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Abstract. Stochastic automata provide a way to symbolically model
systems in which the occurrence time of events may respond to any con-
tinuous random variable. We introduce here an input/output variant of
stochastic automata that, once the model is closed —i.e., all synchro-
nizations are resolved—, the resulting automaton does not contain non-
deterministic choices. This is important since fully probabilistic models
are amenable to simulation in the general case and to much more effi-
cient analysis if restricted to Markov models. We present here a the-
oretical introduction to input/output stochastic automata (IOSA) for
which we (i) provide a concrete semantics in terms of non-deterministic
labeled Markov processes (NLMP), (ii) prove that bisimulation is a con-
gruence for parallel composition both in NLMP and IOSA, (iii) show
that parallel composition commutes in the symbolic and concrete level,
and (iv) provide a proof that a closed IOSA is indeed deterministic.

1 Introduction

The difficulty of the modeling and analysis of a system grows rapidly with the
size and complexity of the system itself. In this sense the advantages of com-
positional approaches to modeling complex systems are unquestionable: they
facilitate systematic design and the interchange of components, enable composi-
tional analysis and help for the compact representation of state spaces and other
ways of attacking the state explosion problem. Compositional modeling allows
the designer to focus on the modeling of the rather discernible operational behav-
iour of the components and the evident synchronization among them (compare
to the difficulty of figuring out the whole behaviour in a monolithic model).

If these models are aimed at performance and dependability analysis, there
is a need to consider general distributions. Although (negative) exponential dis-
tributions yield analytically tractable models (namely, continuous time Markov
chains), and are useful for many applications, they are not realistic for modeling
many phenomena. Phenomena such as timeouts in communication protocols,
hard deadlines in real-time systems, human response times or the variability of
the delay of sound and video frames (so-called jitter) in modern multi-media
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communication systems are typically described by non-memoryless distributions
such as uniform, log-normal, or Weibull distributions.

To attack the compositional modeling of this type of systems stochastic
process algebras with general continuous distributions have been devised (see
e.g. [4] and references therein), and notably the modeling language MODEST [3].
The problem with all these languages is that they introduce non-determinism. In
general, it is not possible to analyze generally distributed stochastic processes,
let alone if they are also non-deterministic. However, deterministic stochastic
processes can be simulated using discrete event simulation. Simulation is instead
not feasible in general if the models are non-deterministic. (Though there are
approaches to simulate Markov decission processes either by recognizing spu-
rious non-determinism [2,16] or by sampling schedulers [9], it is not clear how
these techniques scale to continuous settings.)

Starting from the notion of stochastic automata [7,8], we restrict this frame-
work to obtain input/output stochastic automata (IOSA). While stochastic
automata were constructed to naturally accept the non-determinism interact-
ing with continuous probabilities, we designed IOSA so that parallel composi-
tion works naturally and, moreover, the system becomes fully probabilistic (i.e.,
it does not contain non-determinism) as soon as the system is closed (i.e. all
interactions are resolved). Thus, we split actions into input and output and let
them behave in a reactive and generative manner respectively (see [15] for the
concepts of reactive and generative transitions), following ideas proposed in [22].
Since outputs behave generatively, we let their occurrence time be controlled
by a random variable (encoded in a clock). As inputs are reactive, they are
passive and hence their occurrence time can only depend on their interaction
with outputs. Thus, IOSA combines in a single model the two interpretations of
stochastic automata (either as open or as closed systems [7,8].)

The paper presents a theoretical introduction to IOSA. For this, we present
the model in Sect. 3 and give its concrete semantics in terms of non-deterministic
labeled Markov processes (NLMP) [10,21]. Next (Sect. 4) we define the parallel
composition on IOSA and show that the model is closed under composition.
We also define parallel composition on NLMPs and show that, when it is well
defined, bisimulation is a congruence for parallel composition on NLMPs. More-
over, we prove that parallel composition commutes in the symbolic (IOSA) and
concrete (NLMP) level through isomorphism and as a corollary have that bisim-
ulation is a congruence for parallel composition on IOSAs. In Sect. 5, we define
precisely what we mean by a deterministic IOSA, show several properties of the
underlying NLMP, and prove that a closed IOSA (i.e., a IOSA without input
actions) is indeed deterministic. In addition, we provide the essential background
on measure theory in Sect. 2, and conclude the paper in Sect. 6.

2 Preliminaries on Measure Theory

In this section, we recall some fundamental notions of measure theory that will
be useful throughout the paper.
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Given a set S and a collection Σ of subsets of S, we call Σ a σ-algebra iff
S ∈ Σ and Σ is closed under complement and denumerable union. By σ(G)
we denote the σ-algebra generated by the family G ⊆ 2S , i.e., the minimal σ-
algebra containing G. Each element of G is called a generator and G is called the
generator set. We call the pair (S,Σ) a measurable space. A measurable set is a
set Q ∈ Σ. Let (L,Λ) and (S,Σ) be measurable spaces. A measurable rectangle
is a set A × B with A ∈ Λ and B ∈ Σ. The product σ-algebra on L × S is
the smallest σ-algebra containing all measurable rectangles, and is denoted by
Λ⊗Σ. The coproduct σ-algebra Λ⊕Σ of L and S is defined in the disjoint union
L & S and it is generated by the set Λ ∪ Σ.

A function µ : Σ → [0, 1] is a probability measure if (i) it is σ-additive, i.e.
µ(

⋃
i∈N Qi) =

∑
i∈N µ(Qi) for all countable family of pairwise disjoint measur-

able sets {Qi | i ∈ N} ⊆ Σ, and (ii) µ(S) = 1. By δa we denote the Dirac proba-
bility measure concentrated in {a}. Given measures µ and µ′ on (L,Λ) and (S,Σ)
respectively, the product measure µ × µ′ on the product space (L×S,Λ⊗Σ) is
defined as the unique measure such that (µ × µ′)(A × B) = µ(A) · µ′(B) for all
A ∈ Λ and B ∈ Σ. Any measure µ on (L,Λ) can be naturally extended into a
measure µ̂ in the coproduct space (L&S,Λ⊕Σ) by taking µ̂(A) = µ(A\S), and
similarly for measures on (S,Σ). Let ∆(S) denote the set of all probability mea-
sures over the measurable space (S,Σ). We let µ, µ′, µ1,. . . range over ∆(S). Let
(S1,Σ1) and (S2,Σ2) be two measurable spaces. A function f : S1 → S2 is said to
be measurable if for all Q2 ∈ Σ2, f−1(Q2) ∈ Σ1, i.e., its inverse image maps mea-
surable sets to measurable sets. In this case we denote f : (S1,Σ1) → (S2,Σ2).

A σ-algebra is Borel if it is generated by the set of all open sets in a topology.
Particularly, the Borel σ-algebra on the real line is B(R) = σ({(a, b) | a, b ∈
R and a < b}). Similarly, B([0, 1]) is the Borel σ-algebra on the interval [0, 1]
generated by the open sets in the interval [0, 1].

There is a standard construction by Giry [14] to endow ∆(S) with a σ-algebra
as follows: ∆(Σ) is defined as the σ-algebra generated by the sets of probability
measures ∆≥p(Q) .= {µ | µ(Q) ≥ p}, with Q ∈ Σ and p ∈ [0, 1]. We let ξ range
over ∆(Σ).

To give structure to non-determinism on NLMP, we will use hit σ-
algebras [10] on ∆(Σ). Thus, the hit σ-algebra H(∆(Σ)) is defined to be the
minimal σ-algebra containing all sets H(ξ) .= {ζ ∈ ∆(Σ) | ζ ∩ ξ ̸= ∅} with
ξ ∈ ∆(Σ).

3 Input/Output Stochastic Automata (IOSA)

Stochastic automata [7,8] use clock variables to control and observe the passage
of time. Since in our context the time at which events occur is random, clocks
are in fact random variables. When a clock is set, it takes a random value whose
probability depends on the distribution function of the clock. As time evolves,
clocks count down synchronously, i.e., all do so at the same rate. When a clock
reaches the value zero, “the clock expires” and this may enable some events.
Starting from the notion of stochastic automata, we restrict this framework to
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obtain IOSA. We split actions into inputs and outputs and let them behave
in a reactive and generative manner respectively (see [15] for the concepts of
reactive and generative transitions), somehow following ideas proposed in [22].
We could also think that inputs are externally controlled actions and outputs
are locally controlled actions. Precisely because of this, the occurrence time of
output actions is controlled by a random variable, while inputs are passive and
hence their occurrence time can only depend on their interaction with outputs.
A set of restrictions which we will explain later ensures that, almost surely, no
two outputs actions are enabled at the same time.

Definition 1. An input/output stochastic automaton (IOSA for short) is a
structure (S,A, C,−→, C0, s0), where S is a (denumerable) set of states, A is a
(denumerable) set of labels partitioned into disjoint sets of input labels AI , and
output labels AO, C is a (finite) set of clocks such that each x ∈ C has associated
a continuous probability measure µx on R (hence µx(d) = 0 for any d ∈ R) also
satisfying that µx(R>0) = 1, −→ ⊆ S × C × A × C × S is a transition function,
C0 is the set of clocks that are initialized in the initial state, and s0 ∈ S is the
initial state. In addition a IOSA should satisfy the following constraints:

(a) If s C,a,C′

−−−−−→ s′ and a ∈ AI , then C = ∅.

(b) If s C,a,C′

−−−−−→ s′ and a ∈ AO, then C is a singleton set.

(c) If s
{x},a1,C1−−−−−−−→ s1 and s

{x},a2,C2−−−−−−−→ s2 then a1 = a2, C1 = C2 and s1 = s2.

(d) If s
{x},a,C−−−−−→ s′ then, for every transition t

C1,b,C2−−−−−→ s, either x ∈ C2, or

x /∈ C1 and there exists a transition t
{x},c,C3−−−−−−→ t′.

(e) If s0
{x},a,C−−−−−→ s then x ∈ C0.

(f) For every a ∈ AI and state s, there exists a transition s
∅,a,C−−−−→ s′.

(g) For every a ∈ AI , if s ∅,a,C1−−−−−→ s1 and s
∅,a,C2−−−−−→ s2, C1 = C2 and s1 = s2.

The occurrence of an action is controlled by the expiration of clocks. Thus,
whenever s

{x},a,C−−−−−→ s′ and the system is in state s, output action a will occur
once the value of clock x reaches 0. At this point, the system moves to state
s′ setting the values of every clocks y ∈ C to a value sampled according to the
distribution µy. For input transitions s

∅,a,C−−−−→ s′, the behaviour is similar, only
that its occurrence can potentially occur at any time which will become definite
once the action interacts with an output.

Restriction (a) states that every input is reactive and hence their occurrence
is controlled by the environment. Hence no internal clock controls its occurrence.
Restriction (b) states that each output is generative (or locally controlled) so
it has associated a clock which determines its occurrence time. We also limit
the set to exactly one clock, to have a clean definition. Restriction (c) forbids
that a single clock enables two different transitions, otherwise two output actions
would become enable simultaneously. Besides, notice that if clocks are used when
they have already expired they would immediately enable the respective output
transition, which may lead to a simultaneous enabling if the system arrives to a
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states with two expired clocks enabling two different transitions. Restrictions (d)
and (e) ensure that a clock would never be used when it has already expired.
Particularly (d) states that an enabling clock x at state s should either be set
on arrival (x ∈ C2) or it has not been used immediately before (x /∈ C1) but
should be also enabling on the immediately preceding state. Since clocks are set
by sampling from a continuous random variable, the probability that the values
of two different clocks are equal is 0. This last fact, together with restrictions (c),
(d) and (e), guarantees that almost never two different output transitions are
enabled at the same time. Restrictions (f) and (g) are usual restrictions on I/O-
like automata: (f) ensures that outputs are not blocked in a composition, and
(g) that determinism is preserved after composition.

The semantics of IOSA is defined in terms of NLMP [10,21]. An NLMP is a
generalization of probabilistic transition systems with continuous domain. More
particularly, it extends LMP [11] with internal non-determinism.

Definition 2. A non-deterministic labeled Markov process (NLMP for short)
is a structure (S,Σ, {Ta | a ∈ L}) where Σ is a σ-algebra on the set of states S,
and for each label a ∈ L we have Ta : S → ∆(Σ) is measurable from Σ to the
hit σ-algebra H(∆(Σ)).

The formal semantics of a IOSA is defined by an NLMP with two classes of
transitions: one that encodes the discrete steps and contains all the probabilistic
information introduced by the sampling of clocks, and other describing the time
steps, that only records the passage of time synchronously decreasing the value
of all clocks. In order to simplify the definition, we assume that the set of clocks
has a particular order and their current values follow the same order in a vector.

Definition 3. Given a IOSA I = (S,A, C,−→, C0, s0) with C = {x1, . . . , xN}, its
semantics is defined by the NLMP P(I) = (S,B(S), {Ta | a ∈ L}) where

– S = (S ∪ {init}) × RN , L = A ∪ R>0 ∪ {init}, with init /∈ S ∪ A ∪ R>0

– Tinit(init, v⃗) = {δs0 ×
∏N

i=1 µxi},
– Ta(s, v⃗) = {µv⃗,C′,s′ | s

C,a,C′

−−−−−→ s′,
∧

xi∈C v⃗(i) ≤ 0}, for all a ∈ A, where
µv⃗,C′,s′ = δs′ ×

∏N
i=1 µxi

with µxi
= µxi if xi ∈ C ′ and µxi

= δv⃗(i) otherwise,
and

– Td(s, v⃗) = {δ−d
(s,v⃗) | 0 < d ≤ min{v⃗(i) | ∃a∈AO, C ′⊆C, s′∈S : s

{xi},a,C′

−−−−−−→ s′}}
for all d ∈ R≥0, where δ−d

(s,v⃗) = δs ×
∏N

i=1 δv⃗(i)−d.

The state space is the product space of the states of the IOSA with all
possible clock valuations. A distinguished initial state init is added to encode the
random initialization of all clocks (it would be sufficient to initialize clocks in C0

but we decided for this simplification). Such encoding is done by transition Tinit.
The state space is structured in the usual Borel σ-algebra. The discrete step is
encoded by Ta , with a ∈ A. Notice that, at state (s, v⃗), the transition s

C,a,C′

−−−−−→ s′

will only take place if
∧

xi∈C v⃗(i) ≤ 0, that is, if the current values of all clocks in
C are not positive. For the particular case of the input actions this will always
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be true. The next actual state would be determined randomly as follows: the
symbolic state will be s′ (this corresponds to δs′ in µv⃗,C′,s′ = δs′ ×

∏N
i=1 µxi

),
any clock not in C ′ preserves the current value (hence µxi

= δv⃗(i) if xi /∈ C ′), and
any clock in C ′ is set randomly according to its respective associated distribution
(hence µxi

= µxi if xi ∈ C ′). The time step is encoded by Td(s, v⃗) with d ∈
R≥0. It can only take place at d units of time if there is no output transition
enabled at the current state within the next d time units (this is verified by

condition 0 < d ≤ min{v⃗(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′}). In this
case, the system remains in the same symbolic state (this corresponds to δs in
δ−d
(s,v⃗) = δs ×

∏N
i=1 δv⃗(i)−d), and all clock values are decreased by d units of times

(represented by δv⃗(i)−d in the same formula).
We still need to show that P(I) is indeed an NLMP. For this we have to

prove that Ta maps into measurable sets in ∆(B(S)) (Lemma 4), and that Ta is
a measurable function for every a ∈ L (Lemma 5).

Lemma 4. Ta(s, v⃗) ∈ ∆(B(S)) for all a ∈ L and (s, v⃗) ∈ S.

Proof. The proof makes use of Lemma3.1 in [10], from which we know that for
all µ ∈ ∆(S), {µ} ∈ ∆(B(S)) (since B(S) is generated by a discrete π-system).

Notice that for any v⃗ ∈ RN , Tinit(init, v⃗) is a singleton set and hence measur-
able. Similarly, notice that for every d ∈ R, s ∈ S, and v⃗ ∈ RN , Td(s, v⃗) is either
a singleton set or the empty set, and hence measurable. Finally, since there is
only a denumerable number of transitions in a IOSA, for every a ∈ A, s ∈ S,
and v⃗ ∈ RN , Ta(s, v⃗) is a denumerable union of singleton sets, and hence also
measurable. ⊓)

Lemma 5. For all a ∈ L, Ta is measurable from B(S) to H(∆(B(S))).

Proof. We need to show that for every a ∈ L and every ξ ∈ ∆(B(S)),
T −1
a (H(ξ)) = {(s, v⃗) | Ta(s, v⃗) ∩ ξ ̸= ∅} is measurable.
We divide the proof in three cases depending on the nature of the label on the

transition function. First, notice that T −1
init (H(ξ)) = {init}×RN if δs0×

∏N
i=1 µxi ∈

ξ and T −1
init (H(ξ)) = ∅ otherwise, and both sets are measurable.

We analyze now the case of a ∈ A, for which we can calculate

T −1
a (H(ξ)) = {(s, v⃗) | {µv⃗,C′,s′ | s C,a,C′

−−−−−→ s′,
∧

xi∈C v⃗(i) ≤ 0} ∩ ξ ̸= ∅}
=

⋃
s

C,a,C′
−−−→s′

{(s, v⃗) |
∧

xi∈C v⃗(i) ≤ 0} ∩ {(s, v⃗) | µv⃗,C′,s′ ∈ ξ}

Since the union is denumerable, it is sufficient to prove that the two intersecting
sets are measurable. First, notice that {(s, v⃗) |

∧
xi∈C v⃗(i) ≤ 0} = {s}×

∏N
i=1 Vi

where Vi = (−∞, 0] if xi ∈ C and Vi = R otherwise. Hence, it is measurable.
For the second case, define fC′,s′ : R → ∆(S) by fC′,s′(v⃗) = µv⃗,C′,s′ . Then

{(s, v⃗) | µv⃗,C′,s′ ∈ ξ} = {(s, v⃗) | fC′,s′(v⃗) ∈ ξ} = {s} × f−1
C′,s′(ξ). So, it only

remains to prove that fC′,s′ is a measurable function. Using [20, Lemma 3.6], we
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only have to prove that f−1
C′,s′(∆≥q(A ×

∏N
i=1 Vi)) with A ⊆ S and Vi ∈ B(R),

1 ≤ i ≤ N , is measurable, for which we can calculate

f−1
C′,s′(∆≥q(A ×

∏N
i=1 Vi)) = {v⃗ | µv⃗,C′,s′(A ×

∏N
i=1 Vi) ≥ q}

= {v⃗ | s′ ∈ A, (
∏

xi∈C′ µxi)(
∏

xi∈C′ Vi) ≥ q,∀xi /∈ C ′ : v⃗(i) ∈ Vi}

Then, if s′ ∈ A and (
∏

xi∈C′)(
∏

xi∈C′ Vi) ≥ q, f−1
C′,s′(∆≥q(A ×

∏N
i=1 Vi)) =

∏N
i=1 Vi with Vi = R if xi ∈ C ′, Vi = Vi if xi /∈ C ′, or f−1

C′,s′(∆≥q(A×
∏N

i=1 Vi)) =
∅ otherwise, and in both cases the sets are measurable.

For the case of d ∈ R, notice that

T −1
d (H(ξ)) = {(s, v⃗) | δ−d

(s,v⃗) ∈ ξ} ∩

{(s, v⃗) | 0 < d ≤ min{v⃗(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′}

The second set is equal to S ×
∏N

i=1 Vi where Vi = [d,∞) if s
{xi},a,C′

−−−−−−→ s′, and
Vi = R otherwise. Hence it is measurable. For the first set, define fd : S → ∆(S)
by fd(s, v⃗) = δ−d

(s,v⃗). Then {(s, v⃗) | δ−d
(s,v⃗) ∈ ξ} = f−1

d (ξ) and hence it suffices to
show that fd is measurable. So, we have to prove that f−1

d (∆≥q(Q)) is measurable
for any Q ∈ B(S). But f−1

d (∆≥q(Q)) = {(s, v⃗) | δ−d
(s,v⃗)(Q) ≥ q} = {(s, v⃗) |

(s, v⃗ − d) ∈ Q ∧ q = 1}. That is f−1
d (∆≥q(Q)) = {(s, v⃗) | (s, v⃗ − d) ∈ Q} if q = 1

or f−1
d (∆≥q(Q)) = ∅ otherwise, and in both cases the sets are measurable. ⊓.

4 Composition and Bisimulation as a Congruence

In this section we define parallel composition of IOSAs and show that IOSAs
are closed for parallel composition. We also show that bisimulation is a con-
gruence for the parallel composition and we achieve it through defining parallel
composition on NLMPs.

Since we intend outputs to be autonomous (or locally controlled), we do not
allow synchronization between outputs. Besides, we need to avoid name clashes
on the clock, so that the intended behaviour of each component is preserved and
moreover, to ensure that the resulting composed automata is indeed a IOSA.
Thus we require to compose only compatible IOSAs.

Definition 6. Two IOSAs I1 and I2 are said to be compatible if they do not
share output actions nor clocks, i.e. AO

1 ∩ AO
2 = ∅ and C1 ∩ C2 = ∅.

Definition 7. Given two compatible IOSAs I1 and I2, the parallel composition
I1||I2 is a new IOSA (S1 ×S2,A, C,−→, C0, s10||s20) where (i) AO = AO

1 ∪AO
2 (ii)

AI = (AI
1 ∪ AI

2) \ AO (iii) C = C1 ∪ C2 (iv) C0 = C1
0 ∪ C2

0 and −→ is the smallest
relation defined by rules in Table 1 where we write s||t instead of (s, t).

The previous definition is only structural. We need to show that the seven
restrictions that define IOSAs also hold.
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Table 1. Parallel composition on IOSAs

s1
C,a,C′

−−−−−→1 s′
1

s1||s2
C,a,C′

−−−−−→ s′
1||s2

a ∈ A1\A2 (1)
s2

C,a,C′
−−−−−→2 s′

2

s1||s2
C,a,C′

−−−−−→ s1||s′
2

a ∈ A2\A1 (2)

s1
C1,a,C

′
1−−−−−−→1 s′

1 s2
C2,a,C

′
2−−−−−−→2 s′

2

s1||s2
C1∪C2,a,C

′
1∪C′

2−−−−−−−−−−−→ s′
1||s′

2

(3)

Theorem 8. Let I1 and I2 be two compatible IOSAs. Then I1||I2 is indeed a
IOSA.

Proof. The proof of restrictions (a), (b), (f), (e), and (g) follow by straight-
forward inspection on the rules, considering that I1 and I2 also satisfy the
respective restriction, and doing some case analysis. Since I1 and I2 are com-
patible, restriction (c) also follows by inspecting the rules taking into account,
in addition, that I1 and I2 satisfy restriction (g).

So, we only focus on (d). Suppose s1||s2
{x},a,C−−−−−→ s′

1||s′
2. We analyze the case

in which a ∈ A1 and x ∈ C1. The other is symmetric. Moreover, we only consider
the case in which a ∈ A1 ∩ A2 since the case a ∈ A1 \ A2 follows similarly.

In this case, we have that s1
{x},a,C1−−−−−−→1 s′

1, s2
∅,a,C2−−−−−→2 s′

2, and C = C1 ∪C2.

Let t1||t2
C′,b,C′′

−−−−−→ s1||s2. We distinguish three cases:

(i) Suppose b ∈ A1 \ A2. Then t1
C′,b,C′′

−−−−−→ s1 and t2 = s2. Because I1 satis-

fies (d), then either x ∈ C ′′, or x /∈ C ′ and there exist t1
{x},c,C3−−−−−−→1 t′1. Hence

x ∈ C ′′, or x /∈ C ′ and there exist t′2 and C ′
3 such that t1||t2

{x},c,C′
3−−−−−−→ t′1||t′2

(which may occur either by rule (1) or (3) if c ∈ A1 ∩ A2).

(ii) If b ∈ A2 \ A1, then t2
C′,b,C′′

−−−−−→2 s2 and t1 = s1. Notice that C ′, C ′′ ⊆ C2
and hence x /∈ C ′ and x /∈ C ′′. Moreover, since I2 is input enabled
(restriction (f)), t2

∅,a,C3−−−−−→2 t′2 for some C3 and t′2. Then, by rule (3),

s1||t2
{x},a,C1∪C3−−−−−−−−−→ s′

1||t′2 which proves this case.

(iii) If b ∈ A1 ∩ A2, then, by rule (3), t1
C′

1,b,C
′′
1−−−−−−→1 s1, t2

C′
2,b,C

′′
2−−−−−−→2 s2, C ′ =

C ′
1 ∪ C ′

2 and C ′′ = C ′′
1 ∪ C ′′

2 . Because I1 satisfies (d), then either x ∈ C ′′
1 ,

or x /∈ C ′
1 and there exist t1

{x},c,C3−−−−−−→1 t′1. If x ∈ C ′′
1 , then x ∈ C ′ partially

proving this case. If instead x /∈ C ′
1 and there exist t1

{x},c,C3−−−−−−→1 t′1, then
x /∈ C ′′ (since x /∈ C ′′

2 by compatibility), and there exist t′2 and C ′
3 such

that t1||t2
{x},c,C′

3−−−−−−→ t′1||t′2 (which may occur either by rule (1) or (3) if
c ∈ A1 ∩ A2), finally proving this case. ⊓(

To prove that bisimulation is a congruence on IOSAs, we first define a par-
allel composition on NLMPs, prove congruence in this setting, and then show
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that the semantics of the parallel composition of two IOSAs is isomorphic to
the parallel composition of the semantics of each IOSA. From this, it follows
that bisimulation is also a congruence for the parallel composition of IOSAs.
An important consideration is that NLMPs are not closed for parallel composi-
tion [13] in general. So we will need to require that the parallel composition of
NLMPs is also an NLMP as a hypothesis of the congruence theorem on NLMP.

Definition 9. Let Pi = (Si,Σi, {T i
a | a ∈ Li}), i ∈ {1, 2}, be two NLMPs. We

define the parallel composition by P1||P2 = (S1×S2,Σ1⊗Σ2, {Ta | a ∈ L1∪L2})
where, writing s1||s2 instead of (s1, s2),

(i) Ta(s1||s2) = {µ1 × δs2 | µ1 ∈ T 1
a (s1)}, if a ∈ L1 \ L2,

(ii) Ta(s1||s2) = {δs1 × µ2 | µ2 ∈ T 2
a (s2)}, if a ∈ L2 \ L1, and

(iii) Ta(s1||s2) = {µ1 × µ2 | µ1 ∈ T 1
a (s1), µ2 ∈ T 2

a (s2)}, if a ∈ L1 ∩ L2.

Probabilistic bisimulation was introduced by Larsen and Skou [18] in a dis-
crete setting and adapted to a continuous setting like NLMP in [10,11]. The
idea behind the bisimulation equivalence is that from two equivalent states, an
a-transition should lead with equal probability to any measurable aggregate of
equivalence classes (properly speaking, to any measurable set that results from
an arbitrary union of equivalence classes).

Given a relation R ⊆ S×S, a set Q ⊆ S is R-closed if R(Q) ⊆ Q. If R is
symmetric, Q is R-closed iff for all s, t ∈ S such that s R t, s ∈ Q ⇔ t ∈ Q. Using
this definition, a symmetric relation R can be lifted to an equivalence relation
in ∆(S) as follows: µ R µ′ iff for every R-closed Q ∈ Σ, µ(Q) = µ′(Q).

Definition 10. A relation R ⊆ S×S is a bisimulation on the NLMP P =
(S,Σ, {Ta | a ∈ L}) if it is symmetric and for all a ∈ L, s R t implies that for
all µ ∈ Ta(s), there is µ′ ∈ Ta(t) s.t. µ R µ′. We say that s, t ∈ S are bisimilar,
denoted by s ∼ t, if there is a bisimulation R such that s R t.

We know that ∼ is an equivalence relation [10]. The next theorem states that
∼ is a congruence for parallel composition whenever the resulting composition
is indeed an NLMP.

Theorem 11. Let Pi = (Si,Σi, {T i
a | a ∈ Li}) i ∈ {1, 2}, be two NLMPs. If

P1||P2 is an NLMP, then for all s1, s′
1 ∈ S1 and s2 ∈ S2, if s1 ∼ s′

1, then
s1||s2 ∼ s′

1||s2 and s2||s1 ∼ s2||s′
1.

Proof. We only prove that s1||s2 ∼ s′
1||s2. The other case is symmetric. Let

R ⊆ S1×S1 be a bisimulation relation. Define R′ ⊆ (S1×S2) × (S1×S2) by
R′ = {(s1||s2, s′

1||s2) | (s1, s′
1) ∈ R, s2 ∈ S2}. We prove that R′ is a bisimulation

by doing case analysis on the definition of the transition relation in the parallel
composition.

Suppose in general that s1||s2 R′ s′
1||s2, and consider the case in which

Ta(s1||s2) results from (i) in Definition 9. Let µ1 × δs2 ∈ Ta(s1||s2) with µ1 ∈
T 1
a (s1). Since s1 R s′

1, there exists µ′
1 ∈ T 1

a (s′
1) such that µ1 R µ′

1. Let Q ∈
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Σ1 ⊗ Σ2 be R′-closed and define Q|s2 = {s1 | s1||s2 ∈ Q}. Q|s2 is measurable in
Σ1 [1], and can be easily proven to be R-closed. Now we can calculate:

(µ1 × δs2)(Q) = (µ1 × δs2)(Q|s2 × {s2}) = µ1(Q|s2)
(∗)
= µ′

1(Q|s2) = (µ′
1 × δs2)(Q|s2 × {s2}) = (µ′

1 × δs2)(Q)

where equality (∗) follows from µ1 R µ′
1, and hence (µ1 × δs2) R′ (µ′

1 × δs2).
Case (ii) in Definition 9 follows with a similar analysis, so we focus on case

(iii). Let µ1 × µ2 ∈ Ta(s1||s2) with µ1 ∈ T 1
a (s1). Since s1 R s′

1, there exists
µ′
1 ∈ T 1

a (s′
1) such that µ1 R µ′

1. Let Q ∈ Σ1 ⊗ Σ2 be R′-closed. Using Fubini’s
theorem [1], we calculate:

(µ1 × µ2)(Q) =
∫

S2

∫

S1

1Q(x, y) dµ1(x) dµ2(y) =
∫

S2

∫

S1

1Q|y (x) dµ1(x) dµ2(y)

=
∫

S2

µ1(Q|y) dµ2(y)
(∗)
=

∫

S2

µ′
1(Q|y) dµ2(y) = (µ′

1 × µ2)(Q)

where 1Q is the usual characteristic function, and (∗) follows from µ1 R µ′
1.

Therefore (µ1 × µ2) R′ (µ′
1 × µ2). ⊓&

Next, we prove that the semantic interpretation of IOSAs and parallel com-
position commutes, that is, that the NLMP resulting from interpreting a parallel
composition of two IOSAs is isomorphic to the parallel composition of the two
NLMPs interpreting each of the IOSAs.

Theorem 12. Given two IOSAs I1 and I2, there is an isomorphism between
(the reachable parts of) P(I1||I2) and P(I1)||P(I2).

Proof. Let N and M be the number of clocks in I1 and I2, respectively. Let
S = ((S1 ×S2)∪ {init})×RN+M and S′ = ((S1 ×RN )× (S2 ×RM ))∪ (({init}×
RN )× ({init}×RM )) be the states of P(I1||I2) and P(I1)||P(I2), respectively1.
The isomorphism is given by function f : S → S′ defined by f(init, v⃗1v⃗2) =
(init, v⃗1)||(init, v⃗2), and f((s1||s2), v⃗1v⃗2) = (s1, v⃗1)||(s2, v⃗2) for all s1 ∈ S1, s2 ∈
S2, and vectors v⃗1 and v⃗2 which represent valuations on the sets of clocks C1
and C2 respectively. f is clearly bijective, and it can be proved straightforwardly
that both f and f−1 are measurable (i.e. f is bimeasurable). From this, it follows
that the measurable spaces (S,B(S)) and (S′,B(S′)) are isomorphic.

Following [12], f induces a map ∆f : ∆(S) → ∆(S′) defined by ∆f(µ) =
µ◦f−1. It is not difficult to prove that ∆f is bijective and bimeasurable. Hence,
(∆(S),∆(B(S))) and (∆(S′),∆(B(S′))) are isomorphic.

1 Strictly speaking, P(I1)||P(I2) should also contain states of the form (s, v⃗1)||(init, v⃗2)
and (init, v⃗1)||(s, v⃗2) with s ̸= init. Nonetheless, these states are not reachable. Thus,
we do not consider them since otherwise the result would not be strictly an isomor-
phism and it would only add irrelevant technical problems to the proof.
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We can lift f a second time to obtain an isomorphism on hit σ-algebras.
Define2 Hf : ∆(B(S′)) → ∆(B(S)) by Hf = (∆f)−1. Again Hf can be
proven to be bijective and bimeasurable and hence, (∆(B(S)),H(∆(B(S))))
and (∆(B(S′)),H(∆(B(S′)))) are isomorphic.

Now, it is not difficult to see that for all a ∈ L, Ta(r) = Hf(T ′
a(f(r)))

for all r ∈ S where Ta and T ′
a are the transition functions on P(I1||I2) and

P(I1)||P(I2), respectively. This proves that both NLMPs are isomorphic. ⊓$

Given two NLMPs P1 and P2 with the same set of labels, the definition of
bisimulation can be extended to states in the different NLMPs by constructing
the NLMP induced by the coproduct σ-algebra. The NLMP P1 ⊕ P2 is defined
by the structure (S1 & S2,Σ1 ⊕ Σ2, {Ta | a ∈ L}) where, for all s ∈ S1 & S2 and
a ∈ L, Ta(s) = T 1

a (s) if s ∈ S1 and Ta(s) = T 2
a (s) if s ∈ S2. Thus, if s1 and

s2 are states of P1 and P2 respectively, s1 ∼ s2 whenever they are bisimilar in
P1 ⊕ P2.

By [12, Proposition 3.6], the next corollary follows immediately from
Theorem12.

Corollary 13. For any v⃗1 and v⃗2 representing valuations of clocks in I1 and
I2, resp., (init, v⃗1v⃗2) ∼ (init, v⃗1)||(init, v⃗2) and ((s1||s2), v⃗1v⃗2) ∼ (s1, v⃗1)||(s2, v⃗2).

We say that two IOSAs I1 and I2 are bisimilar, notation I1 ∼ I2 whenever
(init, v⃗1) ∼ (init, v⃗2) for any vectors v⃗1 and v⃗2 representing the valuations of
clocks in I1 and I2, respectively.

Then, the fact that bisimulation equivalence is a congruence on IOSAs follows
from Theorem11 and Corollary 13 and it is stated in the following theorem.

Theorem 14. Let I1 and I2 be two IOSAs such that I1 ∼ I2. Then, for any
IOSA I3, I1||I3 ∼ I2||I3 and I3||I1 ∼ I3||I2.

5 Closed IOSAs are Deterministic

A closed IOSA is a IOSA in which all synchronizations have been resolved
through parallel composition. Therefore, it has no input actions (i.e. AI = ∅).

In this section we show that a closed IOSA is deterministic in the sense that it
is amenable for discrete event simulation or, in case all its clocks are exponentially
distributed random variables, also amenable for analysis as a continuous time
Markov chain. We will say that a IOSA is deterministic if almost surely at most
one discrete transition is enabled at every time point. To avoid referring explicitly
to time, we say instead that a IOSA is deterministic if it almost never reaches a
state in which two different discrete transitions are enabled.

2 Note that the domain and image of Hf appear apparently inverted. This is necessary
in [12] since they only deal with morphisms, and we are following their definitions.
In our case, we could have also defined a direct map from ∆(B(S)) to ∆(B(S′))
since ∆f is bimeasurable, namely H(f−1) = (∆(f−1))−1.
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Definition 15. A IOSA I is deterministic whenever in P(I) = (S,B(S), {Ta |
a ∈ L}), a state (s, v⃗) ∈ S such that

⋃
a∈A∪{init} Ta(s, v⃗) contains at least two

different probability measures, is almost never reached from any (init, v⃗′) ∈ S.

By “almost never” we mean that the measure of the set of all paths leading
to a state (s, v⃗) ∈ S such that

⋃
a∈A∪{init} Ta(s, v⃗) contains at least two elements

is 0. A strictly formal definition of this requires a series of definitions related
to schedulers and measures on paths in NLMPs which is not crucial for the
developing of the result. (For a formal definition of scheduler and probability
measures on paths in NLMPs see [21, Chap. 7].)

The previous definition only makes sense if P(I) satisfies time additivity,
time determinism, and maximal progress [23]. Particularly, by maximal progress
we understand that time cannot progress if an output transition is enabled.

Theorem 16. For a IOSA I, its semantics P(I) = (S,B(S), {Ta | a ∈ L})
satisfies, for all (s, v⃗) ∈ S, a ∈ AO and d, d′ ∈ R>0,

maximal progress: Ta(s, v⃗) ̸= ∅ ⇒ Td(s, v⃗) = ∅
time determinism: µ, µ′ ∈ Td(s, v⃗) ⇒ µ = µ′, and
time additivity: δ−d

(s,v⃗)∈Td(s, v⃗) ∧ δ−d′

(s,v⃗−d)∈Td′(s, v⃗ − d) ⇔ δ−(d+d′)
(s,v⃗) ∈Td+d′(s, v⃗).

Proof. Notice that if Ta(s, v⃗) ̸= ∅, with a ∈ AO, then there exists a transition

s
{xj},a,C′

−−−−−−−→ s′ such that v⃗(j) ≤ 0. Suppose by contradiction that Td(s, v⃗) ̸= ∅,

then 0 < d ≤ min{v⃗(i) | ∃a∈AO, C ′⊆C, s′∈S : s
{xi},a,C′

−−−−−−→ s′} ≤ v⃗(j) ≤ 0, which
is a contradiction.

Time determinism is immediate by Definition 3 since either Td(s, v⃗) = {δ−d
(s,v⃗)}

or Td(s, v⃗) = ∅.

For time additivity, let d̂ = min{v⃗(i) | ∃a∈AO, C⊆C, s′∈S : s
{xi},a,C−−−−−−→ s′}.

Suppose δ−d
(s,v⃗) ∈ Td(s, v⃗) and δ−d′

(s,v⃗−d) ∈ Td′(s, v⃗ − d). By Definition 3, 0 < d ≤ d̂

and 0 < d′ ≤ d̂ − d, i.e. 0 < d + d′ ≤ d̂. Thus δ−(d+d′)
(s,v⃗) ∈ Td+d′(s, v⃗). Suppose

now that δ−(d+d′)
(s,v⃗) ∈ Td+d′(s, v⃗). Then 0 < d + d′ ≤ d̂ and thus 0 < d ≤ d̂ and

0 < d′ ≤ d̂− d, which implies that δ−d
(s,v⃗) ∈ Td(s, v⃗) and δ−d′

(s,v⃗−d) ∈ Td′(s, v⃗ − d). ⊓,

The following is the main theorem of this section.

Theorem 17. Every closed IOSA is deterministic.

The rest of the section is devoted to proving this theorem. From now on,
we work with the closed IOSA I = (S, C,A,−→, s0, C0), with |C| = N , and its
semantics P(I) = (S,B(S), {Ta | a ∈ L}). We recall that IOSAs only admit
sampling clock values from continuous random variables, which is essential for
the validity of Theorem17.

For every state s ∈ S, let active(s) = {x | s {x},a,C−−−−−→ s′} be the set of active
clocks at state s. By Definition 1(d) it follows that active(s′) ⊆ (active(s)\{x})∪
C whenever s

{x},a,C−−−−−→ s′.
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The idea of the proof of Theorem17 is to show that the property that all
active clocks have non-negative values and they are different from each other is
almost surely an invariant of I, and that at most one transition is enabled in
every state satisfying such invariant. Formally, the invariant is the set

Inv ={(s, v⃗) | s ∈ S, v⃗(i) ̸= v⃗(j), and v⃗(i) ≥ 0

for all xi, xj ∈ active(s) with i ̸= j} ∪ ({init}×RN ) (4)

therefore, its complement set is

Invc = {(s, w⃗) | s ∈ S, w⃗(i) = w⃗(j) for some xi, xj ∈ active(s) with i ̸= j}
∪ {(s, w⃗) | s ∈ S, w⃗(i) < 0 for some xi ∈ active(s)} (5)

The next lemma states that Invc is almost never reached in one step from a state
satisfying the invariant.

Lemma 18. For all (s, v⃗) ∈ Inv, a ∈ L, and µ ∈ Ta(s, v⃗), µ(Invc) = 0.

Proof. We proceed analyzing by cases, according a is init, in A, or in R>0.
For a = init, we only consider states of the form (init, v⃗) since Tinit(s, v⃗) ̸= ∅

iff s = init. So, let µ ∈ Tinit(init, v⃗). Then µ = δs0 ×
∏N

i=1 µxi . Since each µxi is a
continuous probability measure (hence the likelihood that two clocks are set to
the same value is 0) and µxi(R>0) = 1, then µ(Invc) = 0.

For a ∈ A, take µ ∈ Ta(s, v⃗) with (s, v⃗) ∈ Inv. Notice that s ∈ S. By

Definition 3 and because I is closed, there exists s
{x},a,C−−−−−→ s′ with v⃗(i) ≤ 0

and µ = µv⃗,C,s′ = δs′ ×
∏

i∈I µxi ×
∏

j∈J δv⃗(j) where I = {i | xi ∈ C} and
J = {j | xj /∈ C}.

For each xi, xj ∈ active(s′) define Invcij = {(s′′, w⃗) | s′′ ∈ S, w⃗(i) = w⃗(j)}
whenever i ̸= j, and Invci = {(s′′, w⃗) | s′′ ∈ S, w⃗(i) < 0}. Notice that Invc =⋃
Invcij ∪

⋃
Invci and, since the unions are finite, µ(Invc) = 0 iff µ(Invcij) = 0 and

µ(Invci ) = 0, for every i, j. In the following, we show this last statement.
Let xi ∈ active(s′). Then xi ∈ (active(s)\{x})∪C. If xi ∈ C, then µ(Invci ) = 0

because µi(R≥0) = 1. If instead xi ∈ active(s)\{x}, then µ(Invci ) = 0 because
δv⃗(i)(R≥0) = 1, since (s, v⃗) ∈ Inv and hence v⃗(i) ≥ 0.

Let xi, xj ∈ active(s′) with i ̸= j. Then xi, xj ∈ (active(s)\{x})∪C. If xi ∈ C
then µi is a continuous probability measure and hence µ(Invcij) = 0. Similarly if
xj ∈ C. If instead xi, xj ∈ active(s)\{x}, then δv⃗(i) ̸= δv⃗(j) because (s, v⃗) ∈ Inv
and hence v⃗(i) ̸= v⃗(j). Therefore µ(Invcij) = 0. This proves that µ(Invc) = 0 for
this case.

Finally, take d ∈ R>0 and suppose that Td(s, v⃗) = {δ−d
(s,v⃗)} with (s, v⃗) ∈ Inv.

Notice that s ∈ S. By Definition 3, 0 < d ≤ min{v⃗(k) | s
{xk},a,C′

−−−−−−−→
s′, a∈AO} and δ−d

(s,v⃗) = δs ×
∏N

i=1 δv⃗(i)−d. We take sets Invcij and Invci
as before and follow a similar reasoning. For xi ∈ active(s), v⃗(i)−d ≥
min{v⃗(k) | s {xk},a,C′

−−−−−−−→ s′, a∈AO} − d ≥ 0 and hence δv⃗(i)−d(R≥0) = 1. There-
fore µ(Invci ) = 0. For xi, xj ∈ active(s) with i̸=j, δv⃗(i)−d ̸= δv⃗(j)−d because
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(s, v⃗) ∈ Inv and hence v⃗(i) ̸= v⃗(j). So µ(Invcij) = 0. This proves that µ(Invc) = 0
for this case, and hence the lemma. ⊓$

From Lemma 18 we have the following corollary.

Corollary 19. The set Invc is almost never reachable in P(I).

The proof of the corollary requires, again, the definitions related to schedulers
and measures on paths in NLMPs. We omit it here since the proof eventually
boils down to directly applying Lemma18 and seeing that the measure of all
paths leading to a state in Invc is 0 for all possible schedulers.

The next lemma states that any state in the invariant Inv has at most one
discrete transition enabled.

Lemma 20. For all (s, v⃗) ∈ Inv, the set enabled(s, v⃗) =
⋃

a∈A∪{init} Ta(s, v⃗) is
either a singleton set or the empty set.

Proof. By Definition 3, enabled(init, v⃗) = Tinit(s, v⃗) = {δs0 ×
∏N

i=1 µxi}, which
proves this case. So, let (s, v⃗) ∈ Inv with s ∈ S and suppose that enabled(s, v⃗) ̸=
∅. By Definition 3, there is at least one transition s

{xi},a,C−−−−−−→ s′ such that
v⃗(i) ≤ 0. Because, (s, v⃗) ∈ Inv and xi ∈ active(s), then v⃗(i) = 0 and for all
xj ∈ active(s) with i ̸= j, v⃗(j) > 0. Condition (c) in Definition 1 ensures that

there is no other transition s
{xi},b,C′

−−−−−−→ s′′ and, as a consequence, enabled(s, v⃗)
is a singleton set. ⊓$

Finally, the proof of Theorem17 is a direct consequence of Corollary 19 and
Lemma20.

Proof (of Theorem 17). Let En≥2 = {(s, v⃗) ∈ S | |enabled(s, v⃗)| ≥ 2}. By
Corollary 19, En≥2 ⊆ Invc. Therefore, by Lemma 20, En≥2 is almost never
reachable. ⊓$

6 Conclusion

We introduced IOSA, a stochastic and compositional modeling formalism which
turns to be deterministic when all synchronizations are resolved, i.e., the IOSA
models a closed system. It supports arbitrary continuous probability distribu-
tions to model the stochastic timed behavior of a system. These characteristics
make it highly suitable for modeling and simulating systems with more realis-
tic results than Markov models such as CTMCs. Moreover, in case the model
uses only exponential distributions, the closed IOSA is amenable to analysis as
a CTMC.

As we have already mentioned, our work is related to [22]. This work
presents an input/output variant of probabilistic automata where outputs are
locally controlled, and hence their occurrence time is governed by exponen-
tial distributions, while inputs are externally controlled. Thus it also has the
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generative/reactive view. In these settings, a closed system forms a CTMC.
Our mathematical treatment and theirs is nonetheless very different since the
memoryless nature of the exponential distribution can be encoded directly rather
than through clocks. Also related to our work, it is the work on weak determin-
ism by Crouzen [6, Chap. 8]. Rather than ensuring by construction that the
model is deterministic, this work provides a technique based on Milner’s [19,
Chap. 11] that, by doing some static analysis, determines if a model, given as a
composite I/O-IMC (an input/output variant of IMCs [17]), is weak bisimilar to
a deterministic I/O-IMC. The technique may report false negatives.

Currently, we are using IOSA as input language for a discrete event sim-
ulation tool —a successor of Bluemoon [5]—that is being developed in our
group, and plan to use it as an intermediate language to compile from graphical
modeling languages.

Acknowledgments. We thank Pedro Sánchez Terraf for the help provided in measure
theory, and Carlos E. Budde for early discussions on IOSAs.
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