Analysis of Highly Reliable Repairable Fault Trees via Simulation

Pedro R. D'Argenio
Universidad Nacional de Córdoba - CONICET (AR)

Joint work with Carlos Budde, Raúl Monti, \& Mariëlle Stoelinga

Fault Tolerant Systems: You know the drill

Failover mechanisms
Voting mechanisms
Spare parts
Failsafe mechanisms
Contingency plans
...etc.

Fault Tolerant Systems: You know the drill

Failover mechanisms
Voting mechanisms
Spare parts
Failsafe mechanisms
Contingency plans
...etc.

Fault Tolerant Systems: You know the drill

Fault Tree Analysis

Dynamic Behaviour

Elements can be repaired

Arbitrary Distributions

(Static) Fault Trees

Boolean semantics

Dynamic Fault Trees

Have a notion of state

Repairable Fault Trees

Have a notion of state Includes cyclic behaviour

RFT are described in KEPLER (an extension of GALILEO)

```
toplevel "FAIL";
"FAIL" and "S1" "S2";
"S1" or "SS1" "PS1";
"S2" or "SS2" "PS2";
"SS1" pand "SW1" "M1";
"PS1" sg "M1" "AUX";
"SS2" pand "SW2" "M2";
"PS2" sg "M2" "AUX";
"M1" exponential(0.01) uniform(1,5);
"M2" exponential(0.01) uniform(1,5);
"AUX" exponential(0.01) exponential(0.0025) uniform(1,5);
"SW1" exponential(0.003) uniform(1,2);
"SW2" exponential(0.003) uniform(1,2);
"RBOX" priority_rbox "M1" "M2" "SW1" "SW2" "AUX";
```


Semantics of RFT

Arbitrary Distributions

Large Systems

Semantics of RFT

Arbitrary Distributions

Excludes
Markov Chains

Large Systems

Semantics of RFT

Arbitrary Distributions

Excludes
Markov Chains

Requires
Compositionality

Large Systems

Semantics of RFT

Arbitrary Distributions

Excludes
Markov Chains

Requires
Compositionality

Input/Output Stochastic Automata with Urgency

Large Systems

IOSA + Urgency

$$
\left(\mathcal{S}, \mathcal{A}, \mathcal{C}, \rightarrow, C_{0}, s_{0}\right)
$$

- \mathcal{S} is a set of states
- \mathcal{A} is a set of labels $\left\{\begin{array}{l}\mathcal{A}=\mathcal{A}^{\mathrm{i}} \uplus \mathcal{A}^{\circ} \\ \mathcal{A}^{\mathrm{u}} \subseteq \mathcal{A}\end{array}\right.$

- \mathcal{C} is a set of clocks and each $x \in \mathcal{C}$ has an asociated CDF μ_{x}
- $\rightarrow \subseteq \mathcal{S} \times \mathcal{C} \times \mathcal{A} \times \mathcal{C} \times S$

IOSA + Urgency

$$
\left(\mathcal{S}, \mathcal{A}, \mathcal{C}, \rightarrow, C_{0}, s_{0}\right)
$$

- \mathcal{S} is a set of states
- \mathcal{A} is a set of labels $\left\{\begin{array}{l}\mathcal{A}=\mathcal{A}^{i} \uplus \mathcal{A}^{0} \\ \mathcal{A}^{\mathrm{u}} \subseteq \mathcal{A}\end{array}\right.$

- \mathcal{C} is a set of clocks and each $x \in \mathcal{C}$ has an asociated CDF μ_{x}

$$
\frac{s_{1} \xrightarrow{\frac{C, a, C^{\prime}}{\longrightarrow}} 1 s_{1}^{\prime}}{s_{1}\left\|s_{2} \xrightarrow{C, a, C^{\prime}} s_{1}^{\prime}\right\| s_{2}} a \in\left(\mathcal{A}_{1} \backslash \mathcal{A}_{2}\right)
$$

- $\rightarrow \subseteq \mathcal{S} \times \mathcal{C} \times \mathcal{A} \times \mathcal{C} \times S$
$\xrightarrow[{s_{1}\left\|s_{2} \xrightarrow{s_{1} \cup C_{2}, a, C_{1}^{\prime} \cup C_{2}^{\prime}}{ }^{C_{1}, a, C_{1}^{\prime}} s_{1}^{\prime}\right\| s_{2}^{\prime}}]{{ }_{2}^{\prime} \quad s_{2} \xrightarrow{C_{2}, a, C_{2}^{\prime}} s_{2}^{\prime}} a \in\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right)$
provided $\left\{\begin{array}{l}\mathcal{A}_{1}^{\circ} \cap \mathcal{A}_{2}^{\circ}=\varnothing \\ \mathcal{C}_{1} \cap \mathcal{C}_{2}=\varnothing \\ \mathcal{A}_{1} \cap \mathcal{A}_{2}^{\mathrm{u}}=\mathcal{A}_{2} \cap \mathcal{A}_{1}^{\mathrm{u}}\end{array}\right.$

IOSA + Urgency

Analysis through simulation

$$
\left(\mathcal{S}, \mathcal{A}, \mathcal{C}, \rightarrow, C_{0}, s_{0}\right)
$$

- \mathcal{S} is a set of states
- \mathcal{A} is a set of labels $\left\{\begin{array}{l}\mathcal{A}=\mathcal{A}^{i} \uplus \mathcal{A}^{0} \\ \mathcal{A}^{\mathrm{u}} \subseteq \mathcal{A}\end{array}\right.$

- \mathcal{C} is a set of clocks and each $x \in \mathcal{C}$ has an asociated CDF μ_{x}

$$
\frac{s_{1} \xrightarrow{C, a, C^{\prime}} 1 s_{1}^{\prime}}{s_{1}\left\|s_{2} \xrightarrow{C, a, C^{\prime}} s_{1}^{\prime}\right\| s_{2}} a \in\left(\mathcal{A}_{1} \backslash \mathcal{A}_{2}\right)
$$

- $\rightarrow \subseteq \mathcal{S} \times \mathcal{C} \times \mathcal{A} \times \mathcal{C} \times S$

$$
\frac{s_{1} \xrightarrow{C_{1}, a, C_{1}^{\prime}}}{1} 1 s_{1}^{\prime} \quad s_{2} \xrightarrow{C_{2}, a, C_{2}^{\prime}}{ }_{2} s_{2}^{\prime} s_{1} \| s_{2} \xrightarrow{C_{1} \cup C_{2}, a, C_{1}^{\prime} \cup C_{2}^{\prime}} s_{1}^{\prime} \quad a \in\left(\mathcal{A}_{1} \cap \mathcal{A}_{2}\right)
$$

$\left\{\begin{array}{l}\mathcal{A}_{1}^{\circ} \cap \mathcal{A}_{2}^{\circ}=\varnothing \\ \mathcal{C}_{1} \cap \mathcal{C}_{2}=\varnothing \\ \mathcal{A}_{1} \cap \mathcal{A}_{2}^{\mathrm{u}}=\mathcal{A}_{2} \cap \mathcal{A}_{1}^{\mathrm{u}}\end{array}\right.$

IOSA: weak determinism

An IOSA should satisfy:
(a) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{\text {u }}$, then $C=\varnothing$.
(b) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{\circ} \backslash \mathcal{A}^{\mathrm{u}}$, then C is a singleton set.
(c) If $s \xrightarrow{\{x\}, a_{1}, C_{1}} s_{1}$ and $s \xrightarrow{\{x\}, a_{2}, C_{2}} s_{2}$ then $a_{1}=a_{2}, C_{1}=C_{2}$ and $s_{1}=s_{2}$.
(d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\varnothing, a, C} s^{\prime}$.
(e) For every $a \in \mathcal{A}^{\mathrm{i}}$, if $s \xrightarrow{\varnothing, a, C_{1}^{\prime}} s_{1}$ and $s \xrightarrow{\varnothing, a, C_{2}^{\prime}} s_{2}, C_{1}^{\prime}=C_{2}^{\prime}$ and $s_{1}=s_{2}$.
(f) There exists a function active: $\mathcal{S} \rightarrow 2^{\mathcal{C}}$ such that:
(i) $\operatorname{active}\left(s_{0}\right) \subseteq C_{0}$,
(ii) enabling $(s) \subseteq \operatorname{active}(s)$,
(iii) if s is stable, active $(s)=\operatorname{enabling}(s)$, and
(iv) if $t \xrightarrow{C, a, C^{\prime}} s$ then active $(s) \subseteq(\operatorname{active}(t) \backslash C) \cup C^{\prime}$.

IOSA: weak determinism

An IOSA should satisfy:
(a) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{\text {u }}$, then $C=\varnothing$.
(b) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{\circ} \backslash \mathcal{A}^{\text {u }}$, then C is a singleton set.
(c) If $s \xrightarrow{\{x\}, a_{1}, C_{1}} s_{1}$ and $s \xrightarrow{\{x\}, a_{2}, C_{2}} s_{2}$ then $a_{1}=a_{2}, C_{1}=C_{2}$ and $s_{1}=s_{2}$.

Input enabledness
(d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\varnothing, a, C} s^{\prime}$.
(e) For every $a \in \mathcal{A}^{\mathrm{i}}$, if $s \xrightarrow{\varnothing, a, C_{1}^{\prime}} s_{1}$ and $s \xrightarrow{\varnothing, a, C_{2}^{\prime}} s_{2}, C_{1}^{\prime}=C_{2}^{\prime}$ and $s_{1}=s_{2}$.
(f) There exists a function active: $\mathcal{S} \rightarrow 2^{\mathcal{C}}$ such that:
(i) $\operatorname{active}\left(s_{0}\right) \subseteq C_{0}$,
(ii) enabling $(s) \subseteq \operatorname{active}(s)$,
(iii) if s is stable, active $(s)=$ enabling (s), and
(iv) if $t \xrightarrow{C, a, C^{\prime}} s$ then active $(s) \subseteq(\operatorname{active}(t) \backslash C) \cup C^{\prime}$.

IOSA: weak determinism

An IOSA should satisfy:
(a) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{\text {u }}$, then $C=\varnothing$.
(b) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{\circ} \backslash \mathcal{A}^{\text {u }}$, then C is a singleton set.
(c) If $s \xrightarrow{\{x\}, a_{1}, C_{1}} s_{1}$ and $s \xrightarrow{\{x\}, a_{2}, C_{2}} s_{2}$ then $a_{1}=a_{2}, C_{1}=C_{2}$ and $s_{1}=s_{2}$.

Input enabledness
(d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\varnothing, a, C} s^{\prime}$.
(e) For every $a \in \mathcal{A}^{\mathrm{i}}$, if $s \xrightarrow{\varnothing, a, C_{1}^{\prime}} s_{1}$ and $s \xrightarrow{\varnothing, a, C_{2}^{\prime}} s_{2}, C_{1}^{\prime}=C_{2}^{\prime}$ and $s_{1}=s_{2}$.
(f) There exists a function active : $\mathcal{S} \rightarrow 2^{\mathcal{C}}$ such that:

Input and urgent determinism
(i) $\operatorname{active}\left(s_{0}\right) \subseteq C_{0}$,
(ii) enabling $(s) \subseteq \operatorname{active}(s)$,
(iii) if s is stable, active $(s)=\operatorname{enabling}(s)$, and
(iv) if $t \xrightarrow{C, a, C^{\prime}} s$ then active $(s) \subseteq(\operatorname{active}(t) \backslash C) \cup C^{\prime}$.

IOSA: weak determinism

An IOSA should satisfy:
(a) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{\text {u }}$, then $C=\varnothing$.
(b) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{\circ} \backslash \mathcal{A}^{\text {u }}$, then C is a singleton set.
(c) If $s \xrightarrow{\{x\}, a_{1}, C_{1}} s_{1}$ and $s \xrightarrow{\{x\}, a_{2}, C_{2}} s_{2}$ then $a_{1}=a_{2}, C_{1}=C_{2}$ and $s_{1}=s_{2}$.

Output determinism (non-urgent)

Input enabledness
(d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\varnothing, a, C} s^{\prime}$.
(e) For every $a \in \mathcal{A}^{\mathrm{i}}$, if $s \xrightarrow{\varnothing, a, C_{1}^{\prime}} s_{1}$ and $s \xrightarrow{\varnothing, a, C_{2}^{\prime}} s_{2}, C_{1}^{\prime}=C_{2}^{\prime}$ and $s_{1}=s_{2}$.
(f) There exists a function active : $\mathcal{S} \rightarrow 2^{\mathcal{C}}$ such that:

Input and urgent determinism
(i) $\operatorname{active}\left(s_{0}\right) \subseteq C_{0}$,
(ii) enabling $(s) \subseteq \operatorname{active}(s)$,
(iii) if s is stable, active $(s)=\operatorname{enabling}(s)$, and
(iv) if $t \xrightarrow{C, a, C^{\prime}} s$ then active $(s) \subseteq(\operatorname{active}(t) \backslash C) \cup C^{\prime}$.

IOSA: weak determinism

An IOSA should satisfy:
(a) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{\mathrm{u}}$, then $C=\varnothing$.
(b) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{\circ} \backslash \mathcal{A}^{\mathrm{u}}$, then C is a singleton set.
(c) If $s \xrightarrow{\{x\}, a_{1}, C_{1}} s_{1}$ and $s \xrightarrow{\{x\}, a_{2}, C_{2}} s_{2}$ then $a_{1}=a_{2}, C_{1}=C_{2}$ and $s_{1}=s_{2}$.

Output determinism (non-urgent)
(d) For every $a \in \mathcal{A}^{i}$ and state s, there exists a transition $s \xrightarrow{\varnothing, a, C} s^{\prime}$.
(e) For every $a \in \mathcal{A}^{\mathrm{i}}$, if $s \xrightarrow{\varnothing, a, C_{1}^{\prime}} s_{1}$ and $s \xrightarrow{\varnothing, a, C_{2}^{\prime}} s_{2}, C_{1}^{\prime}=C_{2}^{\prime}$ and $s_{1}=s_{2}$.
(f) There exists a function active: $\mathcal{S} \rightarrow 2^{\mathcal{C}}$ such that:

Input and urgent determinism
(i) $\operatorname{active}\left(s_{0}\right) \subseteq C_{0}$,
(ii) enabling $(s) \subseteq \operatorname{active}(s)$,
(iii) if s is stable, active $(s)=\operatorname{enabling}(s)$, and
(iv) if $t \xrightarrow{C, a, C^{\prime}} s$ then active $(s) \subseteq(\operatorname{active}(t) \backslash C) \cup C^{\prime}$.

The rest ensures that clocks do not introduce non determinism

IOSA: weak determinism

An IOSA should satisfy:
(a) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{i} \cup \mathcal{A}^{\text {u }}$, then $C=\varnothing$.
(b) If $s \xrightarrow{C, a, C^{\prime}} s^{\prime}$ and $a \in \mathcal{A}^{\circ} \backslash \mathcal{A}^{\text {u }}$, then C is a singleton set.

Output determinism (non-urgent)

Input enabledness
(d) For ev $\begin{gathered}\text { Ensures that } \\ \text { non-urgent behaviour is a transition } s \xrightarrow{\varnothing, a, C} s^{\prime} \text {. }\end{gathered}$
(e) For evel, deterministic $\xrightarrow{, a, C_{2}^{\prime}} s_{2}, C_{1}^{\prime}=C_{2}^{\prime}$ and $s_{1}=s_{2}$.
(f) There exists a fur... $\quad \sim \rightarrow 2^{\mathcal{C}}$ such that:

Input and urgent determinism
(i) $\operatorname{active}\left(s_{0}\right) \subseteq C_{0}$,
(ii) enabling $(s) \subseteq \operatorname{active}(s)$,
(iii) if s is stable, active $(s)=\operatorname{enabling}(s)$, and
(iv) if $t \xrightarrow{C, a, C^{\prime}} s$ then active $(s) \subseteq(\operatorname{active}(t) \backslash C) \cup C^{\prime}$.

The rest ensures that clocks do not introduce non determinism

IOSA: weak determinism

Definition an A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow welli deffined in I

IOSA: weak determinism

Defimition a A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow iss well deffined inn \mathbb{I}

Theorem: Every closed confluent IOSA is weakly deterministic.

IOSA: weak determinism

Definition en A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow welld deffined \mathbb{I}

Theorem: Every closed confluent IOSA is weakly deterministic.

All communications have
been resolved (i.e. no inputs left)

IOSA: weak determinism

Definition en A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow welld deffined \mathbb{I}

Theorem: Every closed confluent IOSA is weakly deterministic.

IOSA: weak determinism

Definition en A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow weill deffinued in \mathbb{I}

Theorem: Every closed confluent IOSA is weakly deterministic.

Theorem 5. Let $\mathcal{I}=\left(\mathcal{I}_{1}\|\cdots\| \mathcal{I}_{n}\right)$ be a closed IOSA. 㧫II prothemtliadllyy meacthess au

 amall, (eithtern (nix) Sufficient conditions for confluency arm (aii) theme ins

IOSA: weak determinism

Definition en A closed IOSA \mathcal{I} is weakly deterministic if \Rightarrow weill deffinued in \mathbb{I}

Theorem: Every closed confluent IOSA is weakly deterministic.

Theorem 5. Let $\mathcal{I}=\left(\mathcal{I}_{1}\|\cdots\| \mathcal{I}_{n}\right)$ be a closed IOSA. 猒 II
 Thott comsflthumelt stochastic Automata comand ceatthreen Input/Output Stocha Determinism
Compositionality and Input/Output Stochastic Automata
 with Urgency: $\underset{\text { Determinism }}{ }$

From RFT to IOSA

From RFT to IOSA

BE_{1} Basic Element

```
module BE_i
    fc, rc : clock;
    inform : [0..2] init 0;
    broken : [0..2] init 0; // 0: up, 1: down, 2: repairing
    [fl!] broken=0 @ fc -> (inform=1) & (broken=1);
    [r??] broken=1 -> (broken=2) & (rc=\gamma);
    [up!] broken=2 @ rc -> (inform=2) &
                                (broken=0) & (fc= }|\mathrm{ );
```

```
    [fi!!] inform=1 -> (inform=0);
    [ui!!] inform=2 -> (inform=0);
```

endmodule

Textual form of IOSA for the tool FIG

From RFT to IOSA

self-loops for undefined inputs

```
module BE_i
    fc, rc : clock;
    inform : [0..2] init 0;
    broken : [0..2] init 0; // 0: up, 1: down, 2: repairing
    [fl!] broken=0 @ fc -> (inform=1) & (broken=1);
    [r??] broken=1 -> (broken=2) & (rc=\gamma);
    [up!] broken=2 @ rc -> (inform=2) &
                                (broken=0) & (fc= );
```

```
    [fi!!] inform=1 -> (inform=0);
    [ui!!] inform=2 -> (inform=0);
```

endmodule

Textual form of IOSA for the tool FIG

From RFT to IOSA

(Binary) AND gate

* if both inputs fail signal fault
* if one input repairs signal repair

```
module AND
```

module AND
singalf: bool init false;
singalf: bool init false;
signalu: bool init false;
signalu: bool init false;
count: [0..2] init 0;
count: [0..2] init 0;
[f1??] count=1 -> (count=2) \& (signalf=true);
[f1??] count=1 -> (count=2) \& (signalf=true);
[f1??] count=0 -> (count=1);
[f1??] count=0 -> (count=1);
[f2??] count=1 -> (count=2) \& (signalf=true);
[f2??] count=1 -> (count=2) \& (signalf=true);
[f2??] count=0 -> (count=1);
[f2??] count=0 -> (count=1);
[u1??] count=2 -> (count=1) \& (signalu=true);
[u1??] count=2 -> (count=1) \& (signalu=true);
[u1??] count=1 -> (count=0);
[u1??] count=1 -> (count=0);
[u2??] count=2 -> (count=1) \& (signalu=true);
[u2??] count=2 -> (count=1) \& (signalu=true);
[u2??] count=1 -> (count=0);
[u2??] count=1 -> (count=0);
[f!!] signalf \& count=2 -> (signalf=false);
[f!!] signalf \& count=2 -> (signalf=false);
[u!!] signalu \& count!=2 -> (signalu=false);

```
    [u!!] signalu & count!=2 -> (signalu=false);
```


From RFT to IOSA

```
module OR
    signalf: bool init false;
    signalu: bool init false;
    count:[0..2] init 0;
    [f1??] count=0 -> (count'=1) & (signalf'=true);
    2?7] count=1 }->\mathrm{ (count=0 (count'); ; (count'=1)&(signalf'=true);
    [f2??] count=1 }->(\mathrm{ (count'=2)
    [u1??] count=2 -> (count)=1)
    [u1??] count=1 }->\mathrm{ (count'=0)& (signalu'=true);
    1232] count=2 -> (count'=1)
    [u2??] count=1 }->\mathrm{ (count'=0) & (signalu)=true),
    [f!!] signalf & count!=0 -> (signalf'=false);
    [u!!] signalu & count=0 -> (signalu)=false),
    endmodule
module voring_3_1
    count: [0..3] init 0,
    inform: bool init false
    [f0??] -> (count')=count+1)& (inform'=(count+1=2)),
    [f1??] >( (count')=count+1)&(\mathrm{ (inform }=(\mathrm{ (count t 1=2)),}
    [f2??] }->(\mathrm{ (count')=count+1) & (inform')}=(\mathrm{ (count +1=2))
    [uo??] -> (count')=count-1)& (inform'=(count=2));
    [0177] -> (count')=count-1)&(\mp@subsup{\mathrm{ inform' }}{}{\prime}(\mathrm{ count=2))}
    [u2?2] -> (count'=count-1)& (inform }==(\mathrm{ count=2);
[f!!] inform & count >= 2 -> (inform'=false)
    [u!!] inform & count < 2 -> (inform'=false)
endmodule
```

```
ignalf: bool init false;
count: [0..2] init 0 ;
fir. count \(=0 \rightarrow\left(\right.\) count \(\left.^{\prime}=1\right) \&\) (signalf \({ }^{\prime}=\) true \()\); [f2??] count=0 \(\rightarrow\) (count' \(=1\) ) \& (signalf \(=\) true); [f22??] count \(=1 \rightarrow\left(\right.\) count \({ }^{\prime}=2\) )
[ul??] count=1 \(\rightarrow\) (count' \(=0\) ) \& (signalu' \(=\) true) ; 12237] count=2 \(\rightarrow\left(\right.\) count \(\left.\left.^{\prime}\right)=1\right)\) [u2???] count=1 \(=1 \rightarrow(\) (count \()=0) \&\left(\right.\) signalu \({ }^{\prime}=\) true \()\);
\([f!!]\) signalf \& count \(!=0 \rightarrow\) (signalf \(’=\) false);
\([u!1]\) signalu \& count \(=0 \rightarrow(\) signalu \(=\) =false \() ;\) endmodule
```


dule voting_3_1

```
count: [0..3] init 0;
[f0??] \(\rightarrow\) ( count \(^{\prime}=\) count +1 ) \& (inform \({ }^{\prime}=(\) (count \(+1=2)\) ),
```



```
[uo??] \(\rightarrow\left(\right.\) count \({ }^{\prime}=\) count-1) \& \(\left(\right.\) inform \(^{\prime}=(\) count \(\left.=2)\right)\); u1??] \(\rightarrow\) (count \({ }^{\prime}=\) count-1) \& (inform \('=(\) count \(=2\) ) \()\)
[f!!] inform \& count >= \(2->\) (inform'=false); endmodule
```

odule pand
f1: bool init false
st: [0..4] init 0; // 0:up, 1:inform fail, 2:failed, // $0:$ up, 1 :inform fail, $2:$ faile
// $3:$ inform up, $4:$ unbreakable
[_?] st=0 \& f1 \& !f0 $\rightarrow\left(\mathbf{s t}^{\prime}=4\right.$);
[ffor?] st=0 \& !fo \& !f1 \rightarrow (f0 ${ }^{\prime}=$ true $) ;$
[fo??] $\mathrm{st=0} \&$!fo \& f1 \rightarrow ($\mathrm{st}^{\prime}{ }^{\prime}=1$) \& (f0 ${ }^{\prime}=$ true) ; [fo??] st! $=0$ \& !fo \rightarrow (fo' =true); for?] fo
[f1 17?] st=0 \& !f0 \& !f1 $\quad \rightarrow$ (f1 $=$ true);

[f1 1 ? $]$ ($\mathrm{st}==1|\mathrm{st}=2| \mathrm{st}=4$) \& !f1 \rightarrow (f1'=true);
[f1??] f1
[uo? ? $\mathrm{st}!=1 \&$ fo \rightarrow (f0' $=\mathrm{false}$);
wo??] $\mathrm{st}=1 \&$ fo \rightarrow (st $=0$) \& (fo $0^{\prime}=\mathrm{false}$);
[uo??] !fo
[u1??] (st=0|st=3) \& $\mathrm{f1} \rightarrow$ (f1 1 =false);

[f! !] st=1 \rightarrow ($s t^{\prime}=2$);
[u! !] st=3 -> (st' $=0$);
modu1e Rbox
broken [n]: bool init false;
busy: bool init false;
[f10?] \rightarrow (broken [0] ${ }^{\prime}=$ true $)$
[ff 1_{n-1} ?] \rightarrow (broken $[n-1]$)=true);
[r0!!] !busy \& broken [0] \rightarrow (busy'=true);
$\left\lfloor\mathbf{r}_{n-1}!!\right]$ busy \& broken $[\mathrm{n}-1]$
\& !broken $[\mathrm{n}-2 \mathrm{~A}$ \& \ldots \& !broken [0] \rightarrow (busy' $=$ true)
[upo?] -> (broken [0]'=false) \& (busy'=false):
[up ${ }_{n-1}$?] $\rightarrow>$ (broken [n-1] $\boldsymbol{\prime}$ false) \& (busy' $=$ false);
dule SB
fc, dfc, rc: clock;
inform: [0. 2] init 0;
broken: [0. 2 2] init 0;
[e??] !active -> (active'=true) \& (fc' $=$);
[d??] active \rightarrow (active' $=\mathrm{false}$) \& (dfc ${ }^{\prime}=$);
[fl1!] active \& broken=0 © fc $\rightarrow\left(\right.$ inform $\left.{ }^{\prime}=1\right) \&\left(\right.$ broken $\left.{ }^{\prime}=1\right)$;
$[f 1!]$ lactive $\&$ broken $=0 @$ dfc $\rightarrow($ inform $=1) \&($ broken $’=1)$;
[r??] \rightarrow (broken' $=2$) \& (
[up!] a
[f!!] inform=1 \rightarrow (inform $=0$)
[u!!] inform=2 \rightarrow (inform ${ }^{\prime}=0$)
endmodule
module MUX
queue [n] : [0.3] init 0; // idle, requesting, reject, using
avail: bool init true,
broken: bool init false,
enable: [0..2] init 0 ;
[flı] -> (broken'=true);
[up?] \rightarrow (broken'=false);
[e! !] enable $=1 \rightarrow\left(\right.$ enable ${ }^{\prime}=0$)
[d!!] enable=2 $\rightarrow\left(\right.$ enable $\left.{ }^{\prime}=0\right)$;
402] queue $[0]=0$ \& (broken 1 !avail
(ty ${ }^{2}$ queue $[0]=0 \&$ broken \& avail
[asgo! !] queue $[0]=1 \&!$ broken $\&$ avail
$[$ rjo $!$! $]$ queue $[0]=2$
$[$ rel $0 ? ?]$ queue $[0]=3$
[acco??]
(queue $[0]=1$);
$\rightarrow\left(\right.$ queue $\left.[0]^{\prime}=3\right) \&$
$\rightarrow\left(\right.$ queue $\left.[0]^{\prime}=1\right) ;$
(queue $[0]$) $=1$);
(queue $[0]^{\prime}=0$) \& (avail'strue) $\stackrel{*}{*}\left(\right.$ enable ${ }^{\prime}=2$),
$\mathrm{rq}_{\mathrm{n}-1}$??] queue $[\mathrm{n}-1]=0 \&!$ broken $\&$ avail $\rightarrow\left(\right.$ queue $\left.[\mathrm{n}-1]^{\prime},=1\right)$
[asg $\left.{ }_{n-1}!!\right]$ queue $[\mathrm{n}-1]=1 \&$ queue $[\mathrm{n}-2]=0$ \&
$\&$ queue $[0]=0 \&$!broken $\&$ avail $\rightarrow\left(\right.$ queue $\left.[n-1]^{\prime},=3\right) \&\left(\right.$ avai1 ${ }^{\prime}=$ false $) ~$
$\left[\mathrm{rj}_{n-1}!!\right]$ queue $[\mathrm{n}-1]=2$
(queue $\left.[n-1]^{\prime},=1\right)$;
(queue $\left.[\mathrm{n}-1]^{\prime}=0\right) \&$ (avai1' $=$ true)
(enable' $=1$);

nodule SParegate

state: [0. .4] init 0; // on main, request, wait, on spare, broken
nform: [0..2] init 0;
idx: [1..n] init 1;
$\begin{array}{ll}{\left[\text { fl }_{0} \text { ?] state }=0\right.} & \rightarrow(\text { state }=1) \&(\text { idx }=1) ; \\ \text { [upo? } & \\ \text { state }=4 & \rightarrow(\text { state }=0) \&(\text { inform }=2\end{array}$
apo ?] state=3\& idx=1 \rightarrow (state $=0$) \& (inform=2);

[f1 1 ? s state $=3 \&$ idx=1 \rightarrow (release $=1$);
[f1n?] state=3 \& idx=n \rightarrow (release=n)
[rq1 ! !] state=1 \& idx=1 \rightarrow (state=2);
[rqn $!$! $]$ state $=1 \&$ idx $=n ~ \rightarrow($ state $=2$);

asg $_{n}$??] state=0 | state=1 | state=3 \rightarrow (release=n);

\& (idx=n) \& (inform=2);
rj_{1} ?? ${ }^{\text {state }=2 \& i d x=1 ~} \rightarrow(\mathrm{idx}=2) \&($ state $=1)$;
$\left[\mathrm{rj} \mathrm{j}_{2}\right.$??] $\mathrm{stata}=2 \&$ idx=2 $\rightarrow(\mathrm{idx}=3) \&($ state $=1)$
[rj ${ }_{n}$??] state $=2 \&$ idx=n $\rightarrow($ state $=4) \&($ idx $=1) \&($ inform=1 $)$
rel 1 !? release $=1 \&!($ state $=3 \& i d x=1)->($ release $=0) ;$
rell 1 ! !] release $=1 \&$ state $=3 \&$ idx=1 $\rightarrow($ release $=0) \&($ state $=1) \&($ idx=1 $)$;
rel ${ }_{n}$! !] release=n \& ! (state=3 \& idx $\left.=n\right) \rightarrow$ (release=0);
rel ${ }_{n}$!!] releasen $\&$ state $=3 \&$ idx=n $\quad \rightarrow($ release $=0) \&($ state $=1) \&($ idx=1
[acc1! !] release=-1 \rightarrow (release= 0);
[acc n !!] release=-n \rightarrow (release=0),
[f!!] inform = $1 \rightarrow$ (inform=0);
[u!!] inform = $2 \rightarrow$ (inform=0);

From RFT to IOSA+Urgency

Given a RFT $T=(V, i, s i, l)$ the semantic of T is defined by

$$
\llbracket T \rrbracket=\|_{v \in V} \llbracket v \rrbracket
$$

where

$$
\llbracket v \rrbracket= \begin{cases}\llbracket l(v) \rrbracket\left(\mathrm{fl}_{v}, \mathrm{up}_{v}, \mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{r}_{v}\right) & \text { if } l(v)=(\mathrm{be}, 0, \mu, \gamma) \\ \llbracket l(v) \rrbracket\left(\mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{f}_{i(v)[0]}, \mathrm{u}_{i(v)[0]}, \ldots, \mathrm{f}_{i(v)[n-1]}, \mathrm{u}_{i(v)[n-1]}\right) & \text { if } l(v) \in\{(\text { and }, n),(\mathrm{or}, n)\} \\ \llbracket l(v) \rrbracket\left(\mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{f}_{i(v)[0]}, \mathrm{u}_{i(v)[0]}, \mathrm{f}_{i(v)[1]}, \mathrm{u}_{i(v)[1]}\right) & \text { if } l(v)=(\text { pand }, 2) \\ \llbracket l(v) \rrbracket\left(\mathrm{fl}_{i(v)[0]}, \mathrm{up}_{i(v)[0]}, \mathrm{r}_{i(v)[0]}, \ldots, \mathrm{fl}_{i(v)[n-1]}, \mathrm{up}_{i(v)[n-1]}, \mathrm{r}_{i(v)[n-1]}\right) & \text { if } l(v)=(\mathrm{rbox}, n) \\ \llbracket l(v) \rrbracket\left(\mathrm{fl}_{v}, \mathrm{up}_{v}, \mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{r}_{v}, \mathrm{e}_{v}, \mathrm{~d}_{v}, \mathrm{rq}_{(s i(v)[0], v)}, \operatorname{asg}_{(v, s i(v)[0])},\right. & \\ \left.\operatorname{rel}_{(s i(v)[0], v)}, \operatorname{acc}_{(s i(v)[0], v)}, \mathrm{rj}_{(v, s i(v)[0])}, . ., \mathrm{rj}_{(v, s i(v)[n-1])}\right) & \text { if } l(v)=(\mathrm{sbe}, n, \mu, \nu, \gamma) \\ \llbracket l(v) \rrbracket\left(\mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{fl}_{i(v)[0]}, \mathrm{up}_{i(v)[0]}, \mathrm{fl}_{i(v)[1]}, \mathrm{up}_{i(v)[1]}, \mathrm{rq}_{(v, i(v)[1])}, \operatorname{asg}_{(i(v)[1], v)},\right. \\ \left.\operatorname{acc}_{(v, i(v)[1])}, \mathrm{rj}_{(i(v)[1], v)}, \mathrm{rel}_{(v, i(v)[1])}, \ldots, \mathrm{rel}_{(v, i(v)[n-1])}\right) & \text { if } l(v)=(\mathrm{sg}, n)\end{cases}
$$

From RFT to IOSA+Urgency

Given a RFT $T=(V, i, s i, l)$ the semantic of T is defined by

$$
\llbracket T \rrbracket=\|_{v \in V} \llbracket v \rrbracket
$$

where

The encodings given before with proper relabeling

$$
\llbracket v \rrbracket= \begin{cases}\llbracket l(v) \rrbracket\left(\mathrm{fl}_{v}, \mathrm{up}_{v}, \mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{r}_{v}\right) & \text { if } l(v)=(\mathrm{be}, 0, \mu, \gamma) \\ \llbracket l(v) \rrbracket\left(\mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{f}_{i(v)[0]}, \mathrm{u}_{i(v)[0]}, \ldots, \mathrm{f}_{i(v)[n-1]}, \mathrm{u}_{i(v)[n-1]}\right) & \text { if } l(v) \in\{(\text { and }, n),(\mathrm{or}, n)\} \\ \llbracket l(v) \rrbracket\left(\mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{f}_{i(v)[0]}, \mathrm{u}_{i(v)[0]}, \mathrm{f}_{i(v)[1]}, \mathrm{u}_{i(v)[1]}\right) & \text { if } l(v)=(\text { pand }, 2) \\ \llbracket l(v) \rrbracket\left(\mathrm{fl}_{i(v)[0]}, \mathrm{up}_{i(v)[0]}, \mathrm{r}_{i(v)[0]}, \ldots, \mathrm{fl}_{i(v)[n-1]}, \mathrm{up}_{i(v)[n-1]}, \mathrm{r}_{i(v)[n-1]}\right) & \text { if } l(v)=(\mathrm{rbox}, n) \\ \llbracket l(v) \rrbracket\left(\mathrm{fl}_{v}, \mathrm{up}_{v}, \mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{r}_{v}, \mathrm{e}_{v}, \mathrm{~d}_{v}, \mathrm{rq}_{(s i(v)[0], v)}, \operatorname{asg}_{(v, s i(v)[0])},\right. & \\ \left.\mathrm{rel}_{(s i(v)[0], v)}, \operatorname{acc}_{(s i(v)[0], v)}, \mathrm{rj}_{(v, s i(v)[0]]}, ., \mathrm{rj}_{(v, s i(v)[n-1])}\right) & \text { if } l(v)=(\mathrm{sbe}, n, \mu, \nu, \gamma) \\ \llbracket l(v) \rrbracket\left(\mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{fl}_{i(v)[0]}, \mathrm{up}_{i(v)[0]}, \mathrm{fl}_{i(v)[1]}, \mathrm{up}_{i(v)[1]}, \mathrm{rq}_{(v, i(v)[1])}, \operatorname{asg}_{(i(v)[1], v)},\right. \\ \left.\operatorname{acc}_{(v, i(v)[1])}, \mathrm{rj}_{(i(v)[1], v)}, \mathrm{rel}_{(v, i(v)[1])}, \ldots, \mathrm{rel}_{(v, i(v)[n-1])}\right) & \text { if } l(v)=(\mathrm{sg}, n)\end{cases}
$$

From RFT to IOSA+Urgency

Given a RFT $T=(V, i, s i, l)$ the semantic of T is defined by

$$
\llbracket T \rrbracket=\|_{v \in V} \llbracket v \rrbracket
$$

where

Good news everyone!!

$$
\begin{array}{ll}
\left.(v)[0], \mathbf{u}_{i(v)[0]}, \mathrm{f}_{i(v)[1]}, \mathrm{u}_{i(v)[1]}\right) & \text { if } l(v)=(\text { pand }, 2) \\
\left.\operatorname{up}_{i(v)[0]}, \mathrm{r}_{i(v)[0]}, \ldots, \mathrm{fl}_{i(v)[n-1]}, \mathrm{up}_{i(v)[n-1]}, \mathrm{r}_{i(v)[n-1]}\right) & \text { if } l(v)=(\text { rbox, } n) \\
\mathrm{f}_{v}, \mathrm{u}_{v}, \mathrm{r}_{v}, \mathrm{e}_{v}, \mathrm{~d}_{v}, \mathrm{rq}_{(s i(v)[0], v)}, \operatorname{asg}_{(v, s i(v)[0])}, & \\
\left.[0], v), \operatorname{acc}_{(s i(v)[0], v)}, \mathrm{rj}_{(v, s i(v)[0])}, \ldots, \mathrm{rj}_{(v, s i(v)[n-1])}\right) & \text { if } l(v)=(\mathrm{sbe}, n, \mu, \nu, \gamma) \\
i(v)[0], \mathrm{up}_{i(v)[0]}, \mathrm{fl}_{i(v)[1]}, \mathrm{up}_{i(v)[1]}, \mathrm{rq}_{(v, i(v)[1])}, \operatorname{asg}_{(i(v)[1], v)}, \\
\left.[[1]), \mathrm{rj}_{(i(v)[1], v)}, \operatorname{rel}_{(v, i(v)[1])}, \ldots, \operatorname{rel}_{(v, i(v)[n-1])}\right) & \text { if } l(v)=(\mathrm{sg}, n)
\end{array}
$$

From RFT to IOSA+Urgency

Given a RFT $T=(V, i, s i, l)$ the semantic of T is defined by

$$
\llbracket T \rrbracket=\|_{v \in V} \llbracket v \rrbracket
$$

where

It satisfies the sufficient conditions

 that guarantee confluence.Hence, it is weakly deterministic!

$$
\begin{aligned}
& \text { if } l(v)=(\text { be }, 0, \mu, \gamma) \\
& \text { if } l(v) \in\{(\text { and }, n),(\text { or }, n)\} \\
& \text { if } l(v)=(\text { pand }, 2) \\
& \text { if } l(v)=(\text { rbox }, n)
\end{aligned}
$$

$$
\mathrm{f}_{v}, \mathbf{u}_{v}, \mathbf{r}_{v}, \mathrm{e}_{v}, \mathrm{~d}_{v}, \mathrm{rq}_{(s i(v)[0], v)}, \operatorname{asg}_{(v, s i(v)[0])},
$$

$$
\left.[0], v), \operatorname{acc}_{(s i(v)[0], v)}, \mathrm{rj}_{(v, s i(v)[0]}, . ., \mathrm{rj}_{(v, s i(v)[n-1])}\right) \quad \text { if } l(v)=(\text { sbe, } n, \mu, \nu, \gamma)
$$

$$
\hat{i}_{i(v)[0]}, \operatorname{up}_{i(v)[0]}, \mathrm{fl}_{i(v)[1]}, \operatorname{up}_{i(v)[1]}, \mathrm{rq}_{(v, i(v)[1])}, \operatorname{asg}_{(i(v)[1], v)},
$$

$$
\left.[1]), \mathrm{rj}_{(i(v)[1], v)}, \mathrm{rel}_{(v, i(v)[1])}, \ldots, \mathrm{rel}_{(v, i(v)[n-1])}\right) \quad \text { if } l(v)=(\mathrm{sg}, n)
$$

From RFT to IOSA+Urgency

Given a RFT $T=(V, i, s i, l)$ the semantic of T is defined by

$$
\llbracket T \rrbracket=\|_{v \in V} \llbracket v \rrbracket
$$

where

Building the Tool Chain

Building the Tool Chain

$$
\begin{array}{lll}
\text { Reliability: } & \mathbb{P}(\square \leq T \neg \text { TLE }) & \text { (transient) } \\
\text { Availability: } & \mathbb{E}(\neg \text { TLE }) & \text { (steady-state) }
\end{array}
$$

Building the Tool Chain

$$
\begin{array}{lll}
\text { Reliability: } & 1-\mathbb{P}\left(\diamond_{\leq T} \mathrm{TLE}\right) & \text { (transient) } \\
\text { Availability: } & \mathbb{E}(\neg \mathrm{TLE}) & \text { (steady-state) }
\end{array}
$$

Monte Carlo Simulation

Prob (unsafe \mathbf{U} fail) ?

Monte Carlo Simulation

$$
\begin{array}{ll}
\# X=2 \\
\text { otal }=7 & \text { Prob (unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# X}{\# \text { total }}
\end{array}
$$

Monte Carlo Simulation

$$
\begin{array}{ll}
\# X=2 \\
\text { otal }=7 & \text { Prob (unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# X}{\# \text { total }}
\end{array}
$$

Monte Carlo Simulation

Too small

$$
\begin{aligned}
\# \mathbf{X} & =2 \\
\# \text { total } & =7
\end{aligned} \quad \text { Prob }(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# \mathbf{X}}{\# \text { total }}
$$

Monte Carlo Simulation

Too small

Too few

$$
\begin{aligned}
\# \mathrm{X} & =2 \\
\# \text { total }=7 & \text { Prob }(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# \boldsymbol{X}}{\# \text { total }}
\end{aligned}
$$

Monte Carlo Simulation

Too small
Too few

$$
\begin{aligned}
\# X & =2 \\
\text { \#total } & =7
\end{aligned}
$$

$$
\operatorname{Prob}(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# \mathbf{X}}{\# \text { total }}
$$

Needs to be huge

Monte Carlo Simulation

Too small

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Rare event simulation through Importance Splitting

Ideally indicates the "proximity" to the rare event

Rare event simulation through Importance Splitting

Ideally indicates

the "proximity" to the rare event

Rare event simulation through Importance Splitting

Ideally indicates the "proximity" to the rare event
rare event

Rare event simulation through Importance Splitting

$$
\operatorname{Prob}(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}
$$

Ideally indicates the "proximity" to the rare event

Rare event simulation through Importance Splitting

$$
\operatorname{Prob}(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# \boldsymbol{X}}{\# \text { total }}
$$

Ideally indicates the "proximity" to the rare event

Rare event simulation through Importance Splitting

$$
\operatorname{Prob}(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# \boldsymbol{X}}{\# \text { total }}=\square \quad \# \boldsymbol{X}
$$

Ideally indicates the "proximity" to the rare event

rare event

Rare event simulation through Importance Splitting

$$
\operatorname{Prob}(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# \boldsymbol{X}}{\# \text { total }}=\frac{\# \boldsymbol{X}}{S_{0}}
$$

Ideally indicates the "proximity" to the rare event
rare event

Rare event simulation through Importance Splitting

$$
\operatorname{Prob}(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# X}{\# \text { total }}=\frac{\# X}{S_{0} * S_{1}}
$$

Ideally indicates the "proximity" to the rare event

Rare event simulation through Importance Splitting

$$
\operatorname{Prob}(\text { unsafe } \mathbf{U} \text { fail }) \approx \hat{p}=\frac{\# \boldsymbol{X}}{\# \text { total }}=\frac{\# \boldsymbol{X}}{S_{0} * S_{1} * S_{2}}
$$

Ideally indicates the "proximity" to the rare event

Building the Tool Chain

Building the Tool Chain

\Rightarrow importance function
= thresholds placing
= number of splittings

Building the Tool Chain

\Rightarrow importance function
= thresholds placing
\Rightarrow number of splittings

There are good strategies,

Building the Tool Chain

\Rightarrow importance function
= thresholds placing
= number of splittings

Building the Tool Chain

Provided in an
ad hoc manner
\Rightarrow importance function
= thresholds placing
= number of splittings

Building the Tool Chain

Fully Automatic

Provided in an
ad hoc manner
\Rightarrow importance function
= thresholds placing
= number of splittings

Building the Tool Chain

Fully Automatic

[^0]

Deriving the importance function from RFT (the structural way)

(BE) $\mathcal{I}_{\mathrm{BE}}(\vec{x})=(\mathrm{BE}$ is failed $) ? 1: 0$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes

(BE)

$$
\mathcal{I}_{\mathrm{BE}}(\vec{x})=(\mathrm{BE} \text { is failed }) ? 1: 0=\vec{x}_{\mathrm{BE}}
$$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes

BE

$$
\mathcal{I}_{\mathrm{BE}}(\vec{x})=(\mathrm{BE} \text { is failed }) ? 1: 0=\vec{x}_{\mathrm{BE}}
$$

$$
\mathcal{I}_{\text {AND }}(\vec{x})=\sum_{w \in \operatorname{chil(AND)}} \mathcal{I}_{w}(\vec{x})
$$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes

$\mathcal{I}_{\mathrm{BE}}(\vec{x})=\left(\mathrm{BE}\right.$ is failed) $? 1: 0=\vec{x}_{\mathrm{BE}}$

$$
\mathcal{I}_{\text {AND }}(\vec{x})=\sum_{w \in \operatorname{chil}(\mathrm{AND})} \mathcal{I}_{w}(\vec{x})
$$

$$
\mathcal{I}_{\mathrm{OR}}(\vec{x})=\max _{w \in \operatorname{chil}(\mathrm{OR})} \mathcal{I}_{w}(\vec{x})
$$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes

$$
\mathcal{I}_{\text {AND }}(\vec{x})=\sum_{w \in \operatorname{chil}(\mathrm{AND})} \mathcal{I}_{w}(\vec{x})
$$

$\mathcal{I}_{\mathrm{OR}}(\vec{x})=\max _{w \in \operatorname{chil}(\mathrm{OR})} \mathcal{I}_{w}(\vec{x})$

$$
\mathcal{I}_{\mathrm{OR}}(\vec{x})=
$$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes
$\mathcal{I}_{\mathrm{BE}}(\vec{x})=\left(\mathrm{BE}\right.$ is failed) ? $1: 0=\vec{x}_{\mathrm{BE}}$

$$
\mathcal{I}_{\mathrm{OR}}(\vec{x})=
$$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes
$\mathcal{I}_{\mathrm{BE}}(\vec{x})=\left(\mathrm{BE}\right.$ is failed) $? 1: 0=\vec{x}_{\mathrm{BE}}$

$$
\mathcal{I}_{\mathrm{OR}}(\vec{x})=1
$$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes

$$
\mathcal{I}_{\text {AND }}(\vec{x})=\sum_{w \in \operatorname{chil(\mathrm {AND})}} \mathcal{I}_{w}(\vec{x})
$$

$\mathcal{I}_{\mathrm{OR}}(\vec{x})=\max _{w \in \operatorname{chil}(\mathrm{OR})} \mathcal{I}_{w}(\vec{x})$

$\mathcal{I}_{\mathrm{OR}}(\vec{x})=$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes
$\mathcal{I}_{\mathrm{BE}}(\vec{x})=\left(\mathrm{BE}\right.$ is failed) $? 1: 0=\vec{x}_{\mathrm{BE}}$

$$
\mathcal{I}_{\mathrm{OR}}(\vec{x})=2
$$

Deriving the importance function from RFT (the structural way)

$\vec{x} \in \mathbb{N}^{n}$ is the state of the RFT with n nodes

$$
\mathcal{I}_{\mathrm{OR}}(\vec{x})=2
$$

Normalize

Deriving the importance function from RFT (the structural way)

$\mathrm{t}[v]$	$\mathcal{I}_{v}(\vec{x})$
be, sbe	\vec{x}_{v}
and	$\operatorname{lcm}_{v} \cdot \sum_{w \in \operatorname{chil}(v)} \frac{\mathcal{I}_{w}(\vec{x})}{\max _{w}^{\mathcal{T}}}$
or	$\mathrm{lcm}_{v} \cdot \max _{w \in \operatorname{chil}(v)}\left\{\frac{\mathcal{I}_{w}(\vec{x})}{\max _{w}^{T}}\right\}$
vot_{k}	$\operatorname{lcm}_{v} \cdot \max _{W \subseteq \operatorname{chil}(v),\|W\|=k}\left\{\sum_{w \in W} \frac{\mathcal{I}_{w}(\vec{x})}{\max _{w}^{\mathcal{T}}}\right\}$
sg	$\operatorname{lcm}_{v} \cdot \max \left(\sum_{w \in \operatorname{chil}(v)} \frac{\mathcal{I}_{w}(\vec{x})}{\max _{w}^{\mathcal{T}}}, \vec{x}_{v} \cdot m\right)$
pand	$\mathrm{lcm}_{v} \cdot \max \left(\frac{\mathcal{I}_{l}(\vec{x})}{\max _{l}^{\mathcal{T}}}+\right.$ ord $\left.\frac{\mathcal{I}_{r}(\vec{x})}{\max _{r}^{\mathcal{T}}}, \vec{x}_{v} \cdot 2\right)$

where

$$
\begin{aligned}
& \max _{v}^{\mathcal{I}}=\max _{\vec{x} \in \mathcal{S}} \mathcal{I}_{v}(\vec{x}) \\
& \operatorname{lcm}_{v}=\operatorname{lcm}\left\{\max _{w}^{\mathcal{I}} \mid w \in \operatorname{chil}(v)\right\} \\
& \text { ord }= \begin{cases}1 & \text { if } \vec{x}_{v} \in\{1,4\} \\
-1 & \text { otherwise }\end{cases}
\end{aligned}
$$

Deriving the importance function from RFT (the structural way)

$\mathrm{t}[v]$	$\mathcal{I}_{v}(\vec{x})$
be, sbe	\vec{x}_{v}
and	$\operatorname{lcm}_{v} \cdot \sum_{w \in \operatorname{chil}(v)} \frac{\mathcal{I}_{w}(\vec{x})}{\max _{w}^{\tau}}$
or	$\mathrm{lcm}_{v} \cdot \max _{w \in \operatorname{chil}(v)}\left\{\frac{\mathcal{I}_{w}(\vec{x})}{\max _{w}^{\bar{T}}}\right\}$
vot_{k}	$\operatorname{lcm}_{v} \cdot \max _{W \subseteq \operatorname{chil}(v),\|W\|=k}\left\{\sum_{w \in W} \frac{\mathcal{I}_{w}(\vec{x})}{\max _{w}^{\text {I }}}\right\}$
sg	$\operatorname{lcm}_{v} \cdot \max \left(\sum_{w \in \operatorname{chil}(v)} \frac{\mathcal{I}_{w}(\vec{x})}{\max _{w}^{\mathcal{T}}}, \vec{x}_{v} \cdot m\right)$
pand	$\operatorname{lcm}_{v} \cdot \max \left(\frac{\mathcal{I}_{l}(\vec{x})}{\max _{l}^{\tau}}+\right.$ ord $\left.\frac{\mathcal{I}_{r}(\vec{x})}{\max _{r}^{\tau}}, \vec{x}_{v} \cdot 2\right)$

where

$$
\begin{aligned}
\max _{v}^{\mathcal{I}} & =\max _{\vec{x} \in \mathcal{S}} \mathcal{I}_{v}(\vec{x}) \\
\operatorname{lcm}_{v} & =\operatorname{lcm}\left\{\max _{w}^{\mathcal{I}} \mid w \in \operatorname{chil}(v)\right\}
\end{aligned}
$$

Rare event simulation for
non-Markovian repairable fault trees

Carlos E. B. D'Argenio ${ }^{3,4,5}$, and Mar
Pedro R. D'Argo University of Twente, Enschlorence, Florence,
1 Formal Methods and Information Engineerinal de Córdoba, Naciona
Department of Informationd Nacional Códoba, Argentina, Saarbricken, Germany

- Depatmento ocy [TACAS 2020]
ted in industry

Deriving the importance function from RFT (via minimal cut sets)

* Cut set: a set of BE that triggers a TLE (Top Level Event)
* It is minimal if removing any BE there is no TLE
* Originally defined for static fault trees
*We adapt them and extended to repairable fault trees but...
* If no PAND and Spare gates, all MCS can be collected
* If Spare gates but no PAND some MCS maybe lost for some configurations
* We did not include PAND

Deriving the importance function from RFT (via minimal cut sets)

Name Expression Description

$$
\begin{aligned}
& \mathcal{I}_{\mathrm{MCS}}(\vec{x})=\max _{\mathrm{MCS} \in \mathcal{M}\left(\Delta^{*}\right)}\left\{\sum_{v \in \mathrm{MCS}} \vec{x}_{b}\right\} \\
& \mathcal{I}_{\mathrm{MCS-P}}(\vec{x})=\max _{\mathrm{MCS} \in \mathcal{M}<\mathrm{N}\left(\Delta^{*}\right)}\left\{\sum_{v \in \mathrm{MCS}} \vec{x}_{b}\right\} \\
& \mathcal{I}_{\mathrm{MCS}-\mathrm{PR}}(\vec{x})=\max _{\operatorname{MCS} \in \mathcal{M}>\lambda\left(\Delta^{*}\right)}\left\{\sum_{v \in \mathrm{MCS}} \vec{x}_{b}\right\} \\
& \mathcal{I}_{\mathrm{MCSN}}(\vec{x})=\max _{\mathrm{MCS} \in \mathcal{M}\left(\Delta^{*}\right)}\left\{\operatorname{lcm} \cdot \sum_{v \in \mathrm{MCS}} \frac{\vec{x}_{b}}{\mid \mathrm{MCS\mid}}\right\}
\end{aligned}
$$

For each MCS of the tree, $\mathcal{I}_{\text {MCS }}$ counts the number of bes that have failed in the current state \vec{x}. The importance $\mathcal{I}_{\text {MCS }}(\vec{x})$ of the current state of the tree is the maximum among these counts.
$\mathcal{I}_{\text {MCS-P }}$ operates similarly to function $\mathcal{I}_{\text {MCS }}$ above, but here the maximum ranges over a pruned set of MCS, discarding cut sets with N or more bes.

Similar to $\mathcal{I}_{\text {MCS-P }}$ but using the failure rates for pruning, $\mathcal{I}_{\text {MCS-PR }}$ considers only MCS where the product of the failure rate of all bes is greater than λ. Applicable only to FTs whose failure and dormancy distributions are Markovian.
$\mathcal{I}_{\text {MCSN }}$ is a normalised version of $\mathcal{I}_{\text {MCS }}$. The normalisation follows a similar procedure to the structured case, where lcm is the least common multiple of the cardinality of every MCS in $\mathcal{M}\left(\triangle^{*}\right)$.

Deriving the importance function from RFT (via minimal cut sets)

$$
\begin{array}{ll}
\mathcal{I}_{\mathrm{MCS}}(\vec{x})= & \max _{\operatorname{MCS} \in \mathcal{M}\left(\Delta^{*}\right)}\left\{\sum_{v \in \mathrm{MCS}} \vec{x}_{b}\right\} \\
\mathcal{I}_{\mathrm{MCS}-\mathrm{P}}(\vec{x})= & \max _{\mathrm{MCS} \in \mathcal{M}_{<N}\left(\Delta^{*}\right)}\left\{\sum_{v \in \mathrm{MCS}} \vec{x}_{b}\right\} \\
\mathcal{I}_{\mathrm{MCS}-\mathrm{PR}}(\vec{x})=\max _{\operatorname{MCS} \in \mathcal{M}>\lambda\left(\Delta^{*}\right)}\left\{\sum_{v \in \mathrm{MCS}} \vec{x}_{b}\right\} \\
\mathcal{I}_{\mathrm{MCSN}}(\vec{x})=\max _{\operatorname{MCS} \in \mathcal{M}\left(\Delta^{*}\right)}\left\{\operatorname{lcm} \cdot \sum_{v \in \mathrm{MCS}} \frac{\vec{x}_{b}}{\mid \mathrm{MCS\mid}}\right\}
\end{array}
$$

For each MCS of the tree, $\mathcal{I}_{\text {MCS }}$ counts the number of bes that have failed in the current state \vec{x}. The importance $\mathcal{I}_{\text {MCS }}(\vec{x})$ of the current state of the tree is the maximum among these counts.
$\mathcal{I}_{\text {MCS-P }}$ operates similarly to function $\mathcal{I}_{\text {MCS }}$ above, but here the maximum ranges over a pruned set of MCS, discarding cut sets with N or more bes.

Similar to $\mathcal{I}_{\text {MCS-P }}$ but using the failure rates for pruning, $\mathcal{I}_{\text {MCS-PR }}$ considare ly MCS where the product of the failure rate of all bes ia only to FTs whose failure and dam Automated Rare Event Simulation for Automated Rare Even Sinimal Cut Sets
Fault Tree Analysis via Minion
$\mathcal{I}_{\text {MCSN }}$ is a normalised version of cedure to the structured case, w cardinality of every MCS in $\mathcal{M}(\triangle$

Methods and Touls, University of Twente, Twente. nl^{1}, The Netherlands Formal Methods and To.e.budde, m. i. .a.stoel inga\} University,
${ }^{1}$ Forma $\{c . e$.budae, mine, Radboud Uni
Department of Softwa

Building the Tool Chain

Fully Automatic!

Experiments (Case Studies)

onc
$.50^{3}$

Experiments

Basic element	Fail time PDF	Repair PDF	Dormancy PDF		
VOT:					
BE- A	$\operatorname{lnor}(4.37,0.33)$	uni $(0.4,0.95)$			
BE- B	wei($4.5,0.0125$)	uni (0.4, 0.95)			
DSPARE:					
BE	$\exp (0.07)$	uni(1.0, 2.0)			
SBE	$\exp (0.07)$	uni(1.0, 2.0)	$\exp (0.035)$		
HECS: Abbrev: Distribution:					
SW	$\exp \left(4.5 \times 10^{-12}\right)$	uni(28.0, 56.0)			
HW	$\exp \left(1.0 \times 10^{-10}\right)$	uni(28.0, 56.0$)$		$\begin{aligned} & \operatorname{dir}(x) \\ & \exp (\lambda) \end{aligned}$	Dirac (x) exponential (λ)
$\mathrm{Ml}_{\text {i }}$	$\exp \left(5.0 \times 10^{-9}\right)$	uni(21.0, 28.0)		$\exp (\lambda)$ $\operatorname{erl}(k, \lambda)$	exponential (λ) Erlang (k, λ)
M_{j}	$\exp \left(6.0 \times 10^{-8}\right)$	uni(21.0, 28.0)		uni (a, b)	uniform $\left([a, b]_{\mathbb{R}}\right)$
B_{k}	$\exp \left(8.7 \times 10^{-4}\right)$	$\operatorname{lnor}(4.45,0.24)$		$\begin{aligned} & \operatorname{uni}(a, b) \\ & \operatorname{rav}(\sigma) \end{aligned}$	Rayleigh (σ)
Pa_{a}	$\exp \left(1.0 \times 10^{-3}\right)$	$\operatorname{lnor}(4.45,0.24)$		$\operatorname{ray}(\sigma)$ wei (k, λ)	Rayleigh (σ) $\operatorname{Weibull}(k, \lambda)$
$\xrightarrow{\mathrm{PS}_{\text {b }}}$	$\exp \left(1.5 \times 10^{-3}\right)$	$\operatorname{lnor}(4.45,0.24)$	$\operatorname{dir}(\infty)$	$\begin{aligned} & \operatorname{wei}(k, \lambda) \\ & \operatorname{nor}(\mu, \sigma) \end{aligned}$	$\begin{aligned} & \text { Weibull }(k, \lambda) \\ & \operatorname{normal}(\mu, \sigma) \end{aligned}$
FTPP:	$\operatorname{lnor}(6.5,0.5)$	nor(150.0, 50.0)		$\operatorname{lnor}(\mu, \sigma)$	$\log -\operatorname{normal}(\mu, \sigma)$
B_{j}	$\exp \left(2.8 \times 10^{-2}\right)$	nor (15.0, 3.0)			
SBE_{k}	$\exp \left(2.8 \times 10^{-2}\right)$	nor(15.0, 3.0)	$\operatorname{dir}(\infty)$		
RC:					
BE_{i}	$\exp (0.04)$	nor (2.0, 0.7)			
SBE_{j}	$\exp (0.04)$	nor (2.0, 0.7)	$\exp (0.5)$		
HVC:					
BE_{i}	ray(1.999)	uni $(0.15,0.45)$			
SBE_{j}	ray(1.999)	uni(0.15, 0.45)	$\operatorname{erl}(3.0,0.25)$		

Experiments

CMC
VS
RESTART

Availability Reliability

STR

* DSPARE $^{\text {R }}$
$\stackrel{H V C}{ }{ }^{R}$
- RWC $^{\mathbf{R}}$
\triangle FTPP R
- $\mathrm{HECS}^{\mathrm{R}}$

Experiments

CMC
VS
RESTART-P2

Availability

$$
(\mathrm{ES})
$$

Experiments

CMC
vs
Fixed Effort

Reliability

Experiments

Availability

Case study: RC

$p_{5} \approx 1.7 e-5 \pm 2.7 e-7$

$p_{6} \approx 2.6 e-6 \pm 6.4 e-8$

Experiments

Reliability

Case study: DSPARE

Final discussion

Final discussion

Fully Automatic

Elements can be repaired
Arbitrary Distributions

Final discussion

* In general structural importance function showed the best performance
* MCS based important function occasionally performs worst than Monte Carlo
* Fixed effort showed better performance than RESTART (limited to reliability)
. ... and work also well in combination with MCS based IF
*Still... not good enough (compare to importance sampling)
* Our importance functions are discrete
* Conjecture:
if time and stochastics info is considered, continuous versions should work better

Final discussion

* In general structural importance function showed the best performance
* MCS based important function occasionally performs worst than Monte Carlo
* Fixed effort showed better performance than RESTART (limited to reliability)
. ... and work also well in combination with MCS based IF
* Still... not good enough (compare to importance sampling)
* Our importance functions are discrete
* Conjecture:
if time and stochastics info is considered, continuous versions should work better

Analysis of Highly Reliable Repairable Fault Trees via Simulation

Pedro R. D'Argenio
Universidad Nacional de Córdoba - CONICET (AR)

Joint work with Carlos Budde, Raúl Monti, \& Mariëlle Stoelinga

Analysis of Highly Reliable Repairable Fault Trees via Simulation

Pedro R. D'Argenio

Universidad Nacional de Córdoba - CONICET (AR)

[^0]: Provided in an
 ad hoc manner
 \Rightarrow importance function
 = thresholds placing
 = number of splittings

