
Probabilistic Model Checking

Pedro R. D’Argenio 

Universidad Nacional de Córdoba – CONICET 
https://cs.famaf.unc.edu.ar/~dargenio/

ICTAC 2023 Training School on Applied Formal Methods

https://cs.famaf.unc.edu.ar/~dargenio/


Famous Errors

Ariane 5: 
64 bits fp 

vs 16 bits int

Mars Climate 
Orbiter: 
Metric vs Imperial

Pentium: 
FDIV

Therac-25: 
Race Condition

Heartbleed: 
Security

Northeast blackout 
in 2003: 

Race Condition



More errors

911
911 blackout: 
MAX value 
reached

Nissan airbag: 
Incorrect 
sensing

Nest Thermostat: 
Battery drained

Boeing 737 MAX 8: 
Incorrect sensing

Schiaparelli Landing 
Demonstrator 

Module: 
Multiple errors



The problem of correctness… 

System ⊨ Property

Describes what is 
expected from the system 
(The correctness criteria)

Usually an abstraction 
describing the behavior



The problem of correctness… 
…using Model Checking

Properties that 
represent boolean behavior on 

executionsA graph representing 
nondeterministic behavior

⊨ ☐ (send(file) ⇒ ◇ receive(file) )



Model Checking

� ⇥ crit1 �� ⇥ crit2� :

A¬�

active proctype process_1() {
do
:: true ->

0: y1 = y2+1;
1: ((y2==0) || (y1<=y2));

in_critical++;
2: in_critical--;
3: y1 = 0;

od
}

active proctype process_2() {
do
:: true ->

0: y2 = y1+1;
1: ((y1==0) || (y2<y1));

in_critical++;
2: in_critical--;
3: y2 = 0;

od
}

int y1 = 0;
int y2 = 0;
short in_critical = 0;

M

(0, 1, 0, 2, 0)

(0, 0, 0, 0, 0)

(1, 0, 1, 0, 0) (0, 1, 0, 1, 0)

(1, 1, 1, 2, 0) (2, 0, 1, 0, 1) (0, 2, 0, 1, 1) (1, 1, 2, 1, 0)

(2, 1, 1, 2, 1) (0, 3, 0, 1, 0) (1, 2, 2, 1, 1)

(3, 1, 1, 2, 0) (1, 3, 2, 1, 0)

(3, 0, 1, 0, 0)

(1, 0, 2, 0, 0)

0-0

AM

¿M |= �?

¿AM ⇤ A¬� = � ?

Normally 
the problem reduces 

to graph analysis



Limitations of classical Model Checking

❖ Many algorithms propose better solutions using randomness as a new ingredient 

❖ Leader Election Protocol in IEEE 1394 “Firewire” 

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”
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Limitations of classical Model Checking

❖ Many algorithms propose better solutions using randomness as a new ingredient 

❖ Leader Election Protocol in IEEE 1394 “Firewire” 

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Root contention!

It is solved by 
“flipping coins”



Limitations of classical Model Checking

❖ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a 
property can only be measured quantitatively 

❖ Bounded Retransmission Protocol in Philips RC6 

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”



Limitations of classical Model Checking

❖ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a 
property can only be measured quantitatively 

❖ Bounded Retransmission Protocol in Philips RC6 

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Sender Receiver
Unreliable 

channel

Suppose transmission of a file with ABP or sliding window:

☐ (send(file) ⇒ ◇ receive(file) )



Limitations of classical Model Checking

❖ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a 
property can only be measured quantitatively 

❖ Bounded Retransmission Protocol in Philips RC6 

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Sender Receiver
Unreliable 

channel

Suppose transmission of a file with ABP or sliding window:

☐ (send(file) ⇒ ◇ receive(file) ) Holds, under the 
assumption of infinite 

retrials

Unrealistic 
assumption!



Limitations of classical Model Checking

❖ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a 
property can only be measured quantitatively 

❖ Bounded Retransmission Protocol in Philips RC6 

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Sender Receiver
Unreliable 

channel

☐ (send(file) ⇒ ◇ receive(file) )

If the protocol has a bounded number of retransmissions before aborting (e.g. BRP):



Probabilistic Model Checking

Properties that 
represent boolean behavior on 

executionsA graph representing 
nondeterministic behavior

⊨ ☐ (send(file) ⇒ ◇ receive(file) )



Probabilistic Model Checking

Properties that 
represent boolean behavior on 

executionsA graph representing 
nondeterministic behavior

⊨ ☐ (send(file) ⇒ ◇ receive(file) )

It should also include a way 
to quantify probabilities

Probabilistic behavior 
should also be considered



Before continuing, I must say:

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

 The MIT Press   |   Massachusetts Institute of Technology

 Cambridge, Massachusetts 02142   |   http://mitpress.mit.edu     

 978-0-262-02649-9

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

Principles of M
odel C

hecking 
Baier and Katoen

 computer science 

 Our growing dependence on increasingly complex computer and software systems necessitates the development of 

formalisms, techniques, and tools for assessing functional properties of these systems. One such technique that has 

emerged in the last twenty years is model checking, which systematically (and automatically) checks whether a model 

of a given system satisfies a desired property such as deadlock freedom, invariants, or request-response properties. This 

automated technique for verification and debugging has developed into a mature and widely used approach with many 

applications. Principles of Model Checking offers a comprehensive introduction to model checking that is not only a 

text suitable for classroom use but also a valuable reference for researchers and practitioners in the field.

  The book begins with the basic principles for modeling concurrent and communicating systems, introduces different 

classes of properties (including safety and liveness), presents the notion of fairness, and provides automata-based 

algorithms for these properties. It introduces the temporal logics LTL and CTL, compares them, and covers algorithms 

for verifying these logics, discussing real-time systems as well as systems subject to random phenomena. Separate 

chapters treat such efficiency-improving techniques as abstraction and symbolic manipulation. The book includes an 

extensive set of examples (most of which run through several chapters) and a complete set of basic results accompanied 

by detailed proofs. Each chapter concludes with a summary, bibliographic notes, and an extensive list of exercises of 

both practical and theoretical nature.

 Christel Baier is Professor and Chair for Algebraic and Logical Foundations of Computer Science in the Faculty of 

Computer Science at the Technical University of Dresden. Joost-Pieter Katoen is Professor at the RWTH Aachen 

University and leads the Software Modeling and Verification Group within the Department of Computer Science. He is 

affiliated with the Formal Methods and Tools Group at the University of Twente.

“ This book offers one of the most comprehensive introductions to logic model checking techniques available today. The 

authors have found a way to explain both basic concepts and foundational theory thoroughly and in crystal-clear prose. 

Highly recommended for anyone who wants to learn about this important new field, or brush up on their knowledge of 

the current state of the art.”

 Gerard J. Holzmann, NASA/JPL Laboratory for Reliable Software 

“  Principles of Model Checking, by two principals of model-checking research, offers an extensive and thorough coverage 

of the state of art in computer-aided verification. With its coverage of timed and probabilistic systems, the reader gets 

a textbook exposition of some of the most advanced topics in model-checking research. Obviously, one cannot expect 

to cover this heavy volume in a regular graduate course; rather, one can base several graduate courses on this book, 

which belongs on the bookshelf of every model-checking researcher.”

 Moshe Vardi, Director, Computer and Information Technology Institute, Rice University

The course borrows from Chapter 10 of 

Principles of Model Checking by 

Christel Baier & Joost-Pieter Katoen 

published in 2008 by the MIT press

https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://wwwtcs.inf.tu-dresden.de/~baier/
https://www-i2.informatik.rwth-aachen.de/~katoen/


Markov Chains



Discrete Time Markov Chain (DTMC)

A DTMC is a structure 

where(S,P, s0,AP , L)

v S is a denumerable set of states, where s0 2 S is the initial state,

v P : S ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every s 2 S,

P
s02S P(s, s0) = 1, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

P(s, s0) is the probability to

move to state s
0
conditioned to

the system being at state s.

1
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Discrete Time Markov Chain (DTMC)

A DTMC is a structure 

where

In model checking 
we only consider a finite set 

of states

(S,P, s0,AP , L)

v S is a denumerable set of states, where s0 2 S is the initial state,

v P : S ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every s 2 S,

P
s02S P(s, s0) = 1, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

P(s, s0) is the probability to

move to state s
0
conditioned to

the system being at state s.

1

(S,P, s0,PA, L)

v S is a denumerable set of states, where s0 2 S is the initial state,

v P : S ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every s 2 S,
P

s02S P(s, s0) = 1, and

v L : S ! P(PA) is a labelling function, where PA is a a set of atomic propositions.

P(s, s0) is the probability to

move to state s0 conditioned to

the system being at state s.
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A toy protocol

s0

s1s3 s2

{start}

{try}{delivered}

{lost}1
1
10

9
10

1

1

S = {s0, s1, s2, s3}

s0 is the initial state

P =

0

BB@

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

1

CCA

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}
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0 1 0 0
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9
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0 1 0 0
1 0 0 0

1

CCA

AP = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}
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Simulating a die with a coin

¿P (3 2)?

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6
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die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1
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will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
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Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
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⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
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outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields
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How do we 
calculate this formally?
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Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.
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Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields
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Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1
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return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
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But, how does the 
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Calculated using techniques 
like Gaussian elimination, Jacobi or 

Gauss-Seidel

Computed in 
polynomial time
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Bounded reachability 
(exact:                   )

❖ The probability transition function P defines the probability of moving from one 
state to another in one single step

❖ Then the probability of moving from s to t in two steps is
X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)

⇥n = Sn
· 1s0

N

X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)

⇥n = Sn
· 1s0

Prs0(3=n
B) =

X

t2B

⇥n(t)

N



Bounded reachability 
(exact:                   )

❖ The probability transition function P defines the probability of moving from one 
state to another in one single step

❖ Then the probability of moving from s to t in two steps is

❖ In general, the probability of reaching t on n steps from the initial state is:

❖ Then, the probability of reaching a state in B in exactly n steps is
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P is a matrix!

… so, this is 
calculated with matrix 

multiplication

X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)
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Bounded reachability 
(upper bound)

❖ Given the DTMC M construct the DTMC MB by making all states in B absorbing: 

❖ Then calculate

SMB(s, t) =

8
><

>:

1 B7 t = s 2 B

0 B7 t 6= s 2 B

SM(s, t) B7 s /2 B

PrM
s0
(3n

B) = PrMB
s0

(3=n
B) =

X

t2B

⇥MB
n

(t)

Ry

SMB(s, t) =

8
><

>:

1 B7 t = s 2 B

0 B7 t 6= s 2 B

SM(s, t) B7 s /2 B

PrM
s0
(3n

B) = PrMB
s0

(3=n
B) =

X

t2B

⇥MB
n

(t)

Ry



Constrained reachability 
(until operator)

❖ The probability of reaching states in B passing only through states in C:

Prs0(C l B) Prs0(C l=n
B) Prs0(C ln

B)

SMl(s, t) =

8
><

>:

1 B7 t = s /2 (C [B)

0 B7 t 6= s /2 (C [B)

SM(s, t) B7 s 2 (C [B)

PrM
s0
(C l B) = PrM

l

s0
(3B)

PrM
s0
(C l=n

B) = PrM
l

s0
(3=n

B)

PrM
s0
(C ln

B) = PrM
l

s0
(3n

B)

RR

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

bounded versions



Constrained reachability 
(until operator)

❖ The probability of reaching states in B passing only through states in C:

❖ Construct the DTMC MU from M by making states not in  C ∪ B  absorbing:

❖ Then calculate:
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Qualitative properties

❖ These properties deal with extreme probabilities: 

❖ something happens with probability 1, or 

❖ something happens with some probability (different from 0) 

❖ We focus on: 

❖ reachability (◇B) 

❖ constrained reachability (C U B) 

❖ repeated reachability (☐◇B)  →  states in B are visited infinitely often 

❖ persistence (◇☐B)  →  reach SCCs that contain only states in B  

❖ All these properties can be verified by doing graph analysis on the underlying graph 
of the DTMC
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Reachability (with some probability)

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj
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0
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0
6= ?, T
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✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,
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BSCC(M) denotes the

set of all BSCC in M .
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BSCC 
can be computed in 

linear time
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Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |
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ω-regular properties

❖ Can be expressed with ω-automata such as Büchi automata, Rabin automata, Strett 
automata, etc. 

❖ Repeated reachability and persistence are central, since, e.g., the Rabin acceptance 
condition of can be expressed as properties of the form: 

❖ The verification of ω-properties proceed by 

i. obtaining the synchronous product of the DTMC with the deterministic Rabin 
automata (DRA) of the property, and 

ii. calculating the reachability property of a set U very much like for repeated 
reachability and persistence.

Recordar que una ejecución ⇢ es aceptada por un DRA A si existe i 2 I t.q. infty(⇢) \

Gi = ? e infty(⇢) \Hi 6= ?. Luego,

W
i2I

(32¬Gi ^23Hi)

es el conjunto de todas las ejecuciones aceptadas por A.

Por consiguiente,

PrM(s0 |= L(A)) = PrM⌦A

ini

�W
i2I

(32¬Gi ^23Hi)
�
.

k8
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Though polynomial 
w.r.t. the DTMC and the DRA, the 
DRA normally grows exponentially 

large w.r.t. the ω-property 
expressed in e.g. LTL



PCTL



PCTL: Probabilistic Computational Tree Logic

v Syntax

� = true | p | ¬� | �1 ^ �2 | S./a(�)

� = #� | �1 l �2 | �1 ln �2

where

u p 2 AP is an atomic proposition, and

u ./ 2 {<,,�, >} and a 2 R.

v Some abbreviations:

S(a,b](�) ⌘ S>a(�) ^ Sb(�)

S./a(3�) ⌘ S./a(true l �) S./a(3n�) ⌘ S./a(true ln �)

Sa(2�) ⌘ S�1�a(3¬�) S>a(2n�) ⌘ S<1�a(3n
¬�)

kk

state formulas

path formulas
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state formulas

path formulas

in addition to the 
boolean abbreviations



Some examples

❖ On the “die with a coin” example:

“Each of the six sides will eventually appear with 1/6 probability”

❖ On the “toy protocol”:

“The message is almost surely delivered”

“Almost surely always each time a communication is started, the message is 
eventually delivered in at most 4 steps with probability 0.99”

V
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750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6



Semantics of PCTL

state 
formulas

path 
formulas

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |=  and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln  iff exists 0  j  n s.t. ⇢(j) |=  and for all 0  k < j, ⇢(k) |= �
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Algorithm for PCTL 
model checking

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat( )

� ⌘  1 ^ 2 return Sat( 1) \ Sat( 2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat( ); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln  let B = Sat( ); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}
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Prob( · ,φ) is 
calculated as a matrix

Polynomial on the size of M  
Linear on the size of Φ 
Linear on the largest n



Markov Decision Processes



The need of non-determinism

❖ Parallel composition / distributed components: 

❖ relative probabilities of events occurring in different physical locations may be hard to estimate. 

❖ Sub-specification: 

❖ many probabilities may be unknown at modeling time 

❖ Abstraction: 

❖ models are intentional abstractions of the system under study 

❖ Control synthesis and planning: 

❖ sub-specification is intentional to synthesize optimal decisions



Markov Decision Processes (MDP)

A MDP is a structure 

where

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.
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What is the

probability of

3 “a lot”?

k3



Resolving the non-determinism

❖ To compute the probabilities in a MDP, non-determinism needs to be resolved 

❖ Schedulers (also adversaries or policies) are functions that select the next action 
based on the past execution. 
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❖ To compute the probabilities in a MDP, non-determinism needs to be resolved 

❖ Schedulers (also adversaries or policies) are functions that select the next action 
based on the past execution. 
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A scheduler defines a 
(maybe infinite) DTMC

A scheduler can also 
chose with randomness



Schedulers

Let M = (S,Act ,S, s0,AP , L) be a MDP.

A scheduler is a funciton S : S+
! Act ! [0, 1] such that

1. S(s0 s1 . . . sn) is a probability distribution on Act , i.e.,
P

↵2Act S(s0 s1 . . . sn)(↵) = 1, and

2. if S(s0 s1 . . . sn)(↵) > 0, then ↵ 2 Act(sn).

A scheduler S induceces the DTMC MS = (S+
,SS, s0,AP , L

0) where

v SS(s0 s1 . . . sn, s0 s1 . . . sn sn+1) =
P

↵2Act S(s0 s1 . . . sn)(↵) · S(sn,↵, sn+1)

v L
0(s0 s1 . . . sn) = L(sn)

kN

Let M = (S,Act ,S, s0,AP , L) be a MDP.

A scheduler is a funciton S : S+
! Act ! [0, 1] such that

1. S(s0 s1 . . . sn) is a probability distribution on Act , i.e.,
P

↵2Act S(s0 s1 . . . sn)(↵) = 1, and

2. if S(s0 s1 . . . sn)(↵) > 0, then ↵ 2 Act(sn).

A scheduler S induces the DTMC MS = (S+
,SS, s0,AP , L

0) where

v SS(s0 s1 . . . sn, s0 s1 . . . sn sn+1) =
P

↵2Act S(s0 s1 . . . sn)(↵) · S(sn,↵, sn+1)

v L
0(s0 s1 . . . sn) = L(sn)

kN



DTMC induced by a scheduler
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DTMC induced by a scheduler

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy
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DTMC induced by a scheduler
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But then,…

what is the probability

of 3 “a lot” ??!!
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Supremum and infimum probabilities

❖ There are uncountably many resolutions    

❖ Only the best or worst bound for the probability can guarantee the satisfaction of a 
property, e.g: 

❖ an error occurs with probability less than 0.001 

❖ a message is transmitted successfully with probability over 0.95 

❖ Therefore, if Φ is the property of interest, we search for

Prmax(s |= �)
4
= sup

S
PrS(s |= �), and

Prmin(s |= �)
4
= inf

S
PrS(s |= �)
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How can we 
calculate this?



Type of schedulers

A scheduler S is:

deterministic:

if for all s0 s1 . . . sn, S(s0 s1 . . . sn)(↵) = 1 for some ↵ 2 Act

memoryless:

if for all s0 s1 . . . sn, S(s0 s1 . . . sn) = S(sn)

memoryless and deterministic:

if it is memoryless and deterministic at the same time,

In this case, we write

S(s0 s1 . . . sn) = ↵

jk
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There are 
only finitely many 

of these



Quantitative reachability

Theorem:

Let B ✓ S. Then:

v There exists a memoryless and deterministic scheduler Smax
such that

PrS
max

(s |= 3B) = Prmax(s |= 3B)

v There exists a memoryless and deterministic scheduler Smin
such that

PrS
min

(s |= 3B) = Prmin(s |= 3B)
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Not any property! 
only reachability
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Quantitative reachability
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Prmax(¨ |= 3“a lot”) ⇡ 0.1905

and the (memoryless and determinstic) scheduler S that maximizes it is

S(¨) = stock_market S(Ø) = stock_market

S(≠) = casino S(≥) = stock_market
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Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 B

xs = 0 if Prmax(s |= 3B) = 0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

 
if Prmax(s |= 3B) > 0 and s /2 B

jd
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The Bellman equations can be 
computed with a fixed-point iteration

… but how can the 
conditions be calculated?



Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.
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v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))
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4
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4
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4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)
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For the general case, 
first make states in B absorbing 
then apply the corresponding 

algorithm

Actually 
achieved with a 

different algorithm*

* See Algorithm 45 in [Baier & Katoen]
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Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 B

xs = 0 if Prmax(s |= 3B) = 0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

 
if Prmax(s |= 3B) > 0 and s /2 B

jd



Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 S
max
=1

xs = 0 if s 2 S
max
=0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

 
if s 2 S

max
>0 \S

max
=1

S
max
=1 = S\8Pre⇤(S\9Pre⇤(B))

S
max
=0 = S\9Pre⇤(B)

S
max
>0 = 9Pre⇤(B)

j3



Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 S
max
=1

xs = 0 if s 2 S
max
=0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

 
if s 2 S

max
>0 \S

max
=1

S
max
=1 = S\8Pre⇤(S\9Pre⇤(B))

S
max
=0 = S\9Pre⇤(B)

S
max
>0 = 9Pre⇤(B)

j3

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 S
max
=1

xs = 0 if s 2 S
max
=0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

 
if s 2 S

max
>0 \S

max
=1

S
max
=1 = S\8Pre⇤(S\9Pre⇤(B))

S
max
=0 = S\9Pre⇤(B)

S
max
>0 = 9Pre⇤(B)

j3

First make states 
in B absorbing



Quantitative reachability (max) 
Value iteration algorithm
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xs = limi!1 x
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s

What about

Prmax(3n
B)?
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Normally very small, 
e.g. 10-6
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Quantitative bounded reachability (max)
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9R
Exactly n times



Qualitative reachability (min)

Lemma: Let B ✓ S be a set of absorbing states. Then, for s 2 S,

v Prmin(s |= 3B) > 0 iff s 2 8Pre⇤(B)

v Prmin(s |= 3B) = 0 iff s 2 S\8Pre⇤(B)

v Prmin(s |= 3B) < 1 iff s 2 9Pre⇤(S\8Pre⇤(B))

v Prmin(s |= 3B) = 1 iff s 2 S\9Pre⇤(S\8Pre⇤(B))

9k

Note the inversion of ∀ 
and ∃ respect to max qualitative 

reachability



Qualitative reachability (min)

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

⎧
⎨
⎩

⎧
⎨
⎩
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⎧
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⎨
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Actually 
achieved with a 

different algorithm*

For the general case, 
first make states in B absorbing 
then apply the corresponding 

algorithm
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Note the inversion of ∀ 
and ∃ respect to max qualitative 

reachability
* See Algorithm 46 in [Baier & Katoen]



Quantitative reachability (min)

Theorem:

The family of values {xs}s2S with xs = Prmin(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 B

xs = 0 if Prmin(s |= 3B) = 0

xs = min
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

 
if Prmin(s |= 3B) > 0 and s /2 B

9j



Quantitative reachability (min)

Theorem:

The family of values {xs}s2S with xs = Prmin(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 S
min
=1

xs = 0 if s 2 S
min
=0

xs = min
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

 
if s 2 S

min
>0 \S

min
=1

99



Quantitative reachability (min) 
Value iteration algorithm

for all s 2 S
min
=1 , x

(0)
s = 1

for all s /2 S
min
=1 , x

(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 S
min
=1 , x

(i)
s = 1

for all s 2 S
min
=0 , x

(i)
s = 0

for all s 2 S
min
>0 \S

max
=1 ,

x
(i)
s = min

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until
⇣
maxs2S |x

(i)
s � x

(i�1)
s | < "

⌘

Computes

Prmin(3=n
B)

To compute Prmin(3n
B)

first make states in B absorbing

then apply this algorithm

98

Algorithm for 
quantitative reachability



Quantitative bounded reachability (min)
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Computes
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9e
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9e



Quantitative reachability

❖ We gave approximating algorithms (value iteration) to calculate 
quantitative reachability (max or min) 

❖ However, the exact values can be computed by solving a linear 
programming problem 

❖ Therefore, quantitative reachability (max or min) can be computed in 
polynomial time



Constrained reachability

To compute

Prmax(s |= C l B) Prmax(s |= C ln
B) Prmax(s |= C l B) = 1

etc.
Prmin(s |= C l B) Prmin(s |= C ln

B) Prmin(s |= C l B) = 1

in a MDP M do:

1. Obtain Ml from M by making states in S\(C [B) absorbing.

2. Apply the algorithm in Ml to verify the reachability property s |= 3B.

9d



PCTL in MDP 
A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |=  and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln  iff exists 0  j  n s.t. ⇢(j) |=  and for all 0  k < j, ⇢(k) |= �
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path 
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Algorithm for PCTL 
model checking

fun Sat(�) {

// input: a PCTL formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat( )

� ⌘  1 ^ 2 return Sat( 1) \ Sat( 2)

� ⌘ S�a(�) return {s 2 S | maxProb(s,�)� a}

� ⌘ S⇤a(�) return {s 2 S | minProb(s,�)⇤ a}

}

}

fun maxProb(s,�) {

// input: a state s and a path formula �

// output: Prmax
s

(s |= �)

case { � ⌘ #� return max
�P

t2S
S(s,↵, t) · 1Sat(�)(t) | ↵ 2 Act(s)

 

� ⌘ � l let B = Sat( ); let C = Sat(�)

return Prmax
s

(C l B) // constrained reachability

� ⌘ � ln  let B = Sat( ); let C = Sat(�)

return Prmax
s

(C ln
B) // bounded constrained reachability

}

}

9N
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Polynomial on the size of M  
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Probabilistic model checkers



The quantitative automata zoo
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that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete 
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with 
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce 
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata, 
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This 
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata 
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed 
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability 
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic 
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with 
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes 
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness, 
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to 
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The 
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is 
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They 
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various 
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations, 
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target 
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and 
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted 
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an 
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set 
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These 
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or 
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying 
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations 
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They 
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions. 
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single 
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is 
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed) 
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over 
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the 
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be 
the same), and how to resolve the choices is a decision internal to the LTS.
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1. Introduction

We are surrounded by an increasing number of complex computer-driven systems: fly-by-wire airplanes, medical sys-

tems, automated stock trading, networked industrial automation systems, and not least the Internet itself. Over the last 

decades, significant progress has been made in the area of formal methods to allow these systems to be modelled in a 

mathematically precise way. Techniques like model checking have been developed to automatically prove that these mod-

els satisfy formally specified requirements. Up to modelling errors and implementation deviations, such a proof provides 

confidence in the correct functioning of the real system under study.
However, purely qualitative statements about functional correctness are often not sufficient in practice: a correct system 

may still be unusably slow, or we may not be able to prove correctness when we consider errors that in reality happen 

with negligible probability. In such cases, we need to extend our models with quantitative information to capture details of 

timing, probability, or physics. Appropriate verification techniques then allow the analysis of quantitative properties. These 

include requirements, for example that a fatal error happen with a very low probability over the lifespan of an airplane, and 

queries for quantitative measures, such as the throughput of a proposed server architecture.
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that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete 
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with 
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce 
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata, 
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This 
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata 
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed 
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability 
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic 
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with 
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes 
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness, 
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to 
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The 
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is 
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They 
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various 
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations, 
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target 
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and 
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted 
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an 
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set 
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These 
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or 
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying 
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations 
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They 
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions. 
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single 
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is 
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed) 
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over 
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the 
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be 
the same), and how to resolve the choices is a decision internal to the LTS.
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1. Introduction

We are surrounded by an increasing number of complex computer-driven systems: fly-by-wire airplanes, medical sys-

tems, automated stock trading, networked industrial automation systems, and not least the Internet itself. Over the last 

decades, significant progress has been made in the area of formal methods to allow these systems to be modelled in a 

mathematically precise way. Techniques like model checking have been developed to automatically prove that these mod-

els satisfy formally specified requirements. Up to modelling errors and implementation deviations, such a proof provides 

confidence in the correct functioning of the real system under study.
However, purely qualitative statements about functional correctness are often not sufficient in practice: a correct system 

may still be unusably slow, or we may not be able to prove correctness when we consider errors that in reality happen 

with negligible probability. In such cases, we need to extend our models with quantitative information to capture details of 

timing, probability, or physics. Appropriate verification techniques then allow the analysis of quantitative properties. These 
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that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete 
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with 
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce 
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata, 
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This 
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata 
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed 
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability 
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic 
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with 
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes 
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness, 
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to 
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The 
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is 
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They 
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various 
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations, 
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target 
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and 
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted 
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an 
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set 
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These 
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or 
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying 
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations 
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They 
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions. 
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single 
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is 
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed) 
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over 
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the 
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be 
the same), and how to resolve the choices is a decision internal to the LTS.
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that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete 
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with 
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce 
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata, 
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This 
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata 
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed 
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability 
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic 
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with 
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes 
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness, 
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to 
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The 
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is 
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They 
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various 
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations, 
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target 
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and 
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted 
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an 
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set 
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These 
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or 
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying 
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations 
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They 
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions. 
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single 
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is 
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed) 
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over 
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the 
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be 
the same), and how to resolve the choices is a decision internal to the LTS.
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that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete 
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with 
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce 
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata, 
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This 
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata 
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed 
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability 
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic 
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with 
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes 
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness, 
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to 
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The 
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is 
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They 
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various 
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations, 
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target 
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and 
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted 
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an 
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set 
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These 
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or 
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying 
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations 
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They 
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions. 
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single 
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is 
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed) 
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over 
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the 
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be 
the same), and how to resolve the choices is a decision internal to the LTS.
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that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete 
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with 
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce 
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata, 
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This 
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata 
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed 
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability 
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic 
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with 
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes 
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness, 
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to 
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The 
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is 
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They 
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various 
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations, 
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target 
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and 
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted 
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an 
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set 
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These 
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or 
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying 
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations 
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They 
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions. 
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single 
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is 
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed) 
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over 
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the 
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be 
the same), and how to resolve the choices is a decision internal to the LTS.
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Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete 
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with 
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce 
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata, 
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This 
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata 
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed 
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability 
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic 
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with 
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes 
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness, 
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to 
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The 
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is 
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They 
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various 
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations, 
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target 
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and 
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted 
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an 
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set 
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These 
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or 
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying 
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations 
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They 
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions. 
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single 
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is 
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed) 
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over 
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the 
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be 
the same), and how to resolve the choices is a decision internal to the LTS.
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