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Famous Errors

Pentium:
FDIV

A\

Electron Mode

Mars Climate
Orbiter:
Metric vs Imperial

Heartbleed:
Security

X-Ray Mode

Ariane 5: -
64 bits fp |
vs 16 bits int [ &F

Therac-25:
Race Condition

Northeast blackout
in 2003:
Race Condition
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More errors

911 blackout:
MAX value
reached

Nest Thermostat:
Battery drained

Nissan airbag: |
Incorrect 3
sensing - *Laitom

Boeing 737 MAX 8:
Incorrect sensing

Schiaparelli Landing
Demonstrator
Module:

Multiple errors
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The problem of correctness...

System &= Property

Describes what is
expected from the system
(The correctness criteria)

Usually an abstraction
describing the behavior
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The problem of correctness...
...using Model Checking

= O (send(file) = ¢ receive(file) )

Properties that
represent boolean behavior on

A graph representing execUtions

nondeterministic behavior
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Model Checking

int y1 = 0; M
int y2 = 0;

short in_critical = 0;

active proctype process_1() { active proctype process_2() {
do do
1 otrue —> i true —>
yi = y2+1; 0: y2 = yi+1;
((y2==0) || (y1<=y2)); ilg ((y1==0) || (y2<y1));
in_critical++; in_critical++;
in_critical--; 2: in_critical--;
yi = 0; 3: y2 = 0;
od od
} }

(0,0,0,0,0)
I N AM
(1,0,1,0,0) (0,1,0,1,0)
~ T
(1,1,1,2,0) (2,0,1,0,1)) (0,2,0,1,1) (1,1,2,1,0)
v o

(2,1,1,2,1) (3,0,1,0,0)  (0,3,0,1,0) (1,2,2,1,1)
(3,1,1,2,0) (1,3,2,1,0)

(0,1,0,2,0) (1,0,2,0,0)

M= o¢?

o :

Normally
the problem reduces
to graph analysis
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Limitations of classical Model Checking

+ Many algorithms propose better solutions using randomness as a new ingredient
<+ Leader Election Protocol in IEEE 1394 “Firewire”

<+ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”
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Limitations of classical Model Checking

+ Many algorithms propose better solutions using randomness as a new ingredient
<+ Leader Election Protocol in IEEE 1394 “Firewire”

<+ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”
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Limitations of classical Model Checking

+ Many algorithms propose better solutions using randomness as a new ingredient
<+ Leader Election Protocol in IEEE 1394 “Firewire”

<+ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”
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Limitations of classical Model Checking

+ Many algorithms propose better solutions using randomness as a new ingredient
<+ Leader Election Protocol in IEEE 1394 “Firewire”

<+ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”
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Limitations of classical Model Checking

+ Many algorithms propose better solutions using randomness as a new ingredient
<+ Leader Election Protocol in IEEE 1394 “Firewire”

<+ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Root contention!
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Limitations of classical Model Checking

+ Many algorithms propose better solutions using randomness as a new ingredient
<+ Leader Election Protocol in IEEE 1394 “Firewire”

<+ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Root contention!

It is solved by
“flipping coins”
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Limitations of classical Model Checking

+ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a
property can only be measured quantitatively

< Bounded Retransmission Protocol in Philips RC6

<« Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”
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Limitations of classical Model Checking

+ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a
property can only be measured quantitatively

< Bounded Retransmission Protocol in Philips RC6

<« Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Unreliable

Sender Receiver

channel

Suppose transmission of a file with ABP or sliding window:

O (send(file) = ¢ receive(file) )

CONICET o—® [

S~y o & | une




Limitations of classical Model Checking

+ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a
property can only be measured quantitatively

< Bounded Retransmission Protocol in Philips RC6

<« Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Unreliable

Sender Receiver

channel

Unrealistic

. . . - ) assumption!
Suppose transmission of a file with ABP or sliding window:

Holds, under the
assumption of infinite
CONICET retrlals
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O (send(file) = ¢ receive(file) )




Limitations of classical Model Checking

+ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a
property can only be measured quantitatively

< Bounded Retransmission Protocol in Philips RC6

<« Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Unreliable

Sender Receiver

channel
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Probabilistic Model Checking

= O (send(file) = ¢ receive(file) )

Properties that
represent boolean behavior on

A graph representing execUtions

nondeterministic behavior
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Probabilistic Model Checking

= O (send(file) = ¢ receive(file) )

It should also include a way
to quantify probabilities

Probabilistic behavior
should also be considered
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Before continuing, | must say:

rinciples of Model Checking

.
[ ]
Christel Baier and Joost-Pieter Katoe

The course borrows from Chapter 10 of
Principles of Model Checking by

Christel Baier & Joost-Pieter Katoen

published in 2008 by the MIT press
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https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://wwwtcs.inf.tu-dresden.de/~baier/
https://www-i2.informatik.rwth-aachen.de/~katoen/
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Discrete Time Markov Chain (DTMC)

A DTMC is a structure
(S, P, sp, AP, L)
where

< S is a denumerable set of states, where sy € S is the initial state,

+ P :S xS —|[0,1] is the probabilistic transition function, such that, for every s € 5,
> .vesP(s,s") =1, and

“ L:S— P(AP)is a labelling function, where AP is a a set of atomic propositions.
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Discrete ™~ "~ Chain (DTMC)

In model checking
we only consider a finite set

of states
A DTMC s a structure P(s,s’) is the probability to
(S’ P, sy, AP, L) move to state s’ conditioned to
the system being at state s.

where
< S is a denumerable set of states, where sy € S is the initial state,

+ P :S xS —|[0,1] is the probabilistic transition function, such that, for every s € 5,
> .vesP(s,s") =1, and

@ L:S— P(AP)is alabelling function, where AP is a a set of atomic propositions.
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{delivered} 0
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A toy protocol

S = {80,81,52753}

so is the initial state

o o5 o
O O8O

AP = {start, try, delivered, lost}

L(sy) = {start}
L(s1) = {try}

L(s2) = {lost}
L(s3) = {delivered}
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Simulating a die with a coin
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Simulating a die with a coin
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Simulating a die with a coin

P(8081842) + P(80818381842) + P(808183818381842) + P(8081838183818381842) + .-

[ J
A4

P(SQ, 81) . P(Sl, 84) : P(S4, 2)
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Simulating a die with a coin

[ J

00— S
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Simulating a die with a coin

P(8081842) + P(80818381842) + P(808183818381842) + P(8081538183818381342) -+ -

J

0~ 3

L L 1
32 128

512 e
- <

Co
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Simulating a die with a coin

How do we
calculate this formally?

P(8081842) + P(80818381842) + P(808183818381842) + P(8081838183818381842) + .-

[ J \ J \ J \ J

1

00— S

1 1
CONICET 32 128 512 cor®
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Probability space defined by a DTMC

< The sample space is the set of all plausible infinite executions:
Q=5v

< The o-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form
Cyl(m) = {p € S¥ | 7 es prefijo de p}
where m € S§* is a finite sequence of states
< For each state s € S define the unique probability measure such that
Pry(Cyl(s1s9...8,)) = 1s(s1) - P(s1,82) - P(s2,53) - P(sp_1, sp)

where 14(s) = 1 and 14(¢) = 0 otherwise
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Probability space defined by a DTMC

< The sample space is the set of all plausible infinite executions:
Q=5v

< The o-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form
Cyl(m) = {p € S¥ | 7 es prefijo de p}
where m € S§* is a finite sequence of states
< For each state s € S define the unique probability measure such that
Pry(Cyl(s159...8,)) = 1s(s1) - P(s1,82) - P(s2,53) - P(sp-1, sp)

where 14(s) = 1 and 14(¢) = 0 otherwise
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Probability space defined by a DTMC

< The sample space is the set of all plausible infinite executions:
Q=5v

< The o-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form
Cyl(m) = {p € S¥ | 7 es prefijo de p}
where m € S* is a finite sequence of states
< For each state s € S define the unique probability measure such that
Prs(Cyl(s182...8,)) = 15(s1) - P(s18283. .. 85)

where 14(s) = 1 and 14(¢) = 0 otherwise
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Simulating a die with a coin

-%

1

neN 22n+3 —

1

6

Pr(G2) =Pr({pe S¥ |3 e N: p(i) = 2})
= Pr(U{Cyl(7) | last(r) = 2})
= Pr(|J{Cyl(m) | m € sps1(s351)"542})

= D _nen P(8051(8351)"842)

UNC




Simulating a die with a coin

Pr(G2) =Pr({pe S¥ |3 e N: p(i) = 2})
= Pr(U{Cyl(7) | last(r) = 2})
= Pr(|J{Cyl(m) | m € sps1(s351)"542})

= D _nen P(8051(8351)"842)

D=

= D peN T =
- neN 22n+3 7 g

But, how does the
computer calculate this?
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Quantitative reachability properties
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Reachability properties

The probability of reaching a set of states B
Pr,(OB) = Pr,({p € ¥ | Ji € N: p(i) € BY)
= Pry(U{Cyl(7) | last(n) € B})
= ) 1(s0) P(s0...sn)

50...sn.€(S\B)*B

If se B then

Pry(OB) =1

CONICET
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Reachability properties

Pr(OB)= > 14s0)-P(s0...sy)

S0...sn€(S\B)*B

n—1
— Z 13(50) ) H P(5z7 Sz—l—l)
S0...5n,€(S\B)*B i=0
n—1

If s¢ B

= Z 14(s0) - H (51, 8i41 —i—zl so) - P(s0, 51)

80...n€(S\B)*BAs1¢DB i=0

s1€B

= Z P(s,s1) HP Siy Sit1 —i—ZPssl

81...Sn€(S\B)*B/\81§éB

s1€B

=Y Ps,s1) Y. Ly(t) HPtZ,tzH—l—ZPssl

SlﬁéB tltne(S\B)*B

s1€B

~~

Pr,, (O B)

UNC
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Reachability properties

If s¢ B
Pr(OB)= > 14s0)-P(s0...sy)
S0...sn€(S\B)*B
n—1
= D> L(so)- ][ Psiisiv)
S0...5n,€(S\B)*B i=0
n—1
— > 1.(s0) - [ [P (sirsi01) + Y L(s0) - P(s0, 51)
80...n€(S\B)*BAs1¢DB i=0 s1€B
= Z P(s,s1) HP Siy Sitl —i—ZPssl
81...Sn€(S\B)*B/\81§éB s1€B
- ZP(S781) Z 81 tl HPtz:tz—H +ZP S, Sl
SlﬁéB t1tn€(S\B)*B s1€B

_ Z P(s,s) - Pr, (OB) + Z P(s,s1) e

81¢B 81€B

UNC
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Reachability properties

Pr(OB)= Y

S0...sn€(S\B)*B

So...sn€(S\B)*B

13(80) : P(So ..

15(s0) -

80...n€(S\B)*BAs1¢DB

= 2

n—1

If s¢ B

H (51, 8i41 +Zl s0) - P(s0, 51)

1=0

s1€B

(s,51) HP Siy Siv1) + ZP S, 81)

81...8n€(S\B)*B/\81¢B

s1€B

1, (1) - HP titin) + Y P(s,s1)

s1€B

00
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Reachability properties

The following set of equations is obtained (one for each s ¢ B)

Ty = ZP(s,t) Ty F ZP(S,t)

t¢B teB

Be aware! The system of equations may not have unique solution:

l if B = {s;}, the system of equations
S0 ) 1 @ only contains equation:

Ty = T,
1 which has infinite solutions
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Reachabil lty properties Note that the only interesting

states are those reaching 3
(otherwise the reachability

The following set of equations is obtained (one for each s ¢ ~ probability is 0)

Ty = ZP(s,t) Ty F ZP(S,t)

t¢B teB

Be aware! The system of equations may not have unique solution:

l if B = {s;}, the system of equations
S0 ) 1 @ only contains equation:
Ty = T,
1 which has infinite solutions
CONICET :
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Reachabili lty propertles Note that the only interesting

states are those reaching 3
(otherwise the reachability

The following set of equations is obtained (one for each s ¢ ~

95, = Z P(s,t) xt—kZPst

tePre*(B)\B teB

Be aware! The system of equations may not have unique solution:

l if B = {s;}, the system of equations
S0 ) 1 @ only contains equation:

Ty = T,
1 which has infinite solutions

CONICET
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Pre*(B) ={s € S| Pry(¢B) > 0}

is the set of all states that may reach B. chabili lty propertles Note that the only interesting

It is calculated by graph analysis

The tonowiig . of equations is obtained (one for each s ¢~

T — Z P(s,t) xt—kZPst

tePre*(B)\B teB

Be aware! The system of equations may not have unique solution:

l if B = {s;}, the system of equations
S0 ) 1 @ only contains equation:

Ty = T,
1 which has infinite solutions

CONICET

states are those reaching 3
(otherwise the reachability
probability is 0)
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Reachability properties

The complete system of equations is defined by:

Ty = Z P(s,1) -CEt+ZP<S,t>

tePre*(B)\B teB
Te =1
rs =10

CONICET

- 1

if s € Pre”(B)\B

ifse B

if s¢ Pre*(B)UB

This system of equations
has a unique solution
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Calculated using techniques

ReaChabI I lty prOpertleS like Gaussian elimination, Jacobi or

Gauss-Seidel

Computed in

The complete system of equations is defined by: polynomial time

Ty = Z P(s,t) - xy + ZP(S,t) if s € Pre”(B)\B
tePre*(B)\B teB

G5y = 1l if se B

zs =0 if s¢ Pre*(B)UB

Ls . .
@ 1 @ ° This system of equations
g, =1 has a unique solution
CONICET o—+® -
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Simulating a die with a coin

CONICET
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tePre*(B)\B
rs=1
s =0

if s € Pre*(B)\B

ifseB

if s ¢ Pre*(B)UB

o—+®

D

EGR
(&
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Simulating a die with a coin

ZIZ2:1

if s € Pre*(B)\B

ifse B

if s ¢ Pre*(B)UB
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Simulating a die with a coin

_ 1 Pre*(B) \ B
Q:SO b § * l’sl
1 1
‘f‘C81_2 3733+§‘I'34
_ 1
xSS — § * xsl
_ 1
x54 — 5
B
o = 1
z= Y, P(st)-m+Y Plst) if s € Pre*(B)\B
tePre*(B)\B teB
CONICET 2o=1 e g
L\ zs =0 if s¢ Pre*(B)UDB ":‘_}“ &P ENE




Simulating a die with a coin

1 Pre*(B)\ B
xSo - § - '7;81
_ 1 1
Lsy = 3 $33+§°$34
_ 1
Lsg = 5 " sy
_ 1
$S4 — 5
B
o = 1
. S\ Pre*(B)
rs =0, if s & {s0, 51, 53, 54,2}
a5, = Z P(s,t) - x; + ZP(S,t) if s € Pre*(B)\B
tePre*(B)\B teB
CONICET iy =1l if s€ B o

g | une

\.’\ zs=0 if s¢ Pre*(B)UB 0




Simulating a die with a coin 1 up to you 10

check that indeed

1
.’,USO = 6
1 Pre*(B)\ B
Lsg = 3 " sy
1 1
Lsy = 3 $33+§'$34
1
$83 = § * xsl
_ 1
Ls, = 5
B
o = 1
S\ Pre*(B)

s =0, if s ¢ {so, 51,53, 54,2}

iy = Z P(s,t) - x; + ZP(S,t) if s € Pre*(B)\B

tePre*(B)\B teB

CONICET zs=1 ifse B

L 4
Ay o Z1 | une
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Bounded reachability
(exact: Pry (O™"B) )

< The probability transition function P defines the probability of moving from one
state to another in one single step

+ Then the probability of moving from s to 7 in two steps is

ZPSS = (P -P)(s,t) = P*(s, 1)

CONICET
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Bounded reachability
(exact: Pry (O™"B) )

< The probability transition function P defines the probability of moving from one

state to another in one single step

_ _ , P is a matrix!
+ Then the probability of moving from s to 7 in two steps is

ZP(S, s)-P(s',t) = (P-P)(s,t) = P*(s,t)

+ In general, the probability of reaching 7 on n steps from the initial state is:
O, (t) = P"(s0,1)

+ Then, the probability of reaching a state in B in exactly n steps is

Pr, (¢ Z O, (

Py ... S0, this is
calculated with matrix

CONICET
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Bounded reachability

(upper bound)
+ Given the DTMC M construct the DTMC M3 by making all states in B absorbing:
1 ift=se B
PMB(S,t): 0 ift?éSEB
PM(S, t) if s §é B

< Then calculate

PrM(0SnB) = Prifs (o Z OMs (1)
teB

CONICET
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Constrained reachability
(until operator)

< The probability of reaching states in B passing only through states in C:
Pr, (CUB) Pr, (CU™ B) Pry, (C U=" B)

Y

bounded versions

CONICET o—® [
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Constrained reachability
(until operator)

< The probability of reaching states in B passing only through states in C:
Pr, (C'U B) Pr, (CU™ B) Pry, (C U=" B)

<« Construct the DTMC MV from M by making states not in C U B absorbing:
1 ift=s¢ (CUB)
P]\jU(S,t) = 0 lft#Sﬁé (CUB)
Py (s, t) if se (CUB)

< Then calculate: .
Pr)(C'UB) = Pr) (¢B)

M —n . MY =n
Pr, (CU™ B) = Pr, (¢7"B)

Pr(C us" B) = Prif" (0= B)

CONICET
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Constrained reachability

Let C = {S(), S1, 83}
and B = {s4}

Pr,, (C U=* B)?

SR
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Constrained reachability

Let C = {S(), S1, 83}
and B = {s4}

Pr,, (C U=* B)?

Y
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Constrained reachability

Let C = {S()7 S1, 83}
and B = {s4}

Pr,, (C U=* B)?

Y
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Constrained reachability

Let C = {S(), S1, 83}
and B = {s4}

Pr,, (C U=* B)?

oo
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Constrained reachability

Let C = {S(), S1, 83}
and B = {s4}

Pr,, (C U=* B)?

1) Calculate MV

oo
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Constrained reachability

i.e. make states not in
C or B absorbing

Let C = {S(), S1, 83}
and B = {s4}

Pr,, (C U=* B)?

1) Calculate MV

UNC
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Constrained reachability

i.e. make states not in
C or B absorbing

Let C = {SQ, S1, 83}
and B = {s4}

Pr,, (C U=* B)?

1) Calculate MV

UNC
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Constrained reachability

i.e. make states not in
C or B absorbing

Let C = {S(), S1, 83}
and B = {s4}

Pr,, (C U=* B)?

1) Calculate MV
2) Calculate Pr" (0=*B)

‘v
??-
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Constrained reachability

Let C = {S(), S1, 83}
and B = {s4}

Pr,, (C U=* B)?

1) Calculate MV
2) Calculate Pr" (0=*B)

i.e. make states r.10t in Notice that Pr, (C'U B) can
C or B absorbing be obtained in this DTMC by
CONICET calculating Pri\g (<>B) instead

- <y
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Constrained reachability

Let C = {SQ, S1, 83}
and B = {s4}

Pr,, (C US* B)?

SR
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Constrained reachability

Let C = {SQ, S1, 83}
and B = {s4}

Pr,, (C US* B)?

1) Calculate MV

i.e. make states not in
C or B absorbing
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Constrained reachability

Let C = {SQ, S1, 83}
and B = {s4}

Pr,, (C US* B)?

1) Calculate MV
2) Calculate M7,
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i.e. make states in B

absorbing

Constrained reachability

Let C = {SQ, S1, 83}
and B = {s4}

Pr,, (C US* B)?

1) Calculate MV
2) Calculate M7,

UNC
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i.e. make states in B

absorbing

Constrained reachability

Let C = {SQ, S1, 83}
and B = {s4}

Pr,, (C US* B)?

1) Calculate MV
2) Calculate M7,

,®
—-o
e,

=
4§
o
‘“&"\'ﬂi"
N
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i.e. make states in B

absorbing

Constrained reachability

Let C = {SQ, S1, 83}
and B = {s4}

Pr,, (C US* B)?

1) Calculate M"Y
2) Calculate M7,
3) Calculate Pr)s(0=1B)

UNC
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Qualitative properties

+ These properties deal with extreme probabilities:
« something happens with probability 1, or
« something happens with some probability (different from 0)

« We focus on:
<+ reachability (¢B)
<« constrained reachability (C U B)
+ repeated reachability (0©B) — states in B are visited infinitely often

<+ persistence (¢0B) — reach SCCs that contain only states in B

+ All these properties can be verified by doing graph analysis on the underlying graph
of the DTMC

CONICET o—®
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Qualitative properties

Dually: something

+ These properties deal with extreme probabilities: happens with
bability 0
< something happens with probability 1, or PIoseny
+ something happens with some probability (different from 0) All these properties
can be proved
+ We focus on: measurable

<+ reachability (¢B)
<« constrained reachability (C U B)
+ repeated reachability (0©B) — states in B are visited infinitely often

<+ persistence (¢0B) — reach SCCs that contain only states in B

+ All these properties can be verified by doing graph analysis on the underlying graph
of the DTMC
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Reachability (with some probability)

An execution fragment is a sequence sy 51 83 ... s, € S* such that P(sg sy s ...5s,) >0,

that IS, P(SZ‘, 3i+1) > (0 forall 0 <i<n.

Pathg,(s) is the set of all execution fragments starting in the state s.
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Reachability (with some probability)

An execution fragment is a sequence sy 51 83 ... s, € S* such that P(sg sy s ...5s,) >0,

that IS, P(SZ‘, 3i+1) > (0 forall 0 <i<n.
Pathg,(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B C S is defined by

Pre(B) = {s| dt € B: P(s,t) > 0}
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Reachability (with some probability)

An execution fragment is a sequence sy 51 83 ... s, € S* such that P(sg sy s ...5s,) >0,

that is, P(s;, s;41) > 0 forall 0 <i < mn.
Pathg,(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B C S is defined by

Pre(B) ={s| 3t € B: P(s,t) > 0}
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An execution fragment is a sequence sy s1 S3 ... s, € S* such that P(sp sy s9 . ..

Reachability (with some probability)

that is, P(s;, s;41) > 0 forall 0 <i < mn.

Pathg,(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B C S is defined by

Pre(B) ={s| 3t € B: P(s,t) > 0}

Then, is the set of states reaching B is defined by

CONICET

Pre*(B) = UPrei(B) = {s € S| Ir € Pathg,(s): last(r) € B}

1>0

Sn) >0,
Pre(B) B
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Reachability (with some probability)

An execution fragment is a sequence sy 51 83 ... s, € S* such that P(sg sy s ...5s,) >0,

that iS, ].:)(SZ‘7 Si—i—l) > (0 forall 0 <i<n.

Pathg,(s) is the set of all execution fragments starting in the state s. Pre*(B) .
—@
The (immediate) predecesors of a set of states B C S is defined by N I /\ \\
N\ — —o—®
T— e —— @ =
Pre(B) = {s |3t € B: P(s,t) > 0} //\ } f //'
Then, is the set of states reaching B is defined b \ - v
| S -
Pre*(B) = UPT@Z(B) = {s € S| Ir € Pathg,(s): last(r) € B}
i>0
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Reachability (with some probability)

An execution fragment is a sequence sy 51 83 ... s, € S* such that P(sg sy s ...5s,) >0,

that iS, ].:)(SZ‘7 Si—i—l) > (0 forall 0 <i<n.

Pathg,(s) is the set of all execution fragments starting in the state s. Pre*(B)
The (immediate) predecesors of a s~ This equality can -~ py \ )\
be proved by induction \\ —N .
Pre(B) = {s | 3t € B: P(s,t, from which the theorem
follows

Then, is the set of states reaching_ is defined by \ - T

Pre*( U Pre'(B) = {s € S| 31 € Pathg,(s): last(n) € B}

1>0

Theorem: Pry(¢B) > 0 if and only if s € Pre*(B)
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Reachability (with some probability)

An execution fragment is a sequence sy 51 83 ... s, € S* such that P(sg sy s ...5s,) >0,

that iS, ].:)(SZ‘7 Si—i—l) > (0 forall 0 <i<n.

Pathg,(s) is the set of all execution fragments starting in the state s. Pre*(B)
The (immediate) predecesors of a s~ This equality can -~ py \ )\
be proved by induction \\ —N .
Pre(B) = {s | 3t € B: P(s,t, from which the theorem
follows

Then, is the set of states reaching_ is defined by \ - T

Pre*( U Pre'(B) = {s € S| 31 € Pathg,(s): last(n) € B}

1>0

Theorem: Pry(¢B) > 0 if and only if s € Pre*(B)
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Bottom strongly connected component

Let M = (S, P, sy, AP, L) be a DTMC. Then 7' C S is

< strongly connected if every pair of states in 7" is connected with an
execution fragment, i.e., Vt,u € T": 3w € Pathg,(t): last(r) = u. V
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Bottom strongly connected component

Let M = (S, P, sy, AP, L) be a DTMC. Then 7' C S is

< strongly connected if every pair of states in 7" is connected with an
execution fragment, i.e., Vt,u € T": 3w € Pathg,(t): last(r) = u. x
< a strongly connected component (SCC) if it is a maximal strongly ,%Q

connected set, i.e.,

i. T is strongly connected and
ii. for every strongly connected 7" such that TNT' # @, T C T, (C)
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Bottom strongly connected component

Let M = (S, P, sy, AP, L) be a DTMC. Then 7' C S is

< strongly connected if every pair of states in 7" is connected with an
execution fragment, i.e., Vt,u € T": 3w € Pathg,(t): last(r) = u.

% a strongly connected component (SCC) if it is a maximal strongly CQ V

connected set, i.e., F\
i. T is strongly connected and \

ii. for every strongly connected 7" such that TNT' # @, T C T, (C)
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Bottom strongly connected component

Let M = (S, P, sy, AP, L) be a DTMC. Then 7' C S is
< strongly connected if every pair of states in 7" is connected with an
execution fragment, i.e., Vt,u € T": 3w € Pathg,(t): last(r) = u.

% a strongly connected component (SCC) if it is a maximal strongly CQ x
connected set, i.e., F\

i. T is strongly connected and \

ii. for every strongly connected 7" such that TNT' # @, T C T, (C)

< a bottom strongly connected component (BSCC) if it is a SCC and
no state outside 7" is reached from 7', i.e.,
i. T"is a SCC and
i.vteTT:P(t,S\T)=0 (or alternatively, P(t,7) = 1).
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Bottom strongly connected component

Let M = (S, P, sy, AP, L) be a DTMC. Then 7' C S is
< strongly connected if every pair of states in 7" is connected with an
execution fragment, i.e., Vt,u € T": 3w € Pathg,(t): last(r) = u.

% a strongly connected component (SCC) if it is a maximal strongly ,%Q

connected set, i.e.,

i. T is strongly connected and \ V

ii. for every strongly connected 7" such that TNT' # @, T C T, (C)

< a bottom strongly connected component (BSCC) if it is a SCC and
no state outside 7" is reached from 7', i.e.,
i. T"is a SCC and
i.vteTT:P(t,S\T)=0 (or alternatively, P(t,7) = 1).
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Bottom strongly connected component

Let M = (S, P, sy, AP, L) be a DTMC. Then 7' C S is

< strongly connected if every pair of states in 7" is connected with an

execution fragment, i.e., Vt,u € T": 3w € Pathg,(t): last(r) = u.

% a strongly connected component (SCC) if it is a maximal strongly
connected set, i.e.,

i. T is strongly connected and
ii. for every strongly connected 7" such that T N7T" # @, T C T.

< a bottom strongly connected component (BSCC) if it is a SCC and
no state outside 7" is reached from 7', i.e.,
i. T"is a SCC and
i.vteTT:P(t,S\T)=0 (or alternatively, P(t,7) = 1).
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Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

Pr, ({p € Path(s) | infty(p) € BSCC(M)}) = 1.

BSCC(M) denotes the
set of all BSCC in M.

Path(s) C S“ is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences sg s1 $2 s3. .. such that

So =S and P(Si, Si+1) > 0 for all ¢ > 0.

infty(p) ={s | 3i>0:s=p()}
is the set of all states that repeats

infinitely often in p
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Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

Pr, ({p € Path(s) | infty(p) € BSCC(M)}) = 1.

/_\
o TN
In other words: O i)
the probability of getting trapped (
ina BSCC is 1
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Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

Pr, ({p € Path(s) | infty(p) € BSCC(M)}) = 1.

/'\
o TN
In other words: O i)
the probability of getting trapped (
in a BSCC is 1 2ot
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Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M, There is always

some probability to leave

Pr, ({p € Path(s) | infty(p) € BSCC(M)}) = 1. the SCC

O

/'\

o TN
In other words: O i)
the probability of getting trapped TR (
ina BSCC is 1 BSCC
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Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M, There is always

some probability to leave

Pr, ({p € Path(s) | infty(p) € BSCC(M)}) = 1. the SCC
/'\
o TN
In other words: O i)
the probability of getting trapped -~ (
BSCC:
you are trapped by
definition!
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

Pre*(B) \
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

Pre*(B)
%K_J
Pry(OB) > 0 \
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(B)
%K_J
Pry(OB) > 0 \
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(B)
%K_J
Pr,(OB) > 0 \
Pr3(<>VB) =0 \
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(B)
%K_J
Pr,(OB) > 0 \
Prs(ﬂgB) =1 \
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

Pre*(S\Pre*(B))
%r_J
Pry(OB) > 0
Prs(ﬂgB) =1 \
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

Pre*(S\Pre*(B))
%r_J
Pr,(OB) > 0
Pry(~OB) = 1 \
Pr,(~0B) > 0 E )
CONICET

@
Ry o vf;‘%& UNC




Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(S\ Pre*(B))
%f—J
Pry(OB) > 0

Pry(~OB) = 1 \
Pry(~OB) > 0 E >
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(S\ Pre*(B))
%f—J
Pry(OB) > 0

Pry(~OB) = 1 \
Pry(~OB) > 0 E >

L J

Pry(=0B) =0
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(S\ Pre*(B))
%f—J
Pry(OB) > 0

Pry(~OB) = 1 \
Pry(~OB) > 0 E >

L J

Pr,(¢B) = 1
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

Recall:
S\ Pre*(S\ Pre*(B))

l[inear time
Pry(¢B) > 0

Pry(~OB) = 1 \
Pry(~OB) > 0 E >

L J

Pr,(¢B) = 1
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB) =1 ifandonyif (sé&€ S\Pre*(S\Pre*(B))

S\ Pre*(S\ Pre*(B)) Computed
Pr,(¢B) > 0 in linear time

Pry(—=0OB) = 1 \
Pry(~OB) > 0 E >

L J

Pr,(¢B) = 1
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Almost sure reachability

What if B is not
absorbing?
Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB) =1 ifandonyif (sé&€ S\Pre*(S\Pre*(B))

S\ Pre*(S\ Pre*(B)) Computed
Pr,(¢B) > 0 in linear time

Pry(—=0OB) = 1 \
Pry(~OB) > 0 E >

L J

Pr,(¢B) = 1
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))
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Almost sure reachability

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))
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Almost sure reachability

What if B is not
absorbing?

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

Pre*(B) \
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Almost sure reachability

What if B is not
absorbing?

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(B) \
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Almost sure reachability

What if B is not
absorbing?

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

Pre*(S\Pre*(B)) \
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Almost sure reachability

What if Bis not |
absorbing?

Theorem: Let s € S'and B C S be a set of absorbing states. Then e

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(S\ Pre*(B)) \
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Almost sure reachability

What if B is not
absorbing?

Theorem: Let s € S'and B C S be a set of absorbing states. Then

Pry(OB)=1 ifandonyif se& S\Pre*(S\Pre*(B))

S\ Pre*(S\ Pre*(B)) \

v \

o o S
Therefore, for the general
case, first construct Mz
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Qualitative repeated reachability

. _ Some state of B should
p € OOB iff anfty(p) N B # @ repeat infinitely often
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Qualitative repeated reachability

Some state of B should
p € OOB iff anfty(p) N B # @ repeat infinitely often

Theorem: Let s € S and B C S. Then

Pr,(OCB) =1 iff forall T'e BSCC(M) reachable froms e S, TN B # &

iff s e Pre*(U{T € BSCC(M) | TN B # @})
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Qualitative repeated reachability

Some state of B should
p € OOB iff anfty(p) N B # @ repeat infinitely often

Theorem: Let s € S and B C S. Then

Pr,(OCB) =1 iff forall T'e BSCC(M) reachable froms e S, TN B # &

iff s e Pre*(U{T € BSCC(M) | TN B # @})

Follows from the
l[imit behavior of Markov
chains

Theorem: For every state s of a finite DTMC M,
Pr; ({p € Path(s) | infty(p) € BSCC(M)}) = 1.
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Qualitative repeated reachability

Some state of B should
p € OOB iff anfty(p) N B # @ repeat infinitely often

Theorem: Let s € S and B C S. Then

Pr,(OCB) =1 iff forall T'e BSCC(M) reachable froms e S, TN B # &

iff s e Pre*(U{T € BSCC(M) | TN B # @})

0.2

0.25

0.5

0P o 1 ] B = {83,84,85}

Sa Ss
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Qualitative repeated reachability

Some state of B should
p € OOB iff anfty(p) N B # @ repeat infinitely often

Theorem: Let s € S and B C S. Then

Pr,(OCB) =1 iff forall T'e BSCC(M) reachable froms e S, TN B # &

iff s e Pre*(U{T € BSCC(M) | TN B # @})

Computed

0.5 . )
in linear time

0.25

0.5

0P o 1 ] B = {83,84,85}

53 Ss
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p € OB iff infty(p) C B
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Only states from B can
repeat infinitely often

UNC




Qualitative persistence

. Only states from B can
p € OB iff infty(p) C B repeat infinitely often

Theorem: Let s € S and B C S. Then

Pr,(COG) =1 iff forall T'€ BSCC(M) reachable from s € S,7 C B

iff se Pre*(U{T € BSCC(M) | T C B})
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Qualitative persistence

. Only states from B can
p € OB iff infty(p) C B repeat infinitely often

Theorem: Let s € S and B C S. Then

Pr,(COG) =1 iff forall T'€ BSCC(M) reachable from s € S,7 C B

iff se Pre*(U{T € BSCC(M) | T C B})

Like before, follows
from the limit behavior of
Markov chains

CONICET

- <y

&5

&2

UNC




p € OB iff infty(p) C B

Qualitative persistence

Only states from B can
repeat infinitely often

Theorem: Let s € S and B C S. Then

CONICET
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Pr,(COG) =1

iff  forall T'e BSCC(M) reachable from s € S, T C B

iff se Pre*(U{T € BSCC(M) | T C B})

0.2

0.25
0.5 4 B = {83, S4, 85}
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Qualitative persistence

. Only states from B can
p € OB iff infty(p) C B repeat infinitely often

Theorem: Let s € S and B C S. Then

Pr,(COG) =1 iff forall T'€ BSCC(M) reachable from s € S,7 C B

iff se Pre*(U{T € BSCC(M) | T C B})

0.3

0.25
2 D LING

0.5 B =
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Qualitative persistence

. Only states from B can
p € OB iff infty(p) C B repeat infinitely often

Theorem: Let s € S and B C S. Then

Pr,(COG) =1 iff forall T'€ BSCC(M) reachable from s € S,7 C B

iff se Pre*(U{T € BSCC(M) | T C B})

0.3

0.25
2 D LING

0.5 B = ’ 35}

B = {837 S4, S5, 86} V
o] Bl s
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p € OB iff infty(p) C B

Theorem: Let s € S and B C S. Then
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Pr,(COG) =1

iff

iff

0.3

Qualitative persistence

Only states from B can
repeat infinitely often

for all T" € BSCC(M) reachable from s € S, T C B

s € Pre*(|l{T € BSCC(M) | T C B})

0.5

0.25

Computed
in linear time

B = ) 55}

B = {83734755786} V
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More quantitative properties




Quantitative repeated reachability

Theorem: Let s € S and B C S. Then
Pr,(OCB) = Pry(OU)

where U = | J{T € BSCC(M) | T N B # &}.
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Quantitative repeated reachability

Theorem: Let s € S and B C S. Then

Pr,(OCB) = Pry(OU)

where U = | J{T € BSCC(M) | T N B # &}.

< Compute U (linear time)
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Quantitative repeated reachability

Theorem: Let s € S and B C S. Then
Pr,(OCB) = Pry(OU)

where U = | J{T € BSCC(M) | T N B # &}.

< Compute U (linear time)
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Quantitative repeated reachability

Theorem: Let s € S and B C S. Then 2.2
0.25
So 5 5,
Pr,(OCB) = Pry(OU) 0.5
oif 0.B5 :
where U = | J{T € BSCC(M) | TN B # @}.
53 54 S5
1 1
< Compute U (linear time)
< Compute Pr,(OU)  (polynomial time) B = {54, 55}
U — {827 S4, 35}
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Computed i . cre
inpolynomial  Quantitative repeated reachability

time
Theorem: Let s € S and B C S. Then 2.2
0.25
So 5 5,
Pr,(OCB) = Pry(OU) 0.5
oif 0.B5 :
where U = | J{T € BSCC(M) | TN B # @}.
53 54 S5
1 1
< Compute U (linear time)
< Compute Pr,(OU)  (polynomial time) B = {54, 55}
U — {827 S4, 35}
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Quantitative persistence

Theorem: Let s € S and B C S. Then 2u
0.25
Pr,(OOB) = Pry(OU) “®_ 05 ]
0:5 #5
where U = |J{T € BSCC(M) | T C B). - ‘
B = {84, 85}
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Quantitative persistence

Theorem: Let s € S and B C S. Then 2u
0.25
So s
Pr,(COB) = Pr,(OU) 0.5
0{5 E5 :
where U = | J{T € BSCC(M) | T C B}.
< Compute U
B = {s4, s5}
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Quantitative persistence

Theorem: Let s € S and B C S. Then 2u
0.25
So 5 S,
Pr,(GOB) = Pry(OU) 0.5
0i5 0.B5 : :
where U = | J{T € BSCC(M) | T C B}.
S, e Ss
dit),
< Compute U
B = {s4, s5}
U = {s4}

-
T 4 véff%%, UNC
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Computed

in polynomial Quantitative persistence
time

Theorem: Let s € S and B C S. Then 22

0.25

Pr,(OOB) = Pry(OU) “®_ 05 ] 2
0i5 gps ]
where U = | J{T € BSCC(M) | T C B}.
|18,
< Compute U
« Compute Pr (OU) B = {sy4, s5}
U = {84}
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w-regular properties

% Can be expressed with w-automata such as Biichi automata, Rabin automata, Strett
automata, etc.

+ Repeated reachability and persistence are central, since, e.g., the Rabin acceptance
condition of can be expressed as properties of the form:

Vie (OGN DO H;)

< The verification of w-properties proceed by

i. obtaining the synchronous product of the DTMC with the deterministic Rabin
automata (DRA) of the property, and

ii. calculating the reachability property of a set U very much like for repeated
reachability and persistence.
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Though polynomial

w'regu Iar propertles w.r.t. the DTMC and the DRA, the

DRA normally grows exponentially

large w.r.t. the w-property

< Can be expressed with w-automata such as Biichi automata, . expressed in e.g. LTL
automata, etc.

+ Repeated reachability and persistence are central, since, e.g., th <abin acceptance
condition of can be expressed as properties of the form:

Vie (OGN DO H;)

< The verification of w-properties proceed by

i. obtaining the synchronous product of the DTMC with the deterministic Rabin
automata (DRA) of the property, and

ii. calculating the reachability property of a set U very much like for repeated
reachability and persistence.
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PCTL: Probabilistic Computational Tree Logic

% Syntax state formulas

® = true | p ’ alil | D A Dy ‘ PD<10,<¢)

ath formulas
6 = 0D | ®UD | @ U D, P !

where

¢ p € AP is an atomic proposition, and

e xe{<, <, > >}anda € R.
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PCTL: Probabilistic Computational Tree Logic

% Syntax state formulas

-0 | DADy | Pu(0)

® = tfrue | p
path formulas

¢ = O O UDy, | DU D,

where
¢ p € AP is an atomic proposition, and

e xe{<, <, > >}anda € R.

<% Some abbreviations:
in addition to the

P, = P.y(@) AP
(a](®) >a(®) A P<i(9) boolean abbreviations

Pri(O®) = Py (trueU @) Poaa(OS"®) = Pry(true U=" @)

PSG(D(I)) = le—a(o_'q)) P>a(DSn(I)) = P<1—a(<>§n—|q))
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Some examples

On the “die with a coin” example:

P:%(Ql) N P:%(<>2) N P:%(QB) AN P:%(<>4) AN P:%(<>5) N P
“Each of the six sides will eventually appear with 1/6 probability”
On the “toy protocol”:

P_;(<delivered)
“The message is almost surely delivered”
P_, (D (start:> p20_99(<>§4deliverecﬁ))

“Almost surely always each time a communication is started, the message is
eventually delivered in at most 4 steps with probability 0.99”
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state
formulas

path
formulas
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Semantics of PCTL

A PCTL formula @ holds in state s € .S of a DTMC M, denoted by s = ®, whenever:

SED
S}:—!(I)
S):(I)l/\q)g

§ = Poca(9)

iff

iff

iff

iff

p € L(s)
s d
skE=®; and s = @9

Pr(s = ¢)><a

where Pr(s = ¢) = Pry({p € Path(s) | p = ¢}) and

pEOP

pEOUV

pEOUS P

iff

iff

iff

p(1) @
exists 7 >0 s.t. p(j) EY andforall 0 <k <jpk)E=®

exists 0 <j<n st p(j)EY andforall 0 <k <j,pk) =P

,o+®
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fun Sat(®) {

// input: a PCTL (state) formula ® Algorlth m for PCTI_

// output: {s € S| s = O}

}

fun Prob(s, ¢) {

}

d=0, AU,
(DEPJ(gb)

Pp=0dU VU

(bECI)US"\I/

return {s €S| ® e L(s)} mOdel CheCklng

return S\Sat(¥)
return Sat(W,) N Sat(Vy)

return {s € S| Prob(s,$) € J} Polynomial on the size of M
Linear on the size of ®
Prob( - ¢) is Linear on the largest n
calculated as a matrix

// input: a state s and a path formula ¢

// output: Pry(s = ¢)

return (P - 1,)) (5)
let B = Sat(V); let C' = Sat(®)

return Pr,(C'UB) // constrained reachability
let B = Sat(V); let C = Sat(®)
return Pr,(C U=" B) // bounded constrained reachability

g | une
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Markov Decision Processes




The need of non-determinism

« Parallel composition / distributed components:

<+ relative probabilities of events occurring in different physical locations may be hard to estimate.

« Sub-specification:

< many probabilities may be unknown at modeling time

< Abstraction:

< models are intentional abstractions of the system under study

< Control synthesis and planning:

<+ sub-specification is intentional to synthesize optimal decisions
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Markov Decision Processes (MDP)

A MDP is a structure
(S, ACt,P,SmAP,L)

where
< S is a finite set of states, where sg € S is the initial state,
% Act is a finite set of actions,

P :Sx Act xS — [0,1] is the probabilistic transition function, such that, for every
seS,anda € Act, > ,.¢P(s,a,5) € {0,1}, and

@ L:S— P(AP) is a labelling function, where AP is a a set of atomic propositions.
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If Act =

{al, the

vorisaomme | Markov Decision Processes (MDP)

A MDP is a structure

(S, Act, P, 50, AP, L) P(s,a,s') is the probability

to move to state s’ conditioned to

where

CONICET

-

the system being at state s and

% Act is a finite set of actions,

P :Sx Act xS — [0,1] is the probabilistic transition function, such that, for every

seS,anda € Act, > ,.¢P(s,a,5) € {0,1}, and

@ L:S— P(AP) is a labelling function, where AP is a a set of atomic propositions.

a is enabled in s if Act(s) is the set of all At least one action should

> ses P(s,a,8) =1 actions enabled in s be enabled in every state

< S is a finite set of states, where sg € S is the initial state, action a being selected
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Financial decisions

(S, Act, P, sy, AP, L)
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Financial decisions

(S, Act, P, sy, AP, L)
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Financial decisions

(S, Act, P, sg, AP, L)
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stock market

casino

Financial decisions

(S, Act, P, sy, AP, L)
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stock market

casino

Financial decisions

(S, Act, P, sy, AP, L)
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Financial decisions

(S, Act, P, sy, AP, L)
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Financial decisions

(S, Act, P, sy, AP, L)
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Financial decisions

stock market cn 02 e L0250 et 025 Lt

__________
_____

---------
-------------
------------------------

casino 3787702 0375702 0302 03 e

~e.

What is the
probability of
& “alot”?

(S, Act, P, sy, AP, L)
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Resolving the non-determinism

+ To compute the probabilities in a MDP, non-determinism needs to be resolved

« Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

04, ,,",o 6 05 o5 g
0.1 p \‘\\ 0.9 I,'I ) 1 ,/II 0.4,/,' i \\\\\0.2 0.3“\“ 0.7 ) 2“\‘ \\0.8
/ , 1040, .
S & & & & 5 & Lwe b %
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Resolving the non-determinism

+ To compute the probabilities in a MDP, non-determinism needs to be resolved

« Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

.
04 .7 ',"0.6 0-5,," N0.5 AN
01\ o9 //1 1/ 04N 02 0.3‘\:‘ 07 2 08
‘ / Sy 047
S & & é 6 b %8 b O %
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Resolving the non-determinism

+ To compute the probabilities in a MDP, non-determinism needs to be resolved

« Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

,
04 .7 ',"0.6 0-5,," N0.5 AN
01, 09 //1 1/ 0.4,/5\\\0.2 0.3“\:‘ .07 02‘\: 0.8
, ,/ 040, AN
S & & & & 5 & L e & %o

CONICET

- <y

Y

UNC




Resolving the non-determinism

+ To compute the probabilities in a MDP, non-determinism needs to be resolved

« Schedulers (also adversaries or policies) are functions that select the next action

based on the past execution.

1
0.4 ,"0.6 0.5 ’I, < 05 1
\\ /I ’I ,', : \\\ “\\ ‘\\ 0 8
01, Nog 1/ 04,7002 03} 07 024
&5 b e b %
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Resolving the non-determinism

+ To compute the probabilities in a MDP, non-determinism needs to be resolved

« Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

/\ A scheduler defines a
(maybe infinite) DTMC
1 ,'

655"16;5 a«."a“.
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Resolving the non-determinism

+ To compute the probabilities in a MDP, non-determinism needs to be resolved

« Schedulers (also adversaries or policies) are functions that select the next action

based on the past execution.

/\ A scheduler defines a
(maybe infinite) DTMC

A scheduler can also

/ / /i \ \O\ chose with randomness
/// ’ . ,',, h “\\\\\ 0-7 ‘\‘\\\\ 08
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Schedulers

Let M = (5, Act, P, so, AP, L) be a MDP.

A scheduler is a funciton & : ST — Act — [0, 1] such that

1. S(sps1...5y) is a probability distribution on Act, i.e., >~ 4., S(s01...5,)(a) =1, and
2. ifS(sgs1...8,)(a) >0, then a € Act(s,).
A scheduler & induces the DTMC Mg = (ST, Pg, s9, AP, L’) where

@ Pa(5051.. 80, 505180 8n+1) = D penct ©(S051...50) () - P(sp, @, Spp1)

 L'(sgs1...8,) = L(sy)
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DTMC induced by a scheduler

stock _market

casino
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DTMC induced by a scheduler

stock _market

~~~~~~~~~~~~~~
) [ [

casino (377" 03757702 03702 03 et

& always chooses casino Pro(®@ = O“a lot”) ~ 0.0816
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DTMC induced by a scheduler

-
-
.-

A}
. O‘ A}
stock_market o 02 e 0.25 ',—",“.-_925 IRt P

casino

& always chooses casino Pro(®@ = O“a lot”) ~ 0.0816

S always chooses stock_market Pro(@ = O“a lot”) ~ 0.0443
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DTMC induced by a scheduler

stock_market .02 Lo w025

casino 037702 03 v eener”
05 ST
-.% ------- | 05
& always chooses casino Pro(®@ = O“a lot”) ~ 0.0816
S always chooses stock_market Pro(@ = O“a lot”) ~ 0.0443

chooses stock_market on @ and @ and casino otherwise ~ Pr ' (® = $“a lot”) ~ 0.1504
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DTMC induced by a scheduler

stock_market 3 .Q"l TS :'.':0;25 ,9"1' P %2
ooss| T 00 055
ﬁﬁ é) IO O
A .- Y= e L 4
casino o3 0.5':"--(—)4-2---—

* v 0.5

- .%
& always chooses casino Pro(®@ = O“a lot”) ~ 0.0816
S always chooses stock_market Pro(@ = O“a lot”) ~ 0.0443
chooses stock_market on @ and @ and casino otherwise ~ Pr ' (® = $“a lot”) ~ 0.1504
S chooses on the other way around Pro(® = O“alot”) ~ 0.1332
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DTMC induced by a scheduler But then, ..

what is the probability
of & “alot” 22!

stock _market

casino

& always chooses casino Pro(®@ = O“a lot”) ~ 0.0816
S always chooses stock_market Pro(@ = O“a lot”) ~ 0.0443
chooses stock_market on @ and @ and casino otherwise ~ Pr ' (® = $“a lot”) ~ 0.1504
Conier S chooses on the other way around Pro(® = O“alot”) ~ 0.1332 .




Supremum and infimum probabilities

<+ There are uncountably many resolutions

< Only the best or worst bound for the probability can guarantee the satisfaction of a
property, e.g:
« an error occurs with probability less than 0.001

« a message is transmitted successfully with probability over 0.95

+ Therefore, if ® is the property of interest, we search for

|| >

Pr"**(s = @) sup Pro(s = ®), and
S

| >

Pr™%(s |= ®) ilglf Pro(s = @)
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Supremum and infimum probabilities

<+ There are uncountably many resolutions

< Only the best or worst bound for the probability can guarantee the satisfaction of a
property, e.g:
« an error occurs with probability less than 0.001

« a message is transmitted successfully with probability over 0.95
How can we

+ Therefore, if ® is the property of interest, we search for calculate this?
max A S
Pr"*(s = ®) = sup Pro(s =®), and
S
Pymin(s = @) 2 inf Pr(s |- @)
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Type of schedulers

A scheduler & is:

deterministic:

if for all sgs;...5, &(sgsi...s,)(a) =1 forsome a € Act
memoryless:

if forall spsy...5, 6&(sps1...5,) =6(sy)
memoryless and deterministic:

if it is memoryless and deterministic at the same time
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Type of schedulers

A scheduler & is:

deterministic:

if for all sgs1...5, &(sgs1..

memoryless:

if forall spsy...5, G(sps1...

memoryless and deterministic:

if it is memoryless and deterministic at the same time

.Sp)(a) =1 for some o € Act

There are
only finitely many
of these
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Quantitative reachability

Theorem:

Let B C S. Then:

< There exists a memoryless and deterministic scheduler G™** such that
P (s = ©B) = Pr™™*(s = OB)
« There exists a memoryless and deterministic scheduler G™ such that

Pr®" (s = ©B) = Pr"(s = ©B)
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Quantitative reachability

Not any property!

only reachability
Theorem:

Let B C S. Then:

< There exists a memoryless and deterministic scheduler G™** such that
P (s = ©B) = Pr™™*(s = OB)
« There exists a memoryless and deterministic scheduler G™ such that

Pr®" (s = ©B) = Pr"(s = ©B)
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Quantitative reachability

stock_market

casino
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Quantitative reachability

stock_market

P is abbreviates
Pri*®¥(s = OYa lot”) casino

0375770,
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Quantitative reachability

stock_market

P is abbreviates
Pri*®¥(s = OYa lot”) casino

0375770,
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P is abbreviates
Pri*®¥(s = OYa lot”)

Pl+

P-I—

al
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stock_market

Quantitative reachability
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P is abbreviates
Pri*®¥(s = OYa lot”)

Pl+

P-I—

al
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Quantitative reachability
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P is abbreviates
Pri*®¥(s = OYa lot”)

Pl+

P-I—

al
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Quantitative reachability
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P is abbreviates
Pri*®¥(s = OYa lot”)
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Quantitative reachability

stock_market

:
casino 03" Rl

max (0.7 P +0.2P +0.1P", 03P +0.2P +0.5P")
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Quantitative reachability

stock_market

P is abbreviates

Prmax(s ): O“a lOt”) casino
Pl =p" =0
Ph =1

Pt = max (0.7P +02P +0.1F , 03P +02P +05F5)

P = max (055 P +0.25Pf +0.1PF +0.1P¢, 03P +0.2P) +05P7,)
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Quantitative reachability

stock_market

P is abbreviates
Prmax(s ): Sa lOt”) casino

0375770,

Pt = max (0.7Pf +02P +01P", 03P +02P +0.5F)
Py = max (0.55 P +0.25 P +0.1 P +0.1P}, 03P +02P5 +05P,)

Py = max (055 Pf +0.25 B +0.1 P +0.1P}, 03P/ +02P; +05P",)
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Quantitative reachability

stock_market

P is abbreviates
Prmax(s ): Sa lOt”) casino

0375770,

Pt = max (0.7P +02P +0.1F , 03P +02P +05F5)
Py = max (0.55 P +0.25 P +0.1 P +0.1P}, 03P +02P5 +05P,)
Py = max (0.55 P +0.25 P +0.1P +0.1P}, 03P +02P) +058,)

Pf = max (0.55Pf +0.25 P} +0.1Pf +0.1P!, 03P +02P), +05P,)
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Quantitative reachability

stock_market

casino

Pr"*(® = &”alot”) ~ 0.1905

and the (memoryless and determinstic) scheduler G that maximizes it is

S(®) = stock_market S (@) = stock_market
S (@) = casino S(®) = stock_market
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Quantitative reachability (max)

Theorem:

The family of values {x;}ses with x, = Pr"*(s = OB) is the unique solution to the

following equation system:
z, =1 if seB
rs =0 if Pr"™(s =<CB) =0

zs =max{Y s P(s,a,t) -z, | a € Act(s)} if Pr"™(s=<B)>0ands¢ B
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Quantitative reachability (max)

Theorem:

The family of values {x;}ses with x, = Pr"*(s = OB) is the unique solution to the

following equation system:
z, =1 if seB
rs =0 if Pr"™(s =<CB) =0

zs =max{Y s P(s,a,t) -z, | a € Act(s)} if Pr"™(s=<B)>0ands¢ B

The Bellman equations can be ... but how can the
computed with a fixed-point iteration conditions be calculated?
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.

Then, for s € .S,

dPre(C) 2 {s €S |3Ja e Act(s) : P(s,a,C) > 0}

VPre(C) 2 {s € S| Va € Act(s) : P(s,a,C) > 0}

iff s € dPre*(B)
iff s € S\IPre*(B)

iff s VPre*(S\3Pre*(B))
iff s € S\VPre*(S\IPre*(B))
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.

Then, for s € .S,

dPre(C) 2 {s €S |3Ja e Act(s) : P(s,a,C) > 0}

VPre(C) 2 {s € S| Va € Act(s) : P(s,a,C) > 0}

iff s € dPre*(B)
iff s € S\IPre*(B)

iff s VPre*(S\3Pre*(B))
iff s € S\VPre*(S\IPre*(B))
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.

Then, for s € .S,

dPre(C) 2 {s €S |3Ja e Act(s) : P(s,a,C) > 0}

VPre(C) 2 {s € S| Va € Act(s) : P(s,a,C) > 0}

iff s € dPre*(B)
iff s € S\IPre*(B)

iff s VPre*(S\3Pre*(B))
iff s € S\VPre*(S\IPre*(B))
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.

Then, for s € .S,

iff s 3Pre’(B)
iff s S\3IPre*(B)

iff s € VPre*(S\3Pre*(B))
iff s € S\VPre*(S\3Pre*(B))

ﬁ\EEIPre(C) o
JPre(C) = {s € S| Ja € Act(s) : P(s,a,C) > 0} / Y.

\d
“““
0
....
. . 0
....
.
;;;;
0
*e,

VPre(C) 2 {s € S| Vae Act(s) : P(s,a,C) > 0} ()‘ “““ d b (5 b
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.

Then, for s € .S,

dPre(C) 2 {s €S |3Ja e Act(s) : P(s,a,C) > 0}

VPre(C) 2 {s € S| Va € Act(s) : P(s,a,C) > 0}

iff s € dPre*(B)
iff s € S\IPre*(B)

iff s VPre*(S\3Pre*(B))
iff s € S\VPre*(S\IPre*(B))
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.

Then, for s € .S,

iff s 3Pre’(B)
iff s S\3IPre*(B)

iff s € VPre*(S\3Pre*(B))
iff s € S\VPre*(S\3Pre*(B))

ﬁ\XVPTe(C’)
IPre(C) 2 {s € S | 3a € Act(s) : P(s,a,C) > 0} ‘
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.

Then, for s € .S,

iff s 3Pre’(B)
iff s S\3IPre*(B)

iff s € VPre*(S\3Pre*(B))
iff s € S\VPre*(S\3Pre*(B))

ﬁ\EVPTe(C’) v
JPre(C) = {s € S| Ja € Act(s) : P(s,a,C) > 0} / Y.

\d
“““
0
....
. . 0
....
.
;;;;
0
*e,

VPre(C) 2 {s € S| Vae Act(s) : P(s,a,C) > 0} ()‘ “““ d b é b
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.
Then, for s € .S,

o Pr"*(s =OB) >0 iff se€ JPre(B)

« Pri"™(s = OB) =0 iff se€ S\IPre*(B)

@ Pr"(s = OB) <1 iff seVPre*(S\IPre*(B))

o Pri*®™(s EOB) =1 iff se& S\VPre*(S\IPre*(B))

where

dPre(C) 2 {s €S |3Ja e Act(s) : P(s,a,C) > 0} APre*(C) 2 U,z 3Pre"(C)
VPre(C) 2 {s € S| Va € Act(s) : P(s,a,C) > 0} VPre*(C) £ U,z VPre"(C)

??-
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.
Then, for s € .S,

O(size(M))
o Pr"*(s =OB) >0 iff se€ JPre(B)
« Pri"™(s = OB) =0 iff se€ S\IPre*(B)
@ Pr"(s = OB) <1 iff seVPre*(S\IPre*(B))
@ Pr"®¥(s = OB) =1 iff se€ S\VPre*(S\IPre*(B))
where
dPre(C) 2 {s €S |3Ja e Act(s) : P(s,a,C) > 0} APre*(C) 2 U,z 3Pre"(C)
VPre(C) 2 {s € S| Va € Act(s) : P(s,a,C) > 0} VPre*(C) £ U,z VPre"(C)

??-
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Qualitative reachability (max)

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.
Then, for s € .S,

O(size(M))

o Pr"*(s =OB) >0 iff se€ JPre(B)
« Pri"™(s = OB) =0 iff se€ S\IPre*(B)
@ Pr"(s = OB) <1 iff seVPre*(S\IPre*(B))

3
% Pr"(s = OB) =1 iff se S\VPre*(S\3Pre*(B)) O(size(M)?)
where
dPre(C) 2 {s €S |3Ja e Act(s) : P(s,a,C) > 0} APre*(C) 2 U,z 3Pre"(C)
VPre(C) 2 {s € S| Va € Act(s) : P(s,a,C) > 0} VPre*(C) £ U,z VPre"(C)

??-
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For the general case,
first make states in B absorbing

Q u al itative reaChabi I ity (maX then app|y the Corresponding

algorithm

Lemma: Let M = (S, Act, P, sy, AP, L) be a MDP and let B C S be a set of absorbing states.
Then, for s € .S,

O(size(M))
o Pr"*(s =OB) >0 iff se€ JPre(B)
> Actually
@ Pr"*¥(s EOB)=0 iff se€ S\IPre*(B) achieved with a
; different algorithm®
& Pr™(s = OB) <1 iff seVYPre*(S\3Pre*(B)) HETEN ATROrTT
g
& Pr¥(s = OB) =1 iff se S\VPre*(S\3Pre*(B)) O(size(M)?)
where
dPre(C) 2 {s €S |3Ja e Act(s) : P(s,a,C) > 0} APre*(C) 2 U,z 3Pre"(C)
VPre(C) 2 {s € S| Va € Act(s) : P(s,a,C) > 0} VPre*(C) £ U,z VPre"(C)

o L J
o &L | unc
0

&2

* See Algorithm 45 in [Baier & Katoen] @




Quantitative reachability (max)

Theorem:

The family of values {x;}ses with x, = Pr"*(s = OB) is the unique solution to the

following equation system:
z, =1 if seB
rs =0 if Pr"™(s =<CB) =0

zs =max{Y s P(s,a,t) -z, | a € Act(s)} if Pr"™(s=<B)>0ands¢ B

CONICET o—+®
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Quantitative reachability (max)

Theorem:

The family of values {x;}scs with x; = Pr"*(s = ©B) is the unique solution to the

following equation system:

Ty =1 if s € S
rs =0 if s e S5
zs =max {> , ¢ P(s,a,t) -y | & € Act(s)} if s € STF\SE™

CONICET

- <y

Y

UNC




Quantitative reachability (max)

Theorem:

The family of values {x;}scs with x; = Pr"*(s = ©B) is the unique solution to the

following equation system:

zs =max {> , ¢ P(s,a,t) -y | & € Act(s)}

First make states
in B absorbing

CONICET

- <y

if s gm
if s gmax

if 5 gmax\ gmax

Smx = S\VPre*(S\IPre*(B))
SE* = S\3Pre*(B)
ST5* = dPre*(B) -0

Fi'N
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Quantitative reachability (max)
Value iteration algorithm

for all s € 5™, xS’) =1

for all s ¢ Sma ng) _0 a consequece ((i))f
- Ts = hmz—>oo X s
1=0
repeat
1=1+1

forall s € smx, ) — 1
for all s € S, 2 =
for all s € STH™\ S,

2 = max {ZteSP(S, a,t) - xf*l) |a € Act(s)}

until (maxseg |x£l) — ngl)\ < 5)

CONICET Normally very small,

0. 10-6
- 25 10

&8
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Quantitative reachability (max)

Value iteration algorithm

for all s € 5™, 2V =1

forall s ¢ smex, ¥ — ¢

1=0
repeat
1=1+1

forall s € smx, ) — 1

for all s € S, 2 =

for all s € SmE™\ Smax,
xgl) = max {Ztes P(S, a, t)

until (maxseg |x£l) — ngl)\ < 5)

-xf*l) |a € Act(s)}

Normally very small,
e.g. 106

a consequece of
(i)

Ts = hmz—>oo X s

What about
P (=") and
PrmaX(OS”B)?
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Quantitative bounded reachability

< Only two memoryless deterministic
'Q/' 3 schedulers:
S1(®) =« Sy (®) =
v 0.1
A > P11 (0=20) = 0.875 P12 (0=2@) = 0.9

AR
0.5 05 ™~

\4 )4

CONICET = ® [ =
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Quantitative bounded reachability

< Only two memoryless deterministic
't.} 3 schedulers:
6i(®) =a 6y(®) =
Q 0.1
A ’@ Pré(0=2@) = 0.875 Pré(0<2@) = 0.9
S ~. 109 |
0.5 05 ™ < However Pr™*¥(¢=2@) = 0.975 with
@ S@=a 6@ =a 6@aa)=/_

Memoryless deterministic

schedulers are not sufficient . &

=L | UNC




Quantitative bounded reachability (max)

for all s € 5™, 335;0) =1

forall s ¢ smax 2% — ¢

1=0
repeat
1=1+1

forall s € smx, ) — 1

for all s € S, azg) =

for all s € STH™\ S,

Algorithm for
quantitative reachability

2 = max {ZteSP(S, a,t) - xiiil) |a € Act(s)}

until (maXSGS |x£2) — xff;l)\ < 5)

CONICET

- <y

A\
&Y
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Quantitative bounded reachability (max)

for all s € B, xgo) =1
foralls¢ B, 2V =0

1=10
repeat
t=1+1

for all s € B, xgi) =1
for all s € S™3¥, xgi) =0

for all s € ST*\ B,

2 = max {ZteSP(s, a,t) - :cf‘” |a € Act(s)}

until (i = n)

Exactly n times

Computes
Pr*(&="B)

To compute Pr™*(O="B)
first make states in B absorbing
then apply this algorithm

&8

&2

[ IR
7
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Qualitative reachability (min)

Lemma: Let B C S be a set of absorbing states. Then, for s € S,

s Pr™(s = OB) >0 iff s VPre*(B)

» Pr"(s = OB) =0 iff sc S\VPre*(B)

o Pr™(s = OB) <1 iff s¢c 3Pre*(S\VPre*(B))

¢ Pr"(s = OB) =1 iff sc S\IPre*(S\VPre*(B))

Note the inversion of V
and 3 respect to max qualitative
reachability

UNC




Qualitative reachability (min)

Lemma: Let B C S be a set of absorbing states. Then, for s € S,

o Pr™(s = OB) >0 iff se VPre*(B) Sl
% Pr™(s = OB) =0 iff s€ S\VPre*(B) |

» Pr(s = OB) < 1 iff s 3Pre"(S\VPre*(B))

% Pr"(s = OB) =1 iff se S\IPre*(S\VPre*(B)) j O(size(M))

Note the inversion of V
and 3 respect to max qualitative

CONICET reachability e

ANy @y | UNC
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For the general case,
first make states in B absorbing

Qualitative reachability (mir s e oremondn.

algorithm
Lemma: Let B C S be a set of absorbing states. Then, for s € S,
_ . O(size(M))
« Pr'"(s = OB) >0 iff seVPre*(B)
» Pr"(s = OB) =0 iff sc S\VPre*(B)
o Pr™(s = OB) <1 iff s¢c 3Pre*(S\VPre*(B))
¢ Pr™(s = OB) =1 iff s S\3Pre*(S\VPre*(B)) J O(size(M))

Actually
achieved with a

Note the inversion of V ifterc allgerith

and 3 respect to max qualitative
reachability .

@
* See Algorithm 46 in [Baier & Katoen] #~@

®
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Quantitative reachability (min)

Theorem:

The family of values {x,},cs with x, = Pr™®(s = ©B) is the unique solution to the

following equation system:
95, = 1l if s€ B
T, =0 if Pr™(s = OB) =0

z, =min{Y , ¢ P(s,a,t) x| a € Act(s)} if Pr'™(s |=0B)>0ands¢ B

CONICET o—+®
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Quantitative reachability (min)

Theorem:

The family of values {x,},cs with x, = Pr™®(s = ©B) is the unique solution to the

following equation system:

rs=1 if s € smin
s =0 if s c.Smn
z, =min{Y , ¢ P(s,a,t) x| a € Act(s)} if s € Smm\smn
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Quantitative reachability (min)
Value iteration algorithm

forall s € smin, 2 =1

forall s ¢ smin, 2 =0

1=0
repeat
1=1+1

for all s € S™in, 2l =
for all s Smm, xg) =

for all s € Smim\ Smax)

2% = min {ZteSP(s, a,t) - x,g

until <maXs€5 |x3 — xs \ < E)

Algorithm for
quantitative reachability

D | € Act(s)}

Fi'N
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Quantitative bounded reachability (min)

Computes

forallse B, 2\ =1 ,
Pr™(O="B)

foralls¢ B, z\” =0

1=0
repeat
1=1+1

for all s € B, xgi) =
for all s € Smin, 2 =0
for all s € S™"\ B,
2 = min {ZteSP(s,a,t) : x,ﬁifl) | € Act(s)}

To compute Pr™*(O="B)
first make states in B absorbing
then apply this algorithm

until (i = n)

CONICET

o~ Exactly n times
\x y o

&8

&2

[ IR
7
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Quantitative reachability

+ We gave approximating algorithms (value iteration) to calculate
quantitative reachability (max or min)

+ However, the exact values can be computed by solving a linear
programming problem

+ Therefore, quantitative reachability (max or min) can be computed in
polynomial time

CONICET ;0> ®

~ “ey | f | unc
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Constrained reachability

To compute
max( ‘_ CUB) max( ): CU<n B) max( ): CUB) _ 1
mln( I:OUB) mln( ):OU<n ) mln( ):CUB)—l
in a MDP M do:

1. Obtain My from M by making states in S\ (C U B) absorbing.

2. Apply the algorithm in My to verify the reachability property s = O B.

etc.

&5
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state
formulas

path
formulas
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PCTL in MDP

A PCTL formula ® holds in state s € S of a MDP M, denoted by s = ®, whenever:

skEp
8}:—@3
8):(131/\(1)2

S }: PNa(Cb)

pl=OP
pEPUV

pEOU=" T

iff

iff

iff

iff

iff

iff

iff

p € L(s)

s =@

Sliq)l and SIZCI)Q

p(1) = @
exists 7 >0 s.t. p(j) E V¥ andforall 0 <k < j,pk) E®

exists 0 <j<n st p()EY andforall 0 <k <y p(k)E®

® e,
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formulas
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PCTL in MDP

A PCTL formula ® holds in state s € S of a MDP M, denoted by s = ®, whenever:

skEp
8}:—@3
8):(131/\(1)2

S }: PNa(Cb)

iff

iff

iff

iff

p € L(s)
s =@
Sliq)l and SIZCI)Q

for every scheduler &, Pr%(s = ¢) > a

where Pr(s = ¢) = Pro({p € Path(s) | p = ¢}) and

pl=OP
pEPUV

pEOU=" T

iff

iff

iff

p(1) = @
exists 7 >0 s.t. p(j) E V¥ andforall 0 <k < j,pk) E®

exists 0 <j<n st p()EY andforall 0 <k <y p(k)E®

‘v
??-
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PCTL in MDP

A PCTL formula ® holds in state s € S of a MDP M, denoted by s = ®, whenever:

state sEDp iff pe L(s)

formulas

s - iff spEd How is this
computed?
8):(131/\(1)2 iff Sliq)l and SIZCI)Q

s = Pua(o)  iff  for every scheduler &, Pr(s = ¢) aa

where Pr(s = ¢) = Pro({p € Path(s) | p = ¢}) and

path pE Od iff  p(1) =
formulas
pEPUV iff exists 7 >0 s.t. p(j) EY andforall 0 <k <j,pk) E P
pEQUS"T  iff exists 0<j<n st p(j) EV andforall 0 <k < jpk) =
CONICET o—® 2




fun Sat(®) {

// input: a PCTL formula @ Algorlthm fOI‘ PCTI_
// output: {s € S| s = O} mOdeI Checking

case{ o ec AP return {sc€ S| o e L(s)}
o =0 return S\Sat(V) €< s}
O=U, AT,  return Sat(¥,)N Sat(,) > €{2,>}
® = Pau(9) return {s € 5| maxProb(s,¢) < a} Polynomial on the size of M
d = Puy(0) return {s € S| minProb(s, ¢) > a} Linear on the size of ®
} Linear on the largest n

}

minProb is the same but
fun maxProb(s, ¢) { changing max for min

// input: a state s and a path formula ¢

// output: Pri"*(s |= ¢)

case{ ¢=00 return max {Y ", ¢ P(s, 1) - Loy (t) | o € Act(s)}
p=dUW let B = Sat(V); let C' = Sat(P)

return Pr'*(C'U B) // constrained reachability
p=dUS" P let B = Sat(V); let C = Sat(P)

return Pr!**(C'U=" B)  // bounded constrained reachability

CONICET }

D> .

&L | uNc
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The quantitative automata zoo

SHA
/N
PHA STA
/ N N\ bt
PTA MA
dzszm e

/
TA MDP IMC
e |~

LTS /DTMC CTMC

nondeter- discrete exponential
minism probabilities res. times
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The quantitative automata zoo

SHA

/N
PHA STA\+ Continuous
/ probability
HA/ \PTA MA

+ contin.

dynamchA MDP IMC

+ real
titme

LTS DTMC CTl\{rILgal
deter-  discrete ea:ponttzmes

ng”gngsm probabilities res.
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State of the Art PMC

SHA
/N
PHA STA
/ N/ \*;%22%%%;
PTA MA
dzszm / e
TA MDP IMC
el |
LTS DTMC CTMC
nondeter- discrete exponential

minism probabilities res. times
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PRISM

R?
L X4

R
L X4

First appeared in 2000 [KNPOO, dAKNPS00]

https://www.prismmodelchecker.org/

In addition POMDP, POPTA, IMDP
PRISM language — network of modules

Properties: PCTL, CSL, LTL, PCTL*, steady
state, rewards and costs, multi-objective

Symbolic, hybrid, and explicit engines
Also SMC on deterministic models

Alternate version for stochastic games

UNC



https://www.prismmodelchecker.org/

State of the Art PMC

SHA
/ N\
PHA STA
/ N/ N\ bt
PTA MA
dzszm / e
TA MDP IMC
el |

LTS /DTMC CTMC

nondeter- discrete exponential
minism probabilities res. times
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First appeared in 2009 [Hartmanns09]

https://www.modestchecker.net/

Modest language includes conventional
programming constructs with ideas from
process algebra [DHKKOT1]

+ Properties: reachability, bounded reachability,

steady state, expected rewards
mcsta: disk-based explicit engine

modes: SMC for non-det. models and RES

+ More tools: prohver, modysh, mosta, moconv

o & | une



https://www.modestchecker.net/

State of the Art PMC

SHA
/" N\
PHA STA
/ N N\ bt
PTA MA
dzszm / e
TA MDP IMC
el |

LTS /DTMC CTMC

nondeter- discrete exponential
minism probabilities res. times
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Storm

First appeared in 2017 [DJKV17]

https://www.stormchecker.org/

In addition POMDP, Parametric models
Languages: PRISM, cpGCL, GSPN, DFT

Properties: PCTL, CSL, LTL, steady state,
expected rewards, multi-objective, conditional
probabilies

+ Counterexample generation

» Explicit and symbolic engine

o &L | uNc
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State of the Art PMC

SHA
/ \ PRISM
PHA STA
/ \ / V%ﬁ?i&%%j IANI
PTA MA intermediate
+cont@n.
dynamics / / Ianguage
TA MDP/ IMC
+ real /
time |~ Storm
LTS DTMC CTMC
nondeter- discrete exponential
minism probabilities res. times
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Probabilistic Model Checking

Pedro R. D’Argenio

Universidad Nacional de Cérdoba — CONICET
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