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Abstract. This paper is an informal tutorial on stochastic process alge-
bras, i.e., process calculi where action occurrences may be subject to a de-
lay that is governed by a (mostly continuous) random variable. Whereas
most stochastic process algebras consider delays determined by negative
exponential distributions, this tutorial is concerned with the integration
of general, non-exponential distributions into a process algebraic setting.
We discuss the issue of incorporating such distributions in an interleav-
ing semantics, and present some existing solutions to this problem. In
particular, we present a process algebra for the specification of stochas-
tic discrete-event systems modeled as generalized semi-Markov chains
(GSMCs). Using this language stochastic discrete-event systems can be
described in an abstract and modular way. The operational semantics
of this process algebra is given in terms of stochastic automata, a novel
mixture of timed automata and GSMCs. We show that GSMCs are a
proper subset of stochastic automata, discuss various notions of equiva-
lence, present congruence results, treat equational reasoning, and argue
how an expansion law in the process algebra can be obtained. As a case
study, we specify the root contention phase within the standardized IEEE
1394 serial bus protocol and study the delay until root contention reso-
lution. An overview of related work on general distributions in process
algebra and a discussion of trends and future work complete this tutorial.

1 Introduction

The design and analysis of systems, like embedded systems, communication pro-
tocols or multi-media systems, requires insight in not only the functional, but also
in the real-time and performance aspects of applications involved. Researchers in
formal methods (i.e., concurrency theory) have recognized the need for the addi-
tional support of quantitative aspects, and various initiatives have been taken to
accomplish such support. A prominent example is the treatment of real-time con-
straints, where specification formalisms like timed automata [2] have emerged,
and impressive progress has been made in the development of efficient verifica-
tion algorithms [15,72]. This has resulted in a number of tools (model checkers)
that provide interesting experimental platforms for industrial case studies.

Hard and soft real-time constraints. Constraints that one typically considers in
this real-time setting are ‘hard’, for instance,

“the system must always do a certain activity before time t”
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For many applications, though, real-time constraints are typically less stringent.
Rather than requiring that certain activities must always occur before time t,
in practice one is usually interested in more ‘soft’ real-time constraints, where
a system is required to perform the activity mostly before t. The soft real-time
requirements of systems typically address their performance characteristics, and
are often also referred to as their quality-of-service (QoS) parameters. They are
usually related to stochastic aspects of various forms of time delay, such as, for
example, mean and variance of message transfer delay, service waiting times,
failure rates, utilization, etc. In a soft real-time system one typically considers
constraints like:

“the system should perform an activity before time t in 92% of the cases”

In soft real-time systems, state changes take place in a discrete fashion and the
time of occurrence of activities is controlled by random variables. These systems
are also known as stochastic discrete-event simulation (DES) models. In contrast
to most formalisms that are restricted to a particular set of probability distri-
butions, like negative exponential or discrete distributions, the objective is to
support general distributions, discrete or continuous. This makes the formalism
more expressive and more interesting from a practical point of view.

The need for a single framework. Traditionally, there has been a clear separa-
tion between the functional and performance aspects of systems, and as a result
different communities have constructed and analyzed their own, largely unre-
lated models for the aspects under their responsibility. This has resulted in what
has been recognized as “the insularity problem of performance evaluation in the
system design process” [47]. In modern systems, though, the difference between
functional and performance features has become blurred, and both features are
becoming of comparable interest. Thus, it would be beneficial to be able to
check how changes in functionality affect performance issues, and vice versa. In
addition, one would like to have a better relationship between the models that
are used for qualitative and quantitative analysis, and avoid the use of different
models that are mutually incompatible. A single framework where both aspects
could be defined would be highly desirable [24,37]. This tutorial is focused on
an integrated approach using process algebra.

1.1 Organization of the Paper

Section 2 contains an introduction on stochastic process algebra (to what extent
do they differ from traditional process algebra?), justifies the usage of general dis-
tributions (why do we need them?), sketches the complications of incorporating
general distributions in process algebra (why are things not so straightforward
as for exponential distributions?), and provides an overview of possible solutions
that have been suggested so far. Section 3 introduces generalized semi-Markov
processes (GSMPs), a model for general distributions. Section 4 presents a couple
of small examples that serve as a justification for providing a process algebraic
framework for this model. Section 5 presents stochastic automata, an extension
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of labelled transition systems that we use as a semantic model of our process
algebra with general distributions, called SPADES (Stochastic Process Algebra
for Discrete-Event Simulation) and symbolized as . Section 7 gives an account
of evaluation techniques for specifications, including quantitative methods –
discrete-event simulation – and qualitative methods – checking of (timed) safety
properties. Section 9 discusses related work on process algebras with general
distributions. Section 10 provides a summary of the tutorial and presents some
topics for further research.

2 Fitting General Distributions in Process Algebra

In traditional process algebras, like ACP [39], CCS [77], CSP [58] and LO-
TOS [64], a (possibly concurrent) system is syntactically represented using pow-
erful composition operators which facilitate the development of modular and
well-structured specifications. The formal meaning of a process algebra term is
defined in a mathematical model. By defining an appropriate equivalence rela-
tion on this model one is able to formally compare and transform (e.g., simplify
or reduce) specifications. If, in addition, this relation is a congruence1, then such
transformation can be carried out component by component. This compositional
nature reduces the complexity of the transformation significantly. Finally, due to
the algebraic nature of the formalism it is possible to define equational rules on
the syntax that allow to perform step-wise design and minimization at a purely
syntactic level, without any reasoning in semantic terms.

2.1 Stochastic Process Algebra

Traditionally, process algebras have concentrated on the functional aspects of
systems such as their observable behavior, control flow and synchronization as
properties in relative time. In the late eighties, the interest grew in extending
process algebras with quantitative information like time and (discrete) proba-
bilities. These extensions are known as timed and probabilistic process algebras,
respectively.

Timed process algebra. Timed extensions of ACP [5], CCS [78,99], CSP [89] and
LOTOS [13,73] have been defined. The basic idea underlying timed process al-
gebras is to change the role of action-prefix, denoted by a; p for action a and
process p. Originally, the expression a; p simply means that first an action a is
offered, and after the appearance of a the process behaves like p. No statement
is made about when action a occurs. In timed process algebra there are basically
two schools:

– replace a; p by (a, t); p denoting that action a is offered after a delay of t
time units, or

1 An equivalence relation is a congruence if two equivalent terms behave indistinguish-
able in any context.
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– extend the language with a timed prefix like t �→ p denoting that process p is
reached after a delay of t time units; t �→ a; p means that action a is offered
after t time units.

(There are several finer points that we ignore here; see [80] for an overview.)
The last distinction leads to a behavior where two distinct phases are separated.
Phases, during which one or more actions occur together with their correspond-
ing state changes, but where no time elapses, are distinguished from phases
where time passes, but during which no actions happen. With some appropriate
modifications, timed process algebras can be considered as high-level specifica-
tion formalisms for timed automata [29].

Probabilistic process algebra. Probabilistic extensions of ACP [6], CCS [44], CSP
[75] and LOTOS [76] have been studied. A recent overview of probabilistic pro-
cess algebras can be found in [65]. The basic idea of these calculi is to incorporate
a probabilistic choice operator that allows terms like p ⊕π q (with π ∈ (0, 1))
where process p can be selected with probability π and process q with 1−π.
Different semantic models have been used for probabilistic process calculi, de-
pending on whether non-determinism is allowed or not. In the deterministic
case, these languages represent discrete-time Markov chains (DTMC) [68]; in
presence of non-determinism, models similar to Markov decision processes [34]
are obtained.

Markovian process algebra. In stochastic process algebras, time and probabil-
ity are integrated by considering delays of a continuous probabilistic nature. In
languages like EMPA [9], PEPA [56] or TIPP [43], a non-negative real-valued
rate is associated to actions that determines probabilistically the delay prior to
an action. For rate λ, the term (a, λ); p denotes that action a is offered after a
delay determined by a negative exponential distribution. More precisely, (a, λ); p
offers action a within t time units with probability 1 − e−λt and then evolves
into process p. The mean duration until action a is offered is thus 1/λ. As a
semantic model, transition systems are used where transitions are labelled with
pairs of actions and rates. By omitting the action labels — but keeping the
rate information — one obtains a (time-homogeneous) continuous-time Markov
chain (CTMC) for which steady-state and transient performance metrics can
be obtained using traditional techniques [95]. These process algebras provide a
high-level specification formalism for CTMCs. Due to this property they are also
called Markovian process algebras; recent overviews can be found in [19,50,57].

Separating delays and actions. The major distinction between Markovian process
algebras is the treatment of time consumption in case of interaction. Technically,
this amounts to the computation of the resulting rate in case two actions like
(a, λ) and (a, µ) synchronize. To our opinion, the most natural interpretation is
to require both delays to have completed before the synchronization (on a) can
take place — the so-called patient communication [55]. The thus resulting ran-
dom variable equals the maximum of the random variables that are exponentially
distributed with rates λ and µ, respectively. This random variable is, however,
not exponentially distributed. To overcome this technical problem, several so-
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lutions have been suggested that either lack a clear stochastic interpretation or
have a somewhat restricted applicability.

The stochastic interpretation (i.e., maximum of random variables) can be
obtained in a rather natural way by explicitly separating the advance of time
and the occurrence of actions. In this way, synchronization only takes place
via immediate actions. Thus, the usual prefix a; p remains unchanged, but is
complemented with a delay prefix λ �→ p which evolves into p after an exponential
delay with mean 1/λ. This separation of discrete and continuous phases is similar
to that in some timed process algebras (see before) and has been proposed in
the context of Markovian process algebras in [49,51,52].

2.2 Beyond Exponential Distributions

Integration of general, non-exponential distributions in a process algebraic set-
ting has received scant attention. Instead, most work has been focussed on
exponential distributions. Although exponential distributions yield analytically
tractable models (i.e., CTMCs), and are useful for many applications, they are
not realistic for modeling many phenomena in an adequate way. For example:

– in performance modeling, it is often convenient to incorporate empirical dis-
tributions into the model that have been obtained by measuring a realization
of the system. These measurements may e.g., indicate the traffic intensity of
a communication network at a working day, or indicate the length of com-
municated web pages during peak hours. These distributions are mostly not
exponential.

– if a distribution function G is only partially known, it is preferably approx-
imated by a probability distribution F with a “maximal indeterminacy” in
the sense that it is impossible to recognize from F any preference of one
event over another. Thus, F assumes the least about the structure of the
distribution G, or, stated otherwise, it has the highest degree of random-
ness. Technically speaking, F maximizes the entropy [93]:

−
∫ ∞

−∞
f(x) ln(f(x)) dx

where f is the probability density function of F . Depending on which partial
information about G is available, different appropriate choices for F remain.
If only the mean and variance are known, the normal distribution is the
most indeterminate; in cases where only the minimum and maximum are
known, the uniform distribution on the interval between these bounds is the
most indeterminate. The exponential distribution is the most indeterminate
approximation only in cases where only the mean is known (of a positive
random variable).

– empirical studies have shown that many system parameters, such as sizes
of data files stored on web servers and transferred through the Internet, job
service times in general-purpose computing environments, and node degrees
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of certain graph structures (such as hyper links of web pages), exhibit so-
called heavy-tail distributions, i.e., distributions with a very high variance.
A distribution F is heavy tailed [26] if for positive constant c:

F (x) “approximates” 1− c · x−α for 0 < α < 2

F has an infinite variance, and for α < 1 it has an infinite mean. An im-
portant heavy-tail distribution is the Pareto distribution. For a heavy-tail
distribution (with α=1), about 60% of the probability mass is contained in
just 1% of the observations; for an exponential distribution this dependency
is roughly linear. If one observes heavy-tailed inter-arrivals, then the longer
one has waited, the longer we should expect to wait — the expectation para-
dox. Instead, for exponential distributions the waiting time does not play any
role, due to the memoryless property (see next Section).

– deterministic delays are prevalent and important in computer, communica-
tion and manufacturing systems. Typical examples of deterministically dis-
tributed parameters are: timeouts in communication protocols, hard dead-
lines in real-time systems, transmission delays of fixed-length packets, and
cycle times of work-flow management systems.

– it has been argued that several phenomena in modern communication sys-
tems, in particular several aspects of multi-media communication systems,
can be most adequately modeled by non-exponential distributions. For in-
stance, the variability of the delay of sound and video frames (so-called jitter)
is mostly assumed to be controlled by a normal distribution [11,38].

2.3 Interleaving + General Distributions = Non-trivial

Given the need for non-exponential distributions, the question is whether we can-
not simply replace the exponential distributions in Markovian process algebra
by general distributions. This turns out not to be straightforward. We illustrate
this by discussing (a simplified version of) an important axiom in process alge-
bra, known as the expansion law.

Expansion law. A popular mathematical model for providing semantics to tra-
ditional process algebras is labelled transition systems, (possibly infinite-state)
automata where transitions that are labelled with actions describe how the sys-
tem can evolve from one state to another. In mapping process algebra terms to
this model, the independent parallel composition of two actions is treated as a
choice between the two possible sequential orderings. Thus, in a parallel com-
position, actions of one component are interleaved with actions of the other —
hence the term interleaving semantics. As a result, independent parallel compo-
sition (denoted ||) can be reduced in terms of choice (denoted +) and prefix as
expressed by, for example:

a; p || b; q = a; (p || b; q) + b; (a; p || q) (1)

for actions a, b and processes p, q (cf. Fig. 1 for p and q being the process 0 that
cannot perform any action). This principle, in its full generality known as the
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expansion law [77], is widely accepted and has proven to be of crucial importance
for process algebraic verification purposes [4].

||

a

reduces to

b

b

a b

a

Fig. 1. Interleaving of the processes a;0 and b;0

Exponential distributions and interleaving semantics fit well. The semantics of
Markovian process algebras are commonly defined using an extension of labelled
transition systems. The structure of these transition systems closely resembles
that of CTMCs. The elegant memoryless property of exponential distributions
enables a smooth integration in an interleaving setting, since in analogy of (1)
we have:

λ �→ p ||µ �→ q = λ �→ (p ||µ �→ q) + µ �→ (λ �→ p || q) (2)

To justify this law, consider the term λ �→ p ||µ �→ q. Let U be the random
variable modeling the delay before process q can start — U is thus exponentially
distributed with rate µ— and suppose that the delay of the left process “finishes
first” (with rate λ), say, after y time units. The probability that the start of
process q has to delay for at most an additional x time units is

Pr[U 6 y+x | U > y]

Due to the memoryless property of exponential distributions, it holds that

Pr[U 6 y+x | U > y] = Pr[U 6 x] (3)

Thus, the remaining duration until the initial delay of process q finishes is (again)
determined by an exponential distribution with rate µ. Stated differently, the
delay of the left process does not have any impact on the distribution of the
remaining delay in the other process — the advance of time governed by memo-
ryless distributions is independent. By symmetry, an analogous reasoning applies
when the right-hand process finishes first.

General distributions and expansion law. If we allow actions to be delayed by
general distributions F and G, though, it turns out that the analogon of (2) is
invalid:

F �→ p ||G �→ q �= F �→ (p ||G �→ q) +G �→ (F �→ p || q) (4)

The reason for this inequality is the absence of the memoryless property for
general distributions. For instance, after the delay imposed by F in the left-
hand process, the residual delay of the right-hand process G �→ q has to be
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taken into account in order to correctly determine the remaining delay before
process q becomes enabled.

2.4 Some Solutions to the Problem

If the incorporation of general distributions into process algebra is not trivial,
what are possible strategies to overcome this problem? Here, we summarize the
main schools of thought.

Still use Markovian process algebras. In this category we find two kinds of solu-
tions: approximation and exploiting insensitivity.

1. A possible solution is to approximate general distributions by appropriate
probability distributions that can be described as series/parallel combina-
tions of exponential distributions, possibly with feedback, thus residing in
the class of Markovian process algebras. An interesting class of distributions
for this purpose is the class of phase-type (PH) distributions [79]. They are
defined as distributions of absorption times in finite CTMCs (but that may
contain loops) with a single absorbing state, i.e., a state without any outgo-
ing transition. PH-distributions can approximate any distribution on [0,∞)
arbitrarily close; algorithms to fit a PH-distribution to empirical distribu-
tions do exist [3]. The encoding of PH-distributions in a Markovian process
algebra has been considered in [49,51,52] where — due to the aforemen-
tioned separation between time and actions — any CTMC with a trivial
initial distribution (and thus any such PH-distribution) can be specified. A
similar approach can be taken by using a subset of PH-distributions such as
Cox [25] or Erlang mixture distributions, see [52] and [23], respectively.

2. An alternative solution is to allow general distributions in a controlled way
such that the stochastic property of insensitivity can be exploited. A stochas-
tic process is insensitive if its steady-state distribution depends on the distri-
bution of one or more of the random variables governing state residence times
only through their mean. The theory of insensitivity has been applied to high-
level specification formalisms such as stochastic Petri nets [48]. In [22,23] a
syntactic construction is presented that guarantees the insensitivity of the
stochastic process underlying a stochastic process algebra specification. By
means of this construction it is guaranteed that for studying the steady-state
behavior of the process under consideration, it is sufficient to consider that
process in which each general distribution is replaced by, for instance, an ex-
ponential distribution with the same mean. Hence, the steady-state behavior
of such processes can be analyzed using ordinary CTMC techniques.

The main benefit of both approaches is that existing frameworks can be used
without any modification. The main disadvantage of approximation (approach
1) is that it leads to a state-space explosion since any general distribution is
represented by a (possibly complex) CTMC. Besides, choice expressions like
F �→ p+G �→ q are difficult to treat as the choice between the approximations
of F and G is determined by the first phase of their PH-distribution, and not
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by their entire PH-distribution. The insensitivity approach (2) is applicable to
a small class of processes and is restricted to steady-state properties.

Drop the expansion law. As we have seen before, obtaining an expansion law (1)
is a serious problem when considering general distributions. A feasible option is
to define a semantics for process algebra that does not obey this law. The thus
obtained semantics is known as true concurrency or partial-order semantics. In
these models, system runs are no longer represented as totally ordered sequences,
but rather as partial orders where the occurrences of causally independent ac-
tions are unrelated. Important partial-order models include Petri nets [36], and
event structures [81]. The idea of using true concurrency semantics for stochastic
process algebra has been brought up in [18] where a stochastic variant of event
structures was used as semantic model. As actions that occur concurrently are
unordered, there is no need to keep track of the residual delay of random vari-
ables that “run in parallel”. Analysis techniques that have considered for these
event structures are discrete-event simulation [67], and a decomposition-based
analysis method [12]. Similar approaches have been pursued in [83] where causal
dependencies between delays are derived from the transition labels (so-called
proved transitions) and in [53] where stochastic task graphs are used, a model
that is quite similar to event structures.

The main advantage of this approach is the potential compact representa-
tion of the state space; the main disadvantage is that it leads to infinite-state
semantic objects even for simple recursive terms. Recent investigations indicate,
however, that finite objects can be obtained for the event structure approach
(for finite-state process algebra terms) from which stochastic task graph models
are generated that can be analyzed numerically [87].

Keep track of residual lifetimes. As a third solution, we refine the earlier dis-
cussed separation of time and actions a bit further and distinguish between:

– the start of a probabilistic delay,
– the completion of a probabilistic delay, and
– the occurrence of immediate actions.

To keep track of delays labelled transition systems are extended with clocks. A
clock is initialized by sampling a probability distribution function, and starts
counting down once initialized. All clocks count down at the same pace. Tran-
sitions are labelled with an action and a set of clocks; this transition is enabled
when all clocks in the set have expired, i.e., have reached the value 0. Similarly,
we extend traditional process algebra with two new constructs: for C a finite set
of clocks, when C �→ p denotes the process that after expiration of all clocks in
C behaves like p, and set C in p denotes the process that behaves like p after
any clock x in C is initialized according to its distribution. The delay prefix
λ �→ p that we encountered before is now written as set x in (when x �→ p) with
x a clock controlled by an exponential distribution of rate λ. Note that in the
exponential case the distinction between start and finish of a delay is not needed
since



384 Joost-Pieter Katoen and Pedro R. D’Argenio

y := G()

b, y

x := F ()

x := F ()

a, x

||
reduces to

a, x

b, y

b, y

a, x

y := G()

Fig. 2. Interleaving processes set x in (when x �→ a;0) and set y in (when y �→
b;0)

set x, y in (when x �→ a;when y �→ p)

= set x in (when x �→ a); set y in (when y �→ p)

When mapping process algebra terms onto the extended labelled transition sys-
tems, the principle of interleaving is applied (cf. Fig. 2). In the resulting automa-
ton, initially both clocks x and y are initialized and start counting down. If x
expires first, action a happens, and a state is reached in which clock y records
the remaining time until action b is enabled. A symmetric scenario happens
when clock y expires first. Accordingly, an expansion law can be obtained. For
instance, for p′ = when x �→ a; p and q′ = when y �→ b; q we have:

set x in p′ || set y in q′ = set x, y in (when x �→ a; (p || q′) + when y �→ b; (p′ || q))

This idea has first been brought up in [30], and has been extended and refined
later on [27,31,32,33]. In this tutorial we will follow this direction. A similar
approach has been taken in [17] where a “start-termination” (ST) semantics
— a model that has been originally developed to study refinement in process
algebra [40] — is used for generally distributed delays.

The labelled transition systems extended with clocks closely resemble gener-
alized semi-Markov processes (GSMPs), a model used for the study of stochastic
discrete-event systems. Accordingly, the process algebra that allows for gen-
eral distributions can be considered as a high-level specification formalism for
GSMPs.

3 Generalised Semi-Markov Chains

GSMPs have been introduced by Glynn [41] and Whitt [100]; for an introduction
to GSMPs we refer to [21,92]. We consider discrete-state GSMPs, generalised
semi-Markov chains (GSMCs, for short).

The model of GSMCs. A GSMCs is a state automaton where transitions are
triggered by the occurrence of stochastically timed events. A set of active events
is associated to each state. These are the events that are possible in that state,
i.e., that can cause a transition outgoing from that state. The remaining time
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until the possible occurrence of an event is determined by its clock; we thus have
one clock per event. Clocks are initialised according to a continuous probability
distribution function and run backwards, all with the same pace. In the following
we assume a set of clocks C is given.

Definition 1. (Z, z0,E, E, C, next) is a generalised semi-Markov chain (GSMC)
with2

– Z, a non-empty set of states with initial state z0 ∈ Z,
– E, a non-empty set of events,
– E : Z → Pf (E), the event-assignment function s.t. E(z) �= ? for all z ∈ Z,
– C : E→ C, the clock-assignment function, with continuous distribution FC(e)

for any e ∈ E,
– next : Z ×E → Z, the partial next-state function that assigns to each state
z and event e ∈ E(z) a next state next(z, e).

Example 1. Consider a queueing system in which jobs arrive and wait until they
are executed by a single server. An infinite population of jobs is assumed. Jobs
arrive with an inter-arrival time that is determined by a continuous probability
distribution F while the delay between the processing of two successive jobs is
controlled by distribution H . The serving discipline is FCFS (first come first
served). This system is known as a G/G/1/∞-queue, where G stands for gen-
eral distribution of the arrival and service process, respectively, 1 indicates the
number of servers, and ∞ denotes the infinite buffer capacity. A typical GSMC
description of such queueing system is defined in the following way. We let the
state space Z = { 0, 1, 2, . . .} where the state number indicates the number
of jobs that are currently in the system, i.e., in the queue or currently being
processed. The initial state z0 is 0, the empty system. In each state, possible
events are the arrival of a job (denoted a) and the completion of a job (denoted
c); thus, E = { a, c }. In the initial state no job completion is possible. Thus,
E(i) = { a, c } for i > 0 and E(0) = { a }. The arrival of a job causes a transition
from state i to state i+1. Completion of a job leads to a transition from state
i+1 to state i. Thus, next(i, a) = i+1 and next(i+1, c) = i. The state-transition
structure of this GSMC is depicted in Fig. 3. Clocks are initialised as follows. On
entering state i+1 after an arrival, the clock of the next arrival a is initialised

c

0

a

1

c

a

c

a

c

a

2 3 · · ·

Fig. 3. GSMC for a G/G/1/∞ queueing system

2 We adopt the following notational convention. For a set A, P(A) denotes the set of
all subsets of A, and Pf (A) denotes the set of finite subsets of A.
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according to distribution F , the job inter-arrival time. On entering state i after
a job completion, the clock of the next job completion is initialised according to
distribution H , the service delay. Accordingly, we let C(a) = x, C(b) = y and
Fx = F and Fy = H .

The behaviour of a GSMC. The dynamics of a GSMC are described as follows
in a procedural way. Note that for any state z, to each active event e ∈ E(z) a
clock value val(C(e)) > 0 is associated. Initially, all active events are initialised
according to their distribution function, i.e., val(C(e)) = FC(e)(·) if e ∈ E(z0).
Intuitively, FC(e)(·) denotes “taking a sample from distribution FC(e)”. Then:

1. determine the set of active events E(z) in the current state z
2. determine the clock value d∗ such that d∗ = min{ val(C(e)) | e ∈ E(z) }
3. determine event e∗ with val(C(e∗)) = d∗ and state z′ = next(z, e∗)
4. determine the new clock values val′ in z′ as follows:

val′(C(e)) =




val(C(e))− d∗ if e ∈ E(z) ∩ (E(z′)− { e∗ })
FC(e)(·) if e ∈ E(z′)− (E(z)− { e∗ })
∞ otherwise

5. go back to the first step of the procedure with current state z′.

Note that there always exists an event e∗, since E(z) is non-empty for every
state z. Since all clocks are initialised by continuous distributions, the event e∗ is
guaranteed to be unique with probability one, as the probability of sampling two
continuous distributions with the same value is 0. Once event e∗ with minimal
clock value has been determined, the next state z′ is determined (step 3.) and
the new clock values are calculated as follows (step 4.). For each active event e
in state z that remains active in z′, the clock value is decreased by the elapsed
time d∗. For each event e that becomes active in z′, the clock value is determined
by sampling the clock-distribution function FC(e); for all other events the clock
value equals ∞, indicating that these events are inactive.

The above procedure is also known as variable time-advance procedure [92]
which is characterised by time steps of varying length and an event occurrence in
every time step. This procedure is controlled by the occurrence of “next events”
and the time between the occurrence of two events is “skipped”. This principle
is reflected by the fact that clock values do not increase as time passes, but only
increase if the next event happens (see step 4.).

Example 2. Fig. 4 presents an example execution of the GSMC of Fig. 3 by
depicting the values of the clocks of events a (solid line) and c (dashed line) (on
the y-axis) while time evolves (x-axis). Each time a clock expires, a transition to
the next state is taken. Below the x-axis, for each time instant the current state
is indicated. Note that in this execution, event c becomes enabled when moving
from the initial state to state 1 and stays enabled while visiting states 2 and 3,
before triggering the transition back to state 2.

Restrictions. Actually, we consider a subclass of GSMCs as introduced in [41].
The main restriction that we impose is that the next state is deterministically
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Fig. 4. A sample evolution of the GSMC of Fig. 3

determined by the present state and the triggered event, whereas in the original
GSMCs the next state is chosen in a discrete probabilistic fashion from a set of
possible next states. In addition, we consider time-homogeneous GSMCs. Such
processes are invariant under time-shifts. Intuitively, the probability to be in
state z′ at time t′ given that the system is in state z at time t < t′, is equal to the
probability that the system is in state z′ at time t′−∆ given that the system is in
state z at time t−∆ (for any∆ 6 t). This is a rather common restriction. Finally,
clocks in GSMCs are allowed to have different (possibly state-dependent) rates
whereas in our case all clocks proceed with the same speed. Different rates are not
very usual in discrete-event simulation, and moreover, under certain conditions,
such multi-rated GSMCs can be represented by GSMCs where all clock rates
equal one. The notion of GSMC considered here can thus be summarised as
mono-rated, deterministic, time-homogeneous GSMCs.

GSMCs versus CTMCs and SMCs. In order to better understand the link with
related models, we briefly address the relationship of GSMCs to continuous-
time Markov chains (CTMCs) [95] and semi-Markov chains (SMCs) [86,54]. To
put it in a nutshell, a CTMC is a GSMC in which all clocks are governed by
negative exponential distributions, i.e., for each clock x we have Fx(t) = 1−e−λt,
for some non-negative real λ. A CTMC possesses the Markov property: the
probability of making a transition to a next state only depends on the current
state and not on previous states (“absence of state memory”). The memoryless
property of exponential distributions further implies that the probabilities of
taking next transitions do not depend on the amount of time spent in the current
state (“absence of age memory”). The residence time of a state is exponentially
distributed with a rate that equals the sum of the rates of its outgoing transitions.

A SMC is a GSMC in which all clocks are initialised on each state change. As
exponential distributions are memoryless, cf. equation (3), there is no difference
between setting clocks on each state change or not. Each CTMC is thus an
SMC. An SMC is, however, not a CTMC. It possesses the Markov property,
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but does not conform to the “absence of age memory” principle: probabilities of
taking next transitions do depend on the amount of time spent in the current
state. For an SMC, the state residence times are generally distributed and are
explicitly specified for each state. In a GSMC, the residence time of a state is
determined implicitly by the distributions of the set of active events in a state.
As a result, the state residence times in a GSMC may be history-dependent.
This phenomenon is the essential difference with SMCs, where state residence
times are governed by an a priori, fixed random variable.

4 Why a Process Algebra for GSMCs?

In this section, we motivate the need for a process algebraic language for the
specification of GSMCs by discussing a couple of examples. For each example
a short informal description is given, a GSMC, and a process algebraic spec-
ification. Although using the above description the dynamics of our example
GSMCs can be determined, it is in absence of any further explanation not easy
to understand. As we will illustrate, this is basically due to the fact that the
individual system components are hard to recognize from the overall system
structure. This problem becomes more apparent if we consider GSMCs model-
ing systems of more realistic magnitude. We say that GSMC specifications lack
compositionality. The idea that we shall pursue here is to specify GSMCs in a
compositional way and to exploit this compositional structure by re-using com-
ponents. We start with a process algebra specification for the G/G/1 queueing
system of Example 1.

4.1 The Simple Queueing System

In process algebra, the specification of our queueing system can be obtained in
a hierarchical manner, starting from the specifications of the individual com-
ponents: the queue, the server, and the arrival process. The buffer of infinite
capacity can be specified by the set of processes:

Queue0 = a;Queue1

Queuei = a;Queuei+1 + b;Queuei−1 for i > 0

where the process indices indicate the number of jobs in the buffer, action a
denotes enqueueing a job, and action b denotes dequeuing a job. Similarly to
GSMCs, clocks can be used to model probabilistic delays. We obtain for the
arrival and server processes:

Arrival = set xF in (when xF �→ a;Arrival)
Server = b; set yH in (when yH �→ c; Server)

In the Arrival process clock x is initialized and starts counting down. Once it
has reached the value 0, it expires and action a is enabled. The overall system
is described by:

SystemG/G/1/∞ = (Arrival ||? Server) ||{a,b}Queue0
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job completion
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job arrival dequeue job

Fig. 5. Compositional specification of G/G/1 queueing system

In process p ||A q, where A is a set of actions, p and q perform actions au-
tonomously, but actions in A should be synchronously performed by both. Ac-
tion a, for instance, can only take place when the processes Arrival and Queue
are both ready to participate; note that Server does not need to participate in
this action. The resulting specification of the G/G/1/∞ system closely resem-
bles the structure of the system itself (cf. Fig. 5), it is easy to understand, and
it is readily modifiable. For instance, a system with two servers is obtained in
the following way:

SystemG/G/2/∞ = (Arrival ||? Server ||? Server) ||{a,b}Queue0

As an alternative extension, a specification of the G/G/1/K queueing system,
where K (K > 0) denotes the finite capacity of the queue, is obtained by replac-
ing the Queue0 process by a slightly modified buffer FQueue0:

FQueue0 = a;FQueue1

FQueuei = a;FQueuei+1 + b;FQueuei−1 for 0 < i < K
FQueueK = a;FQueueK + b;FQueueK−1

where it is assumed that when the queue is full, a job arrival is neglected and
lost. The loss of a job is reflected by the fact that for process FQueueK the
capacity is unchanged on arrival of a job.

4.2 A Queueing System with Two Classes of Jobs

Informal description. Consider now a single-server queueing system with a fi-
nite queueing capacity K > 0, cf. Fig. 6. Two types of jobs are considered.
They arrive independently according to different arrival processes. Jobs of class
i (i = 0, 1) arrive with an inter-arrival time Fi; the processing delay of a job of
class i is controlled by distribution Hi. We assume that the service times are
mutually independent and are independent of the arrival process. The single
server thus takes the job (if any) at the head of the queue and services it with
a delay according to its class. The serving discipline is FCFS. (This example is
adopted from [21].)

A GSMC description. The possible events in this system are the arrival or
completion of a job of class i (i = 0, 1); accordingly, the set of events equals
{ a0, a1, c0, c1 } where the index of the actions indicate the class they are related
to. The description of the state of the system is a bit more involved than for
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class 1 (H1)

class 0 (H0)

K > 0 places

class 1 (F1)

class 0 (F0)

Fig. 6. G/G/1-queueing system with two job classes

the G/G/1/∞ queueing system. It no longer suffices to consider only the queue
length, but we also have to keep track of the class of the j-th job in the queue.
Thus, a state in the GSMC is a K-tuple (j1, . . . , jK) where jm = − if the m-th
position in the queue is empty, and jm = 0 (1) if this position contains a job of
class 0 (1), for 0 < m 6 K. The oldest job (if any) is kept at position 1. This
gives rise to 2K+1 − 1 states. The GSMC for K equal to 3 is depicted in Fig. 7
where empty positions in the queue are indicated as blanks. Note that states at
depth i indicate scenarios where i jobs are currently in the system.
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Fig. 7. GSMC of a G/G/1-queueing system with two job classes

A compositional approach. In order to obtain a process algebraic specification of
this queueing system we adapt the specification of the simple G/G/1/∞-system
in a component-wise manner. The arrival process for each class of jobs is simply
an instantiation of the Arrival process before; the server is slightly adapted in
order to be able to deal with both classes of jobs:

Arrivali = set xFi in (when xFi �→ ai;Arrivali) for i = 0, 1
Server2 = b0; set yH0 in (when yH0 �→ c0; Server2)

+b1; set yH1 in (when yH1 �→ c1; Server2)

For the finite queue, we extend the specification of the finite queue given above
such that, besides the current occupancy of the queue, we keep track of the class
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of the j-th job in the queue. The latter is carried out by adding a bit-vector (as
superscript) to the process FQueue in the following way:

OQueue0 = a0;OQueue0
1 + a1;OQueue1

1

OQueue0w
i = a0;OQueue0w0

i+1 + a1;OQueue0w1
i+1 + b0;OQueuewi−1 for 0 < i < K

OQueue0w
K = a0;OQueue0w

K + a1;OQueue0w
K + b0;OQueuewK−1

The processes OQueue1w
i are similar to OQueue0w

i (0 < i 6 K) and are omitted
here. The overall system is now described by:

SystemK = (Arrival0 ||?Arrival1 ||? Server2) ||{a0,a1,b0,b1}OQueue0 (5)

Note the resemblance with the structure of the G/G/1/∞-specification.

4.3 A Simple Queueing Network

Suppose now that we combine the two queueing systems above in the follow-
ing (open) queueing network, cf. Fig. 8. The arrival processes of the two classes
of jobs in the latter system, SystemK , are the outputs generated by two finite
G/G/1 queueing systems of size K (for class 0) and N (for class 1), respectively.
For obtaining the GSMC of this system, the GSMCs of the individual compo-

N > 0 places

M > 0 places

K > 0 places

class 1

class 0
class 0 (H0)

class 1 (H1)

Fig. 8. A simple open queueing network

nents need to be combined in an appropriate way. This is not a straightforward
exercise.

To obtain a specification of this system in the process algebraic setting,
we first observe that the structure of the queueing network resembles that of
SystemK , except that the input streams are the output streams of two finite
G/G/1 systems. Thus, the two Arrival processes in specification (5) are replaced
by the specifications of the G/G/1-queues. It now remains to “link” the output
of the G/G/1 systems to the input of the 2-class buffer system. This is estab-
lished by means of renaming. Let f be a function that maps action names to
action names. Process p[f ] behaves like process p except that actions are re-
named according to f . For instance, process SystemG/G/1/K [c/a0] denotes the
finite G/G/1 queue with K places where action c (output) is renamed into a0.
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Thus, a job completion in this system is turned into an arrival of a class 0 job.
Using this renaming operator we obtain:(

SystemG/G/1/K [c/a0] ||? SystemG/G/1/N [c/a1] ||? Server2
)
||AOQueue0

with A = {a0, a1, b0, b1}.

4.4 Non-determinism

Recall that in each state of a GSMC, the next event is determined in a unique
way. We like to point out that in the process algebra this is (deliberately) not
the case. For instance in a specification like

set x in (when x �→ a; q + when x �→ a; r)

it is not uniquely determined whether to move to q or to r once clock x has
expired. A similar scenario appears in SystemG/G/2/∞: if the buffer contains
a job and both servers are idle, it is non-deterministically determined which
server dequeues the job. This phenomenon, known as non-determinism, appears
if two (or more) equally labelled transitions become enabled simultaneously. This
concept is usually absent in stochastic discrete-event systems – how to analyze
their performance? – but has been widely accepted in the computer science
community for the purpose of under-specification. This is useful for modeling,
for instance [58]:

– Implementation freedom: non-determinism allows to specify freedom of im-
plementation; for instance, if two possible alternatives are described in the
specification, a valid implementation would just realize one of them

– Scheduling freedom: if several processes run in parallel, there is a freedom of
choice in selecting the next process that performs a move (interleaving)

– External environment: actions represent interaction opportunities with the
context in which the process is considered; the interaction capabilities of the
environment then influence how the choice is determined

Non-determinism is useful for under-specifying “how often” an alternative is
chosen. This information is usually not available in the early steps of the design,
or is deliberately left unspecified. If we are to study the performance of such
system specifications, this non-determinism will be resolved by adversaries, see
Section 7.

5 Stochastic Automata

This section introduces stochastic automata, a mixture of timed automata [2] and
GSMCs. Stochastic automata are strongly related to GSMCs and incorporate,
apart from the necessary (slightly generalized) ingredients to model GSMCs, the
possibility of specifying non-determinism. An extensive treatment of stochastic
automata is given in [27].
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Definition 2. A stochastic automaton SA = (S, s0,A, C, −→ , κ) where

– S is a non-empty set of locations with initial location s0 ∈ S
– A is a set of actions
– C is a set of clocks with distribution function Fx for each x ∈ C
– −→ ⊆ S × (A× Pf (C))× S is a set of edges
– κ : S → Pf (C) is a clock-setting function

(s, a, C, s′) ∈ −→ is denoted s a,C−−−→ s′. To each location s a finite set of clocks κ(s)
is associated. As soon as location s is entered, any clock x in κ(s) is initialized
according to its probability distribution function Fx. Once initialized, the clock
variables count down at the same rate of letting time pass (like in a GSMC).
A clock expires if it has reached the value 0. The occurrence of an action is
controlled by the expiration of clocks. Thus, whenever s a,C−−−→ s′ and the system
is in location s, action a is offered as soon as all clocks in the set C have expired.
In this situation, the edge s a,C−−−→ s′ is called enabled. After taking the edge, the
system evolves to location s′. If, after the expiration of a (possibly empty) set
of clocks, more than one edge outgoing from s is enabled, an enabled edge is
selected non-deterministically.

c, yc, yc, y

ya, x a, x a, x

c, y c, y c, y

(1, c) (2, c) (3, c)(0, c)

(0, a) (1, a) (2, a) (3, a)

a, x a, x a, x

y y y

x x x
x

Fig. 9. Stochastic automaton of a G/G/1/∞-system

Example 3. The stochastic automaton SAG/G/1/∞ (cf. Fig. 9) describes the be-
havior of the G/G/1/∞ queue. Here, we represent a location s as a circle con-
taining the clocks that are to be set in s, and denote edges by arrows. The initial
location is represented by a circle equipped with a small ingoing arrow (leftmost
circle in second row). We often omit curly brackets for singleton sets. SAG/G/1/∞
is defined by: S = {(i, α) | i > 0, α ∈ {a, c}}, s0 = (0, a), A = { a, c }, C = { x, y }
with Fx = F and Fy = H , and

κ(i, a) =
{
{ x } if i �= 1
{ x, y } if i = 1 and κ(i, c) =

{
{ x } if i �= 0
? if i = 0

and (i, α) a,x−−−→ (i+1, a) and (i+1, α) c,x−−−→ (i, c) for i > 0 and α ∈ A.
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This stochastic automaton can be understood as follows. Locations are pairs
where the first component indicates the number of jobs in the system (i.e., queue
and server), and the second component indicates whether the last action was
an arrival (action a) or a completion of a job (action c). Note that after the
occurrence of action a a location is reached in which clock x is set. Similarly,
after the occurrence of action c, clock y is set (except for location (0, c)). Clock
x thus controls the job inter-arrival time while clock y controls the service delay.
In location (1, a), the job that has just arrived is to be served. Thus both the
time of the next job arrival and the time until the job is serviced are determined.
Accordingly, clocks x and y are set in location (1, a). In location (0, c), however,
the last job has just been served and the delay until the next job arrival has
decided before. Accordingly, no clock is set in location (0, c).

5.1 Probabilistic Transition Systems

The formal interpretation of stochastic automata is defined in terms of prob-
abilistic transition systems. Probabilistic transition systems are labelled tran-
sition systems that contain two disjoint sets of states: probabilistic and non-
deterministic states. A non-deterministic state has zero or more outgoing tran-
sitions. These transitions determine how the system evolves from the state to a
possibly non-deterministically determined next probabilistic state. A probabilis-
tic state has a single outgoing probabilistic transition. A probabilistic transition
is a function that maps a probabilistic state onto a probability space whose sam-
ple space ranges over the set of non-deterministic states. Paths through a prob-
abilistic transition system are thus sequences of alternating non-deterministic
and probabilistic states.

Definition 3. Let Prob(H) denote the set of probability spaces (Ω,F ,Pr) such
that Ω ⊆ H.3 A probabilistic transition system (PTS, for short) is a structure
PTS = (N,P,L, T,−→, σ0) where

– N is a set of non-deterministic states
– P is a set of probabilistic states with N ∩ P = ?
– L is a set of labels
– T : P → Prob(N) is a (total) function called probabilistic transition relation
– −→ ⊆ N × L× P is the labelled (or non-deterministic) transition relation
– σ0 ∈ P is the initial (probabilistic) state

(σ′, +, σ) ∈ −→ will be denoted by σ′ �−→ σ. In the setting of this paper, the set
of labels is L = A × IR>0, where A is a set of action names. The reals denote

the (relative) time at which an action takes place. Transition σ
a,d−→ σ′ denotes

that the system evolves from non-deterministic state σ to probabilistic state σ′

by offering action a after idling precisely d time in state σ.

3 A probability space (Ω,F ,Pr) consists of a (sample) set Ω, a σ-algebra F and a
probability measure Pr : F → IR>0. More details can be found in [70].
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Example 4. Consider an automatic switch that controls a light. Assume that
the delay between two successive on-button switchings is governed by a negative
exponential distribution with mean 30 minutes and that the switch automatically
switches off the light in case the on-button has not been switched for exactly 2
minutes. The behavior of the switch is modeled by the following PTS:

– N = IR2 ∪ IR
– P = {σinit , σon} ∪ ({σoff } × IR)
– L = {on, off } × IR>0

– T (σinit ) = R(Fe,30), T (σon) = R(Fe,30, D2), and T (σoff , d) = Triv (d), and
– −→ is the smallest relation such that:

• (d, d′) on(d)−−−−→σon ⇔ 0 6 d 6 d′

• (d, d′) off (d′)−−−−−→ (σoff , d− d′) ⇔ 0 6 d′ 6 d

• d on(d)−−−−→σon ⇔ 0 6 d
– σ0 = σinit

where R(Fe,30) is the probability space on the real line with the unique proba-
bility measure obtained from Fe,30(t) = 1−e− t

30 , R(Fe,30, D2) is the probability
space on the real plane obtained from Fe,30 and D2(t) = 0 for t < 2 and 1
otherwise, and Triv (d) is the trivial probability space on { d }.

The PTS is explained as follows. The system starts in σinit , the state in which
the light is off. By taking a probabilistic transition, the time d until switching
the light on is determined according to distribution Fe,30 and the system evolves
to state d, where the switch waits until it is switched on. If the light is switched
on, the system moves to the probabilistic state σon . On taking the probabilistic
transition from σon two time instants are randomly determined: time d until the
light is switched on (again) and time d′ until the light turns itself off. The next
non-deterministic state is thus (d, d′). Note that d′ = 2 with probability one.
Now two scenarios may occur. If the light is switched on first (i.e., d 6 d′), the
on-button is switched: (d, d′) −→ σon labelled with action on(d). In this state,
both time values will be determined again. In the other case, the light turns
off while reaching state (σoff , d−d′) via performing action off (d′), where d−d′
is the remaining time until the next switching. From state (σoff , d) the non-
deterministic state d is reached with probability one, where the switch waits
until it is switched on.

5.2 Interpretation of Stochastic Automata in Terms of PTSs

The formal semantics of a stochastic automaton is defined in terms of a PTS.
The relation between stochastic automata and PTSs is similar to the relation
between timed automata and timed transition systems. We present the mapping
of stochastic automata onto PTSs in an informal way; a formal treatment can
be found in [27,31]. The states of the PTS keep track of the current location and
the values of all clocks involved. Values of clocks are determined by a valuation,
a function that assigns to each clock x ∈ C its real value v(x) ∈ IR. (We let
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V denote the set of valuations.) States are thus pairs (s, v). To distinguish non-
deterministic and probabilistic states we write [s, v] for a non-deterministic state,
and use (s, v) for probabilistic states. As above, the labelled transition is labelled
with pairs (a, d), for action a and delay d.

Performing an edge in the stochastic automaton is represented by a sequence
of two steps. Suppose there is an edge from location s to s′ labelled with a,C,
and assume the current state is [s, v]. If after delaying for some time d, say,
all clocks in C have expired, then [s, v] a,d−−−→ (s′, v′) with s′ the location just
reached in the stochastic automaton and v′ such that for all clocks d time units
have passed: v′(x) = v(x) − d. While entering location s′ though, the clocks in
κ(s′) need to be set. This is accomplished by a subsequent probabilistic transition
starting from (s′, v′), the state just reached. For the sake of simplicity, assume
that κ(s′) = { x, y }. Then, T (s′, v′) is a unique probability space induced by the
distributions of the clocks, Fx and Fy , in a Borel space on a two-dimensional real
hyper-space. The clocks that are not in κ(s′) keep their value while the clocks
x and y are initialized according to their distributions. Thus, in the resulting
state [s′, v′′] the system is still in location s′ (as expected), and v′′(z) = v′(z)
for each z different from x and y, while v′′(x) = Fx() and v′′(y) = Fy(). Note
the resemblance of this recipe with step 4. of the procedure in Section 3 that
described the dynamics of a GSMC.

There is a subtlety though in the first step of the recipe. According to the
above procedure, [s, v]−→ (s′, v′) if all clocks in C have expired. However, we did
not make clear yet whether to take such transition as soon as all clocks in C
have expired, or whether it is allowed to take it at any time point once they have
expired. In the first scenario, no delay is allowed once the clocks have expired –
it adheres to the so-called “maximal progress” philosophy – while in the second
such delay is allowed. Both interpretations have their own use:

– the notion of maximal progress is appropriate when the stochastic automa-
ton is a closed system, i.e., a system which is complete by itself and which
needs no further synchronization with other automata. As no further syn-
chronizations are envisaged, there is no need to delay transitions any further
once they are enabled, since there will be no further (external) processes
that can delay their execution. Such perspective is useful, for instance, to
determine the model’s performance characteristics.

– to study reachability properties like freedom from deadlock, it is important
to observe how the system behaves in an arbitrary context. That is, the
interaction of a system with a certain “well-behaved” component may not
induce a deadlock, while a “badly-behaved” component could take the sys-
tem through an undesired path that will end in a deadlock situation. In this
open system perspective, an action that is enabled may not be executed until
the environment is also ready to execute such an action. Therefore, it may
not take place as soon as it is enabled.

In the sequel, let O[[ SA ]]v denote the open interpretation of SA with initial
valuation v, and C[[ SA ]]v denote the closed interpretation of SA. Note that the
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only difference between the closed and open interpretation is how to treat the
expiration of clocks: either a delay is allowed once they expire (open), or it is not
(closed). All other components of the PTSs O[[ SA ]] and C[[ SA ]] are the same.

x
y

s

x

a, x

a, x

b, y

s′

Fig. 10. A simple stochastic automaton

Example 5. To illustrate the difference between the open and closed interpre-
tation, consider the stochastic automaton depicted in Fig. 10. In the closed
interpretation the following non-deterministic transitions are present:

[s, (d, d′)] a,d−−−→ (s′, (0, d′−d)) if and only if d > 0
[s′, (d, d′)] b,d′

−−−→ (s, (d−d′, 0)) if and only if 0 6 d′ 6 d
[s′, (d, d′)] a,d−−−→ (s, (0, d′−d)) if and only if 0 6 d 6 d′

where (d, d′) denotes valuation v with v(x) = d and v(y) = d′. Note the rela-
tionship between the clock values of x and y for taking an edge outgoing from
location s′. In fact, if Fx and Fy would, for instance, be uniformly distributed on
the intervals [0, 5] and [11, 12], respectively, it follows that in the closed interpre-
tation the edge leading from s′ to s will never be enabled. This follows from the
fact that there is no valuation (d, d′) in s′ such that d′ 6 d. Instead on entering
location s′, clock x is reset and will always expire before clock y expires. In the
open interpretation we obtain:

[s, (d, d′)] a,d∗
−−−→ (s′, (d−d∗, d′−d∗)) if and only if d∗ > 0 ∧ d∗ > d

[s′, (d, d′)] b,d∗
−−−→ (s, (d−d∗, d′−d∗)) if and only if d∗ > 0 ∧ d∗ > d′

[s′, (d, d′)] a,d∗
−−−→ (s, (d−d∗, d′−d∗)) if and only if d∗ > 0 ∧ d∗ > d

In the open interpretation there is no relationship between clock x and clock
y. Instead, the only requirement is that the time d∗ of taking the transition is
positive and beyond the time at which the edge becomes enabled. It follows that
in this interpretation the edge from s′ to s can indeed be taken for the uniform
distributions given above.

5.3 How to Compare Stochastic Automata?

A key question in formal methods (and in practice) is whether a system im-
plementation meets its specification, i.e., when is an implementation proper?
In our setting this question can be dealt with in the following way: first model
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the behavior of the specification as a stochastic automaton, do the same for the
implementation, and then compare these two stochastic automata. Depending
on the notion of “being a proper implementation”, different comparisons can
be made. For instance, if performance is not of much interest one may compare
solely on the structure of the two automata while neglecting the probabilistic in-
formation. If, on the other hand, performance is of importance, such comparison
is insufficient, and probabilistic information should be taken into account. Thus,
for different perspectives, different notions of comparison are of interest. As a
result, several equivalence relations (i.e., notions of comparison), are defined on
stochastic automata.

Isomorphism. The first equivalence notions that we consider is isomorphism. Two
stochastic automata are isomorphic if there exists a bijective function that maps
locations from one to locations of the other without disturbing the structure of
the automaton.

Definition 4. Stochastic automata SA1 = (S1, s
1
0, C,A, −→ 1, κ1) and SA2 =

(S2, s
2
0, C,A, −→ 2, κ2) are isomorphic, denoted SA1 ∼iso SA2, iff there exists a

bijection φ : S1 → S2 such that

– φ(s10) = s
2
0, and

– s −→1 s
′ if and only if φ(s) −→2 φ(s′), and

– κ1(s) = κ2(φ(s))

Note: for simplicity we have assumed that the clocks and actions of both au-
tomata are identical; it is not difficult to extend this notion with an isomorphism
on clocks and actions.

Structural bisimulation. In concurrency theory, one of the most interesting equiv-
alence relations for labelled transition systems is bisimulation [77]: two states
are bisimilar if they can mimic each other while evolving into bisimilar states.
Two labelled transition systems are bisimilar if and only if their initial states
are bisimilar. The notion of structural bisimulation decides the equivalence of
stochastic automata by inspecting their structure only.

Definition 5. Let (S, s0, C,A, −→ , κ) be a stochastic automaton. R ⊆ S × S is
a structural bisimulation if R is symmetric and whenever s1Rs2:

1. ∀a ∈ A, C ⊆ C. s1 a,C−−−→ s′1 implies ∃s′2. s2 a,C−−−→ s′2 and s′1Rs
′
2

2. κ(s1) = κ(s2)

If R is a structural bisimulation such that s1Rs2, we write s1 ∼ s2 and call s1
and s2 structural bisimilar.

Stochastic automata SA1 and SA2 are structural bisimilar, notation SA1 ∼
SA2, if their respective initial locations are structural bisimilar on the disjoint
union of SA1 and SA2. If we omit the clock-related information, structural bisim-
ulation reduces to usual (strong) bisimulation on labelled transition systems [77].
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Example 6. Isomorphic stochastic automata are structural bisimilar, but the re-
verse is not true, cf. Fig. 11. In the left-hand process, there is a non-deterministic
choice in the initial location to move (while emitting a on expiration of clock x)
to an absorbing location, i.e., a location without outgoing transitions. There is
no bijection that maps the absorbing locations to the single absorbing location
in the right-hand process, and thus, these processes are not isomorphic. The au-
tomata are structural bisimilar since the relation R = { (s1, t1), (s2, t2), (s3, t2) }
is a structural bisimulation.

x

∼

t2

�∼iso

x

a, x a, x a, x

s2

s1

s3

t1

Fig. 11. Two structural bisimilar but non-isomorphic stochastic automata

Probabilistic bisimulation. Structural bisimulation is a simple notion of equiva-
lence and does not take any probabilistic information into account. In order to
define a probabilistic variant of bisimulation we consider a notion of probabilis-
tic bisimulation on PTSs. Subsequently, we lift this to stochastic automata and
illustrate its usage.

Definition 6. Let (N,P,L, T,−→) be a PTS with S ⊆ N and σ ∈ P such that
T (σ) = (Ω,F ,Pr). Then µ : P × P(N)→ [0, 1] is defined by:

µ(σ, S) =

{
Pr(S ∩Ω) if S ∩Ω ∈ F
0 otherwise

Let R be an equivalence relation on N ∪ P such that if 〈σ1, σ2〉 ∈ R then either
σ1, σ2 ∈ N or σ1, σ2 ∈ P . Let N/R be the set of equivalence classes in N induced
by R. R is a probabilistic bisimulation if for all 〈σ1, σ2〉 ∈ R:

1. ∀S ⊆ N/R: µ(σ1,
⋃
S) = µ(σ2,

⋃
S), whenever σ1, σ2 ∈ P

2. ∀+ ∈ L: σ1
�−→ σ′1 implies σ2

�−→ σ′2 and 〈σ′1, σ′2〉 ∈ R, for some σ′2 ∈ P ,
whenever σ1, σ2 ∈ N

States σ1 and σ2 are probabilistically bisimilar, denoted σ1 ∼p σ2, if there exists
a probabilistic bisimulation R with 〈σ1, σ2〉 ∈ R. PTS1 and PTS2 with initial
state σ1 and σ2, respectively, are probabilistic bisimilar if σ1 ∼p σ2 in the (dis-
joint) union of PTS1 and PTS2.

Due to the involvement of continuous distributions, the definition is slightly
more involved than existing definitions that consider only discrete distribu-
tions [44,71,90]. Nevertheless, both types of probabilistic bisimulation coincide
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on the discrete case. A proof of this fact, together with a proof that ∼p is an
equivalence relation, can be found in [27]. Probabilistic bisimulation is lifted to
stochastic automata in the following way:

– SA1 and SA2 are open probabilistic bisimilar, denoted SA1 ∼◦
p SA2 if and

only if O[[SA ]]v0 ∼p O[[SA ]]v0 , for any initial valuation v0;
– SA1 and SA2 are closed probabilistic bisimilar, denoted SA1 ∼•

p SA2 if and
only if C[[SA ]]v0 ∼p C[[SA ]]v0 , for any initial valuation v0.

w

z

x, y

x
y

t3y
x
y

b
b, w a, z

s1

x, y
b

a
x y

a

xs2

t1

t2

Fig. 12. Two open p-bisimilar stochastic automata

Example 7. The stochastic automata in Fig. 12 are open p-bisimilar if

Fz(t) = Fmin{x,y}(t) = 1− (1− Fx(t))(1 − Fy(t)) and
Fw(t) = Fmax{x,y}(t) = Fx(t) · Fy(t)

since

R = { ((s1, v), (t1, u)) | u, v ∈ V }
∪ { ([s1, v], [t1, u]) | u, v ∈ V , v(z) = min{u(x), u(y)} }
∪ { ((s2, v), (ti, u)) | u, v ∈ V , i ∈ { 2, 3 } }
∪ { ([s2, v], [ti, u]) | u, v ∈ V , i ∈ { 2, 3 }, v(w) = max{u(x), u(y)} }

is a probabilistic bisimulation between their open PTSs. This can intuitively
be seen as follows. On entering location t1 in the right-hand automaton, a race
takes place between clocks x and y. According to the clock that expires first —
this corresponds to the minimum of their distributions — a transition is made
to either t2 or t3 while performing a and setting clocks x and y. The same
behavior can take place in location s1 in the left-hand stochastic automaton
where a takes place after expiration of clock z with Fz = Fmin{x,y}. From the
locations t2 and t3 a b-transition is possible back to location t1 when both clocks
x and y — this corresponds to the maximum of their distributions — have
expired. This is mimicked by going from s2 to s1 after the expiration of clock
w with Fw = Fmax{x,y}. Note that it is crucial that both clocks x and y are
set in locations t2 and t3; otherwise the automata would not have been open
probabilistic bisimilar.
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Theorem 1. ∼•
p ⊂ ∼◦

p ⊂ ∼ ⊂ ∼iso.

This result relates the different notions of equivalence that were introduced:
isomorphism is the strongest notion, whereas ∼•

p is the weakest one.
The inclusions in Theorem 1 are strict as exemplified by Fig. 13. Stochastic

automata (a) and (b) are structural bisimilar, but not isomorphic, as we have
seen before; (b) and (c) are not structural bisimilar, since e.g., the initial locations
cannot be related (due to different clocks), but are open probabilistic bisimilar,
as both automata can perform an a-action after an equal stochastic delay while
evolving to equivalent locations. Finally, the stochastic automata (d) and (e) are
closed probabilistic bisimilar as both automata perform an a immediately, but
are not open probabilistic bisimilar, because the maximal progress condition does
not apply. For instance, a context that is able to participate in b (after imposing
a possible extra delay) but forbids action a distinguishes the two processes.

a a
x x

x

a
x

a a

y, z

y z

∼•
p

x

�∼iso

∼

Provided Fmin{y,z} = Fx

(a) (b)

�∼
∼◦

p

(c) (e)(d)

x

x

a
?

�∼◦
p

?

ab

Provided Fx(0) = 0

Fig. 13. Structural vs. open vs. closed probabilistic bisimulation

Structural bisimulation is defined directly on stochastic automata, but does
not consider any stochastic information. Open and closed probabilistic bisimi-
larity do take the probabilistic behavior into account, but are defined in terms
of the underlying, infinite PTS. Probabilistic information can be considered at
a symbolic level too by considering a form of structural bisimulation [27]. The
treatment of this notion falls outside the scope of this tutorial.

5.4 GSMCs versus Stochastic Automata

The relation between stochastic automata and GSMCs is shown by providing a
mapping, denoted gsmc2sa, from GSMCs onto stochastic automata. The exis-
tence of this mapping indicates that GSMCs are properly included in stochastic
automata.

The basic idea of the mapping of a GSMC onto a stochastic automaton is to
introduce a location as a pair (z, E) where z is a state of the GSMC and E is
the set of events that are already active. The initial location is (z0,?). For each
active event in state z, there is an outgoing edge from any location (z, E). This
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edge is labelled with event e (i.e., the action) and the set of clocks {C(e)}. So,
events are considered as actions and active events of z are

E(z) =
⋃
{e | (z, E) e,{C(e)}−−−−−−→}.

Since in a GSMC exactly one clock is associated to an event, we obtain singleton
sets as triggering conditions in the automaton. In the following, we use C on sets
of events in the usual way, i.e., C(E) = {C(e) | e ∈ E }.

Definition 7. For GSMC G = (Z, z0,E, E, C,next) the stochastic automaton
gsmc2sa(G) = (S, s0, C,A, −→ , κ) is defined by:

– S = Z × Pf (E) with s0 = (z0,?),
– C = C(E),
– A = E,
– κ(z, E) = C(E(z)− E), and
– −→ is defined by the rule

e ∈ E(z)
(z, E) e,{C(e)}−−−−−−→ (next(z, e), E(z)− {e})

Due to the fact that E(z) �= ? for any z, the condition e ∈ E(z) is always
satisfied. There are many locations (z, E) ∈ S that are unreachable via −→ . All
reachable locations have the form (next(z, e), E(z)− {e}) for every (reachable)
z ∈ Z and e ∈ E(z). Note that for z′ = next(z, e) we have κ(z′, E(z) − {e}) =
C(E(z′)− (E(z)− {e})), the set of clocks for all newly active events in z′.

x
y

a, x

(3, { c })

a, x a, x

c, yc, yc, y

a, x a, x a, x

c, y c, y c, y

x x x

y y y

(1, { a }) (2, { a }) (3, { a })(0, { a })

(0,?) (1,?) (2, { c })

Fig. 14. Stochastic automaton generated from example GSMC of Fig. 3

Example 8. Consider the GSMC of the G/G/1/∞-system depicted in Fig. 3. The
stochastic automaton that corresponds to this GSMC is obtained in the following
way: the initial location is (0,?), the state in which there are no jobs in the
queue, and there is no active event; κ(0,?) = C(E(0)) = { x }; since a ∈ E(0),
and C(a) = x, the initial location has a single outgoing edge labelled a, x leading
to location (next(a, 0), E(0)− { a }) = (1,?) with κ(1,?) = C(E(1)) = { x, y }.
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It is easy to check that this location has an edge labelled c, y to location (0, { a })
and an edge labelled a, x to (2, { c }). If we continue this reasoning we obtain the
automaton of Fig. 14. Note that this automaton is isomorphic to Fig. 9.

The correctness of the translation gsmc2sa is assessed in [27]. As argued before,
stochastic automata are more expressive than GSMCs, since stochastic automata
do allow non-determinism (two or more outgoing edges that are enabled at the
same time), whereas GSMCs do not. Therefore a reverse translation does not
make much sense. In addition, in the stochastic automaton model clocks may be
initialized by general distributions — including discrete distribution functions
— without any restriction.

6 The Stochastic Process Algebra

The basic idea of the stochastic process algebra SPADES (Stochastic Process
Algebra for Discrete-Event Simulation), symbolized by , is to separate the
three ingredients that are present in stochastic automata at a syntactical level.
We thus distinguish in explicitly between:

– the start of a probabilistic delay (denoted set C in p),
– the completion of a probabilistic delay (denoted when C �→ p), and
– the occurrence of immediate actions (denoted a; p).

As we will see, this separation allows us to obtain a straightforward expansion
law.

6.1 Syntax and Semantics

Syntax. LetA be a set of actions, V a set of process variables, and C a set of clocks
with (x,G) ∈ C for x a clock name and G an general probability distribution
function. We abbreviate (x,G) by xG.

Definition 8. The syntax of is defined by:

p ::= 0 | a; p | when C �→ p | p+ p | set C in p | p ||A p | p[f ] | X.
where C ⊆ C is finite, a ∈ A, A ⊆ A, f : A → A, and X ∈ V. A recursive
specification E is a set of recursive equations of the form X = p for each X ∈ V,
where p ∈ .

Besides the operations used in Section 4 the language incorporates the basic
process 0, the process that cannot perform any action. A few words on p+ q are
in order. p + q behaves either as p or q, but not both. At execution the fastest
process, i.e. the process that is enabled first, is selected. This is known as the race
condition. If this fastest process is not uniquely determined, a non-deterministic
selection among the fastest processes is made.
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Operators when C �→ . . ., set C in . . ., prefixing and renaming have the high-
est binding precedence, followed by choice and parallel composition.

Semantics. To associate a stochastic automaton SA(p) to a given term p in the
language, we define the different components of SA(p)4. In order to define the
automaton associated to a parallel composition, we introduce the additional op-
eration nock. nock(p) is a process that behaves like p except that no clock is set
at the very beginning. As usual in structured operational semantics, a location
corresponds to a term. The clock setting function κ is defined as the smallest
set satisfying the equations in Table 1. The set of edges −→ between locations is

κ(0) = ?

κ(a; p) = ?

κ(when C �→ p) = κ(p)

κ(p+ q) = κ(p) ∪ κ(q)

κ(nock(p)) = ?

κ(set C in p) = κ(p) ∪ C

κ(p ||A q) = κ(p) ∪ κ(q)

κ(p[f ]) = κ(p)

κ(X) = κ(p) (X = p)

Table 1. Clock setting function for

defined as the smallest relation satisfying the rules in Table 2. The function F is
defined by F (xG) = G for each clock x in p. The other components are defined
as for the syntax of .

Let us briefly explain the operational rules from Table 2.

– There is no rule for the process 0 as it cannot perform any action.
– The action-prefixed process a; p can immediately perform an a while evolving

into p. Since a is performed immediately, there is no need to wait for the
expiration of a clock. So, the transition is labelled with an empty set of
clocks.

– Process when C �→ p can perform any action that p can perform, with the
restriction that it has to wait until all clocks in the set C have expired. So, if
p has to wait for the expiration of all clocks in C′ to perform action a, then
process when C �→ p has to wait for all clocks in C ∪C′.

– Processes set C in p and nock(p) can mimic p; their difference with p is solely
in the clock-setting function, cf. Table 1.

– p+ q behaves like either p or q (but not both).
– p[f ] behaves like p except that all actions are renamed according to f .
– Process X behaves like p, provided it is defined as X = p.

4 Here we assume that p does not contain any name clashes of clock variables. This is
not a severe restriction since terms that suffer from such name clash can always be
properly renamed into a term without such name clash [27].
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a; p a,?−−−→ p
p a,C′−−−−→ p′

when C �→ p a,C∪C′−−−−−−→ p′
p a,C′−−−−→ p′

set C in p a,C′−−−−→ p′

p a,C−−−→ p′

p+ q a,C−−−→ p′

q + p a,C−−−→ p′

p a,C−−−→ p′

p[f ] f(a),C−−−−−→ p′[f ]

p a,C−−−→ p′

nock(p) a,C−−−→ p′
p a,C−−−→ p′

X a,C−−−→ p′
(X = p)

p a,C−−−→ p′

p ||A q a,C−−−→ p′ ||A nock(q)

q ||A p a,C−−−→ nock(q) ||A p′

(a /∈ A)
p a,C−−−→ p′ q a,C′−−−−→ q′

p ||A q a,C∪C′−−−−−−→ p′ ||A q′
(a ∈ A)

Table 2. Structured operational semantics for

– For parallel composition two situations are distinguished:
• In case a synchronization takes place, i.e., some action a ∈ A is per-
formed, both involved processes must be ready to perform a. So, all
clocks needed to perform a in both processes have to be expired.

• If a process carries out an action not in A, it does so autonomously.
Naively, this yields the following traditional operational rule:

p a,C−−−→ p′

p ||A q a,C−−−→ p′ ||A q

for a �∈ A. This would, however, lead to a situation in which all clocks
in p′ and q are reset in the resulting location. This is incorrect for the
clocks in q, since now the elapse of time since the clocks of q were set
(when reaching p ||A q) is neglected, cf. equation (4) and Fig. 2. To solve
this problem, the state p′ ||A nock(q) is reached instead where the use of
nock(q) avoids the setting of the clocks in q, i.e., κ(nock(q)) = ?, cf.
Table 1.

Example 9. Using this recipe it can be shown that the semantics of the process
algebraic G/G/1/∞ specification boils down to the (at first sight somewhat
complicated) stochastic automaton depicted in Fig. 15. Here, empty sets are
omitted; in particular b stands for b,?. Note that the in locations that are
reached after the server has just completed servicing a job, no clocks are set.
Although the state space of this automaton is somewhat larger than that of
the direct representation in Fig. 14, this does not have a serious impact on the
efficiency of stochastic simulation, as will see later on. Since in our semantics
a state corresponds to a term, simulation can be carried out on the basis of
expressions rather than using their semantic representations. This will be further
discussed in Section 7.
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c, y

a, x a, x a, x a, x

a, xa, x

y

a, x

a, x a, x

a, xa, x

a, x a, x

c, y

c, y c, y

c, y c, y

c, y

b

b b b b

bb

x x x

xxxxx

yyy

Fig. 15. Stochastic automaton of the compositional G/G/1/∞ specification

Expressive power of stochastic automata versus . Stochastic automata and
are equally expressive. This means that for any stochastic automaton a corre-
sponding term in can be given whose reachable part of its stochastic automaton
is identical to the stochastic automaton at hand, up to renaming of clocks.

Theorem 2. For every stochastic automaton SA there exists a recursive speci-
fication E with root p in such that the reachable part of SA and the reachable
part of SA(p) are isomorphic.

As a result of this theorem and the fact that GSMCs are a proper subset of
stochastic automata, it follows that each GSMC is representable by a specifi-
cation.

Example 10. Consider the stochastic automaton of Fig. 9. The reader is invited
to check that this stochastic automaton is isomorphic to the following recursive
specification for i > 0:

P0 = set x in (when x �→ a;P1)
P1 = set x, y in (when y �→ c;Q0 + when x �→ a;P2)

Pi+2 = set x in (when y �→ c;Qi+1 + when x �→ a;Pi+3)
Q0 = set ? in (when x �→ a;P1)

Qi+1 = set y in (when x �→ a;Pi+2 + when y �→ c;Qi)

The indices the processes indicate the number of jobs that are currently in the
system, i.e., that are either queued or currently being processed. Note that the
structure of each process definition is of the same shape: first some clocks are
set, then their expiration is awaited, and an action takes place before invoking
a process instance.

6.2 Notions of Congruence

The equivalence notions defined for stochastic automata (cf. Section 5.3) can
be lifted to terms in in the following straightforward way. Terms p and q are
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structurally bisimilar, denoted p ∼ q, if and only if SA(p) ∼ SA(q). In a similar
way we define: p ∼◦

p q iff SA(p) ∼◦
p SA(q) and p ∼•

p q iff SA(p) ∼•
p SA(q).

Here, we will investigate whether these equivalence notions are congruences.
Recall that an equivalence relation is a congruence if two equivalent terms behave
indistinguishable in any context. We have:

Theorem 3. ∼ and ∼◦
p are congruences with respect to all operators in .

(It should be noted that ∼ is also a congruence for recursion and nock.) Due to
this result, replacing in a specification a sub-term p by its bisimilar equivalent
q results in a bisimilar specification. The proof of this result for ∼ is rather
simple and follows from the fact that the operational rules of Table 2 obey a
certain syntactic format (the so-called path format of [7]); the proof for ∼◦

p is
rather involved and tedious as it requires manipulations on Borel spaces, cf. [27].
∼•

p is not a congruence for parallel composition as illustrated by the following
example.

Example 11. Consider the processes

p = a;0+ set x in (when x �→ b;0)
q = a;0+ set x in (when x �→ c;0)

where b and c are distinct actions. Note that q = p[b/c]. We have p ∼•
p q if

Fx(0) = 0, since then in both processes only action a at time 0 can be performed
due to the maximal progress principle. However,

p ||a 0 �∼•
p q ||a 0

In the context process 0, the execution of action a is disabled, since there is
no possible synchronization, and therefore b or c will happen (at a certain posi-
tive time instant). This example is depicted in terms of stochastic automata in
Fig. 16.

a,? a,?

x

b, x

�∼p

x

c, x

p p

x

b, x

x

c, x

p ||a 0 q ||a 0

∼p

but

Fig. 16. Closed probabilistic bisimulation is not a congruence for ||A

The reader is invited to check that ∼•
p is also not a congruence for the operator

when C �→ p.
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6.3 Equational Reasoning

Rather than proving that p and q are e.g., structural bisimilar using the semantic
interpretations SA(p) and SA(q) it is often more convenient to use rules defined
on the syntax of p and q that are known to preserve (in this case) ∼. This en-
ables the transformation and comparison of terms at a purely syntactic level.
In this section, we present a sound and complete axiomatization for structural
bisimulation of the core calculus of , i.e., the fragment of consisting of the
basic operators, i.e., excluding recursion and parallel composition. In addition,
some sound axioms for open probabilistic bisimulation will be presented.

Axiomatization of structural bisimulation. Let the set fv(p) of free (clock) vari-
ables of p be defined as the smallest set satisfying the equations in Table 3. The

fv(0) = ?

fv(a; p) = fv(p)

fv(when C �→ p) = C ∪ fv(p)

fv(p+ q) = fv(p) ∪ fv(q)

fv(nock(p)) = fv(p) ∪ κ(p)

fv(set C in p) = fv(p)− C

fv(p ||A q) = fv(p) ∪ fv(q)

fv(p[f ]) = fv(p)

fv(X) = fv(p) (X = p)

Table 3. Free variables of terms in

axioms for structural bisimulation are given in Table 4 and can be explained
as follows. As in traditional process algebra, the choice is commutative (A1)
and associative (A2), and 0 is the neutral element for + (A4). Axiom A3 is
a distinguishing law for stochastic process algebra (also for Markovian process
algebra) and can be regarded as a weak version of the traditional idempotence
axiom of choice (p + p = p). The reason of not having this axiom of choice is
that in case of two competing processes such as

(set x in (when x �→ p)) + (set y in (when y �→ p))

the resolution of the choice is controlled by the minimum of two random variables
with the distributions of x and y, respectively. As a result, the term p is reached
“faster” than in either of the sub-terms of the choice. Accordingly,

set x in (when x �→ a; p) + set x in (when x �→ a; p) �= set x in (when x �→ a; p)
(6)

Later on, we will make this more precise when discussing some axioms of open
probabilistic bisimulation. Note that, however, due to T5 and A3 we have:

set x in ((when x �→ a; p) + (when x �→ a; p)) = set x in (when x �→ a; p)
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A1 p+ q = q + p

A2 (p+ q) + r = p+ (q + r)

A3 a; p+ a; p = a; p

A4 p+ 0 = p

T1 when C �→ 0 = 0

T2 when ? �→ p = p

T3 when C �→ (when C′ �→ p) = when (C ∪ C′) �→ p

T4 when C �→ (set C′ in p) = set C′ in (when C �→ p) if C ∩ C′ = ?

T5 when C �→ (p+ q) = when C �→ p+ when C �→ q

C1 set ? in p = p

C2 set C in (set C′ in p) = set (C ∪ C′) in p

C3 (set C in p) + (set C′ in q) = set (C ∪ C′) in (p+ q)

if C ∩ (fv(q) ∪ κ(q)) = C′ ∩ (fv(p) ∪ κ(p)) = ?

Table 4. Axioms for structural bisimulation on

where the setting of clock x is common to both terms. In fact, one can show that
the idempotence law p+ p = p is obtained if the structure of p is restricted such
that all clock setting operations of the form set C in r in p occur in a sub-term
of the form a; q. Axioms T1–T5 show the way in which triggering conditions
can be simplified. In particular, T3 defines how to reduce nested triggering
conditions into a single one, and axioms T4 and T5 state how to move clock
settings and summations out of the scope of a guard. Axiom C1 expresses that it
is irrelevant to set an empty set of clocks. C2 gathers all the clocks settings in a
single operation and C3 moves clocks settings out of the scope of a summation.
(The auxiliary notion of free variables in a term is defined in Table 3.)

For axioms for the static operators such as renaming and parallel composi-
tion we refer to [27].

Expansion law. Using the complete and sound axiomatization of structural bisim-
ulation for one can show that any (finite) term p can be converted into a normal
form which has the shape

set C in
(∑

when Ci �→ ai; pi
)

where pi are terms in normal form and
∑

is the usual generalization of choice:∑
0<i6n pi equals p1 + . . .+ pn for n>0, and 0 for n=0. The reader is invited to

check that this format is the same as the one used in Example 10.
As we have argued in the introduction, an essential law in traditional process

algebras is the expansion law. This law allows to reduce parallel composition in
terms of prefix and choice, and has proven to be of crucial importance for process
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algebraic verification purposes. A stochastic equivalent of this law is defined by
the following result.

Theorem 4. Let p, q ∈ such that p = set C in p′ and q = set C′ in q′ with
p′ =

∑
(when Ci �→ ai; pi) and q′ =

∑
(when C′

j �→ bj ; qj). Suppose p ||A q does
not contain name clashes. Then p ||A q equals

set (C ∪ C′) in
( ∑

ai /∈A when Ci �→ ai; (pi ||A q′)
+

∑
bj /∈A when C′

j �→ bj; (p′ ||A qj)

+
∑

ai=bj∈A when (Ci ∪ C′
j) �→ ai; (pi ||A qj)

)
.

In fact, the expansion law is inherent in our model and follows at the language
level from the way in which we have distinguished between 3 activities in the syn-
tax: (1) starting a delay, i.e., setting a clock, (2) finishing a delay, i.e., expiration
of a clock, and (3) the occurrence of (immediate) actions.

Example 12. By means of the above expansion law we would like to discuss
the way in which delayed actions are synchronized in . For that purpose we
consider:

(set x in when x �→ a; p) ||a (set y in when y �→ a; q)

Using the expansion law, this term can be rewritten into the equivalent term

set x, y in (when x, y �→ a; (p ||a q))

This entails that action a can happen after both clocks x and y have expired. In
stochastic terms, this means that two random variables are competing, viz. the
maximum of the random variables with distributions Fx and Fy . As the maxi-
mum of two statistically independent random variables is distributed according
to the product of their distribution (cf. Example 7), we obtain that synchroniza-
tion of delayed actions in is based on the product of distributions. In most
Markovian process algebras (with the notable exception of [49,51]), this pol-
icy is not taken, since the class of exponential distributions is not closed under
product.

Open probabilistic bisimulation. Here, we present some sound axioms for open
probabilistic bisimulation (∼◦

p). The axioms presented in Table 5 are incomplete,
but are useful for reducing the number of clocks in a expression. Axiom P1
allows to eliminate redundant clock settings by stating that it is not necessary
to set clocks that do not occur free in process p. Since these clocks do not freely
occur in p they are either not used or are set again once they will be used.
Axiom P2 states that clocks that have been used, i.e, that have expired, are
not useful anymore (at least not before being set again), and thus can safely be
removed. Axiom P3 expresses that clocks that are set to a positive value with
probability 0 cannot affect the timing of a process. Finally, the most involved
axiom is A3′. This axiom is a weak variant of the idempotence axiom A3 (i.e.,
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P1 set C in p = p if C ∩ fv(p) = ?

P2 (when C �→ a); (when C �→ p) = when C �→ a; p

A3′ set x, y in (when x �→ p+ when y �→ p) = set z in (when z �→ p)

if {x, y, z } ∩ fv(p) = ? ∧ ∀t ∈ IR>0. Fz(t) = Fmin{x,y}(t)

P3 set x in (when x �→ p) = set x in p if Fx(0) = 1

Table 5. Some axioms for open probabilistic bisimulation on

a; p + a; p = a; p) for structural bisimulation. Axiom A3′ states that in case of
two competing processes such as

(set x in (when x �→ p)) + (set y in (when y �→ p))

which, according to C3, is equivalent to

set x, y in (when x �→ p+ when y �→ p)

the resolution of the choice is controlled by the minimum of two independent
random variables with the distributions of x and y. The process can thus be
replaced by

set z in (when z �→ p)

where z is a fresh clock (i.e., { x, y, z }∩ fv(p) = ?) with distribution min(Fx, Fy).
Note that in case x and y are exponentially distributed, axiom A3′ reduces to
the idempotence law for Markovian process algebra [52]:

λ �→ p+ µ �→ p = (λ+µ) �→ p

as stated in the notation used in the introduction.

Example 13. Using axiom A3′ we can now deduce that indeed inequation (6) is
valid in general:

set x in (when x �→ p) + set x in (when x �→ p)
= { α conversion }

set x in (when x �→ p) + set y in (when y �→ p)
= { axiom C3 }

set x, y in ((when x �→ p) + (when y �→ p))
= { axiom A3′ }

set z in (when z �→ p)

where Fz = Fx · Fy = F 2
x . Since F 2

x �= Fx for any non-trivial random variable x,
we obtain the inequality (6).
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7 Analysis of Specifications

Until so far, we have introduced a process algebra for describing GSMCs (with
possible non-determinism) while concentrating on notions like formal semantics,
equivalences, axiomatisation and so on. In this section, we focus our attention on
the analysis of specifications, both in a quantitative and qualitative sense. For
the first type of analysis we consider discrete-event simulation, for the qualitative
analysis we consider the checking of reachability properties.

7.1 Quantitative Analysis: Discrete-Event Simulation

By means of quantitative analysis, we obtain insight in questions related to the
performance (in measures like throughput or response times) and dependability
of systems (in terms of failure rates, mean time between failure, and so on).
For a restricted set of stochastic automata – those that correspond to insensi-
tive GSMCs [88] – numerical methods can be used to assess their steady-state
(i.e., long run) behavior. Alternatively, in case of absence of non-determinism,
approximation results can be employed, and arbitrary distributions can be ap-
proximated by phase-type distributions [79]. This results in a continuous-time
Markov chain for which efficient numerical methods exist [95].

A general approach towards assessing quantitative properties is simulation,
in particular discrete-event simulation [21,92]. In this simulation technique state
changes take place at discrete points in time (but time is continuous), as opposed
to continuous-time simulation techniques. In a simulation, runs (sample paths
in the simulation jargon) are generated, and on the basis of these runs data
is gathered and analyzed to determine an estimate of the desired measure of
interest. The accuracy of the estimate is given by a confidence interval.

In the rest of this section, we focus on the following issues that occur when
applying discrete-event simulation on specifications:

– how to generate sample paths from stochastic automata, and
– how to resolve non-determinism in a stochastic automaton prior to the sim-

ulation.

More details about simulation of specifications can be found in [27,33].

Runs and adversaries. A run of a labelled transition system is simply a walk
through the state space by traversing transitions starting from the initial state.
This also applies to PTSs except that we focus on traversals that are “probable”.

Definition 9. A run ρ of PTS (N,P, σ0,L, T,−→) is a (finite or infinite) se-
quence ρ = σ0σ

′
0+1 . . . +nσnσ

′
n for n ∈ IN ∪ {∞} such that, for all 0 6 i < n:

– σ′i is in the support set of the probability measure of T (σi)5

– σ′i
�i+1−−−→σi+1, and

– if ρ is finite, then ρ ends in a non-deterministic state.

5 Intuitively, the support set of a probability measure is the smallest closed (measur-
able) set which has probability one.
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Non-determinism is resolved by probabilistic adversaries: if during a run a
state has been reached which has several non-deterministic possibilities, such
adversary will make the choice in a (discrete) probabilistic way. An adversary is
similar to a policy in Markov decision processes [34]. An adversary A on PTS T
is a partial function that maps a finite run ρ of PTS T to a discrete probability
space on the non-deterministic transition relation. The sample space of A is a
non-empty subset of the set of outgoing transitions from the final state of the
run ρ. An adversary A of stochastic automaton SA is a partial function on the
runs of its closed semantics C[[ SA ]]v0 .6 Note that an adversary selects the next
transition on the entire run ρ, i.e., on the entire history of the system. Usually,
adversaries are considered that make a selection based on the current state only.
For pragmatic reasons (space efficiency) we confine ourselves to such memoryless
adversaries.

Example 14. To illustrate the notion of adversary, consider the -specification
of the queueing system with two servers from Section 4 where we assume that
all clocks in the system are governed by continuous distribution functions. The
overall system specification was given by:

SystemG/G/2/∞ = (Arrival ||? Server ||? Server) ||{a,b}Queue0

This system contains non-determinism in case the queue contains one or more
jobs and both servers are ready to process a job — which server will take the
job out of the queue? In case we do not have any preference of one server over
the other (e.g., they are both equally fast), an adversary that resolves this non-
deterministic situation with equal probability is appropriate. Then A is defined
such that A(ρ) equals 1

2 for the first server taking the job out of the queue and
1
2 for the second server taking the job out of the queue. In case we would prefer
one server over the other, a different choice for A can be made.

Discrete-event simulation. Once we have resolved the present non-determinism
(if any), the resulting system is fully probabilistic, that is to say, a stochastic au-
tomaton with an adversary that resolves all its non-determinism yields a GSMC
with probabilistic branching. Hence, discrete-event simulation of such systems
basically takes place according to the operational procedure as described in Sec-
tion 3 for GSMCs with the minor difference that the trigger event e∗ may have
several possible next states that are selected (by the adversary) in a probabilis-
tic way. The user should bear in mind that the simulation results that will be
obtained must be considered with respect to the specified adversary as different
results are obtained (in general) for different adversaries!

An interesting aspect of simulation is that the state space is generated in
an “on-the-fly” fashion – the state space is constructed dynamically and thus
requires minimal storage as only the current state needs to be stored. This means
that we are not forced to construct the entire stochastic automaton prior to the

6 There are some conditions on the sample space that we omit here for the sake of
simplicity; the interested reader may consult [27,33].
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simulation. Instead, it suffices to store only the current state and generate new
states on a call-by-need basis. As a consequence, simulation is not restricted
to finite stochastic automata, but is also applicable to infinite-state stochastic
automata. Besides, the generation of a state is very straightforward for a
specification as a state uniquely corresponds to a process algebra expression.

Example 15. Consider the compositional -specification of the G/G/1-queueing
system. Let the distribution F of clock x be such that F (0) = 0. The simulation
will start by generating the initial term. Then clock x is initialized and an arrival
(action a) is generated once x expires. The next term (i.e., location) is generated,
and a new sample for x is taken. Since Fx(0) = 0, this sample is positive.
As in this location both an immediate action (b) and a non-immediate action
(a) are possible, the latter will never be taken in a simulation since it has to
be delayed first. Accordingly action b happens and the next term is reached
(after initializing clock y). This procedure continues ad infinitum. Note that the
stochastic automaton as depicted in Fig. 14 is actually generated location by
location, and that in each step only the current location (plus the valuation
of all clocks involved) are needed to determine the next possible steps. Due
to choices between immediate actions and non-immediate actions, in fact, only
the sub-automaton of Fig. 17 is generated step-by-step. The reduction from
Fig. 14 to Fig. 17 can also be carried out in an equational way while preserving
probabilistic bisimulation [27].

c, y

a, x

a, xa, x

y

a, x

a, xa, x

a, x

c, y

c, y c, y

c, y c, y

c, y

b

b

bb

x x x

xx

yyy

Fig. 17. Reduced stochastic automaton generated by simulation (if F (0) = 0)

7.2 Qualitative Analysis: Reachability Properties

Complementary to the quantitative analysis described above, we discuss in this
section a classical analysis technique for functional correctness — reachability
analysis. Reachability analysis is the key technique in proving safety properties
(often characterized as properties of the type “something bad can never hap-
pen”). A typical reachability property is the absence of a deadlock, which is
a state from which no further progress can be made. A naive strategy would
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be to use the simulation approach just described and consider several simula-
tion runs. As the coverage of such simulations is rather low – if no deadlock
is reached during simulation, this does not guarantee absence of deadlocks –
more systematic approaches are needed. In order to systematically check such
properties for stochastic automata, and thus terms, the underlying semantics
in terms of PTSs needs to be examined. However, even for finite terms, these
transition systems are infinite due to the fact that distributions are continuous.
We therefore consider a symbolic reachability analysis. Using a symbolic analysis
we can avoid having to build and examine the infinite underlying PTS. Instead,
we check reachability at the level of stochastic automata. We investigate this for
finite stochastic automata.

Reachability. A (non-deterministic) state in a PTS is reachable if there exists
a finite run that ends in that state. Let Reach(T ) denote the set of reachable
states of PTS T .

Definition 10. Let SA = (S, s0, C,A, −→ , κ, F ) be a stochastic automaton. A
symbolic run of SA is a finite sequence s0a1C1s1 . . . sn−1anCnsn, n > 0, such
that, for all 0 < i 6 n, si−1

ai,Ci−−−−→ si.

Location s is reachable if and only if there exists a symbolic run starting from
s0 that ends in s. The set of reachable locations of SA is denoted Reach(SA).
The relationship between runs in a stochastic automaton, and the runs in the
underlying (open and closed) PTSs is as follows. Every symbolic run of SA has
a corresponding finite run in O[[ SA ]], and vice versa:

Theorem 5. s ∈ Reach(SA)⇔ ∃v ∈ V . [s, v] ∈ Reach(O[[ SA ]]v0)

Recall that, as opposed to the open interpretation, in the closed interpretation
an edge can only be taken, if there is no earlier point in time at which the current
location can be left (maximal progress). As a consequence, certain edges present
in the stochastic automaton need not result in a transition in the underlying
closed PTS, since there exist competitive edges that are “faster” and thus will
be taken instead. As a result, every finite run of C[[ SA ]] has a corresponding
symbolic run of SA,but not the reverse:

Theorem 6. s �∈ Reach(SA)⇒ ∀v ∈ V . [s, v] �∈ Reach(C[[ SA ]]v0).

This result is e.g., sufficient to check for freedom of deadlock: if C[[ SA ]] does not
have a reachable deadlock state, SA is deadlock-free.

These results allow us to carry out systematic reachability analysis at a purely
symbolic level, i.e., without the construction of the underlying infinite PTS and
without using the clock information in the stochastic automaton. In this way, we
can exploit existing tools like Spin [59] for carrying out the reachability analysis.

Timed reachability properties. For checking reachability of locations, the stochas-
tic information may not be of any importance. However, we like to obtain more
information about timing aspects – e.g. “is a certain state reachable within t
time units?”. In this case, the precise probabilistic value of the occurrence time
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of some action is not relevant. Instead, it suffices to consider whether the action
is possible or not at a particular time instant. Therefore, only a small bit of the
information about the probability distributions involved is necessary. In fact, it
suffices to know the “support set”. In other words, we only need to consider
within which boundaries a delay is possible. For instance, in a simple stochastic
automaton like:

c, y
x y

a, x

where Fx and Fy are uniform distributions on intervals [10, 20] and [0, 12], say,
one can infer only from the bounds of the distributions that the right-most
location is reachable within 32 time units. This idea is formalized in [28] by a
compositional translation from stochastic automata into timed automata with
deadlines [14]. This translation preserves safety properties in the sense that any
state (i.e. a location and a clock valuation) that is not reachable in the generated
timed automaton is also not reachable in the original stochastic automaton.
Thus, timed safety properties are preserved.

An overview of the analysis techniques for specifications is given in Fig. 18.
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Fig. 18. Analysis of a specification

8 Case Study: The IEEE 1394 Root Contention Protocol

This section discusses a small case study where we applied to specify the root
contention phase of the IEEE 1394 protocol in a compositional way, and used
discrete-event simulation to analyze the time until contention resolution.
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8.1 Informal Problem Description

IEEE 1394. The IEEE 1394 high performance serial bus has been developed
for interconnecting computer and consumer equipment such as VCRs, CD play-
ers and multimedia PCs. It supports the addition and removal of equipment
at any time (“hot-pluggable”) and allows quick, reliable and inexpensive high-
bandwidth transfer of digitized video and audio. The bus has been originally de-
veloped by Apple (FireWire) and has been standardized by IEEE in 1996 [62]. A
revision of this standard is currently in progress [63]. As several companies have
joined in the development of the 1394 bus, there is a good chance that this will
become the future standard for connecting digital multimedia equipment; in fact,
the bus is currently also being used in areas like aerospace equipment. Various
parts of the standard have been specified and verified formally, e.g. [35,85,96,91].
Here, we consider the so-called root contention protocol.

Leader election protocol. (This description is adopted from [96].) The IEEE 1394
standard consists of a stack of protocols. The physical layer, the lowest in the
protocol hierarchy, consists of a number of phases. During the tree identify phase,
which is entered on occurrence of a bus reset, it is checked whether the network
topology is a tree, and if so, a leader is elected among the nodes in the tree. The
leader election takes place while constructing a spanning tree in the network and
electing the root of the tree as leader. Informally, the basic idea of the protocol is
as follows: leaf nodes send a “parent request” message to their neighbor. When
a node has received a parent request from all but one of its neighbors it sends
a parent request to its remaining neighbor. In this way the tree grows from the
leafs to a root. If a node has received parent requests from all its neighbors, it
knows that it has been elected as the root of the tree. It is possible that at the
end of tree identify phase two nodes send parent request messages to each other;
this situation is called root contention, cf. Fig. 19. To resolve this situation, a
root contention protocol is run. After completion of this protocol, one of the two
nodes has become root of the network.

parent?

Fig. 19. Initial network topology (a) and root contention (b)

Root contention protocol. The protocol roughly works as follows. Suppose that
the two contending nodes are node 0 and node 1. When node i (i = 0, 1) has
detected root contention it first flips a coin. If head comes up it waits a short
period of time, somewhere in the interval [δfast , ∆fast ]; otherwise, it waits a long
period of time somewhere in the interval [δslow , ∆slow ]. It is assumed that
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0 6 δfast 6 ∆fast < δslow 6 ∆slow

If after the waiting period no message has been received from the contender, the
node sends a request message to its contender and declares itself to be a child,
i.e., it assumes the contender to become a leader. Otherwise, it acknowledges
the receipt of the message and declares itself to be the leader. If a node that has
sent a request subsequently receives a request, then it concludes that there is a
root contention again, and the protocol restarts.

The basic idea behind the protocol is that if the outcomes of the coin flips
are different, the node with outcome tail (i.e., the slow one) will become root.
And since with probability one the outcomes of the two coin flips will eventually
be different, the root contention protocol will terminate (with probability one).
This has been formally proven in [96] by manually verifying a model of the
protocol in timed probabilistic I/O automata. An automatic verification of the
root contention protocol has recently been reported [94], while parameterized
verifications have been considered in [8,60].

8.2 Compositional Specification of the Root Contention Protocol

Wire1

child1 root1

Node1

send ∗1

check ∗1

child0 root0

Node0

send ∗0

check ∗

RootCont

Proc1Proc0

Buf0 Buf1

recv ∗0 recv ∗1

Wire0

Fig. 20. Overview of the IEEE 1394 specification in

Fig. 21 presents the specification of the root contention protocol in . The
model itself is based on [96]. A schematic overview of the processes involved and
their synchronizations is given in Fig. 20. The Nodei processes are connected
to each other by two Wirei processes, that represent the communication lines
between the components. Each Nodei process has a Bufi process which can hold
a single message from the other Node(1−i). New messages from Node(1−i) will
simply overwrite the old message. Both nodes start (via Proci) to wait Fxi()
units of time. If after waiting, the buffer is still empty (i.e. check empi), the
node will send a send reqi to its contender and will subsequently wait for an



General Distributions in Process Algebra 419

acknowledgement. If this acknowledgement (i.e. check ack i) arrives, Nodei will
declare itself a child using action child i. On the other hand, if after waiting Fxi()
units of time, Nodei receives a check reqi action, it declares itself to be the leader
using action root i. The delay of the communication line is modelled by clock yi.

RootCont = (Node0 ||? Node1) ||A (Wire0 ||?Wire1)

with the following process definitions (i = 1, 2):

Nodei = (Proci ||B Bufi)
Proci = set xi in (when xi �→ (check empi;SndReqi + check req i;SndAcki))
SndReqi = send req i; (check req i;Proci + check ack i; child i;0 )
SndAcki = send ack i; root i;0
Bufi = check empi;Bufi + recv req i;BufReqi + recv ack i;BufAcki

BufReqi = check req i;Bufi + recv req i;BufReqi + recv ack i;BufAcki

BufAcki = check ack i;Bufi + recv req i;BufReqi + recv ack i;BufAcki

Wirei = send req i;WireReqi + send ack i;WireAcki

WireReqi = set yi in (when yi �→ recv req (1−i);Wirei) +Wirei

WireAcki = set yi in (when yi �→ recv ack (1−i);Wirei) +Wirei

and the following synchronization sets:

A = { send req i, send ack i, recv req i, recv ack i }
B = { check empi, check req i, check ack i }

Fig. 21. specification of the root contention protocol

The clock distributions. The delay after detection of a root contention in Nodei
is governed by clock xi (i = 0, 1) whose distribution is given by:

Fxi(t) =




0 if t < δfast
1
2 ·

(
t−δfast

∆fast−δfast

)
if δfast 6 t < ∆fast

1
2 if ∆fast 6 t < δslow

1
2 ·

(
1 + t−δslow

∆slow−δslow

)
if δslow 6 t < ∆slow

1 if ∆slow 6 t

This distribution corresponds to first choosing either a short delay in the in-
terval [δfast , ∆fast ] with probability 1

2 , or choosing a long delay in the interval
[δslow , ∆slow ] with probability 1

2 . In fact, Fxi is the combination of uniform dis-
tributions over the two respective intervals [δfast , ∆fast ] and [δslow , ∆slow ]. The
IEEE 1394 standard [62] only specifies the lower- and upper-bounds of these
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intervals, but states nothing about mean, variances, or the like. Approximating
these non-deterministic intervals in the above way is the most inderminate ap-
proximation conform to the principle of maximizing the entropy, see Section 2.2.
A pictorial representation of Fxi is given in Fig. 22.

0

1

0.5

δfast ∆fast δslow ∆slow

Fig. 22. Distribution of delay after detection of root contention

The transmission delay of Wirei is determined by clock yi. This delay depends
on the length of the cable. We assume that the transmission delay is between
v/2 and a maximal velocity v with an average of 4

5v. The transmission delay is
approximated by a beta-distribution with parameters β1 = 2 and β2 = 6. To
be more precise, for cable-length m, the probability density function of clock yi
i = 0, 1), is given by:

fyi(t) =




(
v
m t− 1

) (
2− v

m t
)5

β(2, 6)
if m

v 6 t < 2m
v

0 if t < m
v or 2m

v 6 t

where β is a function that is well-known from statistics and probability theory,
see e.g., [93].

8.3 The Time until Contention Resolution

Simulation parameters. The verification study in [96] revealed that the correct-
ness of the root contention protocol – a leader is eventually elected with prob-
ability one – is only guaranteed if the maximum transmission delay is smaller
than δfast and (δslow −∆fast )/2. In our case, the maximum transmission delay
is assumed to be the lowest upper-bound of the support set of Fyi , i.e., 2m/v.
This corresponds to the distance the message may travel divided by the slowest
speed. To guarantee the correctness of the protocol we thus assume:

2m
v

< min
{
δfast ,

δslow −∆fast

2

}

For v = 198 mtr/µsec, the maximum velocity according to the IEEE 1394 stan-
dard, we obtain m < min{99 · δfast , 49.5 · (δslow −∆fast )}. For the discrete-event
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simulation we have taken the values of δfast , ∆fast , δslow , and ∆slow from the
specifications in the IEEE 1394 standard [62] and the draft IEEE 1394a proposal
[63], cf. Table 6.

δfast ∆fast δslow ∆slow m

IEEE 1394 0.24 µsec 0.26 µsec 0.57 µsec 0.60 µsec < 15.345 mtr

IEEE 1394a 0.76 µsec 0.80 µsec 1.60 µsec 1.64 µsec < 39.6 mtr

Table 6. Parameters of the root contention protocol

Simulation results. The closed behavior of the compositional specification is de-
terministic (with probability 1). Thus, no adversary is needed to resolve any
non-determinism. The discrete-event simulation has been carried out by a pro-
totype implementation in the functional programming language Haskell; for more
details see [33]. For each setting, five series of 250,000 simulations have been car-
ried out, each starting with different seeds for the random number generator. For
IEEE 1394, the length m of the cable ranged to up to 15 meters; for IEEE 1394a,
lengths of up to m=30 meters were considered. The average and variance of the
time until contention resolution are reported in Fig. 23 where the lower curves
refer to IEEE 1394 while the upper curves refer to IEEE 1394a. As expected,
the time increases on increasing cable length m. It appears that the new (draft)
version of the protocol shows a lower performance. For a given cable length, the
average time until contention resolution for IEEE 1394a is about a factor two
higher than for standardized IEEE 1394. This phenomenon is due to the longer
delay after flipping a coin. It should be remarked, though, that the IEEE 1394a
protocol guarantees the correctness of the root contention protocol over longer
distances.

9 Related Work

In this section we give an overview of stochastic process algebras that incorporate
general distributions and compare these proposals to .

– TIPP [43] is the earliest approach addressing general distributions in a pro-
cess algebra. Its syntax has the integrated prefix aF ; p which in corresponds
to set xF in when xF �→ a; p. Its semantics is based on labelled transition
systems in which transitions are decorated with the associated distribution
function and, to keep track of the execution of parallel processes, a number
that indicates how many times an action has not been chosen to execute.
This number introduces infinite semantic objects, even for simple regular
processes.
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Fig. 23. Time until contention resolution in IEEE 1394 (lower curve) and IEEE
1394a (upper curve)

– [1] extends LOTOS with several kinds of (stochastic) timers. The semantics is
given in terms of a (variety of) timed transition system, therefore abstracting
from probabilities. Separately, the authors consider the stochastic model as a
kind of GSMP. This work proposed very interesting ingredients at language
level. However, the treatment is not algebraic – despite the use of structured
operational semantics. The authors impose strong syntactic restrictions, do
not provide an adequate equivalence relation and, as a consequence, neither
algebraic laws.

– [45,46,97] introduced a process algebra for discrete event simulation. The
concerns of randomly setting a timer, expiration of such a timer, and actual
activity are split in a rather similar way to ours. The semantic model is
similar to our probabilistic transition systems where non-deterministic tran-
sitions are instead split into discrete transitions and timed transitions. As a
consequence, semantic objects contain usually uncountably many states and
transitions. Their process algebra includes an urgent and a delayable prefix-
ing, so its interpretation combines both views of closed and open system.

– [18] studies a semantics for a process algebra similar to TIPP in terms of
a stochastic extension of event structures. This model seems to be more
natural to deal with general distributions since activities that are not causally
dependent (i.e. concurrent activity) are not related in the model, contrarily
of what occurs in interleaving based models. However, recursive processes
always have associated an infinite semantic object. Recent investigations
indicate, however, that finite objects can be obtained (for finite-state process
algebra terms) from which stochastic task graph models are generated that
can be analyzed numerically [87].

– [83] followed an approach similar to [43]. The author gives semantics to a
stochastic extension of the π-calculus. In this case transitions are decorated
with locality information to keep track which process performed it.
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– A general semi-Markovian process algebra based on EMPA is discussed
in [16]. Terms in this process algebra have semantics in a semi-interleaving
model that allows for refinement of actions (the so-called ST-semantics). Al-
though this calculus preserves finiteness of semantic objects in a reasonable
way (like ours), the manner in which semantics is given is not straightfor-
ward. A nice characteristic of this process algebra is that it represents the
GSMP model in a complete way.

– Recently, [17] adapted the previous work to consider —like in our case—
the separation between beginning of a delay, ending of it, and execution of
an action. In so doing, the authors obtained a neater semantics as well as a
complete axiomatization for the weak equivalence relation they consider.

– Another recent work includes [74]. In this paper the authors pursue ideas
similar to [43,83]. To keep track of the time that has passed, the transition
is labelled with the action, its respective delay distribution, and the time
it takes. Like [1], they also use an “age” function in order to update the
distribution of the remaining delay of the concurrent events. The fact of
labelling the transition with the occurrence time makes the semantic object
infinite.

Among the stochastic process algebras enumerated above, [45,46,97] is the closest
to . Like , [45,46,97], [49], and [17] allow non-determinism. In all the other
cases (including the Markovian process algebras), choice is always solved either
by the race policy, by the pre-selection policy, or by a combination of both.

Other works that relate discrete-event simulation models (or languages) to
process algebra are [82,10]. In these works, the approach is different: rather than
generating a simulation model automatically from a process algebra specification
(as in this paper), they use process algebra as a semantic model for simulation
languages. In addition, these works do not take probabilistic timing into consid-
eration.

10 Epilogue

In this tutorial, we have given an informal overview of incorporating general dis-
tributions in a process algebraic framework. We discussed its complications and
gave an overview of possible solutions that have been suggested so far in the liter-
ature. We recapitulated the model of generalized semi-Markov chains (GSMCs)
and justified the need for a process algebraic treatment of such models. In the
second part of the paper, we have presented stochastic automata, a model that
subsumes GSMCs, includes non-determinism and is amenable to composition.
A process algebra named has been presented to describe these stochastic au-
tomata in a modular way. As a result, stochastic automata (and thus GSMCs)
can be generated automatically from specifications. Analysis methods for
specifications have been treated. The proposed approach has been illustrated by
specifying the root contention phase within the standardized IEEE 1394 serial
bus protocol. As opposed to other studies of this protocol that focus on its func-
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tional correctness we have studied the delay until root contention resolution.
Below we conclude by listing some interesting research topics for future work.

Weak bisimulation. Thanks to the efforts of several research groups, most seman-
tic issues of incorporating general distributions into a process algebraic setting
have been satisfactorily solved. One of the most important (semantic) issues for
future work is the investigation of weak equivalence relations such as variants
of weak or branching bisimulation. A weak equivalence relation that allows to
abstract from immediate invisible actions has been defined recently [17]. To our
knowledge, the replacement of a sequence of generally distributed delays by a
single delay labelled with the convolution of the delays on the sequence (i.e., the
sum of the random variables involved), has not yet been captured in a congruence
relation.

Model checking. As an alternative to discrete-event simulation techniques, model
checking could be applied to stochastic automata. Using such techniques one
would be able to check properties of the form “with probability at most 0.99
the system will deadlock within 2 hours” in a fully automated way. Such quan-
titative model checking algorithms have been recently considered for models
that are closely related to stochastic automata: for probabilistic variants of the
duration calculus on continuous semi-Markov processes [61] and for a continu-
ous probabilistic variant of timed automata [69]. It would be interesting to see
how these techniques can be effectively applied to stochastic automata and
specifications. Besides, the combination of these techniques with discrete-event
simulation could be investigated.

User-oriented specification languages. Performance engineers do consider process
algebra as being (too) complicated. In order to bridge the gap towards practition-
ers that e.g. use stochastic automata for modeling real-time multi-media systems
[11,20], efforts should be made towards making the specification formalism more
user-friendly. Interesting developments in that respect are the usage of stochas-
tic automata for stochastic extensions of UML (Universal Modeling Language)
Statecharts [42] and the activities on MoDeST (a Model Description language
for Stochastic Timed Systems) that builds upon , Promela [59], and timed
automata and for which tool-support is currently under development.
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