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Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Fully Automatic
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RFT are described in KEPLER 
(an extension of GALILEO)Fault Trees declarative language

1 toplevel "FAIL";

2 "FAIL" and "S1" "S2";

3 "S1" or "SS1" "PS1";

4 "S2" or "SS2" "PS2";

5 "SS1" pand "SW1" "M1";

6 "PS1" sg "M1" "AUX";

7 "SS2" pand "SW2" "M2";

8 "PS2" sg "M2" "AUX";

9 "M1" exponential(0.01) uniform(1,5);

10 "M2" exponential(0.01) uniform(1,5);

11 "AUX" exponential(0.01) exponential(0.0025) uniform(1,5);

12 "SW1" exponential(0.003) uniform(1,2);

13 "SW2" exponential(0.003) uniform(1,2);

14 "RBOX" priority_rbox "M1" "M2" "SW1" "SW2" "AUX";

5/18
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IOSA + Urgency

(S,A, C,�!, C0, s0)

• S is a set of states

• A is a set of labels

• C is a set of clocks and each

x 2 C has an asociated CDF µx

• �! ✓ S ⇥ C ⇥A⇥ C ⇥ S

An IOSA should satisfy:

(a) If s
C,a,C0

����! s0 and a 2 Ai [Au
, then C = ?.

(b) If s
C,a,C0

����! s0 and a 2 Ao \ Au
, then C is a singleton set.

(c) If s
{x},a1,C1������! s1 and s

{x},a2,C2������! s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) For every a 2 Ai
and state s, there exists a transition s

?,a,C����! s0.

(e) For every a 2 Ai
, if s

?,a,C0
1����! s1 and s

?,a,C0
2����! s2, C 0

1 = C 0
2 and s1 = s2.

(f) There exists a function active : S ! 2C such that:

(i) active(s0) ✓ C0,

(ii) enabling(s) ✓ active(s),

(iii) if s is stable, active(s) = enabling(s), and

(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [ C 0
.

A = Ai ]Ao

Au ✓ A

1

IOSA

Input/Output Stochastic Automata

(S, A, C, ≠æ, C0, s0)

I S are states

I A are actions

I C are clocks

I ≠æ ™ S ◊2 C◊A◊2 C◊S

’c œ C ÷!µ œ �(R) µ(R>0) = 1

OFF ON

?, on?, {x}

?
,o

�
?
,?

{x}, tOut!,?

?, o�?,?

?
,
o
n
?,{x}

OUT IN

{y}, on!, {z}

{z}, o�!, {y}
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(iv) if t
C,a,C0

����! s then active(s) ✓ (active(t) \ C) [ C 0
.

(
A = Ai ]Ao

Au ✓ A

s1
C,a,C0

����!1 s01

s1||s2
C,a,C0
����! s01||s2

a2(A1\A2)

s1
C1,a,C

0
1�����!1 s01 s2

C2,a,C
0
2�����!2 s02

s1||s2
C1[C2,a,C0

1[C0
2����������! s01||s02

a2(A1\A2)

provided

8
>><

>>:

Ao
1 \Ao

2 = ?
C1 \ C2 = ?
A1 \Au

2 = A2 \Au
1

1
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IOSA: weak determinism

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
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closed IOSA is weakly deterministic if (i) almost surely at most one discrete
non-urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not a↵ect the non urgent-behavior of the model, and
(iii) no non-urgent output and urgent output are enabled simultaneously. To
avoid referring explicitly to time in (i), we say instead that a closed IOSA is
weakly deterministic if it almost never reaches a state in which two di↵erent
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we define
the following weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to ⌧ .
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With this definition, we can introduce the concept of weak determinism:
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By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,~v) 2 S,
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and d, d
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Fig. 3. IOSA resulting from the composition I1||I2||I3 of IOSAs in Fig. 2.

Theorem 1. Let ⇠ denote the bisimulation equivalence relation on NLMPs [14]

properly lifted to IOSA [13], and let I1, I 0
1, I2, I 0

2 be IOSAs such that I1 ⇠ I 0
1

I2 ⇠ I 0
2. Then, I1||I2 ⇠ I 0

1||I 0
2.

5 Confluence
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Fig. 4. Confluence in IOSA.

Confluence, as studied by Milner [23], is related to
a form of weak determinism: two silent transitions
taking place on an interleaving manner do not alter
the behaviour of the process regardless of which
happens first. In particular, we will eventually as-
sume that urgent actions in a closed IOSA are silent as they do not delay the
execution. Thus we focus on confluence of urgent actions only. The notion of
confluence is depicted in Fig. 4 and formally defined as follows.

Definition 5. An IOSA I is confluent with respect to actions a, b 2 Au
if, for

every state s 2 S and transitions s
?,a,C1����! s1 and s

?,b,C2����! s2, there exists a

state s3 2 S such that s1
?,b,C2����! s3 and s2

?,a,C1����! s3. I is confluent if it is

confluent with respect to every pair of urgent actions.

Note that we are asking that the two actions converge in a single state, which
is stronger than Milner’s strong confluence, where convergence takes place on
bisimilar but potentially di↵erent states.

Confluence is preserved by parallel composition:

Proposition 2. If both I1 and I2 are confluent w.r.t. actions a, b 2 Au
, then so

is I1||I2. Therefore, if I1 and I2 are confluent, I1||I2 is also confluent.

However, parallel composition may turn non-confluent components into a
confluent composed system.

By looking at the IOSA in Fig. 5, one can notice that the non-determinism
introduced by confluent urgent output actions is spurious in the sense that it
does not change the stochastic behaviour of the model after the output urgent
actions have been abstracted. Indeed, since time does not progress, it is the same
to sample first clock x and then clock y passing through state s1, or first y and
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(s,~v) =) µ if (s,~v)
C
=)n µ for some n � 1 and C ✓ C.

As given above, there is no guarantee that
C
=)n is well defined. In particular,

there is no guarantee that fC00

n is a well defined measurable function. We postpone
this to Lemma 1 below.

With this definition, we can introduce the concept of weak determinism:

Definition 8. A closed IOSA I is weakly deterministic if =) is well defined in I
and, in P (I), any state (s, v) 2 S that satisfies one of the following conditions is

almost never reached from any (init, v0) 2 S: (a) s is stable and [a2A[{init}Ta(s, v)
contains at least two di↵erent probability measures, (b) s is not stable, (s, v) =) µ,

(s, v) =) µ
0
and µ 6= µ

0
, or (c) s is not stable and (s, v)

a�! µ for some a 2 Ao \Au
.

By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].

Theorem 2. Let I be an IOSA I. Its semantics P(I) satisfies, for all (s,~v) 2 S,
a 2 Ao

and d, d
0 2 R>0, (i) Ta(s,~v) 6= ? ) Td(s,~v) = ? (maximal progress),

provided
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and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.
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Proof. Because of Lemma 6 there is a vertex v of EGI such that {b1, . . . , bn} ⊆ v.
Because of the inductive construction of E and V , there is a path from some
v′ ∈ V0 to v in EGI . From Lemma7, for each 1 ≤ j ≤ m, there is an aj ∈ v′ such
that aj !∗ bj . Because v′ ∈ V0, then either v′ =

⋃n
i=1 uen(s

0
i ) ∩ Ao

i or there is
some e ∈ A such that v′ =

⋃n
i=1 Bi with Bi spontaneously enabled by e in Ii "

The following theorem is the main result of this section and provides sufficient
conditions to guarantee that a closed composed IOSA is confluent or, as stated
in the theorem, necessary conditions for the IOSA to be non-confluent.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Proof. Suppose I potentially reaches a non confluent state s. Then there are
necessarily a, b ∈ uen(s) that show it and hence I is not confluent w.r.t. a and b.
By Proposition 2, there is necessarily a component Ii that is not confluent w.r.t.
a and b. Since {a, b} is an enabled set in I, the rest of the theorem follows by
Lemma8. "

Because of Proposition 4 and Theorem3, if all potentially reachable states in
a closed IOSA I are confluent, then I is weakly deterministic. Thus, if no pair
of actions satisfying conditions in Theorem5 are found in I, then I is weakly
deterministic.

Notice that the IOSA I = I1||I2||I3 of Example 2 (see also Figs. 2 and 3) is an
example that does not meet the conditions of Theorem5, and hence detected as
confluent. c and d are the only potential non-confluent actions, which is noticed
in state s6 of I3. The approximate indirect triggering relation can be calculated
to !∗= {(c, c), (d, d)}. Also, {c} is spontaneously enabled by a in I1 and {d} is
spontaneously enabled by b in I2. Since both sets are spontaneously enabled by
different actions and c and d are not initial, the set {c, d} does not appear in V0

of EGI which would be required to meet the conditions of the theorem.

I1

I2

I3

a? b!!

a? c!!

b??

c??

c??

b??

a!

Fig. 6. I1||I2||I3 meets conditions
in Theorem5

Conditions in Theorem5 are not suffi-
cient and confluent IOSAs may satisfy them.
Consider the IOSAs in Fig. 6. I1||I2||I3 is
a closed IOSA with a single state and no
outgoing transition. Hence, it is confluent.
However, I3 is not confluent w.r.t. b and
c, !∗= {(b, b), (c, c)}, B1 = {b} is sponta-
neously enabled by a in I1, and B2 = {c}
is spontaneously enabled by a in I2. Hence
b, c ∈

⋃n
i=1 Bi, thus meeting the conditions of

Theorem5.

Sufficient conditions for confluency
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closed IOSA is weakly deterministic if (i) almost surely at most one discrete
non-urgent transition is enabled at every time point, (ii) the election over enabled
urgent transitions does not a↵ect the non urgent-behavior of the model, and
(iii) no non-urgent output and urgent output are enabled simultaneously. To
avoid referring explicitly to time in (i), we say instead that a closed IOSA is
weakly deterministic if it almost never reaches a state in which two di↵erent
non-urgent discrete transitions are enabled. Moreover, to ensure (ii), we define
the following weak transition.

For this definition and the rest of the section we will assume that the IOSA
is closed and all its urgent actions have been abstracted, that is, all actions in
Au have been renamed to ⌧ .

Definition 7. For a non stable state s, and v 2 RN
, we define (s,~v)

C
=)n µ

inductively by the following rules:
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C,s is defined as in Def. 2 and µ̂ =

R
S⇥RN f

C00

n dµ
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C00
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C00
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C00

n (t, ~w) = 0 otherwise. We define the weak transition
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=)n µ for some n � 1 and C ✓ C.

As given above, there is no guarantee that
C
=)n is well defined. In particular,

there is no guarantee that fC00

n is a well defined measurable function. We postpone
this to Lemma 1 below.
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By “almost never” we mean that the measure of the set of all paths leading
to any measurable set in B(S) containing only states satisfying (a), (b), or (c)
is zero. Thus, Def. 8 states that, in a weakly deterministic IOSA, a situation in
which a non urgent output action is enabled with another output action, being
it urgent (case (c)) or non urgent (case (a)), or in which sequences of urgent
transitions lead to di↵erent stable situations (case (b)), is almost never reached.

For the previous definition to make sense we need that P(I) satisfies time

additivity, time determinism, and maximal progress [27]. This is stated in the
following theorem whose proof follows as in [13, Theorem 16].
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Proof. Because of Lemma 6 there is a vertex v of EGI such that {b1, . . . , bn} ⊆ v.
Because of the inductive construction of E and V , there is a path from some
v′ ∈ V0 to v in EGI . From Lemma7, for each 1 ≤ j ≤ m, there is an aj ∈ v′ such
that aj !∗ bj . Because v′ ∈ V0, then either v′ =
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The following theorem is the main result of this section and provides sufficient
conditions to guarantee that a closed composed IOSA is confluent or, as stated
in the theorem, necessary conditions for the IOSA to be non-confluent.

Theorem 5. Let I = (I1|| · · · ||In) be a closed IOSA. If I potentially reaches a
non-confluent state then there are actions a, b ∈ Au ∩ Ao such that some Ii is
not confluent w.r.t. a and b, and there are c and d such that c !∗ a, d !∗ b,
and, either (i) c and d are initial actions in any component, or (ii) there is
some e ∈ A and (possibly empty) sets B1, . . . , Bn spontaneously enabled by e in
I1, . . . , In respectively, such that c, d ∈

⋃n
i=1 Bi.

Proof. Suppose I potentially reaches a non confluent state s. Then there are
necessarily a, b ∈ uen(s) that show it and hence I is not confluent w.r.t. a and b.
By Proposition 2, there is necessarily a component Ii that is not confluent w.r.t.
a and b. Since {a, b} is an enabled set in I, the rest of the theorem follows by
Lemma8. "

Because of Proposition 4 and Theorem3, if all potentially reachable states in
a closed IOSA I are confluent, then I is weakly deterministic. Thus, if no pair
of actions satisfying conditions in Theorem5 are found in I, then I is weakly
deterministic.

Notice that the IOSA I = I1||I2||I3 of Example 2 (see also Figs. 2 and 3) is an
example that does not meet the conditions of Theorem5, and hence detected as
confluent. c and d are the only potential non-confluent actions, which is noticed
in state s6 of I3. The approximate indirect triggering relation can be calculated
to !∗= {(c, c), (d, d)}. Also, {c} is spontaneously enabled by a in I1 and {d} is
spontaneously enabled by b in I2. Since both sets are spontaneously enabled by
different actions and c and d are not initial, the set {c, d} does not appear in V0

of EGI which would be required to meet the conditions of the theorem.
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Conditions in Theorem5 are not suffi-
cient and confluent IOSAs may satisfy them.
Consider the IOSAs in Fig. 6. I1||I2||I3 is
a closed IOSA with a single state and no
outgoing transition. Hence, it is confluent.
However, I3 is not confluent w.r.t. b and
c, !∗= {(b, b), (c, c)}, B1 = {b} is sponta-
neously enabled by a in I1, and B2 = {c}
is spontaneously enabled by a in I2. Hence
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Theorem5.
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From RFT to IOSA

Fault Trees

Static FTs

BE1

Dynamic FTs Repairable FTs

2/18

Basic ElementFault Trees æ IOSA

Basic Element
0 1

fail ≥ µ

repair ≥ “
1 module BE_i

2 fc, rc : clock;

3 inform : [0..2] init 0;

4 broken : [0..2] init 0; // 0:up 1:down 2:repairing

5

6 [fl!] broken=0 @ fc -> (inform’=1) & (broken’=1);

7 [r??] broken=1 -> (broken’=2) & (rc’=“);

8 [up!] broken=2 @ rc -> (inform’=2) &

9 (broken’=0) & (fc’=µ);

10

11 [fi!!] inform=1 -> (inform’=0);

12 [ui!!] inform=2 -> (inform’=0);

13 endmodule
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Theorem: Every closed confluent IOSA is weakly deterministic.

module BE_i
fc, rc : clock;
inform : [0..2] init 0;
broken : [0..2] init 0; // 0: up, 1: down, 2: repairing

[fl!] broken=0 @ fc -> (inform=1) & (broken=1);
[r??] broken=1 -> (broken=2) & (rc=�);
[up!] broken=2 @ rc -> (inform=2) &

(broken=0) & (fc=µ);

[fi!!] inform=1 -> (inform=0);
[ui!!] inform=2 -> (inform=0);

endmodule

2

Fault Trees æ IOSA

Basic Element
0 1

fail ≥ µ

repair ≥ “
1 module BE_i

2 fc, rc : clock;

3 inform : [0..2] init 0;

4 broken : [0..2] init 0; // 0:up 1:down 2:repairing

5

6 [fl!] broken=0 @ fc -> (inform’=1) & (broken’=1);

7 [r??] broken=1 -> (broken’=2) & (rc’=“);

8 [up!] broken=2 @ rc -> (inform’=2) &

9 (broken’=0) & (fc’=µ);

10

11 [fi!!] inform=1 -> (inform’=0);

12 [ui!!] inform=2 -> (inform’=0);

13 endmodule
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❖ if both inputs fail 

signal fault 

❖ if one input repairs  

signal repair

provided
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Theorem: Every closed confluent IOSA is weakly deterministic.

module BE_i
fc, rc : clock;
inform : [0..2] init 0;
broken : [0..2] init 0; // 0: up, 1: down, 2: repairing

[fl!] broken=0 @ fc -> (inform=1) & (broken=1);
[r??] broken=1 -> (broken=2) & (rc=�);
[up!] broken=2 @ rc -> (inform=2) &

(broken=0) & (fc=µ);

[fi!!] inform=1 -> (inform=0);
[ui!!] inform=2 -> (inform=0);

endmodule

module AND
singalf: bool init false;
signalu: bool init false;
count: [0..2] init 0;

[f1??] count=1 -> (count=2) & (signalf=true);
[f1??] count=0 -> (count=1);
[f2??] count=1 -> (count=2) & (signalf=true);
[f2??] count=0 -> (count=1);

[u1??] count=2 -> (count=1) & (signalu=true);
[u1??] count=1 -> (count=0);
[u2??] count=2 -> (count=1) & (signalu=true);
[u2??] count=1 -> (count=0);

[f!!] signalf & count=2 -> (signalf=false);
[u!!] signalu & count!=2 -> (signalu=false);

endmodule

2



From RFT to IOSA
module OR

signalf: bool init false;

signalu: bool init false;

count: [0..2] init 0;

[f1??] count=0 -> (count’=1) & (signalf’=true);

[f1??] count=1 -> (count’=2);

[f2??] count=0 -> (count’=1) & (signalf’=true);

[f2??] count=1 -> (count’=2);

[u1??] count=2 -> (count’=1);

[u1??] count=1 -> (count’=0) & (signalu’=true);

[u2??] count=2 -> (count’=1);

[u2??] count=1 -> (count’=0) & (signalu’=true);

[f!!] signalf & count!=0 -> (signalf’=false);

[u!!] signalu & count=0 -> (signalu’=false);

endmodule

module VOTING_3_1

count: [0..3] init 0;

inform: bool init false;

[f0??] -> (count’=count+1) & (inform’=(count+1=2));

[f1??] -> (count’=count+1) & (inform’=(count+1=2));

[f2??] -> (count’=count+1) & (inform’=(count+1=2));

[u0??] -> (count’=count-1) & (inform’=(count=2));

[u1??] -> (count’=count-1) & (inform’=(count=2));

[u2??] -> (count’=count-1) & (inform’=(count=2));

[f!!] inform & count >= 2 -> (inform’=false);

[u!!] inform & count < 2 -> (inform’=false);

endmodule
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signalu: bool init false;

count: [0..2] init 0;

[f1??] count=0 -> (count’=1) & (signalf’=true);

[f1??] count=1 -> (count’=2);

[f2??] count=0 -> (count’=1) & (signalf’=true);

[f2??] count=1 -> (count’=2);

[u1??] count=2 -> (count’=1);

[u1??] count=1 -> (count’=0) & (signalu’=true);

[u2??] count=2 -> (count’=1);

[u2??] count=1 -> (count’=0) & (signalu’=true);

[f!!] signalf & count!=0 -> (signalf’=false);

[u!!] signalu & count=0 -> (signalu’=false);
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module VOTING_3_1
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[u0??] -> (count’=count-1) & (inform’=(count=2));

[u1??] -> (count’=count-1) & (inform’=(count=2));

[u2??] -> (count’=count-1) & (inform’=(count=2));

[f!!] inform & count >= 2 -> (inform’=false);

[u!!] inform & count < 2 -> (inform’=false);

endmodule
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module PAND

f1: bool init false;

f2: bool init false;

st: [0..4] init 0; // 0:up, 1:inform fail, 2:failed,

// 3:inform up, 4:unbreakable

[_?] st=0 & f1 & !f0 -> (st’=4);

[f0??] st=0 & !f0 & !f1 -> (f0’=true);

[f0??] st=0 & !f0 & f1 -> (st’=1) & (f0’=true);

[f0??] st!=0 & !f0 -> (f0’=true);

[f0??] f0 ->;

[f1??] st=0 & !f0 & !f1 -> (f1’=true);

[f1??] st=0 & f0 & !f1 -> (st’=1) & (f1’=true);

[f1??] st=3 & !f1 -> (st’=2) & (f1’=true);

[f1??] (st==1|st==2|st=4) & !f1 -> (f1’=true);

[f1??] f1 ->;

[u0??] st!=1 & f0 -> (f0’=false);

[u0??] st=1 & f0 -> (st’=0) & (f0’=false);

[u0??] !f0 ->;

[u1??] (st=0|st=3) & f1 -> (f1’=false);

[u1??] (st=1|st=4) & f1 -> (st’=0) & (f1’=false);

[u1??] st=2 & f1 -> (st’=3) & (f1’=false);

[f!!] st=1 -> (st’=2);

[u!!] st=3 -> (st’=0);

endmodule

module RBOX

broken[n]: bool init false;

busy: bool init false;

[fl0?] -> (broken[0]’=true);

...

[fln�1?] -> (broken[n-1]’=true);

[r0!!] !busy & broken[0] -> (busy’=true);

...

[rn�1!!] !busy & broken[n-1]
& !broken[n-2] & ... & !broken[0] -> (busy’=true);

[up0?] -> (broken[0]’=false) & (busy’=false);

...

[upn�1?] -> (broken[n-1]’=false) & (busy’=false);

endmodule
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[f1??] f1 ->;

[u0??] st!=1 & f0 -> (f0’=false);

[u0??] st=1 & f0 -> (st’=0) & (f0’=false);

[u0??] !f0 ->;

[u1??] (st=0|st=3) & f1 -> (f1’=false);

[u1??] (st=1|st=4) & f1 -> (st’=0) & (f1’=false);

[u1??] st=2 & f1 -> (st’=3) & (f1’=false);

[f!!] st=1 -> (st’=2);

[u!!] st=3 -> (st’=0);

endmodule

module RBOX

broken[n]: bool init false;

busy: bool init false;

[fl0?] -> (broken[0]’=true);

...

[fln�1?] -> (broken[n-1]’=true);

[r0!!] !busy & broken[0] -> (busy’=true);
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[upn�1?] -> (broken[n-1]’=false) & (busy’=false);

endmodule
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module SBE

fc, dfc, rc : clock;

inform : [0..2] init 0;

active : bool init false;

broken : [0..2] init 0;

[e??] !active -> (active’=true) & (fc’=);

[d??] active -> (active’=false) & (dfc’= );

[fl!] active & broken=0 @ fc -> (inform’=1) & (broken’=1);

[fl!] !active & broken=0 @ dfc -> (inform’=1) & (broken’=1);

[r??] -> (broken’=2) & (rc’=);

[up!] active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (fc’=);

[up!] !active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (dfc’=);

[f!!] inform=1 -> (inform’=0);

[u!!] inform=2 -> (inform’=0);

endmodule

module MUX

queue[n]: [0..3] init 0; // idle, requesting, reject, using

avail: bool init true;

broken: bool init false;

enable: [0..2] init 0;

[fl?] -> (broken’=true);

[up?] -> (broken’=false);

[e!!] enable=1 -> (enable’=0);

[d!!] enable=2 -> (enable’=0);

[rq0??] queue[0]=0 & (broken | !avail) -> (queue[0]’=2);

[rq0??] queue[0]=0 & !broken & avail -> (queue[0]’=1);

[asg0!!] queue[0]=1 & !broken & avail -> (queue[0]’=3) & (avail’=false);

[rj0!!] queue[0]=2 -> (queue[0]’=1);

[rel0??] queue[0]=3 -> (queue[0]’=0) & (avail’=true)

& (enable’=2);

[acc0??] -> (enable’=1);

...

[rqn�1??] queue[n-1]=0 & (broken | !avail) -> (queue[n-1]’=2);

[rqn�1??] queue[n-1]=0 & !broken & avail -> (queue[n-1]’=1);

[asgn�1!!] queue[n-1]=1 & queue[n-2]=0 & ...

& queue[0]=0 & !broken & avail -> (queue[n-1]’=3) & (avail’=false);

[rjn�1!!] queue[n-1]=2 -> (queue[n-1]’=1);

[reln�1??] queue[n-1]=3 -> (queue[n-1]’=0) & (avail’=true)

& (enable’=2);

[accn�1??] -> (enable’=1);

endmodule

5

module SBE

fc, dfc, rc : clock;

inform : [0..2] init 0;

active : bool init false;

broken : [0..2] init 0;

[e??] !active -> (active’=true) & (fc’=);

[d??] active -> (active’=false) & (dfc’= );

[fl!] active & broken=0 @ fc -> (inform’=1) & (broken’=1);

[fl!] !active & broken=0 @ dfc -> (inform’=1) & (broken’=1);

[r??] -> (broken’=2) & (rc’=);

[up!] active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (fc’=);

[up!] !active & broken=2 @ rc -> (inform’=2) & (broken’=0) & (dfc’=);

[f!!] inform=1 -> (inform’=0);

[u!!] inform=2 -> (inform’=0);

endmodule

module MUX

queue[n]: [0..3] init 0; // idle, requesting, reject, using

avail: bool init true;

broken: bool init false;

enable: [0..2] init 0;

[fl?] -> (broken’=true);

[up?] -> (broken’=false);

[e!!] enable=1 -> (enable’=0);

[d!!] enable=2 -> (enable’=0);

[rq0??] queue[0]=0 & (broken | !avail) -> (queue[0]’=2);

[rq0??] queue[0]=0 & !broken & avail -> (queue[0]’=1);

[asg0!!] queue[0]=1 & !broken & avail -> (queue[0]’=3) & (avail’=false);

[rj0!!] queue[0]=2 -> (queue[0]’=1);

[rel0??] queue[0]=3 -> (queue[0]’=0) & (avail’=true)

& (enable’=2);

[acc0??] -> (enable’=1);

...

[rqn�1??] queue[n-1]=0 & (broken | !avail) -> (queue[n-1]’=2);

[rqn�1??] queue[n-1]=0 & !broken & avail -> (queue[n-1]’=1);

[asgn�1!!] queue[n-1]=1 & queue[n-2]=0 & ...

& queue[0]=0 & !broken & avail -> (queue[n-1]’=3) & (avail’=false);

[rjn�1!!] queue[n-1]=2 -> (queue[n-1]’=1);

[reln�1??] queue[n-1]=3 -> (queue[n-1]’=0) & (avail’=true)

& (enable’=2);

[accn�1??] -> (enable’=1);

endmodule
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module SPAREGATE

state: [0..4] init 0; // on main, request, wait, on spare, broken

inform: [0..2] init 0;

release: [-n..n] init 0;

idx: [1..n] init 1;

[fl0?] state=0 -> (state=1) & (idx=1);

[up0?] state=4 -> (state=0) & (inform=2);

[up0?] state=3 & idx=1 -> (state=0) & (idx=1) & (release=1);

...

[up0?] state=3 & idx=n -> (state=0) & (idx=1) & (release=n);

[fl1?] state=3 & idx=1 -> (release=1);

...

[fln?] state=3 & idx=n -> (release=n);

[rq1!!] state=1 & idx=1 -> (state=2);

...

[rqn!!] state=1 & idx=n -> (state=2);

[asg1??] state=0 | state=1 | state=3 -> (release=1);

[asg1??] state=2 & idx=1 -> (release=-1) & (state=3);

[asg1??] state=4 -> (release=-1) & (state=3)

& (idx=1) & (inform=2);

...

[asgn??] state=0 | state=1 | state=3 -> (release=n);

[asgn??] state=2 & idx=n -> (release=-n) & (state=3);

[asgn??] state=4 -> (release=-n) & (state=3)

& (idx=n) & (inform=2);

[rj1??] state=2 & idx=1 -> (idx=2) & (state=1);

[rj2??] state=2 & idx=2 -> (idx=3) & (state=1);

...

[rjn??] state=2 & idx=n -> (state=4) & (idx=1) & (inform=1);

[rel1!!] release=1 & !(state=3 & idx=1) -> (release= 0);

[rel1!!] release=1 & state=3 & idx=1 -> (release= 0) & (state=1) & (idx=1);

...

[reln!!] release=n & !(state=3 & idx=n) -> (release=0);

[reln!!] release=n & state=3 & idx=n -> (release= 0) & (state=1) & (idx=1);

[acc1!!] release=-1 -> (release= 0);

...

[accn!!] release=-n -> (release=0);

[f!!] inform = 1 -> (inform=0);

[u!!] inform = 2 -> (inform=0);

endmodule
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From RFT to IOSA+Urgency
Given a RFT T = (V, i, si, l) the semantic of T is defined by

[[T ]] = ||v2V [[v]]

where

[[v]] =

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

[[l(v)]](flv, upv, fv, uv, rv) if l(v) = (be, 0, µ, �)

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], ..., fi(v)[n�1], ui(v)[n�1]) if l(v) 2 {(and, n), (or, n)}

[[l(v)]](fv, uv, fi(v)[0], ui(v)[0], fi(v)[1], ui(v)[1]) if l(v) = (pand, 2)

[[l(v)]](fli(v)[0], upi(v)[0], ri(v)[0], ..., fli(v)[n�1], upi(v)[n�1], ri(v)[n�1]) if l(v) = (rbox, n)

[[l(v)]](flv, upv, fv, uv, rv, ev, dv, rq(si(v)[0],v), asg(v,si(v)[0]),

rel(si(v)[0],v), acc(si(v)[0],v), rj(v,si(v)[0]), .., rj(v,si(v)[n�1])) if l(v) = (sbe, n, µ, ⌫, �)

[[l(v)]](fv, uv, fli(v)[0], upi(v)[0], fli(v)[1], upi(v)[1], rq(v,i(v)[1]), asg(i(v)[1],v),

acc(v,i(v)[1]), rj(i(v)[1],v), rel(v,i(v)[1]), ..., rel(v,i(v)[n�1])) if l(v) = (sg, n)

8
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The encodings 
given before with 
proper relabeling



From RFT to IOSA+Urgency
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Good news 
everyone!!
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Abstract

Fault Tree Analysis (FTA) is a prominent technique in industrial and scientific risk

assessment. Repairable Fault Trees (RFT) enhance the classical
Fault Tree (FT) model by

introducing the possibility to describe complex dependent repairs of system components.

Usual frameworks for analyzing FTs such as BDD, SBDD, and Markov chains fail to assess

the desired properties over RFT complex models, either because these become too large,

or due to cyclic behaviour introduced by dependent repairs. Simulation is another way

to carry out this kind of analysis. In this paper we review the RFT model with Repair

Boxes as introduced by Daniele Codetta-Raiteri. We present compositional semantics for

this model in terms of Input/Output Stochastic Automata, which allows for the modelling

of events occurring according to general continuous distribution. Moreover,
we prove that

the semantics generates (weakly) deterministic models, hence suitable for discrete event

simulation, and prominently for rare event simulation using the FIG tool.

1 Introduction

Fault Tree Analysis is a prominent technique for dependability assessment of complex industrial

systems. Standard or Static
Fault

Trees
(SFTs [41]) are directed acyclic graphs whose leaves

are called Basic Events, and usually represent the failure of a physical system component. Each

leaf is equipped with a failure rate or discrete probability, indicating the frequency at which the

component breaks. The other FT nodes are called gates, and they model how basic components

failures combine to induce more complex system failures, until the failure of interest (the top

event of the tree) occurs. SFTs thus encode a logical formula. One of the most efficient analysis

techniques uses Binary Decision Diagrams (BDD) to represent the formula, and then perform

dependability studies using specialised
algorithms. This assumes the absence of stochastic

dependency among BEs.
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Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Reliability:                                             (transient) 

Availability:                                           (steady-state)

1� P(3TTLE)

E(¬TLE)

9

P(2T¬TLE)

E(¬TLE)

9
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ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.
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of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
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exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
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rbox defines the policy for serving the queue of failed BEs
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produces 3 outputs:
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2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
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Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
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Deriving the importance function from RFT 
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
8/18
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⌘

where ord = 1 if ~xv 2 {1, 4} and ord = �1 otherwise
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maxIv = max~x2S Iv(~x)
lcmv = lcm

�
maxIw

��w 2 chil(v)
 

~x 2 Nn
is the state of the RFT with n nodes

IBE(~x) = (BE is failed) ? 1 : 0 = ~xBE

IOR(~x) = maxw2chil(OR) Iw(~x)

IAND(~x) =
P

w2chil(AND) Iw(~x)
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Deriving the importance function from RFT 
(the structural way)Automatic RES: IFUNs for Fault Trees

BE 0 1

fail ≥ µ

repair ≥ “

x œ Nn � state of the FT with n nodes
IBE(x) = (BE is 0) ? 0 : 1 = xBE

x = [BE1, BE2, AND]

IAND(x) = xBE1 + xBE2 = IBE1(x) + IBE2(x)

x = [BE0, BE1, . . . , BEn, AND, VOT]

IVOT(x) = sum up to k failed children

IAND(x) = IBE0(x) + IVOT(x)

scale them equal!
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Abstract.
Dynamic fault trees (dft) are widely adopted in industry

to assess the
dependab

ility of safety-c
ritical equ

ipment. Since
many sys-

tems are too large to be studied
numerically, df

ts dependa
bility is often

analysed using Monte Carlo simulation. A
bottleneck

here is that many

simulation samples are required in the case of rare events, e.g
. in highly

reliable systems where components fail seldom
ly. Rare event simulation

(res) provi
des techni

ques to reduce the
number of sam

ples in the case o
f

rare events. W
e present a

res technique
based on importance splitting,

to study failures in
highly reliable dft

s. Whereas res
usually requires

meta-inform
ation from an expert, our method is fully automatic: By

cleverly exploiting
the fault tree structure

we extract the so-called im-

portance f
unction. W

e handle df
ts with Markovian and non-Markovian

failure and
repair dist

ributions—
for which

no numerical methods exi
st—

and show the efficiency of our app
roach on several ca

se studies.

1 Introduct
ion

Reliability
engineerin

g is an important field that provides methods and tools

to assess and mitigate the risks related to complex systems. Fault tree analy-

sis (fta) is a prominent technique
here. Its applicatio

n encompasses a large

number of indu
strial dom

ains that r
ange from

automotive and
aerospace

system

engineerin
g, to energy and telecommunication

systems and protocols.

Fault trees. A fault tree (ft) describes
how component failures occur and

propagate
through the system

, eventuall
y leading to

system failures. T
echnically,

an ft is a directed acyclic graph whose leaves model component failures, a
nd

whose other nodes (called gates) model failur
e propagatio

n. Using fault trees

one can compute dependabi
lity metrics to quantify how a system fares w.r.t.
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Deriving the importance function from RFT 
(via minimal cut sets)

❖ Cut set: a set of BE that triggers a TLE (Top Level Event) 

❖ It is minimal if removing any BE there is no TLE 

❖ Originally defined for static fault trees 

❖ We adapt them and extended to repairable fault trees but… 

❖ If no PAND and Spare gates, all MCS can be collected 

❖ If Spare gates but no PAND some MCS maybe lost for some configurations 

❖ We did not include PAND



Deriving the importance function from RFT 
(via minimal cut sets)

Name Expression Description

IMCS(~x) = max
mcs2M(4⇤)

(
X

v2mcs
~xb

) For each mcs of the tree, IMCS counts the number of bes that have failed in the

current state ~x. The importance IMCS(~x) of the current state of the tree is the

maximum among these counts.

IMCS-P(~x) = max
mcs2M<N (4⇤)

(
X

v2mcs
~xb

)
IMCS-P operates similarly to function IMCS above, but here the maximum ranges

over a pruned set of mcs, discarding cut sets with N or more bes.

IMCS-PR(~x) = max
mcs2M>�(4⇤)

(
X

v2mcs
~xb

) Similar to IMCS-P but using the failure rates for pruning, IMCS-PR considers only

mcs where the product of the failure rate of all bes is greater than �. Applicable

only to fts whose failure and dormancy distributions are Markovian.

IMCSN(~x) = max
mcs2M(4⇤)

(
lcm ·

X

v2mcs

~xb

|mcs|

) IMCSN is a normalised version of IMCS. The normalisation follows a similar pro-

cedure to the structured case, where lcm is the least common multiple of the

cardinality of every mcs in M(4⇤).
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Abstract.
Monte Carlo simulation is a common technique

to estimate

dependab
ility metrics for f

ault trees.
A bottleneck

in this techn
ique is the

number of sam
ples neede

d, especia
lly when the interes

ting event
s are rare

and occur with
low probabilit

y. Rare Ev
ent Simulation (res) reduc

es the

number of sam
ples when

analysing
rare events. Im

portance splitting is a

res method that spawns more simulation runs from promising system

states. How promising a state is, is
indicated

by an importance f
unction,

which concentra
tes the information that makes this method efficient.

Importance
functions

are given by domain and res experts. T
his hin-

ders re-ut
ilisation and involves d

ecisions en
tailing potential

human error.

Focusing
in (general)

fault trees, in this paper we automatically derive

importance
functions

based on the tree structure.
For this we exploit a

common fault tree concept, n
amely cut sets: the more elements from a

cut set ha
ve failed,

the higher
the importance.

We show that the c
ut-set-

derived importance f
unction is an easy-to-im

plement and simple concep
t,

that can nonethele
ss compete again

st another
(more involv

ed) autom
atic

importance function for res.

Keywords: Minimal cut sets
· Rare event simulation · Dynamic fault

trees · Importance splitting · F
ault tree analysis

1 Introduct
ion

Classical M
onte Carlo simulation (cmc) is a common technique

to evaluate

stochastic
models. Its

applicatio
ns range from systems biology,

climate models,

and social inte
raction, to

reliability
analysis, p

erformance evaluation
, network

security, a
nd many more.

By taking a large number of ran
dom samples, cmc estimates the metric of

interest, s
uch as the average package loss in a network. W

hile this technique

is very flexible in the stochastic
models it ca

n handle, as
well as th

e metrics it

can analyse, it
suffers from

a major drawb
ack: to get accura

te estimates, a large
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Building the Tool Chain

Analysis of non-Markovian repairable fault trees through rare event simulation 11

Importance function

Metrics     
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Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of

Fully Automatic!
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Repairable non-Markovian DFTs

Basic
element Fail time PDF Repair PDF Dormancy PDF

VOT:
BE-A lnor(4.37, 0.33) uni(0.4, 0.95)
BE-B wei(4.5, 0.0125) uni(0.4, 0.95)

DSPARE:
BE exp(0.07) uni(1.0, 2.0)
SBE exp(0.07) uni(1.0, 2.0) exp(0.035)

HECS:
SW exp(4.5◊10-12) uni(28.0, 56.0)
HW exp(1.0◊10-10) uni(28.0, 56.0)
MIi exp(5.0◊10-9) uni(21.0, 28.0)
Mj exp(6.0◊10-8) uni(21.0, 28.0)
Bk exp(8.7◊10-4) lnor(4.45, 0.24)
Pa exp(1.0◊10-3) lnor(4.45, 0.24)
PSb exp(1.5◊10-3) lnor(4.45, 0.24) dir(Œ)

FTPP:
NEi lnor(6.5, 0.5) nor(150.0, 50.0)
Bj exp(2.8◊10-2) nor(15.0, 3.0)

SBEk exp(2.8◊10-2) nor(15.0, 3.0) dir(Œ)
RC:

BEi exp(0.04) nor(2.0, 0.7)
SBEj exp(0.04) nor(2.0, 0.7) exp(0.5)

HVC:
BEi ray(1.999) uni(0.15, 0.45)
SBEj ray(1.999) uni(0.15, 0.45) erl(3.0, 0.25)

Abbrev: Distribution:
dir(x) Dirac(x)
exp(⁄) exponential(⁄)
erl(k, ⁄) Erlang(k, ⁄)
uni(a, b) uniform([a, b]R)
ray(‡) Rayleigh(‡)
wei(k, ⁄) Weibull(k, ⁄)
nor(µ, ‡) normal(µ, ‡)
lnor(µ, ‡) log-normal(µ, ‡)

10/18
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Fig. 7: CI precision of CMC vs. RESTART.
A column of plots indicates the impor-
tance function used for experimentation with
RESTART: structural (ISTR), minimal cut
sets (IMCS), or normalised MCS (IMCSN). A
row indicates the thresholds-building method
used with that function: sequential Monte
Carlo with global splitting 2 or 5, or Expected
Success (ES). Darker marks in a scatter plot
correspond to UNAVA experiments, for the
case studies VOT, RC, RWC, HECS, repre-
sented with an A superscript in the legend of
the plots (VOTA . . .). Lighter marks correspond
to UNREL103 experiments, for the case stud-
ies DSPARE, HVC, RWC, FTPP, HECS, rep-
resented with an R superscript (DSPARER . . .).
A mark above the solid diagonal line means
that RESTART built a narrower CI than
CMC in the same simulation time. Dotted di-
agonal lines indicate 10⇥ narrower CIs. Both
axes are in logarithmic scale.

Fig. 7 shows that in general and as expected, RESTART
performs at least as well as CMC to estimate the depend-
ability metrics, with an efficiency gap that increases as the
RFT gains on resilience. However, this relative gain con-
cerns UNAVA studies, which are the first-row models in the
legend of Fig. 7, that have an A superscript and blue-tainted
colour marks. For UNREL1000 RESTART fails to surpass
CMC significantly: we will show next that Fixed Effort is a
much better ISPLIT algorithm in these cases.

When comparing importance functions, Fig. 7 shows a
tendency that favours ISTR, evidenced in (each row of) plots
by the higher mass of marks above the diagonal that occur
on the column corresponding to ISTR. Nevertheless, there
are two outliers in this trend that we discuss here.

First, RESTART with ISTR and Expected Success failed
to build any CI for UNAVA of the RFT VOT3 (mark on
the right-most bar of the bottom-left scatter plot). Studying
the output logs of ��� it was found that Expected Success
failed in the selection of a threshold at importance value 44
(out of 70). Although ��� has recovery heuristics for such
situations, the result for this case was the selection of a split-
ting value = 2234. This is in contrast to the values observed
for all other experiments, that seldom go over 200 and never
over 400. Therefore, an oversampling occurred in the Sk re-
gion built above such threshold, which produced a bottle-

neck that could not be overcome in the 30 min of runtime
allowed for this experiment, producing the lack of results.

Second, RESTART with ISTR and Sequential Monte
Carlo for global splitting 5 failed to build any CI for HVC7
when studying UNREL1000. This is less surprising given the
lower efficiency of RESTART to study unreliability in our
experiments, and the nature of this case study that we dis-
cuss next when analysing Fixed Effort. Still we studied the
output logs of ���, and in this case found an undersampling
caused by thresholds set too far apart by Sequential Monte
Carlo. This is a known issue for this algorithm, that uses a
single splitting value for all thresholds.

Thus, both outliers have roots on a combination of the
algorithms to build thresholds, and their current implemen-
tation in ���. The better performance of RESTART with
ISTR, for the rest of the instances when compared to the
columns of IMCS and IMCSN, tilt the scale in favour of the
structural function ISTR defined in Sec. 4.1.

Fig. 8 shows our experimental results for RESTART-P2,
which essentially delays the truncation of simulation retrials
for 2 threshold levels. In comparison RESTART can be de-
fined as RESTART-P0, which truncates a retrial as soon as
it visits a state whose importance is below the level of cre-
ation of the retrial. Empirical and theoretical studies have
shown RESTART-P1 and RESTART-P2 to be more effi-
cient than RESTART in the analysis of queueing systems
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Fig. 8: CI precision of CMC vs. RESTART-P2.
A column of plots indicates the impor-
tance function used for experimentation with
RESTART-P2: structural (ISTR), minimal cut
sets (IMCS), or normalised MCS (IMCSN). A
row indicates the thresholds-building method
used with that function: sequential Monte
Carlo with global splitting 2 or 5, or Expected
Success (ES). These are UNAVA experiments
on the parameterised case studies VOT, RC,
RWC, HECS. A mark above the solid diago-
nal line means that RESTART-P2 built a nar-
rower CI than CMC in the same simulation
time. Dotted diagonal lines indicate 10⇥ nar-
rower CIs. Both axes are in logarithmic scale.

[61, 17]. Here we experiment with the latter, within the cur-
rent capabilities of ��� (UNAVA properties only), to further
validate our previous discussion for ISTR.

For that function, Fig. 8 shows a similar trend than Fig. 7,
with the following difference. When thresholds are selected
with Sequential Monte Carlo for global splitting 2 (upper-
left scatter plots in the figures), RESTART-P2 managed to
build narrower CIs than RESTART, most notably for the
RWCp case studies. The opposite effect is observed (but to
a lower degree) when thresholds are selected with the Ex-
pected Success algorithm.

However interesting, this does not change the fact that
for any row of scatter plots, those produced with the ISTR
function in Fig. 8 generally produced the narrower CIs. Also,
being more sensitive than RESTART to the choice of thresh-
olds via Expected Success, RESTART-P2 puts in evidence
that IMCS can result in ISPLIT algorithms that perform
worse than CMC, e.g. the lower-central scatter plot of Fig. 8.
Thus, all in all these results increase the evidence in favour
of ISTR as the most efficient of the three importance func-
tions tested, at least for steady-state analysis.

Finally, Fig. 9 shows our experimental results when us-
ing Fixed Effort to study UNREL1000. Something that jumps
to sight is the high number of failures of the algorithm for
all importance functions, but exclusively for the HVCp case
studies (plus some RWCp), and paradoxically for the less
rare instances of those models.

To understand this we study the structure of these RFTs,
whose smallest instance (HVC4) require 6 basic elements to
fail in order to trigger a top event. This is not too favourable
for ISPLIT, specially considering the fast repair times (uni-
formly distributed in [0.15,0.45]) with respect to failure times
(Erlang(3,0.25) and Rayleigh(1.999)). Still this did not stop
RESTART to at least match the performance of CMC.

In general, the issue with Fixed Effort is that it is more
structured, and thus more brittle than RESTART (and CMC),
as shown here. By conditioning the success of the whole run
on the chained success on every Sk region, a single failed
step produces a 0 estimate and starts all estimations anew.
This can be very efficient—see e.g. the CIs ⇡ 100⇥ nar-
rower than CMC for HECS5—as it avoids to waste effort in
unpromissing simulations. In HVC however, where repair
times are extremely faster than failures, such reset condition
happens almost always before the top event of the tree. This
does not affect RESTART and CMC so badly, which con-
tinue simulations as before. But for Fixed Effort and given
the short runtimes allowed for the smallest instances—HVC4
and HVC5 are truncated after 90 and 300 s respectively—it
results in null estimates as observed in Fig. 9. This is related
to the fact that none of our importance functions considers
time—the value of IOSA clocks—as a factor for splitting.
We touch upon this subject in the conclusions.

For the rest of the cases, where redundancy (rather than
fail vs. repair time) is the root factor for resilience, Fig. 9
shows an excellent performance of Fixed Effort to estimate
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Fig. 9: CI precision of CMC vs. Fixed Effort.
A column of plots indicates the importance
function used for experimentation with Fixed
Effort: structural (ISTR), minimal cut sets
(IMCS), or normalised MCS (IMCSN). A row
indicates the thresholds-building method used
with that function: sequential Monte Carlo
with global effort 8 or 16, or Expected Suc-
cess (ES). These are UNREL1000 experiments
on the parameterised case studies DSPARE,
HVC, RWC, FTPP, HECS. A mark above the
solid diagonal line means that Fixed Effort
built a narrower CI than CMC in the same
simulation time. Dotted diagonal lines indi-
cate 10⇥ narrower CIs. Both axes are in loga-
rithmic scale.

unreliability. The dominance of ISTR is not as clear here as
it is for UNAVA studies via RESTART and RESTART-P2;
however, neither of the other two functions is clearly su-
perior. Consider e.g. DSPAREp, where ISTR shows consis-
tent better results than IMCS and IMCSN; and also the best-
performance cases, namely HECSp, where all functions per-
form similarly for the different ways of choosing thresholds.

Therefore, our general observations remain favourable
for ISTR, as the importance function that produces the most
efficient ISPLIT implementations in general scenarios.

6.3 Experimental results: bar plots

Unlike the scatter plots in Figs. 7 to 9, the bar plots in this
section show the variance of the CI widths produced by
each algorithm. These are plotted as whiskers on top of the
bars, where the height of a bar indicates the width of the
CI achieved by the corresponding instance. Numbers in the
range [0,10] at the base of the bars tell how many of the
10 experimental repetitions managed to build a not-null CI.
The label “pp ⇡ µ ±s2” at the right of each plot shows the
robust mean and variance estimated for the corresponding
dependability metric, computed from the complete series of
runs (190 independent experiments per case study).

Steady-state studies for RC. Fig. 10 shows the widths of the
CIs produced for unavailability estimation on the RCp case

studies. The plots illustrate how ISTR performs better than
both IMCS and IMCSN in every one of the ISPLIT vari-
ants tested. This difference between the RES implementa-
tions resulting from ISTR and the other functions increases
for lower values of the steady-state property, and the vari-
ance of these results remains among the lowest of all cases.
Moreover, here ISTR is the only function with which all
RESTART algorithms maintain or increase the efficiency
gap that sets them apart from CMC.

Transient studies for DSPARE. Fig. 11 shows the widths of
the CIs produced for unreliability estimation on the case
studies DSPAREp. Once again we see ISTR outperforming
the other two functions in general, with an efficiency gap
and accuracy that increases as the event becomes more rare.
However and as discussed in Sec. 6.2, in this case this only
happens with Fixed Effort variants, since RESTART fails
to perform better than CMC. Yet the difference between the
Fixed Effort implementations and the rest (specially with the
ISTR function) is remarkable, and in particular Fixed Effort
is the only algorithm capable of producing consistently use-
ful CIs (i.e. that exclude 0).

7 Related work

Most work on DFT analysis assumes discrete [57, 4] or
exponentially distributed [23, 40] components failure. Fur-
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Fig. 10: CI widths for UNAVA studies of RCp.
The height of the bars indicates the width of (the robust
mean of) the CI width, achieved with 10 runs of Crude
Monte Carlo (CMC), RESTART with global splitting 2
(RES-2), . . . , or RESTART-P2 with Expected Success
(RES2-ES). Lower is better. The whiskers on top of the bars
indicate the standard deviation of these widths. The bars are
clustered per importance function used with RESTART and
RESTART-P2: ISTR, IMCS, and IMCSN. The plots show
experiments on RC3 (top plot) through RC6 (bottom plot).

thermore, components repair is seldom studied in conjunc-
tion with dynamic gates [7, 4, 54, 40, 44]. In this work we
addressed repairable DFTs, whose failure and repair times
can follow arbitrary PDFs. More in detail, RFTs were first
formally introduced as stochastic Petri nets in [7, 20]. Our
work stands on [45, 46], which reviews [20] in the context
of stochastic automata with arbitrary PDFs. In particular
we also address non-Markovian continuous distributions: in
Sec. 6 we experimented with exponential, Erlang, uniform,
Rayleigh, Weibull, normal, and log-normal PDFs. Further-
more and for the first time (with the exclusion of [19, 12]
on which this work stands), we consider the application of
[20, 45] to study rare events.

Much effort in RES has been dedicated to study highly
reliable systems, deploying either importance splitting or
sampling. Typically, importance sampling can be used when

Fig. 11: CI widths for UNREL1000 studies of DSPAREp.
The height of the bars indicates the width of (the ro-
bust mean of) the CI width, achieved with 10 runs of
Crude Monte Carlo (CMC), RESTART with global split-
ting 2 (RES-2), . . . , or Fixed Effort with Expected Success
(FE-ES). Lower is better. The whiskers on top of the bars
indicate the standard deviation of these widths. The bars are
clustered per importance function used with RESTART and
Fixed Effort: ISTR, IMCS, and IMCSN. The plots show ex-
periments on RC3 (top plot) through RC6 (bottom plot).

the system takes a particular shape. For instance, a common
assumption is that all failure (and repair) times are exponen-
tially distributed with parameters l i, for some l 2 R and
i 2 N>0. In these cases, a favourable change of measure can
be computed analytically [29, 33, 47, 48, 65, 53].

In contrast, when events occur at times following less-
structured or even arbitrary distributions, importance split-
ting is more easily applicable. As long as a full system fail-
ure can be broken down into several smaller failures, an im-
portance splitting method can be devised. Of course, its ef-
ficiency relies heavily on the choice of importance function.
This choice is typically done ad hoc for the model under
study [58, 43, 60]. In that sense [35, 36, 14, 15] are among
the first to attempt a heuristic derivation of all parameters re-
quired to implement splitting, for which they exploit formal
specifications of the model and property query.

Here we extended [14, 15, 10] in two different ways.
One is the natural way in which we use the structure of
the fault tree to define composition operands. With these
operands we aggregate the automatically-computed local im-
portance functions of the tree nodes. This aggregation re-
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Fig. 10: CI widths for UNAVA studies of RCp.
The height of the bars indicates the width of (the robust
mean of) the CI width, achieved with 10 runs of Crude
Monte Carlo (CMC), RESTART with global splitting 2
(RES-2), . . . , or RESTART-P2 with Expected Success
(RES2-ES). Lower is better. The whiskers on top of the bars
indicate the standard deviation of these widths. The bars are
clustered per importance function used with RESTART and
RESTART-P2: ISTR, IMCS, and IMCSN. The plots show
experiments on RC3 (top plot) through RC6 (bottom plot).

thermore, components repair is seldom studied in conjunc-
tion with dynamic gates [7, 4, 54, 40, 44]. In this work we
addressed repairable DFTs, whose failure and repair times
can follow arbitrary PDFs. More in detail, RFTs were first
formally introduced as stochastic Petri nets in [7, 20]. Our
work stands on [45, 46], which reviews [20] in the context
of stochastic automata with arbitrary PDFs. In particular
we also address non-Markovian continuous distributions: in
Sec. 6 we experimented with exponential, Erlang, uniform,
Rayleigh, Weibull, normal, and log-normal PDFs. Further-
more and for the first time (with the exclusion of [19, 12]
on which this work stands), we consider the application of
[20, 45] to study rare events.

Much effort in RES has been dedicated to study highly
reliable systems, deploying either importance splitting or
sampling. Typically, importance sampling can be used when
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Fig. 11: CI widths for UNREL1000 studies of DSPAREp.
The height of the bars indicates the width of (the ro-
bust mean of) the CI width, achieved with 10 runs of
Crude Monte Carlo (CMC), RESTART with global split-
ting 2 (RES-2), . . . , or Fixed Effort with Expected Success
(FE-ES). Lower is better. The whiskers on top of the bars
indicate the standard deviation of these widths. The bars are
clustered per importance function used with RESTART and
Fixed Effort: ISTR, IMCS, and IMCSN. The plots show ex-
periments on RC3 (top plot) through RC6 (bottom plot).

the system takes a particular shape. For instance, a common
assumption is that all failure (and repair) times are exponen-
tially distributed with parameters l i, for some l 2 R and
i 2 N>0. In these cases, a favourable change of measure can
be computed analytically [29, 33, 47, 48, 65, 53].

In contrast, when events occur at times following less-
structured or even arbitrary distributions, importance split-
ting is more easily applicable. As long as a full system fail-
ure can be broken down into several smaller failures, an im-
portance splitting method can be devised. Of course, its ef-
ficiency relies heavily on the choice of importance function.
This choice is typically done ad hoc for the model under
study [58, 43, 60]. In that sense [35, 36, 14, 15] are among
the first to attempt a heuristic derivation of all parameters re-
quired to implement splitting, for which they exploit formal
specifications of the model and property query.

Here we extended [14, 15, 10] in two different ways.
One is the natural way in which we use the structure of
the fault tree to define composition operands. With these
operands we aggregate the automatically-computed local im-
portance functions of the tree nodes. This aggregation re-
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Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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Fig. 6: Toolchain: from Fault Tree specification to the estimation of rare dependability metrics

1 toplevel "Gate2";
2 "Gate2" spare "BE_C" "BE_D";
3 "BE_C" fail~rayleigh(6.0E-2);
4 "BE_D" fail~exponential(1.11E-3) dorm~erlang(3,9);

Code 1: Spare with independent dormancy PDF

5.1 The Kepler language

Standard Galileo supports three PDF families, namely ex-
ponential, Weibull, and log-normal. Kepler extends Galileo
with arbitrary failure distributions—we introduce its full syn-
tax in Code 5 on page 20. The current definition of Ke-
pler supports a particular set of distributions but it can be
straightforwardly extended to support others.

Kepler is a declarative language. Each line describes a
node in the tree by its name, type, some extra characteristics
and the names of its children. When declaring a (spare) basic
element, we use the keyword fail to precede the definition
of its failure distribution, repair for the repair distribution
and dorm for its dormant failure distribution. The presence
of a dormancy failure distribution is the only distinguishable
factor between the definition of a BE and the definition of a
SBE. SPAREs are defined by the keyword spare.

Code 1 provides an example of a SPARE gate (Gate2)
with a primary basic element (BE_C) and a spare one (BE_D).
Their respective failure PDFs are Rayleigh (s = 0.06) and
exponential (l = 0.00111). Notice that, unlike Galileo, we
allow the dormancy PDF of an SBE to be independent of
its failure PDF. Thus we define the dormancy of BE_D as an
Erlang(k = 3,l = 9).

Furthermore, Kepler supports the use of (multiple) re-
pair boxes with the keywords rbox. The first parameter after
rbox defines the policy for serving the queue of failed BEs
and SBEs. Currently, only non-preemptive priority policies
are provided through the keyword prio. Other policies are
proposed in [45]. For example, in Code 2, all BEs are re-
pairable, with repair time uniformly distributed. Line 6 of
the code defines the RBOX of the system, which handles
one repair at a time with the priority given by the order of
the list. Thus, for instance, if BE_E and BE_F fail while BE_G
is being repaired, BE_E will be chosen next.

1 toplevel "Gate3";
2 "Gate3" and "BE_E" "BE_F" "BE_G";
3 "BE_E" fail~exponential(6.0E-5) repair~uniform(8,24);
4 "BE_F" fail~exponential(7.0E-5) repair~uniform(8,24);
5 "BE_G" fail~exponential(6.0E-5) repair~uniform(8,12);
6 "RB1" rbox prio "BE_E" "BE_F" "BE_G";

Code 2: Simple Kepler tree with a repair box

5.2 Compiling Kepler to IOSA

We developed a Python textual converter that takes as in-
put an RFT modelled in Kepler. The converter automatically
produces 3 outputs:

1. the IOSA model of the input RFT,
2. a property specification for evaluating the unreliability

or unavailability of the tree, and
3. the importance functions for the tree.

The translation of a Kepler model to a IOSA specification
follows the semantics of RFTs defined in [45, 46]. As an
example, Code 3 shows the IOSA module corresponding to
the basic element BE_E in Code 2.

The syntax of IOSA is close to that of PRISM [41] but
includes primitives to handle stochastic timing. In IOSA,
systems are modelled as a set of interacting processes which
communicate by synchronising equally named transitions.
Transitions are split into input and output. Output transitions
are generative while input are reactive and only take place
by synchronising with output transitions of other modules.
IOSA presents a discrete-event continuous-time semantics.
All clock variables in a IOSA model count down at the
same rate and can be set to values sampled from their asso-
ciated probability distribution. An example of setting clock
BE_E_rc is seen at the end of line 10 in Code 3. When a
clock variable expires (i.e. reaches zero), it may enable an
output transition. We indicate this by preceding the clock
name with the symbol @ in the guard of a transition—see,
for example, expression @ BE_E_fc at line 6 of Code 3.

The unreliability and unavailability queries are encoded
as variants of PCTL [32] and CSL [2]. To do so, the script
automatically identifies the state characterisation of the top-
level event. This state condition depends solely on the se-
mantic model of the top-level gate. For instance, Code 4
shows the unavailability property generated for the RFT of
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