}, \texttt{r}_{i(v)[0]}, \dots, \texttt{fl}_{i(v)[n-1]}, \texttt{up}_{i(v)[n-1]}, \texttt{r}_{i(v)[n-1]}) & \text{if } l(v) = (\texttt{rbox}, n) \\ \llbracket l(v) \rrbracket (\texttt{fl}_v, \texttt{up}_v, \texttt{f}_v, \texttt{u}_v, \texttt{r}_v, \texttt{e}_v, \texttt{d}_v, \texttt{rq}_{(si(v)[0], v)}, \texttt{asg}_{(v,si(v)[0])}, \\ \texttt{rel}_{(si(v)[0], v)}, \texttt{acc}_{(si(v)[0], v)}, \texttt{rj}_{(v,si(v)[0])}, \dots, \texttt{rj}_{(v,si(v)[n-1])}) & \text{if } l(v) = (\texttt{sbe}, n, \mu, \nu, \gamma) \\ \llbracket l(v) \rrbracket (\texttt{f}_v, \texttt{u}_v, \texttt{fl}_{i(v)[0]}, \texttt{up}_{i(v)[0]}, \texttt{fl}_{i(v)[1]}, \texttt{up}_{i(v)[1]}, \texttt{rq}_{(v,i(v)[1])}, \texttt{asg}_{(i(v)[1], v)}, \\ \texttt{acc}_{(v,i(v)[1])}, \texttt{rj}_{(i(v)[1], v)}, \texttt{rel}_{(v,i(v)[1])}, \dots, \texttt{rel}_{(v,i(v)[n-1])}) & \text{if } l(v) = (\texttt{sg}, n) \\ \end{cases}$$

From RFT to IOSA+Urgency

Given a RFT T = (V, i, si, l) the semantic of T is defined by

 $(v)[0], \mathbf{u}_{i(v)}[0], \mathbf{f}_{i(v)}[1], \overline{\mathbf{u}_{i(v)}[1]})$

 $[\![T]\!] = ||_{v \in V} [\![v]\!]$

where

(v)

Good news everyone!!

 $[up_{i(v)[0]}, r_{i(v)[0]}, ..., fl_{i(v)[n-1]}, up_{i(v)[n-1]}, r_{i(v)[n-1]})]$

 $[0],v), \mathtt{acc}_{(si(v)[0],v)}, \mathtt{rj}_{(v,si(v)[0])}, ..., \mathtt{rj}_{(v,si(v)[n-1])})$

 $|\texttt{f}_v, \texttt{u}_v, \texttt{r}_v, \texttt{e}_v, \texttt{d}_v, \texttt{rq}_{(si(v)[0], v)}, \texttt{asg}_{(v, si(v)[0])},$

$$\begin{split} &\text{if } l(v) = (\texttt{be}, 0, \mu, \gamma) \\ &\text{if } l(v) \in \{(\texttt{and}, n), (\texttt{or}, n)\} \\ &\text{if } l(v) = (\texttt{pand}, 2) \\ &\text{if } l(v) = (\texttt{rbox}, n) \\ &\text{if } l(v) = (\texttt{sbe}, n, \mu, \nu, \gamma) \end{split}$$

$$\begin{split} & \mathsf{h}_{i(v)[0]}, \mathsf{up}_{i(v)[0]}, \mathsf{fl}_{i(v)[1]}, \mathsf{up}_{i(v)[1]}, \mathsf{rq}_{(v,i(v)[1])}, \mathsf{asg}_{(i(v)[1],v)}, \\ & \mathsf{h}_{i(v)[1],v)}, \mathsf{rel}_{(v,i(v)[1])}, \dots, \mathsf{rel}_{(v,i(v)[n-1])}) & \text{ if } l(v) = (\mathsf{sg}, n) \end{split}$$

5 💩 unc

From RFT to IOSA+Urgency

Given a RFT T = (V, i, si, l) the semantic of T is defined by

 $(v)[0], \mathbf{u}_{i(v)}[0], \mathbf{f}_{i(v)}[1], \overline{\mathbf{u}_{i(v)}[1]})$

 $[\![T]\!] = ||_{v \in V} [\![v]\!]$

where

 $\int [\![l(v)]\!](\mathtt{fl}_v, \mathtt{up}_v, \mathtt{f}_v]$

(v)

It satisfies the sufficient conditions that guarantee confluence. Hence, it is weakly deterministic!

 $[up_{i(v)[0]}, r_{i(v)[0]}, ..., fl_{i(v)[n-1]}, up_{i(v)[n-1]}, r_{i(v)[n-1]})]$

 $|\texttt{f}_v, \texttt{u}_v, \texttt{r}_v, \texttt{e}_v, \texttt{d}_v, \texttt{rq}_{(si(v)[0], v)}, \texttt{asg}_{(v, si(v)[0])},$

if $l(v) = (be, 0, \mu, \gamma)$ if $l(v) \in \{(and, n), (or, n)\}$ if l(v) = (pand, 2)if l(v) = (rbox, n)

From RFT to IOSA+Urgency

Given a RFT T = (V, i, si, l) the semantic of T is defined by

 $[\![T]\!] = ||_{v \in V} [\![v]\!]$

where

 $\int \llbracket l(v) \rrbracket (\texttt{fl}_v, \texttt{up}_v, \texttt{f}_v)$

(v)

It satisfies the sufficient conditions that guarantee confluence. Hence, it is weakly deterministic!

 $\begin{aligned} & \text{if } l(v) = (\texttt{be}, 0, \mu, \gamma) \\ & \text{if } l(v) \in \{(\texttt{and}, n), (\texttt{or}, n)\} \end{aligned}$

 $(v)[0], \mathbf{u}_{i(v)}[0], \mathbf{f}_{i(v)}[1], \mathbf{u}_{i(v)}[1])$ $u\mathbf{p}_{i(v)}[0], \mathbf{r}_{i(v)}[0], \dots, \mathbf{fl}_{i(v)}[n-1], \mathbf{up}_{i(v)}[n-1], \mathbf{r}_{i(v)}[n-1]),$ $\mathbf{f}_{v}, \mathbf{u}_{v}, \mathbf{r}_{v}, \mathbf{e}_{v}, \mathbf{d}_{v}, \mathbf{rq}_{(si(v)}[0], v), \mathbf{asg}_{(v,si(v)}[0]),$ $[0], v), \mathbf{acc}_{(si(v)}[0], v), \mathbf{rj}_{(v,si(v)}[0]), \dots, \mathbf{rj}_{(v,si(v)}[0]),$ $\mathbf{rj}_{(v)}[0], \mathbf{up}_{i(v)}[0], \mathbf{fl}_{i(v)}[1], \mathbf{up}_{i(v)}[1], \mathbf{rq}_{(v,i(v)}[1]),$ $(v, i(v)[1], v), \mathbf{rel}_{(v,i(v)}[1]), \dots, \mathbf{rel}_{(v,i(v)}[n-1]),$ $(v, i(v)[n-1], v), \mathbf{rel}_{(v,i(v)}[1]), \dots, \mathbf{rel}_{(v,i(v)}[n-1]),$ $(v, i(v)[n-1], v), \mathbf{rel}_{(v,i(v)}[1]), \dots, \mathbf{rel}_{(v,i(v)}[n-1]),$ $(v, i(v)[n-1], v), \mathbf{rel}_{(v,i(v)}[n-1]), \dots, \mathbf{rel}_{(v,i(v)}[n-1]), \dots, \mathbf{rel}_{(v,i(v)}[n-1]),$

if l(v) = (pand, 2)EPIC Computing EPiC Series in Computing Volume 73, 2020, Pages 354-372 LPAR23. LPAR-23: 23rd International Conference on Logic for Programming, Artificial Intelligence and Reasoning A compositional semantics for Repairable Fault Trees with general distributions * Raúl Monti¹, Carlos E. Budde¹, Pedro R. D'Argenio^{2,3,4} ¹ University of Twente, Formal Methods and Tools, Enschede, the Netherlands wersity of Iwente, Formal Methods and Jools, Enschede, the Nether 2 Universidad Nacional de Cordoba, FAMAF, Cordoba, Argentina 3 CONFERENCE CONFERENCE yent of Computer Science, Saarbrücken, Germany 4 Saarland LPAR-23 (2020)

Fault Tree Analysis (FTA) is a promute the clustering of system -

UNC

Building the Tool Chain

Building the Tool Chain

Building the Tool Chain

Prob (*unsafe* U *fail*) ?

Highly Reliable

Highly Reliable

Ideally indicates the "proximity" to the rare event

Ideally indicates the "proximity" to the rare event

Ideally indicates the "proximity" to the rare event

Ideally indicates the "proximity" to the rare event

- → importance function
- thresholds placing
- number of splittings

Fully Automatic

Fully Automatic

 $\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE is failed}) ? 1 : 0$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with n nodes

 $\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE} \text{ is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with n nodes

$$\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$$

AND

$$\mathcal{I}_{AND}(\vec{x}) = \sum_{w \in chil(AND)} \mathcal{I}_w(\vec{x})$$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with n nodes

$$\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE} \text{ is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$$

$$\mathcal{I}_{AND}(\vec{x}) = \sum_{w \in chil(AND)} \mathcal{I}_w(\vec{x})$$

$$\mathcal{I}_{\mathsf{OR}}(\vec{x}) = \max_{w \in chil(\mathsf{OR})} \mathcal{I}_w(\vec{x})$$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with n nodes

$$\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$$

OR

(BEn

$$\mathcal{I}_{AND}(\vec{x}) = \sum_{w \in chil(AND)} \mathcal{I}_w(\vec{x})$$

 $\mathcal{I}_{\mathsf{OR}}(\vec{x}) = \max_{w \in chil(\mathsf{OR})} \mathcal{I}_w(\vec{x})$

 $\mathcal{I}_{\mathsf{OR}}(\vec{x}) =$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with n nodes

$$\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$$

$$\mathcal{I}_{AND}(\vec{x}) = \sum_{w \in chil(AND)} \mathcal{I}_w(\vec{x})$$

$$\mathcal{I}_{\mathsf{OR}}(\vec{x}) = \max_{w \in chil(\mathsf{OR})} \mathcal{I}_w(\vec{x})$$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with n nodes

$$\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$$

$$\mathcal{I}_{AND}(\vec{x}) = \sum_{w \in chil(AND)} \mathcal{I}_w(\vec{x})$$

CONICET

 ΔD

$$\mathcal{I}_{\mathsf{OR}}(\vec{x}) = \max_{w \in chil(\mathsf{OR})} \mathcal{I}_w(\vec{x})$$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with n nodes

$$\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$$

$$\mathcal{I}_{AND}(\vec{x}) = \sum_{w \in chil(AND)} \mathcal{I}_w(\vec{x})$$

$$\mathcal{I}_{\mathsf{OR}}(\vec{x}) = \max_{w \in chil(\mathsf{OR})} \mathcal{I}_w(\vec{x})$$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with n nodes

$$\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$$

$$\mathcal{I}_{AND}(\vec{x}) = \sum_{w \in chil(AND)} \mathcal{I}_w(\vec{x})$$

$$\mathcal{I}_{\mathsf{OR}}(\vec{x}) = \max_{w \in chil(\mathsf{OR})} \mathcal{I}_w(\vec{x})$$

 $\vec{x} \in \mathbb{N}^n$ is the state of the RFT with *n* nodes BE $\mathcal{I}_{\mathsf{BE}}(\vec{x}) = (\mathsf{BE is failed}) ? 1 : 0 = \vec{x}_{\mathsf{BE}}$ AND $\mathcal{I}_{\text{AND}}(\vec{x}) = \sum_{w \in chil(\text{AND})} \mathcal{I}_w(\vec{x})$ BE₅ BE₀ ′BE₄` BE1 BE, (BE1) • (BEn BE₃ X OR $\mathcal{I}_{OR}(\vec{x}) = 2$ $\mathcal{I}_{\mathsf{OR}}(\vec{x}) = \max_{w \in chil(\mathsf{OR})} \mathcal{I}_w(\vec{x})$ (BEn (BE₁ Normalize CONICET UNC

$\mathrm{t}[v]$	$\mathcal{I}_v(ec{x})$	-
be, sbe	$ec{x_v}$	-
and	$\operatorname{lcm}_{v} \cdot \sum_{w \in chil(v)} \frac{\mathcal{I}_{w}(\vec{x})}{\max_{w}^{\mathcal{I}}}$	where
or	$\operatorname{lcm}_{v} \cdot \max_{w \in chil(v)} \left\{ \frac{\mathcal{I}_{w}(\vec{x})}{\max_{w}^{\mathcal{I}}} \right\}$	$\max_{v}^{\mathcal{I}} = \max_{\vec{x} \in \mathcal{S}} \mathcal{I}_{v}(\vec{x})$ $\operatorname{lcm}_{v} = \operatorname{lcm} \left\{ \max_{w}^{\mathcal{I}} \mid w \in chil(v) \right\}$
vot_k	$\operatorname{lcm}_{v} \cdot \max_{W \subseteq chil(v), W = k} \left\{ \sum_{w \in W} \frac{\mathcal{I}_{w}(\vec{x})}{\max_{w}^{\mathcal{I}}} \right\}$	$ord = \begin{cases} 1 & \text{if } \vec{x_v} \in \{1,4\} \end{cases}$
sg	$\operatorname{lcm}_{v} \cdot \max\left(\sum_{w \in chil(v)} \frac{\mathcal{I}_{w}(\vec{x})}{\max_{w}^{\mathcal{I}}}, \vec{x}_{v} \cdot m\right)$	-1 otherwise
pand	$\operatorname{lcm}_{v} \cdot \max\left(\frac{\mathcal{I}_{l}(\vec{x})}{\max_{l}^{\mathcal{I}}} + ord \; \frac{\mathcal{I}_{r}(\vec{x})}{\max_{r}^{\mathcal{I}}} \;, \; \vec{x}_{v} \cdot 2\right)$	

$\mathrm{t}[v]$	${\cal I}_v(ec x)$	
be, sbe	$ec{x_v}$	
and	$\operatorname{lcm}_{v} \cdot \sum_{w \in chil(v)} \frac{\mathcal{I}_{w}(\vec{x})}{\max_{w}^{\mathcal{I}}}$	where
or	$\operatorname{lcm}_{v} \cdot \max_{\boldsymbol{\sigma} \in U^{(1)}} \left\{ \frac{\mathcal{I}_{w}(\vec{x})}{\max^{\mathcal{I}}} \right\}$	$\max_{v}^{\mathcal{I}} = \max_{\vec{x} \in \mathcal{S}} \mathcal{I}_{v}(\vec{x})$
	$w \in chil(v) (\operatorname{Inter}_{w}) (\sum \mathcal{I}_{w}(\vec{x}))$	$\operatorname{lcm}_{v} = \operatorname{lcm}\left\{\max_{w}^{\mathcal{I}} \mid w \in chil(v)\right\}$
vot_k	$\operatorname{lcm}_{v} \cdot \max_{W \subseteq chil(v), W = k} \left\{ \sum_{w \in W} \frac{w(v)}{\max_{w}^{\mathcal{I}}} \right\}$	Charles for 1
sg	$\operatorname{lcm}_{v} \cdot \max\left(\sum_{w \in chil(v)} \frac{\mathcal{I}_{w}(\vec{x})}{\max_{w}^{\mathcal{I}}}, \vec{x}_{v} \cdot m\right)$	Rare event simulation 105 trees [☆]
pand	$\operatorname{lcm}_{v} \cdot \max\left(\frac{\mathcal{I}_{l}(\vec{x})}{\max_{l}^{\mathcal{I}}} + ord \; \frac{\mathcal{I}_{r}(\vec{x})}{\max_{r}^{\mathcal{I}}} \;, \; \vec{x}_{v} \cdot 2\right)$	Carlos E. Budde ¹ , Marco Biagi ² , Rail E. ^{1,6} Carlos E. Budde ¹ , Marco Biagi ² , Rail E. ^{1,6} Pedro R. D'Argenio ^{3,4,5} , and Mariëlle Stoelingal Pedro R. D'Argenio ^{3,4,5} , and Mariëlle Stoelingal ¹ Formal Methods and Tools, University of Twente, Enschede, the Netherlands ¹ Formal Methods and Tools, University of Twente, Enschede, Argentina ² Department of Information Engineering, University of Florence, Florence, Florence, ² Department of Universidad Nacional de Córdoba, Argentina ³ Department of Linformation Engineering, Córdoba, Argentina ⁴ CONICET, Cordoba, Minegen, the Netherlands
		⁵ Department of Computer Science, Statute ⁶ Department of Scithers ArcASS 2020 ⁶ Department of Scithers ArcASS 2020 ⁶ ArcAsS 2020 ⁶ Computer Science any sys- ⁶ Computer Science and

Deriving the importance function from RFT (via minimal cut sets)

- Cut set: a set of BE that triggers a TLE (Top Level Event)
- It is minimal if removing any BE there is no TLE
- Originally defined for static fault trees
- ♦ We adapt them and extended to repairable fault trees but...
- If no PAND and Spare gates, all MCS can be collected
- If Spare gates but no PAND some MCS maybe lost for some configurations
- We did not include PAND

Deriving the importance function from RFT (via minimal cut sets)

Name	Expression	Description
$\mathcal{I}_{MCS}(ec{x}) =$	$\max_{\mathrm{MCS}\in\mathcal{M}(\triangle^*)} \left\{ \sum_{v\in\mathrm{MCS}} \vec{x}_b \right\}$	For each MCS of the tree, \mathcal{I}_{MCS} counts the number of bes that have failed in the current state \vec{x} . The importance $\mathcal{I}_{MCS}(\vec{x})$ of the current state of the tree is the maximum among these counts.
$\mathcal{I}_{MCS-P}(\vec{x}) =$	$\max_{\mathrm{MCS}\in\mathcal{M}_{$	\mathcal{I}_{MCS-P} operates similarly to function \mathcal{I}_{MCS} above, but here the maximum ranges over a <i>pruned</i> set of MCS, discarding cut sets with N or more bes.

$$\mathcal{I}_{\mathsf{MCS-PR}}(\vec{x}) = \max_{\mathrm{MCS}\in\mathcal{M}_{>\lambda}(\triangle^*)} \left\{ \sum_{v\in\mathrm{MCS}} \vec{x}_b \right\}$$

Similar to \mathcal{I}_{MCS-P} but using the failure *rates* for pruning, \mathcal{I}_{MCS-PR} considers only MCS where the product of the failure rate of all bes is greater than λ . Applicable only to FTs whose failure and dormancy distributions are Markovian.

$$\mathcal{I}_{\mathsf{MCSN}}(\vec{x}) = \max_{\mathsf{MCS}\in\mathcal{M}(\triangle^*)} \left\{ \operatorname{lcm} \cdot \sum_{v\in\mathsf{MCS}} \frac{\vec{x}_b}{|\mathsf{MCS}|} \right\}$$

 \mathcal{I}_{MCSN} is a normalised version of \mathcal{I}_{MCS} . The normalisation follows a similar procedure to the structured case, where lcm is the least common multiple of the cardinality of every MCS in $\mathcal{M}(\triangle^*)$.

Deriving the importance function from RFT (via minimal cut sets)

Name	Expression	Description
$\mathcal{I}_{MCS}(ec{x}) =$	$\max_{\mathrm{MCS}\in\mathcal{M}(\triangle^*)}\left\{\sum_{v\in\mathrm{MCS}}\vec{x}_b\right\}$	For each MCS of the tree, \mathcal{I}_{MCS} counts the number of bes that have failed in the current state \vec{x} . The importance $\mathcal{I}_{MCS}(\vec{x})$ of the current state of the tree is the maximum among these counts.
$\mathcal{I}_{MCS-P}(ec{x}) =$	$\max_{\mathrm{MCS}\in\mathcal{M}_{$	\mathcal{I}_{MCS-P} operates similarly to function \mathcal{I}_{MCS} above, but here the maximum ranges over a <i>pruned</i> set of MCS, discarding cut sets with N or more bes.
$\mathcal{I}_{MCS-PR}(ec{x}) =$	$\max_{\mathrm{MCS}\in\mathcal{M}_{>\lambda}(\triangle^*)} \left\{ \sum_{v\in\mathrm{MCS}} \vec{x_b} \right\}$	Similar to \mathcal{I}_{MCS-P} but using the failure <i>rates</i> for pruning, \mathcal{I}_{MCS-PR} considered NCS where the product of the failure rate of all besis only to FTs whose failure and constrained Rare Event Simulation for Automated Rare Event Simulation for Uses
$\mathcal{I}_{MCSN}(ec{x}) = {}_{_{\mathrm{MCSN}}}$	$\max_{\mathrm{CS}\in\mathcal{M}(\triangle^*)} \left\{ \operatorname{lcm} \cdot \sum_{v\in\mathrm{MCS}} \frac{\vec{x}_b}{ \mathrm{MCS} } \right\}$	\mathcal{I}_{MCSN} is a normalised version of cedure to the structured case, we cardinality of every MCS in $\mathcal{M}(\triangle)$ \mathcal{I}_{Fruit} Tree Analyse \mathcal{I}_{Fault} Tree Analyse
		Abstract. Monte Carlo sum trees. A bound of the interesting of the int

and occur with low LMMM Benefit Simi number of sample RES method that spawns more and the same

ing system ce function,

d efficient.

have been and BES experts. This hin-

us a second w, when the makes this me

UNC

Fully Automatic!

Experiments (Case Studies)

Experiments

(Case Studies)

Basic element	Fail time PDF	Repair PDF	Dormancy PDF		
VOT:					
BE-A	lnor(4.37, 0.33)	uni(0.4, 0.95)			
BE-B	wei(4.5, 0.0125)	uni(0.4, 0.95)			
DSPARE:					
BE	$\exp(0.07)$	$\operatorname{uni}(1.0, 2.0)$			
SBE	$\exp(0.07)$	$\mathrm{uni}(1.0, 2.0)$	$\exp(0.035)$		
HECS:	10.			Abbrev:	Distribution:
SW	$\exp(4.5 \times 10^{-12})$	uni(28.0, 56.0)		$\operatorname{div}(x)$	$\underline{Direc}(x)$
HW	$\exp(1.0{ imes}10^{-10})$	uni(28.0, 56.0)		$\operatorname{dir}(x)$	Dirac(x)
MIi	$\exp(5.0{ imes}10^{-9})$	uni(21.0, 28.0)		$\exp(\lambda)$	Exponential(λ)
Mj	$\exp(6.0 \times 10^{-8})$	uni(21.0, 28.0)		$\operatorname{erl}(\kappa, \lambda)$	Erlang (κ, λ)
B _k	$\exp(8.7 \times 10^{-4})$	$\ln(4.45, 0.24)$		uni(a, b)	uniform($[a, b]_{\mathbb{R}}$)
Pa	$\exp(1.0 \times 10^{-3})$	lnor(4.45, 0.24)		$ray(\sigma)$	Rayleign(σ)
PS_{b}	$\exp(1.5 \times 10^{-3})$	lnor(4.45, 0.24)	$\operatorname{dir}(\infty)$	$\operatorname{wei}(k,\lambda)$	Weibull (k, λ)
FTPP:				$\operatorname{nor}(\mu, \sigma)$	normal(μ, σ)
NEi	lnor(6.5, 0.5)	nor(150.0, 50.0)		$\operatorname{Inor}(\mu, \sigma)$	\log -normal(μ, σ
B _i	$\exp(2.8 \times 10^{-2})$	nor(15.0, 3.0)			
SBE_k	$\exp(2.8 \times 10^{-2})$	nor(15.0, 3.0)	$\operatorname{dir}(\infty)$		
RC:					
BE_i	$\exp(0.04)$	nor(2.0, 0.7)			
SBE_i	$\exp(0.04)$	nor(2.0, 0.7)	$\exp(0.5)$		
HVC:	- 、 ,		- 、 ,		
BE_i	ray(1.999)	uni(0.15, 0.45)			
SBE_j	ray(1.999)	uni(0.15, 0.45)	erl(3.0, 0.25)		

CMC vs RESTART

Availability Reliability

CMC vs RESTART-P2

Availability

CMC vs Fixed Effort

Reliability

Availability

Case study: RC

UNC

Reliability

Case study: DSPARE

Fully Automatic

- In general structural importance function showed the best performance
- MCS based important function occasionally performs worst than Monte Carlo
- Fixed effort showed better performance than RESTART (limited to reliability)
- $\boldsymbol{\ast}$... and work also well in combination with MCS based IF
- Still... not good enough (compare to importance sampling)
- Our importance functions are discrete
- Conjecture:

if time and stochastics info is considered, continuous versions should work better

This work will appear in STTT

- In general structural importance function showed the best performance
- MCS based important function occasionally performs worst than Monte Carlo
- Fixed effort showed better performance than RESTART (limited to reliability)
- $\boldsymbol{\ast}$... and work also well in combination with MCS based IF
- Still... not good enough (compare to importance sampling)
- Our importance functions are discrete
- Conjecture:

if time and stochastics info is considered, continuous versions should work better

Analysis of Highly Reliable Repairable Fault Trees via Simulation

Pedro R. D'Argenio

Universidad Nacional de Córdoba – CONICET (AR)

Joint work with Carlos Budde, Raúl Monti, & Mariëlle Stoelinga

QEST 2022, Warsaw

Analysis of Highly Reliable Repairable Fault Trees via Simulation

Pedro R. D'Argenio

Universidad Nacional de Córdoba – CONICET (AR)

