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Abstract. We present a tool that performs verification of quantified
reachability properties over Markov decision processes (or probabilistic
transition system). The originality of the tool is to provide two reduc-
tion techniques that limit the state space explosion problem: automatic
abstraction and refinement algorithms, and a so-called essential states
reduction. We present several case-studies to illustrate the usefulness of
these techniques.

1 Introduction

Fully automatic verification of a specified transition system with respect to a
given temporal logic property is known as model checking [22, 5]. For such sys-
tems model checkers allow to verify properties such as “the system will never
reach an erroneous situation”, and the property can be stated true or false. In
many cases however, the absolute validity of a formula cannot be determined as
wished, because of the nature of the system. For instance, consider a protocol
that attempts to access to a lossy medium a bounded number of times after
which it aborts. A property like “access will be granted” is obviously false. Nev-
ertheless, to assess quality of service one would like the protocol grants access
to the medium “often enough”. Therefore, we would like, instead, to verify a
quantified property like “access will be granted with probability at least 99%”.

In this paper, we present Rapture1, a tool that performs verification of
quantified reachability properties over Markov decision processes (or probabilis-
tic transition system). The system to be analysed is described as a parallel com-
position of finite probabilistic automata extended with finite-state variables. The
automata communicate à la CSP [17] via synchronisation on a set of channels.

Other tools that verify quantified properties on (discrete time) Markov
decision processes have been developed. For instance, ProbVerus [13] and

1 Rapture is a loose acronym of “Reachability Analysis of Probabilistic Transition

systems based on REduction strategies”. Rapture can be freely downloaded from
http://www.irisa.fr/prive/bjeannet/prob/prob.html.



Prism [20] can check the validity of properties specified in the logic PCTL [12]
(ProbVerus is however restricted to Markov chains). The originality of Rap-

ture is to provide two reduction techniques that limit the state space explosion
problem: automatic abstraction and refinement algorithms, and the so-called es-
sential states reduction [6, 7]. The use of these techniques considerably reduces
the high cost of the numerical analysis involved in the computation of the mini-
mum and maximum reachability probabilities for PTSs. The price to pay is that
Rapture cannot do verification of the full PCTL. Like ProbVerus and Prism,
Rapture uses Bdds and Mtbdds [10, 1] to efficiently store the state space and
the transition relation, but unlike them, Rapture uses these data structures to
perform abstractions and process the refinement steps rather than to perform
numerical analysis. Numerical analysis in Rapture is indeed performed by two
different linear programming solvers: the first one uses sparse matrix on floating
point numbers, the second uses dense matrix on exact rational numbers, which
enables exact computations.

The paper is organized as follows: Section 2 shortly describes Rapture mod-
elling language and Section 3, the properties it checks. Section 4 explains the
machinery inside Rapture. Section 5 reports the performance of the tool on
several case studies.

2 The model of systems: probabilistic transition systems

Probabilistic transition systems (PTS for short) generalize the well-known tran-
sition systems with probabilistic information. In a PTS, a transition does not
lead to a single state but to a distribution over a set of states. The model we
define is widely used (see, e.g. [23, 3, 18]) and is also known as Markov decision
processes [21].

Fig. 1 depicts three PTSs and the result of their parallel composition. The
Sender process sends a number N of messages. There is a probability 0.2 that it
sends again the same message (here modelled by the absense of an increment of
n). The Line process represents the transmission process. There is a probability
0.1 that the message is not transmitted to the Receiver process. The Receiver

process just counts the number of received messages up to M ≥ N . If M messages
have been counted, the counter can be undermistically be reseted or maintained
at this maximum value. In a “normal” execution, we should have n = m at the
end of the execution. The parallel composition operator uses synchronization
over channels with a semantic à la CSP [17].

Such processes can be defined in Rapture with a textual language describing
automata extended with finite-state variables, as shown on Fig. 1, where we have
N = M = 7.

3 Rapture verification through reachability properties

Informally, the properties Rapture verifies are of the type: “the probability to
reach a set of final states from a given initial state is lower (or greater) than a
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given bound, for any execution of the system” . For instance, in the PTS described
in Fig. 1, provided that the system has reached a state with n = 5 and m = 7,
is the probability to reach a state with n = 7,m = 1 for any execution greater
(or lower) than 0.5? The important point is that this probability depends on
the considered execution, as soon as the system exhibits non-determinism. For
instance, if the PTS is in the state sent with m = 7, it can nondeterministically
reset m or leave it unchanged.

We specify the set of initial and final states of our reachability property by
adding to the textual description of fig 1 the lines

initial Sender.n=5 and Receiver.m=7;

final Sender.n=7 and Receiver.m=1;

The probability of the property is specified on the control line of our tool. The
property in quote can be checked with the command ‘rapture -ratio 200

-goal i0.5 ex.pts’. Flag ‘-goal i0.5’ indicates that we would like to check
that the minimum probability of the reachability property is above 0.5. Rapture

returns the report given in Fig. 2: the minimum probability to reach the final
set is 0, and it was proven by discrete fixpoint computation only. Indeed, if m is
never reset, it is not possible to ever reach a final state. Therefore the property
is false. Alternatively, we can check whether the probability of reaching a final
state is always lower than 0.9 using, for instance, the command ‘rapture -goal

s0.9 ex.pts’. Rapture returns the report given in Fig. 3, which states that
the property is true.

** computing processes and expressions

** Boolean composition

** Boolean analysis

Initially: 10 state variables, 1024 states

relation: 101 nodes

Reordering...

Reachability analysis from init: 192 states, 5 nodes

Reachability analysis from initial: 72 states, 8 nodes

psup0: 20 states, 12 nodes

Extending final states

Second reachability analysis from initial:

64 states, 10 nodes

Non-sink state space: 48 states, 9 nodes

Pinf=0: 51 states

All initial states are in pinf0; pinf = 0.0

Example: (Sender.loc=run)(Receiver.loc=run)

(Line.loc=sent,lost)

(Sender.n=5)(Receiver.m=7)

Fig. 2. Infimum prob. ≥ 0.5

idem

...

** computing global probabilistic transition function

** size of the transition function: 119 nodes, 619 paths, 6 leaves

System build and analysed (Boolean analysis) in 0.06 seconds

Building initial partition in 0 seconds

Step 1, automaton has 6 locations and 10 nails, 5684 bytes

essential automaton has 5 locations and 9 nails

...

Step 3, automaton has 28 locations and 33 nails, 19552 bytes

essential automaton has 15 locations and 20 nails

Computing psup: 13 variables, 20 constraints, 6 equalities;

pinf=-inf psup=0.828196810136 diff=inf

analysis in 0 seconds

** Success **

After 3 steps and 5 divisions, final automaton has 28 locations

pinf=-inf psup=0.828196810136 diff=inf

Times in seconds:

building: 0.06

analysis: 0.03 (numerical computations: 0; refinement: 0.03)

Fig. 3. Supremum prob. ≤ 0.9

4 Verification method

The standard verification method for verifying reachability properties is to com-
pute the minimum and/or the maximum probability of reaching a final state
from an initial state, and to use it to deduce the truth of the property. The
computation of those extremum probabilities is done by solving a system of fix-
point equations involving min and max operators over sets of linear expressions.
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The two solving methods are the value iteration method, used together with a
symbolic representation in [20], or the linear programming method. In both case,
the number of unknowns is the number of the states of the analysed PTS. The
aim of our tool is to reduce as much as possible the number of unknowns to be
considered to compute extremum probabilities as efficiently as possible, possibly
in an approximate way. The architecture of Rapture is depicted in Fig. 4.

Representation of Probabilistic Transition Systems. — Following [16,
8], we use BDDs (Binary Decision Diagrams [4]) to represent sets of states.
Transition relations are represented with MTBDDs (Multi-Terminal Decision
Diagrams), with real numbers as terminal nodes. We refer the reader to [6] for
more details about the encoding and the chosen variable ordering in diagrams.

The reduction techniques implemented in the tool. — The purpose
of the reduction techniques which have been implemented is to overcome the
strong limitation in the size of the systems that can be verified. Three reduction
techniques are implemented.

Discrete precomputations. — We use a standard precomputation of certain sets
of system states in order to simplify the system before applying linear program-
ming techniques. These sets are: the set of all reachable states Reach, and for
each p ∈ {0, 1} the set of states with infimum (resp. supremum) probability p
of reaching F . These latter sets of states are denoted P

inf
=0, P

inf
=1, P

sup
=0 , and P

sup
=1 ,

respectively. All of the above sets can be computed using discrete fixpoint anal-
ysis [9] on a Boolean abstraction of the system. In our case these analysis are
implemented using BDDs. As we restrict our attention to simple reachability
properties, we can use these analysis to reduce the state space under consider-
ation, unlike tools that handle more complex probabilistic properties involving
nested fixpoints [13, 8, 15].

The Abstraction and successive refinement method. — The main principle of
our method is founded on abstraction and successive refinements of the initial
abstract model. The idea is to try the verification of the property on a (rough)
abstraction of the model, induced by a partition of the state space, and in case of
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failure of the verification to refine this abstract model into a finer abstraction, on
which better approximations of extremum probabilities can be computed. This
process is stopped as soon as a verdict (true or false) to the property can be
deduced from the computations.

The initial partition (or abstraction) should at least separate initial states,
final states, and others, for correctness reasons [6]. The user can also specify a set
of PTSs and of variables that should not be abstracted in the initial partition.
This choice usually depends on the property to check, but due to the refinement
process a bad choice of these parameters will only slow down the verification of
the property. By using a suitable variable ordering in BDDs, the computation
of an abstract PTS from a concrete PTS and a partition of the state space of
size k can be performed in O(k) BDD operations, which are in turn linear or
quadratic in the number of nodes of the involved BDDs/MTBDDs [6].

If a partition is not detailed enough to deliver a good approximation of the
extremum probabilities involved in the property, heuristic strategies are used to
refine it into a more detailed partition. They are all based on the stabilization
of the partition w.r.t. a transition relation ([7]). Several heuristics are offered to
the user, who chooses them when he launches the verification. These strategies
do not necessarily stabilize each class w.r.t. the current partition in one step, but
to proceed in a more incremental and guided way. They differ on the abstract
transition that is used as a basis for the split of a class. The user can also tune
the ratio between the refinement and the analysis steps.

Essential states reduction. — We developed an additional reduction technique,
the essential state reduction [7]. This abstraction, which preserves extremum
probabilities, is based on the observation that most transitions in a PTS are
non-probabilistic, i.e. they have a unique successor state. To give the intuition
of this reduction, suppose that a fragment of a PTS looks like the one depicted
in Fig. 5(a). All executions starting from s1, s2, s3, s4 are leading to the state
se with probability 1. If we are only interested in probabilities, we can reduce
the system by representing all of the above states via the single state se, and in
addition merge (add) the probabilities for any distribution to enter the states
represented by se, as shown on Fig. 5(b).

This essential state reduction is applied on the abstract model, just before
the generation of the LP problem.



Numerical methods available in the tool. — The previously described
reduction techniques are independent from the chosen method for solving the
numerical equations. The tool is currently connected to two different LP solver.
The first one, LP_solve [2], uses sparse matrix over floating point numbers as
its internal representation. Sparse matrices are very useful for our purpose, as
the size of the support of the distributions (i.e., the number of successor states of
the distributions) is generally very small in our models. However we encountered
numerical precision problems with our first case studies, the Bounded Retrans-
mission Protocol [14, 6]. This was not due to proper numerical instability, but to
the fact that with IEEE floating point numbers, 1− 1e20 = 1!! Very small prob-
abilities indeed appear in this case study, if a great number of retransmissions
is allowed. The second one, which is part of the polyhedra library Cddlib [11],
uses dense matrices of rational numbers. It is useful when the above-mentioned
problem arises, or in cases where numerical instability is observed and exact re-
sults are wanted. However, in other case LPsolve performs much better: floating
point arithmetic is cheap compared to multi-precision rational (integer) arith-
metic.

5 Experiments

We have conducted several experiments in order to evaluate our reduction and
refinement strategies as well as our implementation.

Bounded Retransmission Protocol. — This protocol, originally studied in [14],
is based on the well-known alternating bit protocol but allows for a bounded
number of retransmissions of a chunk, i.e., part of a file, only. So, eventual de-
livery is not guaranteed and the protocol may abort the file transfer. We use
the version presented in [6], where probabilities model the possible failures of
the two channels used for sending chunks and acknowledgments, respectively. In
Table 1 we check the maximum probabilities that the sender does not report a
successful transmission. We consider a file composed of either 16 or 64 chunks,
and N is the number of allowed retransmissions. We use here the dense ma-
trix based solver with exact arithmetic, because probabilities of very different
magnitude order appear in LP problems, which makes the usual floating point
arithmetic unstable. The initial partitioning is here performed w.r.t. the explicit
control structure of the specification: only variables are abstracted.

The meaning of row labels in the table is the following: #reach is the number
of states reachable from root states, #rel is the number of relevant states after
Boolean preprocessing, and time is the time needed to build and preprocess the
PTS. The three next sets of rows details the refinement process for different upper
bounds for P

sup. #refin is the number of refinement steps, #abst the number
of states of the most refined abstract PTS, #ess the number of its essential
states, psup the computed probability, verd is the verdict (true or false), and
time(a+r) gives the time spent in numerical analysis and in refinement process.
When the verdict is false, the refinement has gone to the stable partitioning of
the PTS and gives the actual Psup of the concrete PTS.



Table 1. Results in BRP

file length 16 file length 64

MAX 2 4 8 15 15

#reach. 3908 6060 10364 17896 58024
#relev. 1014 1790 3342 6058 26362
time 0.94 1.10 1.59 1.75 5.20

≤
1
0
−

3

#refin. 4 5 6 6 6
#abst. 52 89 161 161 161
#ess. 24 42 85 85 85
psup 3.09e-04 4.27e-06 7.89e-06 7.89e-06 7.89e-06
verd. T T T T T
time(a+r) 0.07+0.88 0.72+0.83 2.96+1.68 2.95+1.72 2.97+2.62

≤
1
0
−

1
0 #refin. 9 10 7 7 7

#abst. 375 675 242 247 247
#ess. 152 272 108 115 115
psup 2.65e-05 2.35e-08 7.01e-12 7.01e-12 7.01e-12
verd. F F T T T
time(a+r) 0.58+2.56 3.30+5.42 3.15+2.07 3.54+2.33 3.51+3.55

≤
1
0
−

9
0 #refin. 9 10 11 12 16

#abst. 375 675 1275 2325 9765
#ess. 152 272 512 932 3908
psup 2.65e-05 2.35e-08 1.85e-14 3.87e-25 3.87e-25
verd. F F F F F
time(a+r) 0.58+2.56 3.30+5.42 15.87+11.00 186.58+22.06 1209.72+165.3

Observe the efficiency of Boolean preprocessing and essential states reduc-
tion, which gives both a reduction of one third in average. Notice also that it
is nearly as easy to prove P

sup ≤ 10−3 for big instances of BRP than for small
ones: that means that the refinement strategy works well and will not perform
too many useless splits. It can also be observed that checking smaller upper
bounds can still be performed on very small abstract PTSs, compared to the
concrete one, even reduced by preprocessing, and also compared to the stable
partitioning (row P

sup ≤ 10−90).

The probabilistic dinning philosophers. — In this example, which originates from
[19] and has been analysed using PRISM [20], N philosophers are trying to eat.
We want to prove a lower bound on the probability for some process to eat after
a number of time units specified by value of deadline, with the aditional require-
ment that a philosopher cannot stay idle for more than K steps. Table 2 shows
results for N = 3 and different values of K. The chosen deadline corresponds to
the smallest one for which the property holds with a probability more than 0.

Here we give in the table not only the number of abstract and essential states,
but also in each case the number of abstract distributions. We use the sparse
matrix based solver with ordinary floating point arithmetic. The initial partition
is chosen to be obtained by abstracting everything but the counter used for the
deadline, as it is clear the value of the deadline is of fundamental importance for
the studied property. Most of the encouraging observations made for the BRP are
still true. The only exception is that essential state reduction does not perform
as good as in the BRP. Execution times are much higher, because MTBDDs are
much bigger, and the abstract PTSs are much more complex, which results in
very big LP problems. Still, refinement remains much cheaper than analysis, and
state space reduction between the concrete PTS and the abstract one allowing
to prove the property is impressive.

Table 3 compares various refinement options and initial control structures on
a particular instance of the system. The first column corresponds to the options
that work best and that were used in the previous table: the initial partition de-
tail only the counter for the deadline, and we use n-ary division, giving priority



Table 2. Results in Dining Philosophers with N = 3

K 4 5 6
deadline 23 27 31

#reach. 1.00e06 1.97e06 3.40e06
#relev. 121041 271287 488859
time 14.4 23.6 34

≥
1 1
6

#refin. 5 7 8
#abst. 3064/11536 16903/52435 35780/111084
#ess. 2778/11250 14442/49974 30361/105665
pinf 0.0625 0.0625 0.0625
verd. T T T
time(a+r) 49.6+79.5 2120+590 10353+1462

≥
1 8

#refin. 7 8 9
#abst. 8512/22757 21011/59866 37542/114703
#ess. 6668/20913 16996/55851 31656/108817
pinf 0.125 0.125 0.125
verd. T T T
time(a+r) 290+220 3683+712 20335+1575

Table 3. Results in Dining Philosophers with N = K = 3 and deadline = 19

control deadline deadline deadline deadline ctrl. struct.
option nary+osl bin+osl nary+lso nary+a nary+osl

#reach. 408397
#relev. 30018
time 6.14

≥
1 4

#refin. 2 2 4 2 4
#abst. 51/87 35/122 882/2880 140/680 5861/12972
#ess. 51/87 35/122 827/2825 140/680 4109/11196
pinf 0.25 0.25 0.25 0.25 0.25
verd. T T T T T
time(a+r) 0.03+3.85 0.02+3.48 5.16+16.79 0.19+5.09 53.6+44.8

to different types of probabilistic transitions. Using binary divisions gives simi-
lar results (second column). Column 3 shows that inverting the priority of the
different types of split in column 1 gives very bad results: a much more refined
system is needed to prove the property. Last column illustrates the importance
of a good initial partition. Here, we generated it according to the explicit control
structure of the philosopher, and it produces very bad result.

Binary Exponential Backoff Algorithm in the IEEE 802.3. — This protocol is
part of the CSMA/CD protocol and is used to state the policy in which machines
retry to access the medium after a collision was detected. The protocol works
as follows. After a collision the time is divided into slots. Each of the colliding
hosts waits 0 or 1 slots (each with probability 1/2) before retrying to access the
medium. If collision happens again each host will wait 0, 1, 2, or 3 slots with
probability 1/4. Collision may repeat several times. In its ith collision, a host
must choose a waiting time between 0 and 2i − 1 with probability 1/2i each.
After the Kth collision, it will only choose between 0 and 2K − 1, and after the
Nth unsuccessful attempt (N ≥ K), the host will gave up. When no collision
happens, the only transmitting host seize the line and its message is transmitted.
The appendix shows details on the modelling of the binary exponential backoff
method and the property under study using the Rapture modelling language.

The property we study is whether one given host gives up with probabil-
ity less than or equal to p. Results are reported in Table 4 where 3 hosts are
considered, the number of attempts to access the channel before giving up is
N = 5, and the exponential variable grows until K = 2. The check probability
p varies and is specified in the table. We have done three types of run: selecting
two types of initial partition (see the appendix) and using the default initial
partition which ammounts to distinguishing states if they belong to different



Table 4. Results in the Binary Exponential Backoff N = 5, K = 2

#reach. 752170 #relev. 752170 time 33.14

Technique nary+osl nary+lso+init1 nary+lso+init2 nary+osl+init2 nary+a+init2

≤
5

·
1
0
−

2 verd. T T T T T
#refin. 8 7 8 8 7
#abst. 28237 6678 10099 7720 9994
#ess. 23326 5616 8409 6535 8391
psup 0.0299973 0.0161254 0.021849 0.0491828 0.0204969
time(a+r) 2418.47+1265.01 96.3+555.57 235.67+942.24 124+788.51 212.4+804.83

≤
1

·
1
0
−

2 verd. T T T T T
#refin. 9 8 9 10 8
#abst. 56840 13637 20819 30701 20111
#ess. 47548 11395 17705 25580 17077
psup 0.00388816 0.00745022 0.00471054 0.000386098 0.00470079
time(a+r) 10169.7+2023.94 477.85+980.62 1293.17+1599.61 2423.8+2111.9 1137.99+1432.39

≤
5

·
1
0
−

3 verd. T T T T T
#refin. 9 9 9 10 8
#abst. 56840 28143 20819 30701 20111
#ess. 47548 24147 17705 25580 17077
psup 0.00388816 0.00143866 0.00471054 0.000386098 0.00470079
time(a+r) 10455.7+2140.99 2892.53+1748.86 1296.38+1622 2228.21+2017.41 1244.52+1435.45

≤
1

·
1
0
−

3 verd. T T T T T
#refin. 10 10 10 10 9
#abst. 97642 39209 30701 30701 30701
#ess. 79655 33449 25580 25580 25580
psup 0.000386098 0.000386098 0.000386098 0.000386098 0.000386098
time(a+r) 29182.8+4096.43 5745.09+2464.28 2933.94+2349.45 2288.85+2084.56 2767.8+2177.3

≤
5

·
1
0
−

4 verd. T T T T T
#refin. 10 10 10 10 9
#abst. 97642 39209 30701 30701 30701
#ess. 79655 33449 25580 25580 25580
psup 0.000386098 0.000386098 0.000386098 0.000386098 0.000386098
time(a+r) 28484.9+3922.24 5755.49+2469.5 3005.25+2330.12 2036.3+1865.65 2987.38+2348.35

≤
1

·
1
0
−

4 verd. F F F F F
#refin. 10 10 10 10 9
#abst. 97642 39209 30701 30701 30701
#ess. 79655 33449 25580 25580 25580
psup — — — — —
time(a+r) 28297.5+3931.48 5762.32+2470.58 2753.41+2345.52 2241.72+2049.34 2835.37+2240.27

control structure. Again, the importance of selecting a good initial partition is
evident. We mention that combinations “lso” and “osl+init1” (not shown on the
table) showed instability problems2. Table 5 shows the same exercise but with
K = 3. Both in Table 4 and Table 5 we have highlighted the techniques with
best performance. Clearly the refinement priority order “lso” has done worst, but
the other two techniques have shown rather incomparable results. The case “a”,
in which refinement is done w.r.t. all transitions, is faster on refining and spends
more time per iteration than the case “osl”. On average, this last technique seems
to do better.

We carried out the experiments using the sparse matrix based solver with
ordinary floating point arithmetic. We tried larger settings, but unfortunately
many of them suffered the numerical instability problem. When running the
dense matrix based solver with exact arithmetic it required a much larger use of
memory which could not be allocated on the machine it was running. It would
be very useful for such cases to have a solver using both sparse matrices and
exact arithmetic. However, such a solver is still to be implemented!

2 Refinement can be guided by defining a priority order on the type of transition that
should be selected first to partition an equivalence class. The types are: “l” for looping,
i.e. non-probabilistic transitions that loops on the same abstract state; “s” for single,
i.e. non-probabilistic transitions leading to a different abstract state; “o” for others,
namely, the probabilistic transitions.



Table 5. Results in the Binary Exponential Backoff N = 5, K = 3

#reach. 3.40796 · 10
6 #relev. 3.40796 · 10

6 time 111.04

Technique nary+lso+init2 nary+osl+init2 nary+a+init2

≤
5

·
1
0
−

2 verd. T T T
#refin. 8 9 6
#abst. 14877 30657 13509
#ess. 14088 27191 12939
psup 0.0168896 0.00637896 0.0190634
time(a+r) 816.03+1957.2 2893.04+4459.17 563.85+1680.64

≤
1

·
1
0
−

2 verd. T T T
#refin. 9 9 7
#abst. 32313 30657 27740
#ess. 27727 27191 23769
psup 0.00499646 0.00637896 0.00601642
time(a+r) 3693.23+4046.84 3051.12+4397.42 2687.23+3279.83

≤
5

·
1
0
−

3 verd. T T T
#refin. 9 10 8
#abst. 32313 61970 55703
#ess. 27727 53858 48628
psup 0.00499646 0.00067507 0.00104156
time(a+r) 3069.24+3585.62 10013.6+6426.98 12976.6+6077.6

≤
1

·
1
0
−

3 verd. T T T
#refin. 10 10 9
#abst. 66635 61970 97831
#ess. 58173 53858 85099
psup 0.000636677 0.00067507 9.60093e-05
time(a+r) 27220.8+6555.4 10111.1+6754.95 34694.1+10976.3

≤
5

·
1
0
−

4 verd. T T T
#refin. 11 11 9
#abst. 97831 97831 97831
#ess. 85099 85099 85099
psup 9.60093e-05 9.60093e-05 9.60093e-05
time(a+r) 46629.2+10074 27261.4+9426.13 34293.2+10615.6

≤
1

·
1
0
−

4 verd. T T T
#refin. 11 11 9
#abst. 97831 97831 97831
#ess. 85099 85099 85099
psup 9.60093e-05 9.60093e-05 9.60093e-05
time(a+r) 45332+9899.48 27216+9408.45 34021.5+10672.9

6 Conclusion

We presented in this paper the probabilistic verification tool Rapture. We de-
scribed its functionalities and the principles of its verification method. We gave
also a set of experimental results that illustrates the behaviour of the imple-
mented techniques and their efficiency.
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Appendix: Details on the Binary Exponential Backoff

Method

In the following, we report the Rapture model of the binary exponential backoff
algorithm. This algorithm assumes the time is divided in slots. Process Clock



controls such division. In order to proceed in an orderly fashion, each slot is
divided in three sections marked by actions Tick, Tack, and Tock. In the first
section (previous to Tick), hosts attempt to seize the line. Each host (modelled
by process Host_i) indicates its will to access the line by incrementing the global
variable chan_req. The second section (between Tick and Tack) is the middle of
the slot and is used for each attempting host to check if there was a collision (i.e.
if chan_req>1) and proceed according to the algorithm explained in Section 5.
The last section (between Tack and Tock) is only used to reset variable chan_req
in order to restart the process.

channel

Tick, Tack, Tock ;

var

chan_req : uint ( DIM_HOST ) ;

line_seized_flag : bool ; // These two flags are used to

gave_up_flag : bool ; // analyse some properties

// not reported in this article.

process Clock {

sync

Tick, Tack, Tock ;

init ( #start and ( chan_req = 0 )

and not line_seized_flag and not gave_up_flag ) ;

loc start:

when true goto begin_slot ;

loc begin_slot :

when true sync Tick goto mid_slot ;

loc mid_slot :

when true sync Tack goto reset ;

loc reset :

when true goto end_slot assign { chan_req := 0 } ;

loc end_slot :

when true sync Tock goto begin_slot ;

}

Process Host_i uses two constants: MAX_NR_ATTEMPTS, that represents the
maximum number of attempts to access the line (N in Section 5), and MAX_EXP

that is the maximum exponential value allowed (MAX_EXP = 2K where K is as
in Section 5). Variables nr_attempts and exp_val are used to save the cur-
rent number of attempts and the current exponential value (from which the
random value will be chosen) respectively. Variable slots_to_wait contains
the slots to wait before attempting to seize the line. Originally, slots_to_wait
takes a random value uniformly distributed between 0 and exp_val − 1. This
random choice is not straightforward since the Rapture modelling language
does not allow probabilities to depend on variables. Therefore it is coded in



a loop with the help of an auxiliary variable aux_exp. The random setting of
slots_to_wait takes place in location process_collision, where the host will
iterate (log2 exp_val) times. In each iteration i, variable slots_to_wait will be
incremented by 2i with probability 0.5. Variable aux_exp carries the appropriate
2i value.

process Host_i {

sync

Tick, Tack, Tock ;

var

// Be aware that dimensions depend on constants MAX_NR_ATTEMPTS

// and MAX_EXP

nr_attempts : uint ( DIM_TRI ) ;

exp_val : uint ( DIM_EXP ) ;

aux_exp : uint ( DIM_EXP ) ;

slots_to_wait : uint ( DIM_EXP ) ;

init ( #wait_tick and (nr_attempts = 0) and (exp_val = 1)

and (aux_exp = 1) and (slots_to_wait = 0) ) ;

// Begining of the slot: try to seize the line or just wait.

loc wait_tick :

when ( slots_to_wait > 0 ) sync Tick

// Wait these slot

goto wait_tack

assign { slots_to_wait := slots_to_wait - 1 } ;

when ( slots_to_wait = 0 )

// Do not wait any longer and try to seize the line

goto init_cycle assign { chan_req := chan_req + 1 };

loc init_cycle :

when true sync Tick goto check_collision ;

loc check_collision :

when ( chan_req = 1 )

// The attempt was succesful. Line seized

goto line_seized

assign { line_seized_flag := true } ;

when ( (chan_req > 1) and (nr_attempts >= MAX_NR_ATTEMPTS) )

// There was collision and maximum number of attepmts exceeded.

// Give up.

goto gave_up

assign { gave_up_flag := true } ;

when ( (chan_req > 1) and (nr_attempts < MAX_NR_ATTEMPTS) )

// The attempt was unsuccesful. A collision occurred.

// Set values for next attempt.

goto process_collision

assign { nr_attempts := nr_attempts + 1 ;

aux_exp := 1 ;

slots_to_wait := 0 } ;



// Choose a random value to wait until next attempt.

loc process_collision :

when ( (aux_exp > exp_val) and (exp_val >= MAX_EXP) )

goto wait_tack ;

when ( (aux_exp > exp_val) and (exp_val < MAX_EXP) )

goto wait_tack

assign { exp_val := 2 * exp_val } ;

when ( aux_exp <= exp_val )

goto {

process_collision .5

assign { aux_exp := 2 * aux_exp } ;

process_collision .5

assign { slots_to_wait := slots_to_wait + aux_exp ;

aux_exp := 2 * aux_exp }

} ;

// Wait until the middle section of the slot is finished.

loc wait_tack :

when true sync Tack goto wait_tock ;

// Wait until the last section of the slot is finished.

loc wait_tock :

when true sync Tock goto wait_tick ;

loc line_seized :

when true goto line_seized ;

loc gave_up :

when true goto gave_up ;

}

The property under study checks the probability of reaching a state in which
Host_0 gives up. The probability of such final condition must be calculated from
the beginning of the process, namely when the Clock is about to start and no
host attempted yet to seize the line (i.e., chan_req = 0). The property is stated
in Rapture by the following specification lines:

initial ( #Clock.start and ( chan_req = 0 ) ) ;

final #Host_0.gave_up ;

The initial partition init1 is specified in Rapture by the sentence

control #Host_0.aux_val, #Host_0.exp_val ;

which states that states with different values for variables aux_val and exp_val

must be distinguished in the initial partition. The initial partition init2 is given
by

control #Host_0.exp_val ;

In this case, only states with different values for variable exp_val must be dis-
tinguished.


