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Delay Tolerant Networks

❖ Time-evolving networks lacking 
continuous and instantaneous end-to-end 
connectivity

❖ Routing through “store, carry, and forward” 
policy

❖ Contacts can be: 

❖ Opportunistic: no assumptions can be 
made on future contacts 

❖ Predicted: contact patterns can be 
inferred from history 

❖ Scheduled: time and duration of contacts 
can be accurately determined
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Figure 1: Abstract view of an uncertain contact plan.

the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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Fig. 5. Visualisation of the Walker constellation

to see a tradeoff between LSS for global-information and LSS for distributed
schedulers: There are many more global-information schedulers than distributed
ones. So even though the former may realise higher probabilities, LSS might only
rarely find any good global-information scheduler, whereas it may often find a
good distributed scheduler due to their more limited choices.

Our experiments ran on an Intel Core i7-4790 workstation (3.6–4.0GHz, 4
cores) with 64-bit Ubuntu Linux 18.04. We used smart sampling [22] with a
fixed number of initial schedulers m0 equal to the per-iteration budget n0. In
iteration i, smart sampling performs ⌈ ni

mi
⌉ simulation runs for each of the mi

schedulers, discards the “worst” half of the schedulers according to their current
probability estimate, and moves to iteration i + 1 with mi+1 = ⌊mi

2 ⌋. We can
thus cover a large number of schedulers with only ≈ log2(m0) · n0 simulation
runs in total. We show the results in Table 1. We used the Modest Toolset’s
mcsta model checker for PMC and modes as described in Sect. 4 for the SMC-
LSS-m0 runs. Due to the randomised nature of the experiments, we repeated

Standard: Contact Graph Routing (CGR)

Contact Plan
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
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we want to maximize the probability that a state in B is
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which a bundle has been successfully delivered. Moreover,
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
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| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have
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1
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1
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| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
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The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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to see a tradeoff between LSS for global-information and LSS for distributed
schedulers: There are many more global-information schedulers than distributed
ones. So even though the former may realise higher probabilities, LSS might only
rarely find any good global-information scheduler, whereas it may often find a
good distributed scheduler due to their more limited choices.

Our experiments ran on an Intel Core i7-4790 workstation (3.6–4.0GHz, 4
cores) with 64-bit Ubuntu Linux 18.04. We used smart sampling [22] with a
fixed number of initial schedulers m0 equal to the per-iteration budget n0. In
iteration i, smart sampling performs ⌈ ni

mi
⌉ simulation runs for each of the mi

schedulers, discards the “worst” half of the schedulers according to their current
probability estimate, and moves to iteration i + 1 with mi+1 = ⌊mi

2 ⌋. We can
thus cover a large number of schedulers with only ≈ log2(m0) · n0 simulation
runs in total. We show the results in Table 1. We used the Modest Toolset’s
mcsta model checker for PMC and modes as described in Sect. 4 for the SMC-
LSS-m0 runs. Due to the randomised nature of the experiments, we repeated

Standard: Contact Graph Routing (CGR)

Contact Plan
Translates the contact plan to a 

graph and adapts Dijkstra’s algorithm to 
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
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whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.
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success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
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the successful transmission while the dotted arrow repre-
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
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. . . [�1⌫0⇠1⇡0
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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Fig. 5. Visualisation of the Walker constellation

to see a tradeoff between LSS for global-information and LSS for distributed
schedulers: There are many more global-information schedulers than distributed
ones. So even though the former may realise higher probabilities, LSS might only
rarely find any good global-information scheduler, whereas it may often find a
good distributed scheduler due to their more limited choices.

Our experiments ran on an Intel Core i7-4790 workstation (3.6–4.0GHz, 4
cores) with 64-bit Ubuntu Linux 18.04. We used smart sampling [22] with a
fixed number of initial schedulers m0 equal to the per-iteration budget n0. In
iteration i, smart sampling performs ⌈ ni

mi
⌉ simulation runs for each of the mi

schedulers, discards the “worst” half of the schedulers according to their current
probability estimate, and moves to iteration i + 1 with mi+1 = ⌊mi

2 ⌋. We can
thus cover a large number of schedulers with only ≈ log2(m0) · n0 simulation
runs in total. We show the results in Table 1. We used the Modest Toolset’s
mcsta model checker for PMC and modes as described in Sect. 4 for the SMC-
LSS-m0 runs. Due to the randomised nature of the experiments, we repeated

Standard: Contact Graph Routing (CGR)

Contact Plan
Translates the contact plan to a 

graph and adapts Dijkstra’s algorithm to 
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0

| C1] . . .
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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Fig. 5. Visualisation of the Walker constellation

to see a tradeoff between LSS for global-information and LSS for distributed
schedulers: There are many more global-information schedulers than distributed
ones. So even though the former may realise higher probabilities, LSS might only
rarely find any good global-information scheduler, whereas it may often find a
good distributed scheduler due to their more limited choices.

Our experiments ran on an Intel Core i7-4790 workstation (3.6–4.0GHz, 4
cores) with 64-bit Ubuntu Linux 18.04. We used smart sampling [22] with a
fixed number of initial schedulers m0 equal to the per-iteration budget n0. In
iteration i, smart sampling performs ⌈ ni

mi
⌉ simulation runs for each of the mi

schedulers, discards the “worst” half of the schedulers according to their current
probability estimate, and moves to iteration i + 1 with mi+1 = ⌊mi

2 ⌋. We can
thus cover a large number of schedulers with only ≈ log2(m0) · n0 simulation
runs in total. We show the results in Table 1. We used the Modest Toolset’s
mcsta model checker for PMC and modes as described in Sect. 4 for the SMC-
LSS-m0 runs. Due to the randomised nature of the experiments, we repeated

Standard: Contact Graph Routing (CGR)

Contact Plan

Increase reliability: CGR with multiple copies
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0

| C1] . . .
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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Fig. 5. Visualisation of the Walker constellation

to see a tradeoff between LSS for global-information and LSS for distributed
schedulers: There are many more global-information schedulers than distributed
ones. So even though the former may realise higher probabilities, LSS might only
rarely find any good global-information scheduler, whereas it may often find a
good distributed scheduler due to their more limited choices.

Our experiments ran on an Intel Core i7-4790 workstation (3.6–4.0GHz, 4
cores) with 64-bit Ubuntu Linux 18.04. We used smart sampling [22] with a
fixed number of initial schedulers m0 equal to the per-iteration budget n0. In
iteration i, smart sampling performs ⌈ ni

mi
⌉ simulation runs for each of the mi

schedulers, discards the “worst” half of the schedulers according to their current
probability estimate, and moves to iteration i + 1 with mi+1 = ⌊mi

2 ⌋. We can
thus cover a large number of schedulers with only ≈ log2(m0) · n0 simulation
runs in total. We show the results in Table 1. We used the Modest Toolset’s
mcsta model checker for PMC and modes as described in Sect. 4 for the SMC-
LSS-m0 runs. Due to the randomised nature of the experiments, we repeated
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0

| C1] . . .

[�1⌫0⇠1⇡0
| C2] [�1⌫1⇠0⇡0

| C2]

. . . [�1⌫0⇠1⇡0
| C3] [�0⌫1⇠1⇡0

| C3] [�1⌫1⇠0⇡0
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.

3

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

What is a MDP? (example)



Optimality through Markov Decision Processes

[A2B0C0D0 | t0]

[A1B1C0D0 | t1] [A2B0C0D0 | t1] Ę

[A1B0C1D0 | t2] [A1B1C0D0 | t2]

[A0B0C2D0 | t3] [A1B0C1D0 | t3] [A0B1C1D0 | t3] [A1B1C0D0 | t3]

Ę

Ę Ę Ę Ę

A 1�!B A 2�!B

B 1�!C

A 1�!C A 1�!C

A biQ`2b
0.9

0.1
0.9

0.1

B biQ`2b

0.9
0.1

A biQ`2b
0.5

0.5
A biQ`2b

0.5
0.5

[A2B0C0D0 | t0]

[A1B1C0D0 | t1] [A2B0C0D0 | t1] Ę

[A1B0C1D0 | t2] [A1B1C0D0 | t2]

[A0B0C2D0 | t3] [A1B0C1D0 | t3] [A0B1C1D0 | t3] [A1B1C0D0 | t3]

Ę

Ę Ę Ę Ę

A 1�!B A 2�!B

B 1�!C

A 1�!C A 1�!C

A biQ`2b
0.9

0.1
0.9

0.1

B biQ`2b

0.9
0.1

A biQ`2b
0.5

0.5
A biQ`2b

0.5
0.5

R

Statistical and Analytical Routing Approaches for Uncertain Delay-Tolerant Networks MobiCom, ACM, 2022

�:

⌫:

⇠:

⇡ :

C0 C1 C2 C3 C4

0.1

0.1

0.5

0.5

0.9

Figure 1: Abstract view of an uncertain contact plan.

the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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‡Facultad de Matemática, Astronomı́a, Fı́sica y Computación (FAMAF), UNC, Córdoba, Argentina
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Abstract—Delay Tolerant Networking (DTN) has been pro-

posed to provide efficient and autonomous store-carry-and-

forward data transport for space-terrestrial networks. Since

these networks relay on scheduled contact plans, Contact Graph

Routing (CGR) can be used to optimize routing and data deliv-

ery performance. However, scheduling uncertainties and faults

induced by the harsh space environment can provoke different

network connectivity than the one assumed in the provisioned

contact plan. In this work, we develop a theoretical model

based on a Markov Decision Process (MDP) to determine the

Best Routing Under Failures (BRUF). Existing routing solutions

are thus compared with the analytical bound obtained from

implementing BRUF in PRISM. Results over random networks

prove that state-of-the-art CGR is close to the theoretical delivery

ratio and that supervised data replication is mandatory to further

improve the performance under uncertain contact plans.

Index Terms—Delay Tolerant Networks, Space and Satellite

Networks, Contact Graph Routing

I. INTRODUCTION

Large-scale satellite networks are becoming increasingly

popular as a means to provide high quality imagery, video and

communication services around the globe [1]. Efficient space-

terrestrial communication technologies, capable of success-

fully moving large volumes of data between space and ground

networks, are a key element in these networks. In this context,

Delay Tolerant Networking (DTN) has been identified as a

novel approach which can meet this goal in a cost-effective

way by relaxing communication requirements and network in-

frastructure usually assumed in traditional protocols. The DTN

architecture, originated from deep-space and interplanetary

networking, embraces the concept of occasionally-connected

networks that may suffer from frequent partitions, high delay,

and that may be comprised of more than one divergent set

of protocols [2]. To this end, a bundle layer that exists at

a layer above the transport (or other) layers of the network,

employs a persistent storage on each DTN node to store-

carry-and-forward data packets called bundles as transmission

opportunities become available.

In the case of space-based networks, the forthcoming

episodes of communications (a.k.a. contacts) and their proper-

ties can be determined in advance based on orbital dynamics.

These types of deterministic DTNs are known as scheduled

DTNs and can take advantage of a contact plan comprising

the future network connectivity in order to optimize data

forwarding. However, scheduled routing solutions such as

Contact Graph Routing (CGR) assumes the estimation of the

future topology status is highly accurate [3]. Indeed, CGR

does not consider scheduling uncertainties such as transient

or permanent faults of nodes, antenna pointing inaccuracies

or unexpected interferences.

Authors in [4] studied satellite networks under opportunistic

and probabilistic routing solutions [5]. Although useful to

minimize calculation effort and to avoid relying on a timely

contact plan distribution, neglecting topological predictability

severely undermines overall performance in space-terrestrial

networks. Instead, DTN nodes can take advantage of contact

plans as it avoids training overhead and facilitates audition,

control and troubleshooting. In this regard, other works fo-

cused on Opportunistic CGR (O-CGR) have sought to ex-

tend CGR to react when unplanned (opportunistic) contacts

occur [6], but the topological information encoded and dis-

tributed in the contact plan was still assumed accurate. After

analyzing CGR reactions to contact prediction inaccuracies

and faults in [7], authors studied different replication strategies

for space-terrestrial DTNs under uncertain contact plans [8].

Nonetheless, results proved that there is not an optimal routing

scheme for all uncertainty ranges in all types of scenarios

under all types of traffic. Indeed, deciding a single routing

framework in space DTNs with potentially inaccurate contact

plans is still an open research question.

In order to deal with routing in space DTNs under uncertain

contact plans, we propose a first theoretical model to determine

the optimal routing solution in any possible scenario. In

particular, given a space DTN described by some traffic to

be delivered to destination, and a contact plan where each

contact has a probability of failure, we seek to determine

the routing decisions which maximizes the probability of

delivering that traffic. We model the problem using a Markov

Decision Process (MDP) and implement it in PRISM [9].

The model serves as an upper theoretical bound not only to

compare existing routing schemes but to configure optimal

static routes in medium-sized space DTNs. We finally compare

the optimal model decisions with those made by CGR and
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Bellman equations for reachability:

x(0)s = 1 if s 2 Goal

x(0)s = 0 if s /2 Goal

x(i+1)
s = 1 if s 2 Goal

x(i+1)
s = 0 if s 6|= 3Goal

x(i+1)
s = max

↵2Act(s)

X

t2S
P(s,↵, t) · x(i)t if s |= 3Goal

and s /2 Goal

xs = 1 if s 2 Goal

xs = 0 if s 6|= 3Goal

xs = max
↵2Act(s)

X

t2S
P(s,↵, t) · xt if s |= 3Goal

and s /2 Goal

1
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Routing under Uncertain Contact Plans (RUCoP)
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Algorithm 1: The RUCoP algorithm
Input: Uncertain time varying graph G, num copies , Target
Output: Explored states S, Routing table Tr , Successful delivery

probability Pr

1: determine successful states Stend
for num copies

2: S  Stend

3: for all ti 2 T , starting from tend�1 do
4: Sti  ?
5: for all state s 2 Sti+1 do
6: determine carrier nodes Cti

7: for all node c 2 Cti do
8: Pc  {c} [

S
c02pred+

Gti
(c) pathGti

(c0, c)

9: Rc  
�
R ✓ {0, . . . cp(c)}⇥ Pc |

P
(k,⇢)2R k = cp(c)

 

10: end for
11: Tr(s) 

�S
c2Cti

Rc | 8c 2 Cti : Rc 2 Rc

 

12: for all R 2 Tr(s) do
13: s

0
 get previous state(s, R)

14: Sti  Sti [ {s
0
}

15: prR  SDP(R, s
0
, ti)

16: if Pr(s0) is undefined or Pr(s0) < prR then
17: Pr(s0) prR

18: best action(s0) R

19: end if
20: end for
21: S  S [ Sti

22: end for
23: end for
24: return S, Tr , Pr

16
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Start from all states 
that reach the Target node at 

time tend

Algorithm 1: The RUCoP algorithm
Input: Uncertain time varying graph G, num copies , Target
Output: Explored states S, Routing table Tr , Successful delivery

probability Pr

1: determine successful states Stend
for num copies

2: S  Stend

3: for all ti 2 T , starting from tend�1 do
4: Sti  ?
5: for all state s 2 Sti+1 do
6: determine carrier nodes Cti

7: for all node c 2 Cti do
8: Pc  {c} [

S
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Gti
(c) pathGti
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10: end for
11: Tr(s) 
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12: for all R 2 Tr(s) do
13: s

0
 get previous state(s, R)

14: Sti  Sti [ {s
0
}

15: prR  SDP(R, s
0
, ti)

16: if Pr(s0) is undefined or Pr(s0) < prR then
17: Pr(s0) prR

18: best action(s0) R

19: end if
20: end for
21: S  S [ Sti

22: end for
23: end for
24: return S, Tr , Pr
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Safe_state(A, 2, t0) = [A2B0C0D0
| t0]

Safe_state(A, 1, t2) = [A1B0C0D0
| t2]

A network of MDP M = M1 || . . . ||Mn is good for distributed scheduling w.r.t.

reachability of goal set G if in all states s 2 S of JMK = hS, sI , A, T i where

|T (s)| > 1 ^ |{ i | T (s) \ It(Mi) 6= ; }| > 1 we have

q 8 s a
�! s0 : s 2 G , s0 2 G,

q 8 i 2 { 1, . . . , n } : |It(Mi) \ T (s)| > 1 ) Ic(It(Mi) \ T (s)) = {Mi }, and

q s a
�! s0 ) 8Mc 2 {M1, . . . ,Mn } \ Ic(s

a
�! s0) : s#Mc

= s0#Mc
.
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1: determine successful states Stend
for num copies

2: S  Stend

3: for all ti 2 T , starting from tend�1 do
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Output: Explored states S, Routing table Tr , Successful delivery

probability Pr

1: determine successful states Stend
for num copies
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3: for all ti 2 T , starting from tend�1 do
4: Sti  ?
5: for all state s 2 Sti+1 do
6: determine carrier nodes Cti
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Algorithm 1: The RUCoP algorithm
Input: Uncertain time varying graph G, num copies , Target
Output: Explored states S, Routing table Tr , Successful delivery

probability Pr

1: determine successful states Stend
for num copies

2: S  Stend

3: for all ti 2 T , starting from tend�1 do
4: Sti  ?
5: for all state s 2 Sti+1 do
6: determine carrier nodes Cti

7: for all node c 2 Cti do
8: Pc  {c} [

S
c02pred+

Gti
(c) pathGti

(c0, c)

9: Rc  
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P
(k,⇢)2R k = cp(c)

 

10: end for
11: Tr(s) 

�S
c2Cti
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Output: Explored states S, Routing table Tr , Successful delivery

probability Pr
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Input: Network of VMDP M = ∥SV (M1, . . . ,Mn) with [[M ]] = ⟨S, sI , A, T ⟩,
goal set G ⊆ S, σ ∈ Z32, H uniform deterministic, PRNG Upr.

1 s := sI
2 while s /∈ G do // break on goal state

3 if ∀ s
a−→ µ : µ = { s )→ 1 } then break // break on self-loops

4 C := { j | T (s) ∩ It(Mj) ̸= ∅ } // get active components
5 i := Upr({ j )→ 1

|C| | j ∈ C }) // select component uniformly

6 Ti := T (s) ∩ It(Mi) // get component’s transitions
7 ⟨a, µ⟩ := (H(σ.s↓Mi

) mod |Ti|)-th element of Ti // schedule local transition

8 s := Upr(µ) // select next state according to µ

9 return s ∈ G

Algorithm 1. Lightweight simple distributed scheduler sampling

select the successor state according to the distribution determined by the sched-
uled transition. Line 3 terminates the simulation negatively if we find a state
that only has deterministic self-loop transitions; this suffices for our space DTN
models, but could be replaced by smarter loop detection or methods like [47,55].

We have implemented Algorithm1 in modes [12], the statistical model
checker of the Modest Toolset [43]. modes is implemented in C#, freely
available at modestchecker.net, runs on 64-bit Linux, macOS, and Windows,
and is faster than other current general-purpose SMC tools [13, Section 7.1].
Its input languages are Modest [9,40] and the tool-independent Jani model
exchange format [14]. It provides both variants of line 5 discussed above, and
implements corrected statistical tests as well as two-phase and smart sampling.

Fig. 4. Satellite DTN routing scheduling toolchain

5 Scheduling Satellite Communication

To apply our new LSS method of Sect. 4 to space DTN, we created the toolchain
shown in Fig. 4. We use the STK tool by AGI [1] and the Contact Plan Designer
plugin [27] to model the scenario and export the contact plan to a file in Inter-
planetary Overlay Network format (ION) [15]. This plan contains the precise
real-time communication windows; we developed the Python cp2modest tool
that, given such a plan, message source and destinations, and a bound on the
number of copies, (1) abstracts the plan into the form of Fig. 1 with discrete
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Figure 1: Abstract view of an uncertain contact plan.

the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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Fig. 2. Four VMDP modelling the nodes of the example contact plan

Definition 3. Given a VMDP M = ⟨Loc, ℓI , A,X, xI , E⟩, its semantics is the
MDP [[M ]] def= ⟨Loc × Val , ⟨ℓI , xI⟩, A, T ⟩ with T the smallest function satisfying

ℓ
g,a−−→E ν ∧ v(g)

⟨ℓ, v⟩ a−→T { ⟨ℓ′, v′⟩ '→
∑

{u|u∈Upd∧v′={x$→v(u(x))}} ν(⟨u, ℓ′⟩) | ℓ′ ∈ Loc, v′ ∈ Val }

We must restrict to VMDP whose semantics is finite and deadlock-free.

Example 2. Figure 2 shows four VMDP N1 through N4 that model the nodes
of Fig. 1. Every node has a variable ci to track the number of message copies
it owns. We write x!e for the mapping of variable x to value or expression e.
In every slot where a node Ni can send, it has a choice between two transitions
labelled nopi (do not send) and sndi (send one copy: decrement ci, set d to 1).
In a slot Tj where Ni can receive, it always tries to do so via action rcv; this
succeeds with probability pj as given in Fig. 1. If the sender decided not to
send, then a successful receive has no effect on ci because d is zero. The parallel
composition of these four VMDP models the entire contact plan, with the nodes
synchronising on shared action rcv and exchanging data via shared variable d.

Definition 4. Given two VMDP Mi = ⟨Loci, ℓIi , Ai,Xi, xIi , Ei⟩, i ∈ { 1, 2 }, a
finite set A of actions, and a synchronisation relation

sync ⊆ (A1 ⊎ {⊥ }) × (A2 ⊎ {⊥ }) × A,

their parallel composition is
M1 ∥sync M2

def= ⟨Loc1 × Loc2, ⟨ℓI1 , ℓI2⟩, A,X1 ∪ X2, xI1 ∪ xI2 , E⟩
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0

| C1] . . .

[�1⌫0⇠1⇡0
| C2] [�1⌫1⇠0⇡0

| C2]

. . . [�1⌫0⇠1⇡0
| C3] [�0⌫1⇠1⇡0

| C3] [�1⌫1⇠0⇡0
| C3]

. . .

. . . . . . . . .

� 1
�!⌫ � 2

�!⌫

⌫ 1
�!⇠

� 1
�!⇠ ⌫ 1

�!⇠

� stores
0.9 0.1

0.90.1

⌫ stores

0.9 0.1

� stores
0.5

0.5 � stores
0.5

0.5

Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0

| C1] . . .

[�1⌫0⇠1⇡0
| C2] [�1⌫1⇠0⇡0

| C2]

. . . [�1⌫0⇠1⇡0
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0

| C1] . . .
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0
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Figure 1: Abstract view of an uncertain contact plan.

the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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Fig. 2. Four VMDP modelling the nodes of the example contact plan

Definition 3. Given a VMDP M = ⟨Loc, ℓI , A,X, xI , E⟩, its semantics is the
MDP [[M ]] def= ⟨Loc × Val , ⟨ℓI , xI⟩, A, T ⟩ with T the smallest function satisfying

ℓ
g,a−−→E ν ∧ v(g)

⟨ℓ, v⟩ a−→T { ⟨ℓ′, v′⟩ '→
∑

{u|u∈Upd∧v′={x$→v(u(x))}} ν(⟨u, ℓ′⟩) | ℓ′ ∈ Loc, v′ ∈ Val }

We must restrict to VMDP whose semantics is finite and deadlock-free.

Example 2. Figure 2 shows four VMDP N1 through N4 that model the nodes
of Fig. 1. Every node has a variable ci to track the number of message copies
it owns. We write x!e for the mapping of variable x to value or expression e.
In every slot where a node Ni can send, it has a choice between two transitions
labelled nopi (do not send) and sndi (send one copy: decrement ci, set d to 1).
In a slot Tj where Ni can receive, it always tries to do so via action rcv; this
succeeds with probability pj as given in Fig. 1. If the sender decided not to
send, then a successful receive has no effect on ci because d is zero. The parallel
composition of these four VMDP models the entire contact plan, with the nodes
synchronising on shared action rcv and exchanging data via shared variable d.

Definition 4. Given two VMDP Mi = ⟨Loci, ℓIi , Ai,Xi, xIi , Ei⟩, i ∈ { 1, 2 }, a
finite set A of actions, and a synchronisation relation

sync ⊆ (A1 ⊎ {⊥ }) × (A2 ⊎ {⊥ }) × A,

their parallel composition is
M1 ∥sync M2

def= ⟨Loc1 × Loc2, ⟨ℓI1 , ℓI2⟩, A,X1 ∪ X2, xI1 ∪ xI2 , E⟩
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman
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U 2Act (B)

Õ
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bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
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solution is unique. The maximizing policy cmax is calculated
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whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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while s /2 G do // break on goal state

if 8 s a�! µ : µ = { s 7! 1 } then break // break on self-loops
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return s 2 G
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if 8 s a�! µ : µ = { s 7! 1 } then break // break on self-loops
ha, µi := arg maxha0,µ0i2Act(s)Q(s, ha0, µ0i) // schedule transition
s := Upr(µ) // select next state according to µ

return s 2 G
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0

| C1] . . .
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| C2] [�1⌫1⇠0⇡0
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. . . [�1⌫0⇠1⇡0
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.

3

[A2B0C0D0 | t0]

[A1B1C0D0 | t1] [A2B0C0D0 | t1] Ę

[A1B0C1D0 | t2] [A1B1C0D0 | t2]

[A0B0C2D0 | t3] [A1B0C1D0 | t3] [A0B1C1D0 | t3] [A1B1C0D0 | t3]

Ę

Ę Ę Ę Ę

A 1�!B A 2�!B

B 1�!C

A 1�!C A 1�!C

A biQ`2b
0.9

0.1
0.9

0.1

B biQ`2b

0.9
0.1

A biQ`2b
0.5

0.5
A biQ`2b

0.5
0.5

[A2B0C0D0 | t0]

[A1B1C0D0 | t1] [A2B0C0D0 | t1] Ę

[A1B0C1D0 | t2] [A1B1C0D0 | t2]

[A0B0C2D0 | t3] [A1B0C1D0 | t3] [A0B1C1D0 | t3] [A1B1C0D0 | t3]

Ę

Ę Ę Ę Ę

A 1�!B A 2�!B

B 1�!C

A 1�!C A 1�!C

A biQ`2b
0.9

0.1
0.9

0.1

B biQ`2b

0.9
0.1

A biQ`2b
0.5

0.5
A biQ`2b

0.5
0.5

R

✗



The problem of distributed information
Statistical and Analytical Routing Approaches for Uncertain Delay-Tolerant Networks MobiCom, ACM, 2022

�:

⌫:

⇠:

⇡ :

C0 C1 C2 C3 C4

0.1

0.1

0.5

0.5

0.9

Figure 1: Abstract view of an uncertain contact plan.

the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0

| C1] . . .
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.
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Partial observation

Probabilistic model checking computes the probability values of a given property quanti-

fying over all possible schedulers. It turns out that maximum and minimum probabilities

calculated in such a way are over-estimations on models of distributed systems in which

components are loosely coupled and share little information with each other (and hence

arbitrary schedulers may result too powerful). Therefore, we introduced definitions that

characterise which are the schedulers that properly capture the idea of distributed be-

haviour in probabilistic and nondeterministic systems modelled as a set of interacting

components.

In this paper, we provide an overview of the work we have done in the last years which

includes: (1) the definitions of distributed and strongly distributed schedulers, providing

motivation and intuition; (2) expressiveness results, comparing them to restricted versions

such as deterministic variants or finite-memory variants; (3) undecidability results—in

particular the model checking problem is not decidable in general when restricting to

distributed schedulers; (4) a counterexample-guided refinement technique that, using stan-

dard probabilistic model checking, allows to increase precision in the actual bounds in the

distributed setting; and (5) a revision of the partial order reduction technique for proba-

bilistic model checking. We conclude the paper with an extensive review of related work

dealing with similar approaches to ours. © 2013 Elsevier B.V. All rights reserved.

1. Introduction

Markov decision processes (MDPs) are widely used in diverse fields ranging from ecology to computer science. They

are useful to model and analyse systems in which both probabilistic and nondeterministic choices interact. MDPs can be

automatically analysed using quantitative model checkers such as PRISM [24] or LiQuor [10].

Since MDPs contain nondeterministic choices (in addition to probabilistic steps), the model checking problem is to find

out the largest or smallest probability of reaching a goal under any possible resolution of the nondeterministic choices,

a concrete instance being “the probability of arrival of a package is at least 0.95 no matter how the package is routed”. The

resolution of such nondeterminism is given by the so-called schedulers (called also adversaries or policies—see e.g. [4,28])

which choose an enabled transition after each finite execution path of the system.
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2

First technique revisited 

Local decisions using RUCoP (L-RUCoP)
Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.
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Define the 
routing for node n in a safe state 
with c copies just like in RUCoP 

for c copies

Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.

26

Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.

26

Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.

26



2

First technique revisited 

Local decisions using RUCoP (L-RUCoP)

Sometimes a node has 
some information about other 
nodes (e.g. when it just sent a 

message)

Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.

26

Statistical and Analytical Routing Approaches for Uncertain Delay-Tolerant Networks MobiCom, ACM, 2022

�:

⌫:

⇠:

⇡ :

C0 C1 C2 C3 C4

0.1

0.1

0.5

0.5

0.9
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
| C1] [�2⌫0⇠0⇡0
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.
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0 + 1
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0
2 Src then
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15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.

3

t2: B knows C has a copy

✔

Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.

3

t3: B knows C has a copy

✔

Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman
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where (=0 ✓ ( is the set of states whose maximum proba-
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holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax
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2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.

3

t4: B does not know if C has a copy

✗

Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
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the probability that the next state is B 0 conditioned to the fact
that the system is in state B and action U has been chosen.
Sometimes, MDPs are endowed with a reward function.

This is not needed in our case, since �nding the optimal
routing is a reachability problem. A reachability problem can
be characterized as follows: given a set of goal states B ✓ ( ,
we want to maximize the probability that a state in B is
reached from the initial state B0, that is, we want to calculate
Prmax

B0 (reach(B)). In our application, B is the set of states in
which a bundle has been successfully delivered. Moreover,
we are also interested to determine the decisions—namely,
the policy or scheduler—that leads to such maximizing value.
A policy is a function c : ( ! Act that de�nes the decision
to be made in a possible resolution of the non-determinism.
This problem can be solved using the following Bellman

equations [4]:
GB = 1 if B 2 B

GB = 0 if B 2 (=0

GB = max
U 2Act (B)

Õ
C 2( P(B,U, C) · GC if B 2 (\((=0 [ B)

where (=0 ✓ ( is the set of states whose maximum proba-
bility of reaching a state in B is 0. In the least solution of
this system of equations, for each state B 2 ( , variable GB
holds the maximum probability of reaching a goal state in
B from B , that is GB = Prmax

B (reach(B)). For acyclic MDP, the
solution is unique. The maximizing policy cmax is calculated
by setting

cmax
(B) = argmax

U 2Act (B)

Õ
C 2(P(B,U, C) · GC

whenever B 2 (\((=0 [ B). If B 2 (=0 [ B, cmax
(B) is not

interesting as B is already a goal state, or it cannot reach it.

2.3 Encoding Uncertain Contact Plans
To understand how we capture the behavior of a DTN with
an uncertain contact plan as an MDP, consider the example
shown in Figure 1. It contains four nodes: �, ⌫, ⇠ , and ⇡ .
The contact plan spans a window of �ve time slots, C0 to C4.
We also assume an ending time C5. The possible contacts in
each slot are depicted by an arrow labelled with the success
probability. In time slot C1, for instance, node ⇠ is in reach

[�2⌫0⇠0⇡0
| C0]

[�1⌫1⇠0⇡0
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Figure 2: MDP modelling the plan of Fig. 1 (excerpt).

of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
by [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2. At this point, node � can
decide among three possible options: (i) sending only one
copy to node ⌫, represented by action “� 1

�!⌫” leaving from
state [�2 ⌫0⇠0 ⇡0

| C0] in Figure 2, (ii) sending two copies
to ⌫ (action “� 2

�!⌫”), or (iii) storing the two copies (action
“� stores”). In the �rst case, the successful transmission leads
to state [�1 ⌫1⇠0 ⇡0

| C1] where� has kept one copy and the
other has reached ⌫. Since success probability is 0.9, we have

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�1 ⌫1⇠0 ⇡0

| C1] ) = 0.9.
Failing to transmit moves us to the next time slot without
altering the number of copies in each node. Therefore

P( [�2 ⌫0⇠0 ⇡0
| C0], �

1
�!⌫ , [�2 ⌫0⇠0 ⇡0

| C1] ) = 0.1.
Action� 1

�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
the successful transmission while the dotted arrow repre-
sents the failing event. The situation is analogous for action
� 2
�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
P( [�2 ⌫0⇠0 ⇡0

| C0], � stores , [�2 ⌫0⇠0 ⇡0
| C1] ) = 1.

The construction is similar for the rest of the MDP. Figure 2
depicts it partially; we indicate with “. . . ” when the MDP
needs to continue.

3
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Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.
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of node ⌫ with transmission failure probability of 0.1 (and
success probability of 0.9).
Suppose we want to transmit a bundle from � to ⇡ and,

to increase the probability of success, two copies are allowed
throughout the network. A state of the MDP consists of
the number of copies that each node holds at a given time
slot. Thus, initially, at the beginning of C0, node � has the
two copies while the others have none. This is represented
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| C0] in Figure 2. At this point, node � can
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other has reached ⌫. Since success probability is 0.9, we have
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�!⌫ is represented by the black transition out of
[�2 ⌫0⇠0 ⇡0

| C0] in Figure 2 where the solid line represents
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sents the failing event. The situation is analogous for action
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�!⌫ (red transition on the right), while for storing the two

bundles there is no possibility of failure, so we have
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A B S T R A
C T

Delay-Tolera
nt Networks

(DTN) enabl
e store-carry

-and-forward
data transmi

ssion in netw
orks challeng

ed by

frequent disr
uptions and h

igh latency. E
xisting classi

fication disti
nguishes betw

een schedule
d and probab

ilistic

DTNs, for wh
ich specific r

outing soluti
ons have bee

n developed.
In this paper

, we uncover
a gap in-betw

een

where uncert
ain contact p

lans can be e
xploited to e

nhance data
delivery in m

any practical
scenarios des

cribed

by probabilis
tic schedules

available a prio
ri. Routing und

er uncertain
contact plans

(RUCoP) is n
ext formulate

d

as a multipl
e-copy Mark

ov Decision
Process and

then exported to
local-knowle

dge (L-RUCo
P) and Cont

act

Graph Routin
g extensions

(CGR-UCoP)
which can be

implemented
in the existin

g DTN protocol stac
k. RUCoP

and its deriv
ations are ev

aluated in a
first extensiv

e simulation
benchmark f

or DTNs und
er uncertain

contact

plans compr
ising both random and realistic scen

arios. Result
s confirm that RUCoP

and L-RUCoP closely

approach the
ideal delivery

ratio of an or
acle, while C

GR-UCoP im
proves state-

of-the-art DT
N routing schem

es

delivery ratio
up to 25%.

1. Introduct
ion

The term Delay toleran
t networking

(DTN) was i
ntroduced by

K.

Fall in 2003
to designate

time-evolving
networks lac

king of a con
tinu-

ous and insta
ntaneous end

-to-end conn
ectivity [1,2]

. Since then,
DTNs

have drawn
much attenti

on from many researc
hers due to i

ts applica-

bility in very
distinct doma

ins including
deep space [3

] and near Ea
rth

communicati
on networks

[4], airborne
networks [5]

, vehicular a
d-hoc

networks [6]
, mobile soc

ial networks
[7], Internet

of things [8]
and

underwater n
etworks [9].

Indeed, delay
and disruptio

n conditions
can

be generated
by long signa

l propagation
time, regular

node occlusio
n,

high node m
obility and r

educed comm
unication ran

ge and resou
rces.

Although from diverse origi
ns, partition

s and delay in DTNs are

tackled by a
bundle layer th

at sits above
specific layer

s of each netw
ork

family [10].
The key featu

re of the bun
dle layer is a

persistent sto
rage

on each DTN
node to store

-carry-and-fo
rward bundles o

f data (or simpl
y

bundles as per D
TN terminolo

gy) as transm
ission opport

unities becom
e

available. Sin
ce data can

propagate or
rest in interm

ediate nodes
for

arbitrary am
ounts of time

, DTN protocols and
applications

assume no

immediate re
sponse from

the receiver
and tend to

minimize en
d-to-

end exchange
s [11]. The ti

me-evolving
and partition

ed nature of
DTNs

favor the rep
resentation o

f connectivity
by means of

contacts, a cont
act

being an epis
ode of time w

hen a node is
able to transf

er data to ano
ther

node.

Taxonomy T
he literature

[2] classifies
contacts in D

TNs as:

< Correspondin
g author.
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erta@unc.ed
u.ar (F.D. Ra

verta).

• Scheduled: Co
ntacts can b

e accurately
predicted. Ex

pected con-

tacts can be
imprinted in

a contact plan c
omprising an

exhaustive

expression of
the future ne

twork conne
ctivity [12].

Such knowl-

edge can be
exploited to

optimize reso
urce utilizati

on [13–15],

medium access decisio
ns [16] and r

outing calcul
ations such a

s in

Contact Grap
h Routing (C

GR) algorithm
[17,18].

• Probabilistic:
Contact patte

rns are dynam
ically inferre

d as network

evolves in tim
e. Routing is

based on a to
pology mode

l composed

of probabilist
ic metrics acc

ounting for th
e likelihood o

f meeting a

given neighb
or in the futu

re [19–21]. I
n order to en

hance deliver
y

probability, m
ultiple copie

s are sent th
rough differe

nt paths, an

approach tha
t has also be

en considere
d for schedu

led DTNs to

forego the ne
ed of process

ing large con
tact plans [2

2].

• Opportunistic:
No assumpti

ons can be made on
future conta

cts.

Trivial flood
ing-based sch

emes have b
een used for

opportunistic

DTNs [23],
as well as c

ontrolled flooding such as Spray-and
-

Wait (S&W) t
o reduce repl

ication overh
ead [24,25],

among other
s

opportunistic
path models

[26]. Also, p
revious resea

rch has ex-

tended sched
uled routing

approaches t
o cope with

unpredictabl
e

opportunistic
contacts [27]

.

In this paper
, we claim the existence

of DTN under uncertain
sched-

ules or uncerta
in contact plans

, which are n
ot properly c

overed by th
e

existing DTN
classification
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Algorithm 3: L-RUCoP Route table construction
Input: number of copies N , target node T

Output: A routing table LTrn for each node n

1: for all c  N do
2: (Sc,Tr c,Pr c) RUCoP (G, c, T )
3: end for
4: for all node n, time slot ts , and c  N do
5: s Safe state(n, c, ts)
6: if s 2 Sc then
7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then

14: LTrn(ts , rc, ts 0) {(k, r) 2 Tr rc(s0) | first(r) = n}

15: else
16: break
17: end if
18: rc  (9 (k, n) 2 LTrn(ts , rc, ts 0))? k : 0
19: end while
20: end if
21: end for
22: return LTrn, for all node n.
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7: LTrn(ts , c, ts) {(k, r) 2 Tr c(s) | first(r) = n}

8: ts
0
 ts

9: rc  (9 (k, n) 2 LTr(n, ts , c, ts 0))? k : 0
10: while rc > 0 do
11: s

0
 Post(LTrn(ts , rc, ts 0))

12: ts
0 = ts

0 + 1
13: if s

0
2 Src then
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Input: Network of VMDP M = ∥SV (M1, . . . ,Mn) with [[M ]] = ⟨S, sI , A, T ⟩,
goal set G ⊆ S, σ ∈ Z32, H uniform deterministic, PRNG Upr.

1 s := sI
2 while s /∈ G do // break on goal state

3 if ∀ s
a−→ µ : µ = { s )→ 1 } then break // break on self-loops

4 C := { j | T (s) ∩ It(Mj) ̸= ∅ } // get active components
5 i := Upr({ j )→ 1

|C| | j ∈ C }) // select component uniformly

6 Ti := T (s) ∩ It(Mi) // get component’s transitions
7 ⟨a, µ⟩ := (H(σ.s↓Mi

) mod |Ti|)-th element of Ti // schedule local transition

8 s := Upr(µ) // select next state according to µ

9 return s ∈ G

Algorithm 1. Lightweight simple distributed scheduler sampling

select the successor state according to the distribution determined by the sched-
uled transition. Line 3 terminates the simulation negatively if we find a state
that only has deterministic self-loop transitions; this suffices for our space DTN
models, but could be replaced by smarter loop detection or methods like [47,55].

We have implemented Algorithm1 in modes [12], the statistical model
checker of the Modest Toolset [43]. modes is implemented in C#, freely
available at modestchecker.net, runs on 64-bit Linux, macOS, and Windows,
and is faster than other current general-purpose SMC tools [13, Section 7.1].
Its input languages are Modest [9,40] and the tool-independent Jani model
exchange format [14]. It provides both variants of line 5 discussed above, and
implements corrected statistical tests as well as two-phase and smart sampling.

Fig. 4. Satellite DTN routing scheduling toolchain

5 Scheduling Satellite Communication

To apply our new LSS method of Sect. 4 to space DTN, we created the toolchain
shown in Fig. 4. We use the STK tool by AGI [1] and the Contact Plan Designer
plugin [27] to model the scenario and export the contact plan to a file in Inter-
planetary Overlay Network format (ION) [15]. This plan contains the precise
real-time communication windows; we developed the Python cp2modest tool
that, given such a plan, message source and destinations, and a bound on the
number of copies, (1) abstracts the plan into the form of Fig. 1 with discrete
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select the successor state according to the distribution determined by the sched-
uled transition. Line 3 terminates the simulation negatively if we find a state
that only has deterministic self-loop transitions; this suffices for our space DTN
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Abstract.
We consider r

outing in delay-toler
ant netwo

rks like satellite

constellati
ons with known but intermittent contacts,

random message

loss, and
resource-c
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nodes. Using a Markov decision process

model, we seek a forwarding
strategy that maximises the probabilit
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of deliveri
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ide number of
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ch are not im
plementable sin

ce
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ted schedulers
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ly render
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tellite con
stellation

and contact pl
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Input: Network of VMDP M = ∥SV (M1, . . . ,Mn) with [[M ]] = ⟨S, sI , A, T ⟩,
goal set G ⊆ S, σ ∈ Z32, H uniform deterministic, PRNG Upr.
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2 while s /∈ G do // break on goal state

3 if ∀ s
a−→ µ : µ = { s )→ 1 } then break // break on self-loops

4 C := { j | T (s) ∩ It(Mj) ̸= ∅ } // get active components
5 i := Upr({ j )→ 1

|C| | j ∈ C }) // select component uniformly
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7 ⟨a, µ⟩ := (H(σ.s↓Mi

) mod |Ti|)-th element of Ti // schedule local transition

8 s := Upr(µ) // select next state according to µ

9 return s ∈ G

Algorithm 1. Lightweight simple distributed scheduler sampling

select the successor state according to the distribution determined by the sched-
uled transition. Line 3 terminates the simulation negatively if we find a state
that only has deterministic self-loop transitions; this suffices for our space DTN
models, but could be replaced by smarter loop detection or methods like [47,55].

We have implemented Algorithm1 in modes [12], the statistical model
checker of the Modest Toolset [43]. modes is implemented in C#, freely
available at modestchecker.net, runs on 64-bit Linux, macOS, and Windows,
and is faster than other current general-purpose SMC tools [13, Section 7.1].
Its input languages are Modest [9,40] and the tool-independent Jani model
exchange format [14]. It provides both variants of line 5 discussed above, and
implements corrected statistical tests as well as two-phase and smart sampling.
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9 return s ∈ G

Algorithm 1. Lightweight simple distributed scheduler sampling

select the successor state according to the distribution determined by the sched-
uled transition. Line 3 terminates the simulation negatively if we find a state
that only has deterministic self-loop transitions; this suffices for our space DTN
models, but could be replaced by smarter loop detection or methods like [47,55].

We have implemented Algorithm1 in modes [12], the statistical model
checker of the Modest Toolset [43]. modes is implemented in C#, freely
available at modestchecker.net, runs on 64-bit Linux, macOS, and Windows,
and is faster than other current general-purpose SMC tools [13, Section 7.1].
Its input languages are Modest [9,40] and the tool-independent Jani model
exchange format [14]. It provides both variants of line 5 discussed above, and
implements corrected statistical tests as well as two-phase and smart sampling.
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Fig. 6. SDP gain over CGR in random networks.

4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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Fig. 7. SDP, solving time, and memory for binomial networks with varying complexity.

schedule for 8 levels and 3 copies (its limit highlighted by the red circle in Fig. 7). We verify that for
this case, more than 15 million actions need to be considered in the MDP. Another observation
from these plots is that the delivery probability when using dual copies increases from ⇡0.88 to
⇡0.97 (i.e. by 10%) for 4 levels and from ⇡0.85 to ⇡0.96 (i.e. by 13%) for 8 levels. However, due to
the binomial nature of the topology, having a third copy provides limited or no advantage.

With respect to QL, in general, the resultig SDP values are comparable to LSS on levels 4 and 5
and, in general, the local variants with multiple copies (namely, L-QL-2 and L-QL-3) have responded
with results closer to L-LSS with the same number of copies (some times slightly better, some
times slightly worst) However, for higher levels, in particular for the global case, QL signi�cantly
underperformed the other methods in most of the cases, most likely due to the fact that this
technique may get trapped on local maxima. Another thing to observe here is that all QL variants
reported the same results regardless whether the number of learning episodes is increased from
10000 to 1000000, implying that, in this case, a relatively low number of episodes is su�cient to
saturate the learning curve.
Regarding the time and memory requirements in the binomial topologies, RUCoP proves to be

by far the most demanding approach. In the worst case solved for 3 copies (7 levels), RUCoP needs
28 minutes of computation time, compared to less than 10 seconds for LSS with 1000 schedulers, or
1 minute with 10000 schedulers. This is a notable di�erence considering the similar performance
in terms of SDP. Solving time and memory plots of the original LSS as in [21], i.e. without the
improvements described in Sect. 3.2.2, are also plotted in Fig. 7, in gray dashed lines. These
improvements reduce LSS runtime by up to ⇡600% (from 117 down to 17 seconds). A reduction of
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Fig. 8. SDP for RRN for di�erent source-target nodes and plan durations.

downlinking node pairs (instead of the two example pairs discussed in Fig. 8). The results con�rms
once again that RUCoP is able to deliver network performance at the expense of signi�cantly higher
memory and runtime. In particular, the runtimes for the analytical approach can reach up to ⇡ 20
minutes (for the 3-hour contact plan, with 3 copies), while LSS and QL typically delivers a result
in less than 1 minute. We thus postulate that the 3 h contact plan is as challenging for RUCoP
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SDP for ring road networks with different contact plans
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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schedule for 8 levels and 3 copies (its limit highlighted by the red circle in Fig. 7). We verify that for
this case, more than 15 million actions need to be considered in the MDP. Another observation
from these plots is that the delivery probability when using dual copies increases from ⇡0.88 to
⇡0.97 (i.e. by 10%) for 4 levels and from ⇡0.85 to ⇡0.96 (i.e. by 13%) for 8 levels. However, due to
the binomial nature of the topology, having a third copy provides limited or no advantage.

With respect to QL, in general, the resultig SDP values are comparable to LSS on levels 4 and 5
and, in general, the local variants with multiple copies (namely, L-QL-2 and L-QL-3) have responded
with results closer to L-LSS with the same number of copies (some times slightly better, some
times slightly worst) However, for higher levels, in particular for the global case, QL signi�cantly
underperformed the other methods in most of the cases, most likely due to the fact that this
technique may get trapped on local maxima. Another thing to observe here is that all QL variants
reported the same results regardless whether the number of learning episodes is increased from
10000 to 1000000, implying that, in this case, a relatively low number of episodes is su�cient to
saturate the learning curve.
Regarding the time and memory requirements in the binomial topologies, RUCoP proves to be

by far the most demanding approach. In the worst case solved for 3 copies (7 levels), RUCoP needs
28 minutes of computation time, compared to less than 10 seconds for LSS with 1000 schedulers, or
1 minute with 10000 schedulers. This is a notable di�erence considering the similar performance
in terms of SDP. Solving time and memory plots of the original LSS as in [21], i.e. without the
improvements described in Sect. 3.2.2, are also plotted in Fig. 7, in gray dashed lines. These
improvements reduce LSS runtime by up to ⇡600% (from 117 down to 17 seconds). A reduction of
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downlinking node pairs (instead of the two example pairs discussed in Fig. 8). The results con�rms
once again that RUCoP is able to deliver network performance at the expense of signi�cantly higher
memory and runtime. In particular, the runtimes for the analytical approach can reach up to ⇡ 20
minutes (for the 3-hour contact plan, with 3 copies), while LSS and QL typically delivers a result
in less than 1 minute. We thus postulate that the 3 h contact plan is as challenging for RUCoP
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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schedule for 8 levels and 3 copies (its limit highlighted by the red circle in Fig. 7). We verify that for
this case, more than 15 million actions need to be considered in the MDP. Another observation
from these plots is that the delivery probability when using dual copies increases from ⇡0.88 to
⇡0.97 (i.e. by 10%) for 4 levels and from ⇡0.85 to ⇡0.96 (i.e. by 13%) for 8 levels. However, due to
the binomial nature of the topology, having a third copy provides limited or no advantage.

With respect to QL, in general, the resultig SDP values are comparable to LSS on levels 4 and 5
and, in general, the local variants with multiple copies (namely, L-QL-2 and L-QL-3) have responded
with results closer to L-LSS with the same number of copies (some times slightly better, some
times slightly worst) However, for higher levels, in particular for the global case, QL signi�cantly
underperformed the other methods in most of the cases, most likely due to the fact that this
technique may get trapped on local maxima. Another thing to observe here is that all QL variants
reported the same results regardless whether the number of learning episodes is increased from
10000 to 1000000, implying that, in this case, a relatively low number of episodes is su�cient to
saturate the learning curve.
Regarding the time and memory requirements in the binomial topologies, RUCoP proves to be

by far the most demanding approach. In the worst case solved for 3 copies (7 levels), RUCoP needs
28 minutes of computation time, compared to less than 10 seconds for LSS with 1000 schedulers, or
1 minute with 10000 schedulers. This is a notable di�erence considering the similar performance
in terms of SDP. Solving time and memory plots of the original LSS as in [21], i.e. without the
improvements described in Sect. 3.2.2, are also plotted in Fig. 7, in gray dashed lines. These
improvements reduce LSS runtime by up to ⇡600% (from 117 down to 17 seconds). A reduction of
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downlinking node pairs (instead of the two example pairs discussed in Fig. 8). The results con�rms
once again that RUCoP is able to deliver network performance at the expense of signi�cantly higher
memory and runtime. In particular, the runtimes for the analytical approach can reach up to ⇡ 20
minutes (for the 3-hour contact plan, with 3 copies), while LSS and QL typically delivers a result
in less than 1 minute. We thus postulate that the 3 h contact plan is as challenging for RUCoP
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Fig. 4. Binomial tree.

Fig. 5. RRN satellite constellation topology, parameters and orbital tracks [32].

(3) 1 �nal destination node has 2!�2 contacts.

The resulting tree is illustrated in Fig. 4. Contacts between consecutive levels are also consecutive
in the time dimension, that is, the order of the contacts corresponds to enumerating the arrows
in Fig. 4 left-to-right, top-to-bottom. A node on the 8-th level will have a total of 2!�2�8 paths to
the destination. Therefore, the larger the level count, the more nodes are in the network and the
more paths per node have to be evaluated. For example, a binomial topology of 6 levels results in
32 nodes with up to 32 simple paths. When considering the forwarding of 3 copies, a total of 91, 000
possible actions need to be considered.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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schedule for 8 levels and 3 copies (its limit highlighted by the red circle in Fig. 7). We verify that for
this case, more than 15 million actions need to be considered in the MDP. Another observation
from these plots is that the delivery probability when using dual copies increases from ⇡0.88 to
⇡0.97 (i.e. by 10%) for 4 levels and from ⇡0.85 to ⇡0.96 (i.e. by 13%) for 8 levels. However, due to
the binomial nature of the topology, having a third copy provides limited or no advantage.

With respect to QL, in general, the resultig SDP values are comparable to LSS on levels 4 and 5
and, in general, the local variants with multiple copies (namely, L-QL-2 and L-QL-3) have responded
with results closer to L-LSS with the same number of copies (some times slightly better, some
times slightly worst) However, for higher levels, in particular for the global case, QL signi�cantly
underperformed the other methods in most of the cases, most likely due to the fact that this
technique may get trapped on local maxima. Another thing to observe here is that all QL variants
reported the same results regardless whether the number of learning episodes is increased from
10000 to 1000000, implying that, in this case, a relatively low number of episodes is su�cient to
saturate the learning curve.
Regarding the time and memory requirements in the binomial topologies, RUCoP proves to be

by far the most demanding approach. In the worst case solved for 3 copies (7 levels), RUCoP needs
28 minutes of computation time, compared to less than 10 seconds for LSS with 1000 schedulers, or
1 minute with 10000 schedulers. This is a notable di�erence considering the similar performance
in terms of SDP. Solving time and memory plots of the original LSS as in [21], i.e. without the
improvements described in Sect. 3.2.2, are also plotted in Fig. 7, in gray dashed lines. These
improvements reduce LSS runtime by up to ⇡600% (from 117 down to 17 seconds). A reduction of
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downlinking node pairs (instead of the two example pairs discussed in Fig. 8). The results con�rms
once again that RUCoP is able to deliver network performance at the expense of signi�cantly higher
memory and runtime. In particular, the runtimes for the analytical approach can reach up to ⇡ 20
minutes (for the 3-hour contact plan, with 3 copies), while LSS and QL typically delivers a result
in less than 1 minute. We thus postulate that the 3 h contact plan is as challenging for RUCoP
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Fig. 4. Binomial tree.

Fig. 5. RRN satellite constellation topology, parameters and orbital tracks [32].

(3) 1 �nal destination node has 2!�2 contacts.

The resulting tree is illustrated in Fig. 4. Contacts between consecutive levels are also consecutive
in the time dimension, that is, the order of the contacts corresponds to enumerating the arrows
in Fig. 4 left-to-right, top-to-bottom. A node on the 8-th level will have a total of 2!�2�8 paths to
the destination. Therefore, the larger the level count, the more nodes are in the network and the
more paths per node have to be evaluated. For example, a binomial topology of 6 levels results in
32 nodes with up to 32 simple paths. When considering the forwarding of 3 copies, a total of 91, 000
possible actions need to be considered.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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4.1.3 Ring road networks. Finally, we use a realistic satellite topology exported from high-precision
orbital propagators. Speci�cally, we consider a low-Earth orbit Walker constellation of 16 satellites
as proposed and described in [32]. Satellites act as data mules by receiving data from 22 isolated
ground terminals, storing the data, and delivering it to a ground station placed in Argentina. We use
an all-to-one tra�c pattern. The satellites are equipped with inter-satellite links (ISLs), so contacts
are possible in orbit. The dynamics of the topology and the speci�c orbital and ground parameters
are depicted in Fig. 5. Routes can involve multiple hops between satellites and ground terminals.
The scenario spans 24 hours and is sliced into 1440 time slots, each of 60 s. Within a time slot, we
consider a contact feasible if communication is possible for more than 30 s.

4.2 Analysis
Our evaluation results present compelling evidence of the trade-o� between the LSS and RUCoP
approaches, both in their global (LSS and RUCoP) and local versions (L-LSS and L-RUCoP). We
evaluate them in terms of the SDP of the computed scheduler, and the computational resources
used: processing time and memory consumption. Plain single-copy CGR is used as a baseline. We
write “(L-)RUCoP-2” and “(L-)LSS-2” for the respective method when allowing 2 copies. We used an
Intel Core i5-5300U (2 cores, 4 threads, 2.3-2.9 GHz) system with 12GB of memory running 64-bit
Ubuntu 18.04.5 for all experiments.

4.2.1 Random networks. The SDPs we obtained for random networks are illustrated in Fig. 6. To
facilitate the interpretation of the outcomes, we plot the curves with respect to the SDP delivered
by CGR. Indeed, CGR is the baseline of comparison as it assumes a perfect contact plan that does
not drift from reality. As the contact plan becomes more uncertain, the RUCoP- and LSS-based
schemes provide increasingly better SDPs. This holds up to the point where the failure probability
is such that the partitioning of the topology dominates (i.e. ? 5 ⇡ 0.8), a situation in which delivery
of data becomes much more di�cult. Still, in these cases, RUCoP and LSS perform noticeably better
than CGR. QL-based algorithms show a more varied performance which depend on the number of
learning episodes and if the algorithm is based on global or local information.
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schedule for 8 levels and 3 copies (its limit highlighted by the red circle in Fig. 7). We verify that for
this case, more than 15 million actions need to be considered in the MDP. Another observation
from these plots is that the delivery probability when using dual copies increases from ⇡0.88 to
⇡0.97 (i.e. by 10%) for 4 levels and from ⇡0.85 to ⇡0.96 (i.e. by 13%) for 8 levels. However, due to
the binomial nature of the topology, having a third copy provides limited or no advantage.

With respect to QL, in general, the resultig SDP values are comparable to LSS on levels 4 and 5
and, in general, the local variants with multiple copies (namely, L-QL-2 and L-QL-3) have responded
with results closer to L-LSS with the same number of copies (some times slightly better, some
times slightly worst) However, for higher levels, in particular for the global case, QL signi�cantly
underperformed the other methods in most of the cases, most likely due to the fact that this
technique may get trapped on local maxima. Another thing to observe here is that all QL variants
reported the same results regardless whether the number of learning episodes is increased from
10000 to 1000000, implying that, in this case, a relatively low number of episodes is su�cient to
saturate the learning curve.
Regarding the time and memory requirements in the binomial topologies, RUCoP proves to be

by far the most demanding approach. In the worst case solved for 3 copies (7 levels), RUCoP needs
28 minutes of computation time, compared to less than 10 seconds for LSS with 1000 schedulers, or
1 minute with 10000 schedulers. This is a notable di�erence considering the similar performance
in terms of SDP. Solving time and memory plots of the original LSS as in [21], i.e. without the
improvements described in Sect. 3.2.2, are also plotted in Fig. 7, in gray dashed lines. These
improvements reduce LSS runtime by up to ⇡600% (from 117 down to 17 seconds). A reduction of
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Fig. 8. SDP for RRN for di�erent source-target nodes and plan durations.

downlinking node pairs (instead of the two example pairs discussed in Fig. 8). The results con�rms
once again that RUCoP is able to deliver network performance at the expense of signi�cantly higher
memory and runtime. In particular, the runtimes for the analytical approach can reach up to ⇡ 20
minutes (for the 3-hour contact plan, with 3 copies), while LSS and QL typically delivers a result
in less than 1 minute. We thus postulate that the 3 h contact plan is as challenging for RUCoP
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downlinking node pairs (instead of the two example pairs discussed in Fig. 8). The results con�rms
once again that RUCoP is able to deliver network performance at the expense of signi�cantly higher
memory and runtime. In particular, the runtimes for the analytical approach can reach up to ⇡ 20
minutes (for the 3-hour contact plan, with 3 copies), while LSS and QL typically delivers a result
in less than 1 minute. We thus postulate that the 3 h contact plan is as challenging for RUCoP

, Vol. 1, No. 1, Article . Publication date: April 2023.



Experiments (delivery probability)

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Pedro R. D’Argenio, Juan A. Fraire, Arnd Hartmanns, and Fernando Raverta

Fig. 8. SDP for RRN for di�erent source-target nodes and plan durations.

downlinking node pairs (instead of the two example pairs discussed in Fig. 8). The results con�rms
once again that RUCoP is able to deliver network performance at the expense of signi�cantly higher
memory and runtime. In particular, the runtimes for the analytical approach can reach up to ⇡ 20
minutes (for the 3-hour contact plan, with 3 copies), while LSS and QL typically delivers a result
in less than 1 minute. We thus postulate that the 3 h contact plan is as challenging for RUCoP
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Fig. 9. Solving time (top) and memory (bo�om) for RRN for di�erent source-target nodes, contact plan
durations, and numbers of schedulers sampled (R: RUCoP, L: LSS). Q: QL
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Fig. 9. Solving time (top) and memory (bo�om) for RRN for di�erent source-target nodes, contact plan
durations, and numbers of schedulers sampled (R: RUCoP, L: LSS). Q: QL
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durations, and numbers of schedulers sampled (R: RUCoP, L: LSS). Q: QL
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Abstract.
In delay-toler

ant networks
(DTNs) with uncertain

contact

plans, the
communication

episodes a
nd their reliab

ilities are k
nown a pri-

ori. To maximize the end
-to-end delivery probabilit

y, a bounded network-

wide number of message copies are allowed. The resulting
multi-copy

routing optimization problem is naturall
y modelled as a Markov decision

process with distributed
information. The

two state-of-th
e-art solution

approache
s are statistical

model check
ing with scheduler

sampling, and

the analytical
RUCoP algorithm

based on probabilis
tic model check

ing.

In this paper
, we provid

e an in-depth comparison of the two approache
s.

We use an extensive
benchmark set comprising random networks,

scal-

able binomial topolog
ies, and realistic ring-road

low Earth orbit satel
lite

networks.
We evaluate

the obtain
ed message deli

very probabilit
ies as well

as the computational
effort. Our results show that both approache

s are

suitable to
ols for obt

aining reliable ro
utes in DTN, and expose a trade-off

between scalability
and solution quality.

1 Introduct
ion

Delay-tolerant
networks (D

TNs) are time-evolving networks lac
king continuous

and instantaneou
s end-to-end

connectivity
[11,18]. The

DTN domain comprises

deep-space [9
] and near-Earth communication [10], airborn

e networks [2
7], vehic-

ular ad-hoc
networks [5]

, mobile social netwo
rks [32], Inte

rnet of thing
s scenar-

ios [6], and underwater n
etworks [40],

among many others. A bundle layer over-

comes the delay and disruption in DTNs by means of (i) a persistent storage

on each DTN node and by (ii) assuming no immediate response from neigh-

boring nodes [41]. A
s a result, bundl

es of data (a data unit in the Bundle Pro-
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Fig. 9. Routing for DTNs under uncertain contact plan benchmark. From left to right, the different scenarios: random networks, RRN-A, and RRN-B. From top to bottom, the
different metrics: delivery ratio, delivery delay, energy efficiency. Delivery delay and energy efficiency have to be considered after delivery ratio, as they are computed from
delivered bundles only. Curves includes CGR-FA (oracle), RUCoP (1 to 4 copies), L-RUCoP (1 to 4 copies), CGR-UCoP (adapted CGR), CGR-2CP (two-copies), CGR-HOP (lowest
hop count metric), and S&W (2 to 4 copies).

performances than plain CGR as one of the two copies follows the same
lowest delivery delay route than CGR.

4.2.3. Energy efficiency
On the energy efficiency side, we care about the transmission effort

required to deliver the bundles. Naturally, single copies schemes offer
the least effort, especially CGR-HOP which also minimizes the overall
hops and thus, transmissions. On the other hand, multiple copy solu-
tions including RUCoP-4, L-RUCoP-4 and S&W-4 demand the largest
energy effort, being the latter consistently better, at the expense of a
lower delivery ratio. Remarkably, and being a single copy scheme, CGR-
UCoP always offer the same or better energy efficiency than CGR, and
is only outperformed by the less performing CGR-HOP and by S&W-2
in some cases.

To wrap up, RUCoP model proved to approach the ideal fault-
aware case of CGR-FA by leveraging the presented MDP formulation,
especially with larger number of copies. While RUCoP model can serve
as a routing solution with global view, L-RUCoP obtains similar results
based on a reduced local view in practical DTNs, and implemented in
existing protocol stacks by means of CGR-UCoP. Indeed, CGR-UCoP

has shown that the consideration of the adapted SDP calculation of
RUCoP enables a very appealing performance over the whole failure
probability range in DTNs under uncertain contact plan.

4.3. Discussion

To properly frame the benefits and applicability of RUCoP and
L-RUCoP models and CGR-UCoP algorithm, we discuss some consid-
erations.

Multiple Senders: Although RUCoP model, as presented in Section 2,
takes one sender and one destination as arguments, multiple senders
can be considered in a single MDP if they seek to reach the same
destination. Indeed, this was already accounted for in the RRN-A case
(all-to-one traffic shape), where the same RUCoP was solved for each
of the 22 senders. Indeed, a policy was derived for each data flow from
a single execution of the MDP. This can be achieved because the MDP
tree for each case is exactly the same except the initial state at T0. In

Latency

Energy

Probability

Only RUCoP 
& L-RUCoP(     )



Concluding remarks

❖ Clear increase of reliability (particularly L-RUCoP & CGR-UCoP) 

❖ Q-learning does not show consistent results 

❖ Comparison on latency is mixed. It very much depends on probability of link failure 

❖ Particularly, (L-)RUCoP-1 & CGR-UCoP are more energy efficient than CGR 

❖ All new algorithms are demanding: 

❖ Routing tables need to be calculated on ground and uploaded to the satellites 

❖ (CGR requires uploading the contact plan, routing decisions are made on flight) 

❖ CGR-UCoP requires uploading an annotated contact plan, routing decisions are 
made on flight. However, RUCoP is needed to annotate.

!
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In production: 

❖ Multi-objective prototyping with Storm 

❖ Prioritized multi-objective variant of 
RUCoP

4.6. Elección de estrategias 31

(d) Diferentes latencias

(e) Sensores con mayor probabilidad a fallo

Figura 4.5: Experimentos sobre planes de contactos con ISL

4.3. Escenarios 25

Figura 4.1: Visualización de LRR tomada de [9]

acarrea la información hasta una estación lunar que será la encargada de transmitirlo a la
estación terrestre.

La ubicación de los nodos resulta crucial para su energía. Mientras algunas regiones
solares con buena elevación pueden tener 90 % de disponibilidad solar durante el año, otras
regiones no polares deben recurrir a fuentes de energía alternativas y constar de baterías
de alta capacidad para sostenerse [9]. Es un escenario donde la energía es un recurso muy
valioso y de gran peso a la hora de elegir un plan de enrutamiento. Con estás categorías
de nodos se pueden plantear diferencias razonables de coste energético y latencia. Por un
lado, los satélites y sensores suelen ser menos robustos que las estaciones, por ende contactos
que involucren estos nodos serán menos eficaces. Por el otro, tanto el coste energético como
la latencia es mayor en contactos entre estaciones terrestres y estaciones lunares. En esta
topología no existen contactos directos de satélites o sensores lunares a estaciones terrestres,
por lo que los contactos entre estaciones lunares y estaciones terrestres pueden significar un
cuello de botella para todo plan de enrutamiento.

4.3. Escenarios

En [9] se publicaron tres escenarios distintos, donde se utilizan distintas bases lunares. En
este trabajo se tomo como base para los experimentos el plan de contacto generado con bases
lunares polares y de alta altitud. Los planes de contacto consisten de un periodo de 14 días de
los cuales este trabajo tomo un intervalo arbitrario. La situación de estudio es el envió desde
un sensor (id: 23) a una estación terrestre (id:1) en el intervalo de tiempo (90000 ms - 104000
ms) teniendo un tiempo limite de 14000ms para enviar el paquete antes de darse un timeout.
Para la instancia inicial una probabilidad de error de 0.1 es tomada para todo contacto. El
consumo de energía es de una unidad para todo contacto, y la latencia de 1000ms.

En la segunda instancia la probabilidad de error en contactos involucrando satélites
y sensores es incrementada a 0.15, y los contactos entre estaciones terrestres y lunares
decrementada a 0.05.

En la tercer instancia, los costes energéticos son incrementados a 1.5 unidades entre
satélites/sensores y estación lunar. El coste energético del contacto entre estación terrestre y
lunar es incrementado a 2 unidades.

En la cuarta instancia las latencias son incrementadas para comunicaciones entre satéli-
te/sensor a estaciones lunares a 1500ms. En cuanto a contactos entre estaciones terrestres y

Picture from Feldmann, Fraire & Walter, 2018 IEEE ICC  //  Pareto front from Torrella 2023, MsC thesis
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