
Probabilistic Model Checking

Pedro R. D’Argenio

Universidad Nacional de Córdoba – CONICET
https://cs.famaf.unc.edu.ar/~dargenio/

ICTAC 2023 Training School on Applied Formal Methods

https://cs.famaf.unc.edu.ar/~dargenio/

Famous Errors

Ariane 5:
64 bits fp

vs 16 bits int

Mars Climate
Orbiter:
Metric vs Imperial

Pentium:
FDIV

Therac-25:
Race Condition

Heartbleed:
Security

Northeast blackout
in 2003:

Race Condition

More errors

911
911 blackout:
MAX value
reached

Nissan airbag:
Incorrect
sensing

Nest Thermostat:
Battery drained

Boeing 737 MAX 8:
Incorrect sensing

Schiaparelli Landing
Demonstrator

Module:
Multiple errors

The problem of correctness…

System ⊨ Property

Describes what is
expected from the system
(The correctness criteria)

Usually an abstraction
describing the behavior

The problem of correctness…
…using Model Checking

Properties that
represent boolean behavior on

executionsA graph representing
nondeterministic behavior

⊨ ☐ (send(file) ⇒ ◇ receive(file))

Model Checking

� ⇥ crit1 �� ⇥ crit2� :

A¬�

active proctype process_1() {
do
:: true ->

0: y1 = y2+1;
1: ((y2==0) || (y1<=y2));

in_critical++;
2: in_critical--;
3: y1 = 0;

od
}

active proctype process_2() {
do
:: true ->

0: y2 = y1+1;
1: ((y1==0) || (y2<y1));

in_critical++;
2: in_critical--;
3: y2 = 0;

od
}

int y1 = 0;
int y2 = 0;
short in_critical = 0;

M

(0, 1, 0, 2, 0)

(0, 0, 0, 0, 0)

(1, 0, 1, 0, 0) (0, 1, 0, 1, 0)

(1, 1, 1, 2, 0) (2, 0, 1, 0, 1) (0, 2, 0, 1, 1) (1, 1, 2, 1, 0)

(2, 1, 1, 2, 1) (0, 3, 0, 1, 0) (1, 2, 2, 1, 1)

(3, 1, 1, 2, 0) (1, 3, 2, 1, 0)

(3, 0, 1, 0, 0)

(1, 0, 2, 0, 0)

0-0

AM

¿M |= �?

¿AM ⇤ A¬� = � ?

Normally
the problem reduces

to graph analysis

Limitations of classical Model Checking

❖ Many algorithms propose better solutions using randomness as a new ingredient

❖ Leader Election Protocol in IEEE 1394 “Firewire”

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Limitations of classical Model Checking

❖ Many algorithms propose better solutions using randomness as a new ingredient

❖ Leader Election Protocol in IEEE 1394 “Firewire”

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Limitations of classical Model Checking

❖ Many algorithms propose better solutions using randomness as a new ingredient

❖ Leader Election Protocol in IEEE 1394 “Firewire”

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Limitations of classical Model Checking

❖ Many algorithms propose better solutions using randomness as a new ingredient

❖ Leader Election Protocol in IEEE 1394 “Firewire”

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Limitations of classical Model Checking

❖ Many algorithms propose better solutions using randomness as a new ingredient

❖ Leader Election Protocol in IEEE 1394 “Firewire”

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Root contention!

Limitations of classical Model Checking

❖ Many algorithms propose better solutions using randomness as a new ingredient

❖ Leader Election Protocol in IEEE 1394 “Firewire”

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Root contention!

It is solved by
“flipping coins”

Limitations of classical Model Checking

❖ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a
property can only be measured quantitatively

❖ Bounded Retransmission Protocol in Philips RC6

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Limitations of classical Model Checking

❖ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a
property can only be measured quantitatively

❖ Bounded Retransmission Protocol in Philips RC6

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Sender Receiver
Unreliable

channel

Suppose transmission of a file with ABP or sliding window:

☐ (send(file) ⇒ ◇ receive(file))

Limitations of classical Model Checking

❖ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a
property can only be measured quantitatively

❖ Bounded Retransmission Protocol in Philips RC6

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Sender Receiver
Unreliable

channel

Suppose transmission of a file with ABP or sliding window:

☐ (send(file) ⇒ ◇ receive(file)) Holds, under the
assumption of infinite

retrials

Unrealistic
assumption!

Limitations of classical Model Checking

❖ Many times, correctness cannot be asserted qualitatively. Instead, the validity of a
property can only be measured quantitatively

❖ Bounded Retransmission Protocol in Philips RC6

❖ Binary Exponential Backoff Algorithm in IEEE 802.3 “Ethernet”

Sender Receiver
Unreliable

channel

☐ (send(file) ⇒ ◇ receive(file))

If the protocol has a bounded number of retransmissions before aborting (e.g. BRP):

Probabilistic Model Checking

Properties that
represent boolean behavior on

executionsA graph representing
nondeterministic behavior

⊨ ☐ (send(file) ⇒ ◇ receive(file))

Probabilistic Model Checking

Properties that
represent boolean behavior on

executionsA graph representing
nondeterministic behavior

⊨ ☐ (send(file) ⇒ ◇ receive(file))

It should also include a way
to quantify probabilities

Probabilistic behavior
should also be considered

Before continuing, I must say:

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

 The MIT Press | Massachusetts Institute of Technology

 Cambridge, Massachusetts 02142 | http://mitpress.mit.edu

 978-0-262-02649-9

Principles of Model Checking

Christel Baier and Joost-Pieter Katoen

Principles of M
odel C

hecking
Baier and Katoen

 computer science

 Our growing dependence on increasingly complex computer and software systems necessitates the development of

formalisms, techniques, and tools for assessing functional properties of these systems. One such technique that has

emerged in the last twenty years is model checking, which systematically (and automatically) checks whether a model

of a given system satisfies a desired property such as deadlock freedom, invariants, or request-response properties. This

automated technique for verification and debugging has developed into a mature and widely used approach with many

applications. Principles of Model Checking offers a comprehensive introduction to model checking that is not only a

text suitable for classroom use but also a valuable reference for researchers and practitioners in the field.

 The book begins with the basic principles for modeling concurrent and communicating systems, introduces different

classes of properties (including safety and liveness), presents the notion of fairness, and provides automata-based

algorithms for these properties. It introduces the temporal logics LTL and CTL, compares them, and covers algorithms

for verifying these logics, discussing real-time systems as well as systems subject to random phenomena. Separate

chapters treat such efficiency-improving techniques as abstraction and symbolic manipulation. The book includes an

extensive set of examples (most of which run through several chapters) and a complete set of basic results accompanied

by detailed proofs. Each chapter concludes with a summary, bibliographic notes, and an extensive list of exercises of

both practical and theoretical nature.

 Christel Baier is Professor and Chair for Algebraic and Logical Foundations of Computer Science in the Faculty of

Computer Science at the Technical University of Dresden. Joost-Pieter Katoen is Professor at the RWTH Aachen

University and leads the Software Modeling and Verification Group within the Department of Computer Science. He is

affiliated with the Formal Methods and Tools Group at the University of Twente.

“ This book offers one of the most comprehensive introductions to logic model checking techniques available today. The

authors have found a way to explain both basic concepts and foundational theory thoroughly and in crystal-clear prose.

Highly recommended for anyone who wants to learn about this important new field, or brush up on their knowledge of

the current state of the art.”

 Gerard J. Holzmann, NASA/JPL Laboratory for Reliable Software

“ Principles of Model Checking, by two principals of model-checking research, offers an extensive and thorough coverage

of the state of art in computer-aided verification. With its coverage of timed and probabilistic systems, the reader gets

a textbook exposition of some of the most advanced topics in model-checking research. Obviously, one cannot expect

to cover this heavy volume in a regular graduate course; rather, one can base several graduate courses on this book,

which belongs on the bookshelf of every model-checking researcher.”

 Moshe Vardi, Director, Computer and Information Technology Institute, Rice University

The course borrows from Chapter 10 of

Principles of Model Checking by

Christel Baier & Joost-Pieter Katoen

published in 2008 by the MIT press

https://mitpress.mit.edu/9780262026499/principles-of-model-checking/
https://wwwtcs.inf.tu-dresden.de/~baier/
https://www-i2.informatik.rwth-aachen.de/~katoen/

Markov Chains

Discrete Time Markov Chain (DTMC)

A DTMC is a structure

where(S,P, s0,AP , L)

v S is a denumerable set of states, where s0 2 S is the initial state,

v P : S ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every s 2 S,

P
s02S P(s, s0) = 1, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

P(s, s0) is the probability to

move to state s
0
conditioned to

the system being at state s.

1

(S,P, s0,AP , L)

v S is a denumerable set of states, where s0 2 S is the initial state,

v P : S ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every s 2 S,

P
s02S P(s, s0) = 1, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

P(s, s0) is the probability to

move to state s
0
conditioned to

the system being at state s.

1

Discrete Time Markov Chain (DTMC)

A DTMC is a structure

where

In model checking
we only consider a finite set

of states

(S,P, s0,AP , L)

v S is a denumerable set of states, where s0 2 S is the initial state,

v P : S ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every s 2 S,

P
s02S P(s, s0) = 1, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

P(s, s0) is the probability to

move to state s
0
conditioned to

the system being at state s.

1

(S,P, s0,PA, L)

v S is a denumerable set of states, where s0 2 S is the initial state,

v P : S ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every s 2 S,
P

s02S P(s, s0) = 1, and

v L : S ! P(PA) is a labelling function, where PA is a a set of atomic propositions.

P(s, s0) is the probability to

move to state s0 conditioned to

the system being at state s.

50

(S,P, s0,AP , L)

v S is a denumerable set of states, where s0 2 S is the initial state,

v P : S ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every s 2 S,

P
s02S P(s, s0) = 1, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

P(s, s0) is the probability to

move to state s
0
conditioned to

the system being at state s.

1

A toy protocol

s0

s1s3 s2

{start}

{try}{delivered}

{lost}1
1
10

9
10

1

1

S = {s0, s1, s2, s3}

s0 is the initial state

P =

0

BB@

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

1

CCA

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

51

S = {s0, s1, s2, s3}

s0 is the initial state

P =

0

BB@

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

1

CCA

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

51

S = {s0, s1, s2, s3}

s0 is the initial state

P =

0

BB@

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

1

CCA

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

51

S = {s0, s1, s2, s3}

s0 is the initial state

P =

0

BB@

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

1

CCA

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

51

S = {s0, s1, s2, s3}

s0 is the initial state

P =

0

BB@

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

1

CCA

AP = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

2

Simulating a die with a coin

¿P (3 2)?

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

Simulating a die with a coin

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

Simulating a die with a coin

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

P(s0, s1) ·P(s1, s4) ·P(s4, 2)

⎧ ⎪ ⎨ ⎪ ⎩

P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

Simulating a die with a coin

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

⎧ ⎪ ⎨ ⎪ ⎩

P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

1
8

Simulating a die with a coin

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

1
8

1
32

1
128

1
512

Simulating a die with a coin

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

1
8

1
32

1
128

1
512

How do we
calculate this formally?

Probability space defined by a DTMC

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

Probability space defined by a DTMC

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

Probability space defined by a DTMC

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

v The sample space is the set of all plausible infinite executions:

⌦ = S
!

v The �-algebra is the one generated by the set of all cylinders, i.e., by all sets of the

form

Cyl(⇡) = {⇢ 2 S
!
| ⇡ es prefijo de ⇢}

where ⇡ 2 S
⇤
is a finite sequence of states

v For each state s 2 S define the unique probability measure such that

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

where 1s(s) = 1 and 1s(t) = 0 otherwise

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1, s2) · P(s2, s3) · · ·P(sn�1, sn)

Prs(Cyl(s1s2 . . . sn)) = 1s(s1) · P(s1s2s3 . . . sn)

3

Simulating a die with a coin

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Simulating a die with a coin

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

Pr(32) = Pr({⇢ 2 S
!
| 9i 2 N : ⇢(i) = 2})

= Pr(
S
{Cyl(⇡) | last(⇡) = 2})

= Pr(
S
{Cyl(⇡) | ⇡ 2 s0s1(s3s1)⇤s42})

=
P

n2N P(s0s1(s3s1)ns42)

=
P

n2N
1

22n+3 =
1
6

4

But, how does the
computer calculate this?

Quantitative reachability properties

Reachability properties

The probability of reaching a set of states

If then

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

5

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

5

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

5

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

5

Reachability properties

Prs(3B) =
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

=
X

s0...sn2(S\B)⇤B

1s(s0) ·
n�1Y

i=0

P(si, si+1)

=
X

s0...sn2(S\B)⇤B^s1 /2B

1s(s0) ·
n�1Y

i=0

P(si, si+1) +
X

s12B

1s(s0) · P(s0, s1)

=
X

s1...sn2(S\B)⇤B^s1 /2B

P(s, s1) ·
n�1Y

i=1

P(si, si+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) ·
X

t1...tn2(S\B)⇤B

1s1(t1) ·
n�1Y

i=1

P(ti, ti+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) · Prs1(3B) +
X

s12B

P(s, s1)

6

Prs(3B) =
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

=
X

s0...sn2(S\B)⇤B

1s(s0) ·
n�1Y

i=0

P(si, si+1)

=
X

s0...sn2(S\B)⇤B^s1 /2B

1s(s0) ·
n�1Y

i=0

P(si, si+1) +
X

s12B

1s(s0) · P(s0, s1)

=
X

s1...sn2(S\B)⇤B^s1 /2B

P(s, s1) ·
n�1Y

i=1

P(si, si+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) ·
X

t1...tn2(S\B)⇤B

1s1(t1) ·
n�1Y

i=1

P(ti, ti+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) · Prs1(3B) +
X

s12B

P(s, s1)

6

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

s /2 B Prs1(3B)

5

If

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

s /2 B Prs1(3B)

5

Reachability properties

Prs(3B) =
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

=
X

s0...sn2(S\B)⇤B

1s(s0) ·
n�1Y

i=0

P(si, si+1)

=
X

s0...sn2(S\B)⇤B^s1 /2B

1s(s0) ·
n�1Y

i=0

P(si, si+1) +
X

s12B

1s(s0) · P(s0, s1)

=
X

s1...sn2(S\B)⇤B^s1 /2B

P(s, s1) ·
n�1Y

i=1

P(si, si+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) ·
X

t1...tn2(S\B)⇤B

1s1(t1) ·
n�1Y

i=1

P(ti, ti+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) · Prs1(3B) +
X

s12B

P(s, s1)

6

Prs(3B) =
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

=
X

s0...sn2(S\B)⇤B

1s(s0) ·
n�1Y

i=0

P(si, si+1)

=
X

s0...sn2(S\B)⇤B^s1 /2B

1s(s0) ·
n�1Y

i=0

P(si, si+1) +
X

s12B

1s(s0) · P(s0, s1)

=
X

s1...sn2(S\B)⇤B^s1 /2B

P(s, s1) ·
n�1Y

i=1

P(si, si+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) ·
X

t1...tn2(S\B)⇤B

1s1(t1) ·
n�1Y

i=1

P(ti, ti+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) · Prs1(3B) +
X

s12B

P(s, s1)

6

Prs(3B) =
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

=
X

s0...sn2(S\B)⇤B

1s(s0) ·
n�1Y

i=0

P(si, si+1)

=
X

s0...sn2(S\B)⇤B^s1 /2B

1s(s0) ·
n�1Y

i=0

P(si, si+1) +
X

s12B

1s(s0) · P(s0, s1)

=
X

s1...sn2(S\B)⇤B^s1 /2B

P(s, s1) ·
n�1Y

i=1

P(si, si+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) ·
X

t1...tn2(S\B)⇤B

1s1(t1) ·
n�1Y

i=1

P(ti, ti+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) · Prs1(3B) +
X

s12B

P(s, s1)

6

If

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

s /2 B Prs1(3B)

5

Reachability properties

Prs(3B) =
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

=
X

s0...sn2(S\B)⇤B

1s(s0) ·
n�1Y

i=0

P(si, si+1)

=
X

s0...sn2(S\B)⇤B^s1 /2B

1s(s0) ·
n�1Y

i=0

P(si, si+1) +
X

s12B

1s(s0) · P(s0, s1)

=
X

s1...sn2(S\B)⇤B^s1 /2B

P(s, s1) ·
n�1Y

i=1

P(si, si+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) ·
X

t1...tn2(S\B)⇤B

1s1(t1) ·
n�1Y

i=1

P(ti, ti+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) · Prs1(3B) +
X

s12B

P(s, s1)

6

Prs(3B) =
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

=
X

s0...sn2(S\B)⇤B

1s(s0) ·
n�1Y

i=0

P(si, si+1)

=
X

s0...sn2(S\B)⇤B^s1 /2B

1s(s0) ·
n�1Y

i=0

P(si, si+1) +
X

s12B

1s(s0) · P(s0, s1)

=
X

s1...sn2(S\B)⇤B^s1 /2B

P(s, s1) ·
n�1Y

i=1

P(si, si+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) ·
X

t1...tn2(S\B)⇤B

1s1(t1) ·
n�1Y

i=1

P(ti, ti+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) · Prs1(3B) +
X

s12B

P(s, s1)

6

Prs(3B) =
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

=
X

s0...sn2(S\B)⇤B

1s(s0) ·
n�1Y

i=0

P(si, si+1)

=
X

s0...sn2(S\B)⇤B^s1 /2B

1s(s0) ·
n�1Y

i=0

P(si, si+1) +
X

s12B

1s(s0) · P(s0, s1)

=
X

s1...sn2(S\B)⇤B^s1 /2B

P(s, s1) ·
n�1Y

i=1

P(si, si+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) ·
X

t1...tn2(S\B)⇤B

1s1(t1) ·
n�1Y

i=1

P(ti, ti+1) +
X

s12B

P(s, s1)

=
X

s1 /2B

P(s, s1) · Prs1(3B) +
X

s12B

P(s, s1)

6

If

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

s /2 B Prs1(3B)

5

Reachability properties

The following set of equations is obtained (one for each)

Be aware! The system of equations may not have unique solution:

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

s /2 B Prs1(3B)

5

s1s0 1

1

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

Reachability properties

The following set of equations is obtained (one for each)

Be aware! The system of equations may not have unique solution:

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

s /2 B Prs1(3B)

5

s1s0 1

1

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

Note that the only interesting
states are those reaching .
(otherwise the reachability

probability is 0)

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

Reachability properties

The following set of equations is obtained (one for each)

Be aware! The system of equations may not have unique solution:

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

s /2 B Prs1(3B)

5

s1s0 1

1

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

Note that the only interesting
states are those reaching .
(otherwise the reachability

probability is 0)

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

Reachability properties

The following set of equations is obtained (one for each)

Be aware! The system of equations may not have unique solution:

Prs(3B) = Prs({⇢ 2 S
!
| 9i 2 N : ⇢(i) 2 B})

= Prs(
S
{Cyl(⇡) | last(⇡) 2 B})

=
X

s0...sn2(S\B)⇤B

1s(s0) · P(s0 . . . sn)

Prs(3B) = 1

s 2 B

s /2 B Prs1(3B)

5

s1s0 1

1

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

Note that the only interesting
states are those reaching .
(otherwise the reachability

probability is 0)

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

is the set of all states that may reach .
It is calculated by graph analysis

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

if B = {s1}, the system of equations

only contains equation:

xs0 = xs0

which has infinite solutions

Pre⇤(B) = {s 2 S | Prs(3B) > 0}

7

Reachability properties

The complete system of equations is defined by:

For the example, the system of equations is

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

s1s0 1

1

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

xs0 = 0

xs1 = 1

8

This system of equations
has a unique solution

Reachability properties

The complete system of equations is defined by:

For the example, the system of equations is

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

s1s0 1

1

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

xs0 = 0

xs1 = 1

8

This system of equations
has a unique solution

Calculated using techniques
like Gaussian elimination, Jacobi or

Gauss-Seidel

Computed in
polynomial time

Simulating a die with a coin

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

Simulating a die with a coin

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

Simulating a die with a coin

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs4

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

Simulating a die with a coin

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs4

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

Simulating a die with a coin

xs =
X

t/2B

P(s, t) · xt +
X

t2B

P(s, t)

xs =
X

t2Pre⇤(B)\B

P(s, t) · xt +
X

t2B

P(s, t) if s 2 Pre⇤(B)\B

xs = 1 if s 2 B

xs = 0 if s /2 Pre⇤(B) [B

8

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs3

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs4

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

N

It’s up to you to
check that indeed

xs0 =
1
2 · xs1

xs1 =
1
2 · xs3 +

1
2 · xs4

xs3 =
1
2 · xs1

xs4 =
1
2 · xs3 +

1
2

x2 = 1

xs = 0 , if s /2 {s0, s1, s3, s4, 2}

B

Pre⇤(B) \B

S \ Pre⇤(B)

xs0 =
1
6

N

Bounded reachability
(exact:)

❖ The probability transition function P defines the probability of moving from one
state to another in one single step

❖ Then the probability of moving from s to t in two steps is
X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)

⇥n = Sn
· 1s0

N

X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)

⇥n = Sn
· 1s0

Prs0(3=n
B) =

X

t2B

⇥n(t)

N

Bounded reachability
(exact:)

❖ The probability transition function P defines the probability of moving from one
state to another in one single step

❖ Then the probability of moving from s to t in two steps is

❖ In general, the probability of reaching t on n steps from the initial state is:

❖ Then, the probability of reaching a state in B in exactly n steps is

X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)

⇥n = Sn
· 1s0

N

X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)

⇥n = Sn
· 1s0

N

X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)

⇥n = Sn
· 1s0

Prs0(3=n
B) =

X

t2B

⇥n(t)

N

P is a matrix!

… so, this is
calculated with matrix

multiplication

X

s2S

S(s, s0) · S(s0, t) = (S · S)(s, t) = S2(s, t)

⇥n(t) = Sn(s0, t)

⇥n = Sn
· 1s0

Prs0(3=n
B) =

X

t2B

⇥n(t)

N

Bounded reachability
(upper bound)

❖ Given the DTMC M construct the DTMC MB by making all states in B absorbing:

❖ Then calculate

SMB(s, t) =

8
><

>:

1 B7 t = s 2 B

0 B7 t 6= s 2 B

SM(s, t) B7 s /2 B

PrM
s0
(3n

B) = PrMB
s0

(3=n
B) =

X

t2B

⇥MB
n

(t)

Ry

SMB(s, t) =

8
><

>:

1 B7 t = s 2 B

0 B7 t 6= s 2 B

SM(s, t) B7 s /2 B

PrM
s0
(3n

B) = PrMB
s0

(3=n
B) =

X

t2B

⇥MB
n

(t)

Ry

Constrained reachability
(until operator)

❖ The probability of reaching states in B passing only through states in C:

Prs0(C l B) Prs0(C l=n
B) Prs0(C ln

B)

SMl(s, t) =

8
><

>:

1 B7 t = s /2 (C [B)

0 B7 t 6= s /2 (C [B)

SM(s, t) B7 s 2 (C [B)

PrM
s0
(C l B) = PrM

l

s0
(3B)

PrM
s0
(C l=n

B) = PrM
l

s0
(3=n

B)

PrM
s0
(C ln

B) = PrM
l

s0
(3n

B)

RR

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩

bounded versions

Constrained reachability
(until operator)

❖ The probability of reaching states in B passing only through states in C:

❖ Construct the DTMC MU from M by making states not in C ∪ B absorbing:

❖ Then calculate:

Prs0(C l B) Prs0(C l=n
B) Prs0(C ln

B)

SMl(s, t) =

8
><

>:

1 B7 t = s /2 (C [B)

0 B7 t 6= s /2 (C [B)

SM(s, t) B7 s 2 (C [B)

PrM
s0
(C l B) = PrM

l

s0
(3B)

PrM
s0
(C l=n

B) = PrM
l

s0
(3=n

B)

PrM
s0
(C ln

B) = PrM
l

s0
(3n

B)

RR

Prs0(C l B) Prs0(C l=n
B) Prs0(C ln

B)

SMl(s, t) =

8
><

>:

1 B7 t = s /2 (C [B)

0 B7 t 6= s /2 (C [B)

SM(s, t) B7 s 2 (C [B)

PrM
s0
(C l B) = PrM

l

s0
(3B)

PrM
s0
(C l=n

B) = PrM
l

s0
(3=n

B)

PrM
s0
(C ln

B) = PrM
l

s0
(3n

B)

RR

Prs0(C l B) Prs0(C l=n
B) Prs0(C ln

B)

SMl(s, t) =

8
><

>:

1 B7 t = s /2 (C [B)

0 B7 t 6= s /2 (C [B)

SM(s, t) B7 s 2 (C [B)

PrM
s0
(C l B) = PrM

l

s0
(3B)

PrM
s0
(C l=n

B) = PrM
l

s0
(3=n

B)

PrM
s0
(C ln

B) = PrM
l

s0
(3n

B)

RR

Constrained reachability

s0

s1

s3

s4

s2

s5

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

0.7

0.3

0.4

0.6

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Constrained reachability

s4

s2

s5

s0

s1

s3

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

0.7

0.3

0.4

0.6

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Constrained reachability

s2

s5

s0

s1

s3

s4

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

0.7

0.3

0.4

0.6

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Constrained reachability

s2

s5

s0

s1

s3

s4

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

0.7

0.3

0.4

0.6

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Constrained reachability

s2

s5

s0

s1

s3

s4

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

0.7

0.3

0.4

0.6

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Constrained reachability

s2

s5

s0

s1

s3

s4

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

0.7

0.3

0.4

0.6

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

i.e. make states not in
C or B absorbing

Constrained reachability

s2

s5

s0

s1

s3

s4

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

1

1

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

i.e. make states not in
C or B absorbing

Constrained reachability

s2

s5

s0

s1

s3

s4

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

1

1

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

i.e. make states not in
C or B absorbing

Constrained reachability

s2

s5

s0

s1

s3

s4

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

1

1

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

i.e. make states not in
C or B absorbing

Notice that can
be obtained in this DTMC by

calculating instead

Prs0(C l B) Prs0(C l=n
B) Prs0(C ln

B)

SMl(s, t) =

8
><

>:

1 B7 t = s /2 (C [B)

0 B7 t 6= s /2 (C [B)

SM(s, t) B7 s 2 (C [B)

PrM
s0
(C l B) = PrM

l

s0
(3B)

PrM
s0
(C l=n

B) = PrM
l

s0
(3=n

B)

PrM
s0
(C ln

B) = PrM
l

s0
(3n

B)

RR

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

PrM
l

s0
(3B)

Rk

Constrained reachability

s4

s2

s5

s0

s1

s3

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

0.7

0.3

0.4

0.6

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Constrained reachability

s4

s2

s5

s0

s1

s3

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

1

1

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

i.e. make states not in
C or B absorbing

Constrained reachability

s4

s2

s5

s0

s1

s3

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

1

1

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Constrained reachability

s4

s2

s5

s0

s1

s3

0.5 0.5

0.7

0.3
0.10.1

0.40.4

0.4

0.6

1

1

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

i.e. make states in B
absorbing

Constrained reachability

s4

s2

s5

s0

s1

s3

0.5 0.5

0.7

0.3
0.10.1

0.40.4

1

11

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

i.e. make states in B
absorbing

Constrained reachability

s4

s2

s5

s0

s1

s3

0.5 0.5

0.7

0.3
0.10.1

0.40.4

1

11

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l=4
B)?

1) Calculate M
l

2) Calculate PrM
l

s0
(3=4

B)

Let C = {s0, s1, s3}

and B = {s4}

Prs0(C l4
B)?

1) Calculate M
l

2) Calculate M
l
B

3) Calculate PrM
l
B

s0
(3=4

B)

Rk

i.e. make states in B
absorbing

Qualitative properties

Qualitative properties

❖ These properties deal with extreme probabilities:

❖ something happens with probability 1, or

❖ something happens with some probability (different from 0)

❖ We focus on:

❖ reachability (◇B)

❖ constrained reachability (C U B)

❖ repeated reachability (☐◇B) → states in B are visited infinitely often

❖ persistence (◇☐B) → reach SCCs that contain only states in B

❖ All these properties can be verified by doing graph analysis on the underlying graph
of the DTMC

Qualitative properties

❖ These properties deal with extreme probabilities:

❖ something happens with probability 1, or

❖ something happens with some probability (different from 0)

❖ We focus on:

❖ reachability (◇B)

❖ constrained reachability (C U B)

❖ repeated reachability (☐◇B) → states in B are visited infinitely often

❖ persistence (◇☐B) → reach SCCs that contain only states in B

❖ All these properties can be verified by doing graph analysis on the underlying graph
of the DTMC

Dually: something
happens with
probability 0

All these properties
can be proved

measurable

Reachability (with some probability)

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

Reachability (with some probability)

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

Reachability (with some probability)

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

Reachability (with some probability)

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

Reachability (with some probability)

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

Reachability (with some probability)

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

This equality can
be proved by induction
from which the theorem

follows

Reachability (with some probability)

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

An execution fragment is a sequence s0 s1 s2 . . . sn 2 S
⇤
such that S(s0 s1 s2 . . . sn) > 0,

that is, S(si, si+1) > 0 for all 0  i < n.

Pathfin(s) is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states B ✓ S is defined by

Pre(B) = {s | 9t 2 B : S(s, t) > 0}

Then, is the set of states reaching B is defined by

Pre⇤(B) =
[

i�0

Pre i(B) = {s 2 S | 9⇡ 2 Pathfin(s) : last(⇡) 2 B}

Theorem: Prs(3B) > 0 if and only if s 2 Pre⇤(B)

Rj

This equality can
be proved by induction
from which the theorem

follows

Computed
in linear time

Bottom strongly connected component

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

✔

Let M = (S,S, s0,AP , L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

R8

Bottom strongly connected component

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

✘

Let M = (S,S, s0,AP , L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

R8

Bottom strongly connected component

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

✔

Let M = (S,S, s0,AP , L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

R8

Bottom strongly connected component

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

✘

Let M = (S,S, s0,AP , L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

R8

Bottom strongly connected component

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

✔

Let M = (S,S, s0,AP , L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

R8

Bottom strongly connected component

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

Let M = (S,S, s0,PA, L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

BSCC(M) denotes the

set of all BSCC in M .

R8

✔

BSCC
can be computed in

linear time

Let M = (S,S, s0,AP , L) be a DTMC. Then T ✓ S is

v strongly connected if every pair of states in T is connected with an

execution fragment, i.e., 8t, u 2 T : 9⇡ 2 Pathfin(t) : last(⇡) = u.

v a strongly connected component (SCC) if it is a maximal strongly

connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T
0
such that T \ T

0
6= ?, T

0
✓ T .

v a bottom strongly connected component (BSCC) if it is a SCC and

no state outside T is reached from T , i.e.,

i. T is a SCC and

ii. 8t 2 T : S(t, S \ T) = 0 (or alternatively, S(t, T) = 1).

R8

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

In other words:
the probability of getting trapped

in a BSCC is 1

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

SCC but not
BSCC

In other words:
the probability of getting trapped

in a BSCC is 1

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

There is always
some probability to leave

the SCC

SCC but not
BSCC

In other words:
the probability of getting trapped

in a BSCC is 1

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

There is always
some probability to leave

the SCC

SCC but not
BSCC

BSCC:
you are trapped by

definition!

In other words:
the probability of getting trapped

in a BSCC is 1

Almost sure reachability

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎨ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎨ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Recall:
linear time

Recall:
linear time

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Computed
in linear time

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎨ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

What if B is not
absorbing?

Computed
in linear time

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability
What if B is not

absorbing?
Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

What if B is not
absorbing?

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

What if B is not
absorbing?

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

What if B is not
absorbing?

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

?

What if B is not
absorbing?

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

∅?!

What if B is not
absorbing?

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Almost sure reachability

Theorem: Let s 2 S and B ✓ S a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Rd

∅?!
Therefore, for the general
case, first construct MB

What if B is not
absorbing?

Theorem: Let s 2 S and B ✓ S be a set of absorbing states. Then

Prs(3B) = 1 if and ony if s 2 S\Pre⇤(S\Pre⇤(B))

Prs(3B) > 0

Prs(3B) = 0

Prs(¬3B) = 1

Prs(¬3B) > 0

Prs(¬3B) = 0

Prs(3B) = 1

Rd

Qualitative repeated reachability

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

Some state of B should
repeat infinitely often

Qualitative repeated reachability

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

Some state of B should
repeat infinitely often

Qualitative repeated reachability

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

Some state of B should
repeat infinitely often

Follows from the
limit behavior of Markov

chains
Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

Theorem: For every state s of a finite DTMC M ,

Prs ({⇢ 2 Path(s) | infty(⇢) 2 BSCC(M)}) = 1.

BSCC(M) denotes the

set of all BSCC in M .

Path(s) ✓ S
!
is the set of all

(infinite) executions of M starting in s, i.e.,

infinite sequences s0 s1 s2 s3 . . . such that

s0 = s and S(si, si+1) > 0 for all i � 0.

infty(⇢) = {s |

1

9 i � 0: s = ⇢(i)}

is the set of all states that repeats

infinitely often in ⇢

Re

Qualitative repeated reachability

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

Some state of B should
repeat infinitely often

B = {s3, s4, s5}

Qualitative repeated reachability

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

⇢ 2 23B iff infty(⇢) \B 6= ?

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T \B 6= ?

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T \B 6= ?})

B = {s3, s4, s5}

R3

Some state of B should
repeat infinitely often

Computed
in linear time

B = {s3, s4, s5}

Qualitative persistence

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Only states from B can
repeat infinitely often

Qualitative persistence

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Only states from B can
repeat infinitely often

Qualitative persistence

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Only states from B can
repeat infinitely often

Like before, follows
from the limit behavior of

Markov chains

Qualitative persistence

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Only states from B can
repeat infinitely often

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Qualitative persistence

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Only states from B can
repeat infinitely often

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Qualitative persistence

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Only states from B can
repeat infinitely often

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

✔

Qualitative persistence

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

Only states from B can
repeat infinitely often

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

⇢ 2 32B iff infty(⇢) ✓ B

Theorem: Let s 2 S and B ✓ S. Then

Prs(32G) = 1 iff for all T 2 BSCC(M) reachable from s 2 S, T ✓ B

iff s 2 Pre⇤(
S
{T 2 BSCC(M) | T ✓ B})

B = {s3, s4, s5}

B = {s3, s4, s5, s6}

RN

✔

Computed
in linear time

More quantitative properties

Quantitative repeated reachability

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Quantitative repeated reachability

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Quantitative repeated reachability

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Quantitative repeated reachability

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Quantitative repeated reachability

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Computed
in polynomial

time

Theorem: Let s 2 S and B ✓ S. Then

Prs(23B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Quantitative persistence

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Quantitative persistence
Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Quantitative persistence
Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Quantitative persistence
Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Theorem: Let s 2 S and B ✓ S. Then

Prs(23G) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T \B 6= ?}.

B = {s4, s5}

U = {s2, s4, s5}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

ky

Computed
in polynomial

time

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

Theorem: Let s 2 S and B ✓ S. Then

Prs(32B) = Prs(3U)

where U =
S
{T 2 BSCC(M) | T ✓ B}.

B = {s4, s5}

U = {s4}

v Compute U (linear time)

v Compute Prs(3U) (polynomial time)

kR

ω-regular properties

❖ Can be expressed with ω-automata such as Büchi automata, Rabin automata, Strett
automata, etc.

❖ Repeated reachability and persistence are central, since, e.g., the Rabin acceptance
condition of can be expressed as properties of the form:

❖ The verification of ω-properties proceed by

i. obtaining the synchronous product of the DTMC with the deterministic Rabin
automata (DRA) of the property, and

ii. calculating the reachability property of a set U very much like for repeated
reachability and persistence.

Recordar que una ejecución ⇢ es aceptada por un DRA A si existe i 2 I t.q. infty(⇢) \

Gi = ? e infty(⇢) \Hi 6= ?. Luego,

W
i2I

(32¬Gi ^23Hi)

es el conjunto de todas las ejecuciones aceptadas por A.

Por consiguiente,

PrM(s0 |= L(A)) = PrM⌦A

ini

�W
i2I

(32¬Gi ^23Hi)
�
.

k8

ω-regular properties

❖ Can be expressed with ω-automata such as Büchi automata, Rabin automata, Strett
automata, etc.

❖ Repeated reachability and persistence are central, since, e.g., the Rabin acceptance
condition of can be expressed as properties of the form:

❖ The verification of ω-properties proceed by

i. obtaining the synchronous product of the DTMC with the deterministic Rabin
automata (DRA) of the property, and

ii. calculating the reachability property of a set U very much like for repeated
reachability and persistence.

Recordar que una ejecución ⇢ es aceptada por un DRA A si existe i 2 I t.q. infty(⇢) \

Gi = ? e infty(⇢) \Hi 6= ?. Luego,

W
i2I

(32¬Gi ^23Hi)

es el conjunto de todas las ejecuciones aceptadas por A.

Por consiguiente,

PrM(s0 |= L(A)) = PrM⌦A

ini

�W
i2I

(32¬Gi ^23Hi)
�
.

k8

Though polynomial
w.r.t. the DTMC and the DRA, the
DRA normally grows exponentially

large w.r.t. the ω-property
expressed in e.g. LTL

PCTL

PCTL: Probabilistic Computational Tree Logic

v Syntax

� = true | p | ¬� | �1 ^ �2 | S./a(�)

� = #� | �1 l �2 | �1 ln �2

where

u p 2 AP is an atomic proposition, and

u ./ 2 {<,,�, >} and a 2 R.

v Some abbreviations:

S(a,b](�) ⌘ S>a(�) ^ Sb(�)

S./a(3�) ⌘ S./a(true l �) S./a(3n�) ⌘ S./a(true ln �)

Sa(2�) ⌘ S�1�a(3¬�) S>a(2n�) ⌘ S<1�a(3n
¬�)

kk

state formulas

path formulas

PCTL: Probabilistic Computational Tree Logic

v Syntax

� = true | p | ¬� | �1 ^ �2 | S./a(�)

� = #� | �1 l �2 | �1 ln �2

where

u p 2 AP is an atomic proposition, and

u ./ 2 {<,,�, >} and a 2 R.

v Some abbreviations:

S(a,b](�) ⌘ S>a(�) ^ Sb(�)

S./a(3�) ⌘ S./a(true l �) S./a(3n�) ⌘ S./a(true ln �)

Sa(2�) ⌘ S�1�a(3¬�) S>a(2n�) ⌘ S<1�a(3n
¬�)

kk

v Syntax

� = true | p | ¬� | �1 ^ �2 | S./a(�)

� = #� | �1 l �2 | �1 ln �2

where

u p 2 AP is an atomic proposition, and

u ./ 2 {<,,�, >} and a 2 R.

v Some abbreviations:

S(a,b](�) ⌘ S>a(�) ^ Sb(�)

S./a(3�) ⌘ S./a(true l �) S./a(3n�) ⌘ S./a(true ln �)

Sa(2�) ⌘ S�1�a(3¬�) S>a(2n�) ⌘ S<1�a(3n
¬�)

kk

state formulas

path formulas

in addition to the
boolean abbreviations

Some examples

❖ On the “die with a coin” example:

“Each of the six sides will eventually appear with 1/6 probability”

❖ On the “toy protocol”:

“The message is almost surely delivered”

“Almost surely always each time a communication is started, the message is
eventually delivered in at most 4 steps with probability 0.99”

V
1i6 S= 1

6
(3i)

S= 1
6
(31) ^ S= 1

6
(32) ^ S= 1

6
(33) ^ S= 1

6
(34) ^ S= 1

6
(35) ^ S= 1

6
(36)

S=1(3delivered)

S=1

�
2
�
start) S�0.99(34delivered)

��

kj

V
1i6 S= 1

6
(3i)

S= 1
6
(31) ^ S= 1

6
(32) ^ S= 1

6
(33) ^ S= 1

6
(34) ^ S= 1

6
(35) ^ S= 1

6
(36)

S=1(3delivered)

S=1

�
2
�
start) S�0.99(34delivered)

��

kj

V
1i6 S= 1

6
(3i)

S= 1
6
(31) ^ S= 1

6
(32) ^ S= 1

6
(33) ^ S= 1

6
(34) ^ S= 1

6
(35) ^ S= 1

6
(36)

S=1(3delivered)

S=1

�
2
�
start) S�0.99(34delivered)

��

kj

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s ̸= s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

Semantics of PCTL

state
formulas

path
formulas

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

A PCTL formula � holds in state s 2 S of a DTMC M , denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff Pr(s |= �) ./ a

where Pr(s |= �) = Prs({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

k9

Algorithm for PCTL
model checking

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

fun Sat(�) {

// input: a PCTL (state) formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ SJ(�) return {s 2 S | Prob(s,�) 2 J}

}

}

fun Prob(s,�) {

// input: a state s and a path formula �

// output: Prs(s |= �)

case { � ⌘ #� return
�
S · 1Sat(�)

�
(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prs(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prs(C ln
B) // bounded constrained reachability

}

}

k8

Prob(· ,φ) is
calculated as a matrix

Polynomial on the size of M
Linear on the size of Φ
Linear on the largest n

Markov Decision Processes

The need of non-determinism

❖ Parallel composition / distributed components:

❖ relative probabilities of events occurring in different physical locations may be hard to estimate.

❖ Sub-specification:

❖ many probabilities may be unknown at modeling time

❖ Abstraction:

❖ models are intentional abstractions of the system under study

❖ Control synthesis and planning:

❖ sub-specification is intentional to synthesize optimal decisions

Markov Decision Processes (MDP)

A MDP is a structure

where

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

Markov Decision Processes (MDP)

A MDP is a structure

where

S(s,↵, s0) is the probability

to move to state s
0
conditioned to

the system being at state s and

action ↵ being selected

↵ is enabled in s if

P
s02S S(s,↵, s0) = 1

Act(s) is the set of all

actions enabled in s

At least one action should

be enabled in every state

If Act = {↵}, the

MDP is a DTMC

kd

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

S(s,↵, s0) is the probability

to move to state s
0
conditioned to

the system being at state s and

action ↵ being selected

↵ is enabled in s if

P
s02S S(s,↵, s0) = 1

Act(s) is the set of all

actions enabled in s

At least one action should

be enabled in every state

If Act = {↵}, the

MDP is a DTMC

kd

S(s,↵, s0) is the probability

to move to state s
0
conditioned to

the system being at state s and

action ↵ being selected

↵ is enabled in s if

P
s02S S(s,↵, s0) = 1

Act(s) is the set of all

actions enabled in s

At least one action should

be enabled in every state

If Act = {↵}, the

MDP is a DTMC

kd

S(s,↵, s0) is the probability

to move to state s
0
conditioned to

the system being at state s and

action ↵ being selected

↵ is enabled in s if

P
s02S S(s,↵, s0) = 1

Act(s) is the set of all

actions enabled in s

At least one action should

be enabled in every state

If Act = {↵}, the

MDP is a DTMC

kd

S(s,↵, s0) is the probability

to move to state s
0
conditioned to

the system being at state s and

action ↵ being selected

↵ is enabled in s if

P
s02S S(s,↵, s0) = 1

Act(s) is the set of all

actions enabled in s

At least one action should

be enabled in every state

If Act = {↵}, the

MDP is a DTMC

kd

Financial decisions

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

Financial decisions

1 2 4 8

ls

lc

16

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

Financial decisions

1 2 4 8

ls

lc

16

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

Financial decisions

1 2 4 8

ls

lc

stock_market

casino

16

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

Financial decisions

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

16

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

Financial decisions

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

16

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

Financial decisions

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

Financial decisions

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

(S,Act ,S, s0,AP , L)

v S is a finite set of states, where s0 2 S is the initial state,

v Act is a finite set of actions,

v S : S ⇥ Act ⇥ S ! [0, 1] is the probabilistic transition function, such that, for every

s 2 S, and ↵ 2 Act ,
P

s02S S(s,↵, s0) 2 {0, 1}, and

v L : S ! P(AP) is a labelling function, where AP is a a set of atomic propositions.

ke

What is the

probability of

3 “a lot”?

k3

Resolving the non-determinism

❖ To compute the probabilities in a MDP, non-determinism needs to be resolved

❖ Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.8 1 0.2

Resolving the non-determinism

❖ To compute the probabilities in a MDP, non-determinism needs to be resolved

❖ Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.8 1 0.2

Resolving the non-determinism

❖ To compute the probabilities in a MDP, non-determinism needs to be resolved

❖ Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.8 1 0.2

Resolving the non-determinism

❖ To compute the probabilities in a MDP, non-determinism needs to be resolved

❖ Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.8 1 0.2

Resolving the non-determinism

❖ To compute the probabilities in a MDP, non-determinism needs to be resolved

❖ Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.8 1 0.2

A scheduler defines a
(maybe infinite) DTMC

Resolving the non-determinism

❖ To compute the probabilities in a MDP, non-determinism needs to be resolved

❖ Schedulers (also adversaries or policies) are functions that select the next action
based on the past execution.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.8 1 0.2

A scheduler defines a
(maybe infinite) DTMC

A scheduler can also
chose with randomness

Schedulers

Let M = (S,Act ,S, s0,AP , L) be a MDP.

A scheduler is a funciton S : S+
! Act ! [0, 1] such that

1. S(s0 s1 . . . sn) is a probability distribution on Act , i.e.,
P

↵2Act S(s0 s1 . . . sn)(↵) = 1, and

2. if S(s0 s1 . . . sn)(↵) > 0, then ↵ 2 Act(sn).

A scheduler S induceces the DTMC MS = (S+
,SS, s0,AP , L

0) where

v SS(s0 s1 . . . sn, s0 s1 . . . sn sn+1) =
P

↵2Act S(s0 s1 . . . sn)(↵) · S(sn,↵, sn+1)

v L
0(s0 s1 . . . sn) = L(sn)

kN

Let M = (S,Act ,S, s0,AP , L) be a MDP.

A scheduler is a funciton S : S+
! Act ! [0, 1] such that

1. S(s0 s1 . . . sn) is a probability distribution on Act , i.e.,
P

↵2Act S(s0 s1 . . . sn)(↵) = 1, and

2. if S(s0 s1 . . . sn)(↵) > 0, then ↵ 2 Act(sn).

A scheduler S induces the DTMC MS = (S+
,SS, s0,AP , L

0) where

v SS(s0 s1 . . . sn, s0 s1 . . . sn sn+1) =
P

↵2Act S(s0 s1 . . . sn)(↵) · S(sn,↵, sn+1)

v L
0(s0 s1 . . . sn) = L(sn)

kN

DTMC induced by a scheduler

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

DTMC induced by a scheduler

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

1 2 4 8

ls

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

DTMC induced by a scheduler

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

stock_market

casino

a lot

DTMC induced by a scheduler

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

1 2 4 8

ls

0.7
0.2

0.1
0.1
0.25

0.55

0.1

lc

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

DTMC induced by a scheduler

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

1 2 4 8

ls
0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

stock_market

casino

a lot

DTMC induced by a scheduler

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

jy

S always chooses casino PrS(¨ |= 3“a lot”) ⇡ 0.0816

S always chooses stock_market PrS(¨ |= 3“a lot”) ⇡ 0.0443

S chooses stock_market on ¨ and Ø and casino otherwise PrS(¨ |= 3“a lot”) ⇡ 0.1504

S chooses on the other way around PrS(¨ |= 3“a lot”) ⇡ 0.1332

But then,…

what is the probability

of 3 “a lot” ??!!

jy

Supremum and infimum probabilities

❖ There are uncountably many resolutions

❖ Only the best or worst bound for the probability can guarantee the satisfaction of a
property, e.g:

❖ an error occurs with probability less than 0.001

❖ a message is transmitted successfully with probability over 0.95

❖ Therefore, if Φ is the property of interest, we search for

Prmax(s |= �)
4
= sup

S
PrS(s |= �), and

Prmin(s |= �)
4
= inf

S
PrS(s |= �)

jR

Supremum and infimum probabilities

❖ There are uncountably many resolutions

❖ Only the best or worst bound for the probability can guarantee the satisfaction of a
property, e.g:

❖ an error occurs with probability less than 0.001

❖ a message is transmitted successfully with probability over 0.95

❖ Therefore, if Φ is the property of interest, we search for

Prmax(s |= �)
4
= sup

S
PrS(s |= �), and

Prmin(s |= �)
4
= inf

S
PrS(s |= �)

jR

How can we
calculate this?

Type of schedulers

A scheduler S is:

deterministic:

if for all s0 s1 . . . sn, S(s0 s1 . . . sn)(↵) = 1 for some ↵ 2 Act

memoryless:

if for all s0 s1 . . . sn, S(s0 s1 . . . sn) = S(sn)

memoryless and deterministic:

if it is memoryless and deterministic at the same time,

In this case, we write

S(s0 s1 . . . sn) = ↵

jk

Type of schedulers

A scheduler S is:

deterministic:

if for all s0 s1 . . . sn, S(s0 s1 . . . sn)(↵) = 1 for some ↵ 2 Act

memoryless:

if for all s0 s1 . . . sn, S(s0 s1 . . . sn) = S(sn)

memoryless and deterministic:

if it is memoryless and deterministic at the same time,

In this case, we write

S(s0 s1 . . . sn) = ↵

jk

There are
only finitely many

of these

Quantitative reachability

Theorem:

Let B ✓ S. Then:

v There exists a memoryless and deterministic scheduler Smax
such that

PrS
max

(s |= 3B) = Prmax(s |= 3B)

v There exists a memoryless and deterministic scheduler Smin
such that

PrS
min

(s |= 3B) = Prmin(s |= 3B)

jj

Quantitative reachability

Theorem:

Let B ✓ S. Then:

v There exists a memoryless and deterministic scheduler Smax
such that

PrS
max

(s |= 3B) = Prmax(s |= 3B)

v There exists a memoryless and deterministic scheduler Smin
such that

PrS
min

(s |= 3B) = Prmin(s |= 3B)

jj

Not any property!
only reachability

Quantitative reachability

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

j9

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P
+
ls

= P
+
lc

= 0

P
+
al

= 1

P
+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P
+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
3 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
4 = max (0.55P+

8 + 0.25P+
al
+ 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al
+ 0.5P+

l+c
)

P
+
s

is abbreviates

Prmax(s |= 3“a lot”)

j9

Quantitative reachability

1 2 4 8

ls

0.7
0.2

0.1 0.1
0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55
0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

Prmax(¨ |= 3“a lot”) ⇡ 0.1905

and the (memoryless and determinstic) scheduler S that maximizes it is

S(¨) = stock_market S(Ø) = stock_market

S(≠) = casino S(≥) = stock_market

j8

Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 B

xs = 0 if Prmax(s |= 3B) = 0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

if Prmax(s |= 3B) > 0 and s /2 B

jd

Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 B

xs = 0 if Prmax(s |= 3B) = 0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

if Prmax(s |= 3B) > 0 and s /2 B

jd

The Bellman equations can be
computed with a fixed-point iteration

… but how can the
conditions be calculated?

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

?

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

✔

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

?

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

✔

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

⎧
⎨
⎩

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

⎧
⎨
⎩

⎧
⎨
⎩

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Qualitative reachability (max)

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

⎧
⎨
⎩

⎧
⎨
⎩

For the general case,
first make states in B absorbing
then apply the corresponding

algorithm

Actually
achieved with a

different algorithm*

* See Algorithm 45 in [Baier & Katoen]

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Lemma: Let M = (S,Act ,S, s0,AP , L) be a MDP and let B ✓ S be a set of absorbing states.

Then, for s 2 S,

v Prmax(s |= 3B) > 0 iff s 2 9Pre⇤(B)

v Prmax(s |= 3B) = 0 iff s 2 S\9Pre⇤(B)

v Prmax(s |= 3B) < 1 iff s 2 8Pre⇤(S\9Pre⇤(B))

v Prmax(s |= 3B) = 1 iff s 2 S\8Pre⇤(S\9Pre⇤(B))

where

9Pre(C)
4
= {s 2 S | 9↵ 2 Act(s) : S(s,↵, C) > 0} 9Pre⇤(C)

4
=

S
n�0 9Pre

n(C)

8Pre(C)
4
= {s 2 S | 8↵ 2 Act(s) : S(s,↵, C) > 0} 8Pre⇤(C)

4
=

S
n�0 8Pre

n(C)

O(size(M)) O(size(M)2)

jN

Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 B

xs = 0 if Prmax(s |= 3B) = 0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

if Prmax(s |= 3B) > 0 and s /2 B

jd

Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 S
max
=1

xs = 0 if s 2 S
max
=0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

if s 2 S

max
>0 \S

max
=1

S
max
=1 = S\8Pre⇤(S\9Pre⇤(B))

S
max
=0 = S\9Pre⇤(B)

S
max
>0 = 9Pre⇤(B)

j3

Quantitative reachability (max)

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 S
max
=1

xs = 0 if s 2 S
max
=0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

if s 2 S

max
>0 \S

max
=1

S
max
=1 = S\8Pre⇤(S\9Pre⇤(B))

S
max
=0 = S\9Pre⇤(B)

S
max
>0 = 9Pre⇤(B)

j3

Theorem:

The family of values {xs}s2S with xs = Prmax(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 S
max
=1

xs = 0 if s 2 S
max
=0

xs = max
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

if s 2 S

max
>0 \S

max
=1

S
max
=1 = S\8Pre⇤(S\9Pre⇤(B))

S
max
=0 = S\9Pre⇤(B)

S
max
>0 = 9Pre⇤(B)

j3

First make states
in B absorbing

Quantitative reachability (max)
Value iteration algorithm

for all s 2 S
max
=1 , x

(0)
s = 1

for all s /2 S
max
=1 , x

(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 S
max
=1 , x

(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \S

max
=1 ,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until
⇣
maxs2S |x

(i)
s � x

(i�1)
s | < "

⌘

a consequece of

xs = limi!1 x
(i)
s

What about

Prmax(3n
B)?

9y

for all s 2 S
max
=1 , x

(0)
s = 1

for all s /2 S
max
=1 , x

(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 S
max
=1 , x

(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \S

max
=1 ,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until
⇣
maxs2S |x

(i)
s � x

(i�1)
s | < "

⌘

a consequece of

xs = limi!1 x
(i)
s

What about

Prmax(3n
B)?

9y

Normally very small,
e.g. 10-6

Quantitative reachability (max)
Value iteration algorithm

for all s 2 S
max
=1 , x

(0)
s = 1

for all s /2 S
max
=1 , x

(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 S
max
=1 , x

(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \S

max
=1 ,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until
⇣
maxs2S |x

(i)
s � x

(i�1)
s | < "

⌘

a consequece of

xs = limi!1 x
(i)
s

What about

Prmax(3n
B)?

9y

for all s 2 S
max
=1 , x

(0)
s = 1

for all s /2 S
max
=1 , x

(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 S
max
=1 , x

(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \S

max
=1 ,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until
⇣
maxs2S |x

(i)
s � x

(i�1)
s | < "

⌘

a consequece of

xs = limi!1 x
(i)
s

What about

Prmax(3n
B)?

9y

for all s 2 S
max
=1 , x

(0)
s = 1

for all s /2 S
max
=1 , x

(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 S
max
=1 , x

(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \S

max
=1 ,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until
⇣
maxs2S |x

(i)
s � x

(i�1)
s | < "

⌘

a consequece of

xs = limi!1 x
(i)
s

What about

Prmax(3=n
B) and

Prmax(3n
B)?

9y

Normally very small,
e.g. 10-6

Quantitative bounded reachability

!

"

#

Prmax(6≤2 !) = 0.975

S(#) = α

S(##) = α

S(###) = β

Ne

!

"

#

Prmax(6≤2 !) = 0.975

S(#) = α

S(##) = α

S(###) = β

Ne

!

"

#

Prmax(6≤2 !) = 0.975

S(#) = α

S(##) = α

S(###) = β

Ne

!

"

#

Prmax(6≤2 !) = 0.975

S(#) = α

S(##) = α

S(###) = β

Ne

0.5 0.5
0.9

0.1

,

/

.

Prmax(32,) = 0.975

S(#) = ↵

S(##) = ↵

S(###) = �

PrS1(32,) = 0.875

S1(#) = ↵

PrS2(32,) = 0.9

S2(#) = �

je

❖ Only two memoryless deterministic
schedulers:

,

/

.

S1(.#) = ↵

PrS1(32,) = 0.875

S2(.#) = �

PrS2(32,) = 0.9

Prmax(32,) = 0.975

S(.#) = ↵ S(.#.#) = ↵ S(.#.#.#) = �

je

,

/

.

S1(.#) = ↵

PrS1(32,) = 0.875

S2(.#) = �

PrS2(32,) = 0.9

Prmax(32,) = 0.975

S(.#) = ↵ S(.#.#) = ↵ S(.#.#.#) = �

je

Quantitative bounded reachability

!

"

#

Prmax(6≤2 !) = 0.975

S(#) = α

S(##) = α

S(###) = β

Ne

!

"

#

Prmax(6≤2 !) = 0.975

S(#) = α

S(##) = α

S(###) = β

Ne

!

"

#

Prmax(6≤2 !) = 0.975

S(#) = α

S(##) = α

S(###) = β

Ne

!

"

#

Prmax(6≤2 !) = 0.975

S(#) = α

S(##) = α

S(###) = β

Ne

0.5 0.5
0.9

0.1

,

/

.

Prmax(32,) = 0.975

S(#) = ↵

S(##) = ↵

S(###) = �

PrS1(32,) = 0.875

S1(#) = ↵

PrS2(32,) = 0.9

S2(#) = �

je

❖ Only two memoryless deterministic
schedulers:

,

/

.

S1(.#) = ↵

PrS1(32,) = 0.875

S2(.#) = �

PrS2(32,) = 0.9

Prmax(32,) = 0.975

S(.#) = ↵ S(.#.#) = ↵ S(.#.#.#) = �

je

,

/

.

S1(.#) = ↵

PrS1(32,) = 0.875

S2(.#) = �

PrS2(32,) = 0.9

Prmax(32,) = 0.975

S(.#) = ↵ S(.#.#) = ↵ S(.#.#.#) = �

je

,

/

.

S1(.#) = ↵

PrS1(32,) = 0.875

S2(.#) = �

PrS2(32,) = 0.9

Prmax(32,) = 0.975

S(.#) = ↵ S(.#.#) = ↵ S(.#.#.#) = �

je

❖ However with

,

/

.

S1(.#) = ↵

PrS1(32,) = 0.875

S2(.#) = �

PrS2(32,) = 0.9

Prmax(32,) = 0.975

S(.#) = ↵ S(.#.#) = ↵ S(.#.#.#) = �

je

Memoryless deterministic
schedulers are not sufficient

Quantitative bounded reachability (max)

for all s 2 S
max
=1 , x

(0)
s = 1

for all s /2 S
max
=1 , x

(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 S
max
=1 , x

(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \S

max
=1 ,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until
⇣
maxs2S |x

(i)
s � x

(i�1)
s | < "

⌘

a consequece of

xs = limi!1 x
(i)
s

What about

Prmax(3n
B)?

9y

Algorithm for
quantitative reachability

Quantitative bounded reachability (max)

for all s 2 B, x
(0)
s = 1

for all s /2 B, x
(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 B, x
(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \B,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until (i = n)

9R

for all s 2 B, x
(0)
s = 1

for all s /2 B, x
(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 B, x
(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \B,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until (i = n)

Computes

Prmax(3=n
B)

To compute Prmax(3n
B)

first make states in B absorbing

then apply this algorithm

9R

for all s 2 B, x
(0)
s = 1

for all s /2 B, x
(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 B, x
(i)
s = 1

for all s 2 S
max
=0 , x

(i)
s = 0

for all s 2 S
max
>0 \B,

x
(i)
s = max

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until (i = n)

Computes

Prmax(3=n
B)

To compute Prmax(3n
B)

first make states in B absorbing

then apply this algorithm

9R
Exactly n times

Qualitative reachability (min)

Lemma: Let B ✓ S be a set of absorbing states. Then, for s 2 S,

v Prmin(s |= 3B) > 0 iff s 2 8Pre⇤(B)

v Prmin(s |= 3B) = 0 iff s 2 S\8Pre⇤(B)

v Prmin(s |= 3B) < 1 iff s 2 9Pre⇤(S\8Pre⇤(B))

v Prmin(s |= 3B) = 1 iff s 2 S\9Pre⇤(S\8Pre⇤(B))

9k

Note the inversion of ∀
and ∃ respect to max qualitative

reachability

Qualitative reachability (min)

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

⎧
⎨
⎩

⎧
⎨
⎩

Lemma: Let B ✓ S be a set of absorbing states. Then, for s 2 S,

v Prmin(s |= 3B) > 0 iff s 2 8Pre⇤(B)

v Prmin(s |= 3B) = 0 iff s 2 S\8Pre⇤(B)

v Prmin(s |= 3B) < 1 iff s 2 9Pre⇤(S\8Pre⇤(B))

v Prmin(s |= 3B) = 1 iff s 2 S\9Pre⇤(S\8Pre⇤(B))

9k

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

Note the inversion of ∀
and ∃ respect to max qualitative

reachability

Qualitative reachability (min)

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

⎧
⎨
⎩

⎧
⎨
⎩

Actually
achieved with a

different algorithm*

For the general case,
first make states in B absorbing
then apply the corresponding

algorithm

Lemma: Let B ✓ S be a set of absorbing states. Then, for s 2 S,

v Prmin(s |= 3B) > 0 iff s 2 8Pre⇤(B)

v Prmin(s |= 3B) = 0 iff s 2 S\8Pre⇤(B)

v Prmin(s |= 3B) < 1 iff s 2 9Pre⇤(S\8Pre⇤(B))

v Prmin(s |= 3B) = 1 iff s 2 S\9Pre⇤(S\8Pre⇤(B))

9k

3LTH!

:LH M = (S,Act ,S, s0,PA, L) \U 4+7 ` ZLH B ⊆ S� 3\LNV

�� Prmax(s |= 6B) > 0 ZPP s ∈ ∃Pre∗(B)

�� Prmax(s |= 6B) = 0 ZPP s ∈ S\∃Pre∗(B)

�� Prmax(s |= 6B) < 1 ZPP s ∈ ∀Pre∗(S\∃Pre∗(B))

�� Prmax(s |= 6B) = 1 ZPP s ∈ S\∀Pre∗(S\∃Pre∗(B))

KVUKL

∃Pre(C)
△
= {s ∈ S | ∃α ∈ Act(s) : S(s,α, C) > 0} ∃Pre∗(C)

△
=

⋃
n≥0 ∃Pre

n(C)

∀Pre(C)
△
= {s ∈ S | ∀α ∈ Act(s) : S(s,α, C) > 0} ∀Pre∗(C)

△
=

⋃
n≥0 ∀Pre

n(C)

O(size(M)) O(size(M)2)

NN

Note the inversion of ∀
and ∃ respect to max qualitative

reachability
* See Algorithm 46 in [Baier & Katoen]

Quantitative reachability (min)

Theorem:

The family of values {xs}s2S with xs = Prmin(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 B

xs = 0 if Prmin(s |= 3B) = 0

xs = min
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

if Prmin(s |= 3B) > 0 and s /2 B

9j

Quantitative reachability (min)

Theorem:

The family of values {xs}s2S with xs = Prmin(s |= 3B) is the unique solution to the

following equation system:

xs = 1 if s 2 S
min
=1

xs = 0 if s 2 S
min
=0

xs = min
�P

t2S
S(s,↵, t) · xt | ↵ 2 Act(s)

if s 2 S

min
>0 \S

min
=1

99

Quantitative reachability (min)
Value iteration algorithm

for all s 2 S
min
=1 , x

(0)
s = 1

for all s /2 S
min
=1 , x

(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 S
min
=1 , x

(i)
s = 1

for all s 2 S
min
=0 , x

(i)
s = 0

for all s 2 S
min
>0 \S

max
=1 ,

x
(i)
s = min

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until
⇣
maxs2S |x

(i)
s � x

(i�1)
s | < "

⌘

Computes

Prmin(3=n
B)

To compute Prmin(3n
B)

first make states in B absorbing

then apply this algorithm

98

Algorithm for
quantitative reachability

Quantitative bounded reachability (min)

for all s 2 B, x
(0)
s = 1

for all s /2 B, x
(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 B, x
(i)
s = 1

for all s 2 S
min
=0 , x

(i)
s = 0

for all s 2 S
min
>0 \B,

x
(i)
s = min

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until (i = n)

Computes

Prmin(3=n
B)

To compute Prmin(3n
B)

first make states in B absorbing

then apply this algorithm

9e

for all s 2 B, x
(0)
s = 1

for all s /2 B, x
(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 B, x
(i)
s = 1

for all s 2 S
min
=0 , x

(i)
s = 0

for all s 2 S
min
>0 \B,

x
(i)
s = min

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until (i = n)

Computes

Prmin(3=n
B)

To compute Prmin(3n
B)

first make states in B absorbing

then apply this algorithm

9e

Exactly n times

for all s 2 B, x
(0)
s = 1

for all s /2 B, x
(0)
s = 0

i = 0

repeat

i = i+ 1

for all s 2 B, x
(i)
s = 1

for all s 2 S
min
=0 , x

(i)
s = 0

for all s 2 S
min
>0 \B,

x
(i)
s = min

nP
t2S

S(s,↵, t) · x(i�1)
t

| ↵ 2 Act(s)
o

until (i = n)

9e

Quantitative reachability

❖ We gave approximating algorithms (value iteration) to calculate
quantitative reachability (max or min)

❖ However, the exact values can be computed by solving a linear
programming problem

❖ Therefore, quantitative reachability (max or min) can be computed in
polynomial time

Constrained reachability

To compute

Prmax(s |= C l B) Prmax(s |= C ln
B) Prmax(s |= C l B) = 1

etc.
Prmin(s |= C l B) Prmin(s |= C ln

B) Prmin(s |= C l B) = 1

in a MDP M do:

1. Obtain Ml from M by making states in S\(C [B) absorbing.

2. Apply the algorithm in Ml to verify the reachability property s |= 3B.

9d

PCTL in MDP
A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

state
formulas

path
formulas

?

PCTL in MDP
A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

state
formulas

path
formulas

PCTL in MDP
A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

A PCTL formula � holds in state s 2 S of a MDP M, denoted by s |= �, whenever:

s |= p iff p 2 L(s)

s |= ¬� iff s 6|= �

s |= �1 ^ �2 iff s |= �1 and s |= �2

s |= S./a(�) iff for every scheduler S, PrS(s |= �) ./ a

where PrS(s |= �) = PrS
s
({⇢ 2 Path(s) | ⇢ |= �}) and

⇢ |= #� iff ⇢(1) |= �

⇢ |= � l iff exists j � 0 s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

⇢ |= � ln iff exists 0  j  n s.t. ⇢(j) |= and for all 0  k < j, ⇢(k) |= �

93

state
formulas

path
formulas

How is this
computed?

Algorithm for PCTL
model checking

fun Sat(�) {

// input: a PCTL formula �

// output: {s 2 S | s |= �}

case { � 2 AP return {s 2 S | � 2 L(s)}

� ⌘ ¬ return S\Sat()

� ⌘ 1 ^ 2 return Sat(1) \ Sat(2)

� ⌘ S�a(�) return {s 2 S | maxProb(s,�)� a}

� ⌘ S⇤a(�) return {s 2 S | minProb(s,�)⇤ a}

}

}

fun maxProb(s,�) {

// input: a state s and a path formula �

// output: Prmax
s

(s |= �)

case { � ⌘ #� return max
�P

t2S
S(s,↵, t) · 1Sat(�)(t) | ↵ 2 Act(s)

� ⌘ � l let B = Sat(); let C = Sat(�)

return Prmax
s

(C l B) // constrained reachability

� ⌘ � ln let B = Sat(); let C = Sat(�)

return Prmax
s

(C ln
B) // bounded constrained reachability

}

}

9N

! ∈ {<,≤}

" ∈ {≥, >}

,S HSNVYP[TV WHYH

TPU7YVI LZ PN\HS WLYV

JHTIPHUKV max WVY min�

RRd

� 2 {<,}

⇤ 2 {�, >}

minProb is the same but

changing max for min

8y

Polynomial on the size of M
Linear on the size of Φ
Linear on the largest n

Probabilistic model checkers

The quantitative automata zoo
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

The quantitative automata zoo

Science of Computer Programming 112 (2015) 3–23

Contents lists available at ScienceDirect

Science of Computer Programming
www.elsevier.com/locate/scico

In the quantitative automata zoo ✩

Arnd Hartmanns ∗, Holger Hermanns ∗
Saarland University, Computer Science, Germany

a r t i c l e i n f o a b s t r a c tArticle history:
Received 10 June 2014Received in revised form 26 August 2015Accepted 31 August 2015Available online 7 September 2015

Keywords:
Quantitative verificationMarkov decision processesTimed automata

Hybrid automata
Compositional modelling

Quantitative model checking and performance evaluation deal with the analysis of complex
systems that must not only satisfy correctness requirements, but also meet performance
and reliability goals. Models of such systems therefore need to represent the necessary
quantitative information about probabilistic decisions, real-time phenomena, or continuous
dynamics. At the same time, nondeterminism needs to be properly captured as in classical
verification, so as to enable abstraction and compositional modelling. These aspects span
a large spectrum of automata-based quantitative models which have been studied in the
verification and performance evaluation literature. In this paper, we embark on a guided
tour through this zoo of quantitative models. Starting from the basic formalisms of labelled
transition systems and also Markov chains, we look at how timed and hybrid automata add
real-time aspects as well as continuous dynamics, and we study extensions that provide for
behaviour governed by discrete and continuous probability distributions. For each of the
automata models, we outline its definition, provide a small illustrative example, summarise
its expressive power, and survey available formal analysis techniques as well as selected
practical applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We are surrounded by an increasing number of complex computer-driven systems: fly-by-wire airplanes, medical sys-

tems, automated stock trading, networked industrial automation systems, and not least the Internet itself. Over the last

decades, significant progress has been made in the area of formal methods to allow these systems to be modelled in a

mathematically precise way. Techniques like model checking have been developed to automatically prove that these mod-

els satisfy formally specified requirements. Up to modelling errors and implementation deviations, such a proof provides

confidence in the correct functioning of the real system under study.
However, purely qualitative statements about functional correctness are often not sufficient in practice: a correct system

may still be unusably slow, or we may not be able to prove correctness when we consider errors that in reality happen

with negligible probability. In such cases, we need to extend our models with quantitative information to capture details of

timing, probability, or physics. Appropriate verification techniques then allow the analysis of quantitative properties. These

include requirements, for example that a fatal error happen with a very low probability over the lifespan of an airplane, and

queries for quantitative measures, such as the throughput of a proposed server architecture.
✩ This work is supported by the EU Seventh Framework Programme under grant agreements 295261 (MEALS) and 318490 (SENSATION), by the DFG as

part of SFB/TR 14 AVACS, by the CAS-SAFEA International Partnership Program for Creative Research Teams, and by the CDZ project CAP (GZ 1023).

* Corresponding authors.
E-mail addresses: arnd@cs.uni-saarland.de (A. Hartmanns), hermanns@cs.uni-saarland.de (H. Hermanns).

http://dx.doi.org/10.1016/j.scico.2015.08.0090167-6423/© 2015 Elsevier B.V. All rights reserved.

A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

The quantitative automata zoo

Science of Computer Programming 112 (2015) 3–23

Contents lists available at ScienceDirect

Science of Computer Programming
www.elsevier.com/locate/scico

In the quantitative automata zoo ✩

Arnd Hartmanns ∗, Holger Hermanns ∗
Saarland University, Computer Science, Germany

a r t i c l e i n f o a b s t r a c tArticle history:
Received 10 June 2014Received in revised form 26 August 2015Accepted 31 August 2015Available online 7 September 2015

Keywords:
Quantitative verificationMarkov decision processesTimed automata

Hybrid automata
Compositional modelling

Quantitative model checking and performance evaluation deal with the analysis of complex
systems that must not only satisfy correctness requirements, but also meet performance
and reliability goals. Models of such systems therefore need to represent the necessary
quantitative information about probabilistic decisions, real-time phenomena, or continuous
dynamics. At the same time, nondeterminism needs to be properly captured as in classical
verification, so as to enable abstraction and compositional modelling. These aspects span
a large spectrum of automata-based quantitative models which have been studied in the
verification and performance evaluation literature. In this paper, we embark on a guided
tour through this zoo of quantitative models. Starting from the basic formalisms of labelled
transition systems and also Markov chains, we look at how timed and hybrid automata add
real-time aspects as well as continuous dynamics, and we study extensions that provide for
behaviour governed by discrete and continuous probability distributions. For each of the
automata models, we outline its definition, provide a small illustrative example, summarise
its expressive power, and survey available formal analysis techniques as well as selected
practical applications.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We are surrounded by an increasing number of complex computer-driven systems: fly-by-wire airplanes, medical sys-

tems, automated stock trading, networked industrial automation systems, and not least the Internet itself. Over the last

decades, significant progress has been made in the area of formal methods to allow these systems to be modelled in a

mathematically precise way. Techniques like model checking have been developed to automatically prove that these mod-

els satisfy formally specified requirements. Up to modelling errors and implementation deviations, such a proof provides

confidence in the correct functioning of the real system under study.
However, purely qualitative statements about functional correctness are often not sufficient in practice: a correct system

may still be unusably slow, or we may not be able to prove correctness when we consider errors that in reality happen

with negligible probability. In such cases, we need to extend our models with quantitative information to capture details of

timing, probability, or physics. Appropriate verification techniques then allow the analysis of quantitative properties. These

include requirements, for example that a fatal error happen with a very low probability over the lifespan of an airplane, and

queries for quantitative measures, such as the throughput of a proposed server architecture.
✩ This work is supported by the EU Seventh Framework Programme under grant agreements 295261 (MEALS) and 318490 (SENSATION), by the DFG as

part of SFB/TR 14 AVACS, by the CAS-SAFEA International Partnership Program for Creative Research Teams, and by the CDZ project CAP (GZ 1023).

* Corresponding authors.
E-mail addresses: arnd@cs.uni-saarland.de (A. Hartmanns), hermanns@cs.uni-saarland.de (H. Hermanns).

http://dx.doi.org/10.1016/j.scico.2015.08.0090167-6423/© 2015 Elsevier B.V. All rights reserved.

A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

State of the Art PMC
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

PRISM

❖ First appeared in 2000 [KNP00, dAKNPS00]

❖ https://www.prismmodelchecker.org/

❖ In addition POMDP, POPTA, IMDP

❖ PRISM language → network of modules

❖ Properties: PCTL, CSL, LTL, PCTL*, steady
state, rewards and costs, multi-objective

❖ Symbolic, hybrid, and explicit engines

❖ Also SMC on deterministic models

❖ Alternate version for stochastic games

https://www.prismmodelchecker.org/

State of the Art PMC
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

The Modest toolset

❖ First appeared in 2009 [Hartmanns09]

❖ https://www.modestchecker.net/

❖ Modest language includes conventional
programming constructs with ideas from
process algebra [DHKK01]

❖ Properties: reachability, bounded reachability,
steady state, expected rewards

❖ mcsta: disk-based explicit engine

❖ modes: SMC for non-det. models and RES

❖ More tools: prohver, modysh, mosta, moconv

https://www.modestchecker.net/

State of the Art PMC
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

Storm

❖ First appeared in 2017 [DJKV17]

❖ https://www.stormchecker.org/

❖ In addition POMDP, Parametric models

❖ Languages: PRISM, cpGCL, GSPN, DFT

❖ Properties: PCTL, CSL, LTL, steady state,
expected rewards, multi-objective, conditional
probabilies

❖ Counterexample generation

❖ Explicit and symbolic engine

https://www.stormchecker.org/

State of the Art PMC
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

 Storm

Modest

PRISM

JANI
intermediate

language

Probabilistic Model Checking

Pedro R. D’Argenio

Universidad Nacional de Córdoba – CONICET
https://cs.famaf.unc.edu.ar/~dargenio/

ICTAC 2023 Training School on Applied Formal Methods

https://cs.famaf.unc.edu.ar/~dargenio/

