
VRIJE UNIVERSITEIT

Robust SOS Specifications of
Probabilistic Processes

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus
prof.dr. V. Subramaniam,

in het openbaar te verdedigen
ten overstaan van de promotiecommissie

van de Faculteit der Exacte Wetenschappen
op vrijdag 13 november 2015 om 9.45 uur

in de aula van de universiteit,
De Boelelaan 1105

door

Ekkehart Daniel Gebler

geboren te Räkelwitz, Duitsland

promotor: prof.dr. W.J. Fokkink
copromotor: dr. P.R. D’Argenio

Robust SOS Specifications of
Probabilistic Processes

Daniel Gebler

Copyright c©2015 by Daniel Gebler
All rights reserved. Reproduction in whole or in part is prohibited without the written
consent of the copyright owner.

IPA Dissertation Series 2015-20
ISBN: 978-90-5383-169-4
A catalogue record is available from the VU University Amsterdam Library

The work in this thesis has been carried out under the auspices of the research school IPA
(Institute for Programming research and Algorithmics). The author was employed at the
VU University Amsterdam.

Contents

Preface v

1 Introduction 1
1.1 Research context . 2
1.2 Research questions . 6
1.3 Organization of the thesis . 11

2 Preliminaries 13
2.1 Algebraic languages . 13
2.2 Probabilistic transition systems . 16
2.3 Bisimulation semantics . 17

2.3.1 Bisimulation equivalence . 17
2.3.2 Bisimulation metric . 19

2.4 PGSOS specifications . 26

3 Compositional metric reasoning 31
3.1 Introduction . 31
3.2 Non-recursive processes . 32

3.2.1 Non-recursive process combinators . 32
3.2.2 Distance between non-recursive processes 33
3.2.3 Compositional reasoning over non-recursive processes 40

3.3 Recursive processes . 42
3.3.1 Recursive process combinator . 42
3.3.2 Distance between recursive processes 43
3.3.3 Compositional reasoning over recursive processes 46

3.4 Application . 48
3.5 Closing remarks . 51

4 Specification of compositional operators 53
4.1 Introduction . 53
4.2 Non-extensive operators . 55

4.2.1 Analysis of non-extensive operators 56
4.2.2 Specification of non-extensive operators 59
4.2.3 Non-extensive process algebra operators 67
4.2.4 Distance between non-extensive terms 68

i

CONTENTS

4.3 Lipschitz continuous operators . 68
4.3.1 Analysis of Lipschitz continuous operators 69
4.3.2 Specification of Lipschitz continuous operators 72
4.3.3 Lipschitz continuous process algebra operators 78
4.3.4 Distance between Lipschitz continuous terms 80

4.4 q-non-extensive operators . 80
4.5 Uniformly continuous operators . 82

4.5.1 Analysis of uniformly continuous operators 84
4.5.2 Specification of uniformly continuous operators 85
4.5.3 Uniformly continuous process algebra operators 88
4.5.4 Distance between uniformly continuous terms 88

4.6 Coinductive rule format characterization . 89
4.6.1 Finite projection Lipschitz continuous operators 89
4.6.2 Uniformly continuous operators . 96
4.6.3 From modulus of continuity to operator specifications 98
4.6.4 Syntactic and semantic compositionality 100

4.7 Deciding the compositionality property . 101
4.8 Compositionality w.r.t. any behavioral metric 106

4.8.1 Lifting functional induced bisimulation metric 106
4.8.2 Lipschitz continuity and q-non-extensiveness 109
4.8.3 Uniform continuity . 111

4.9 Closing remarks . 112

5 A denotational model of metric compositionality 115
5.1 Introduction . 115
5.2 Denotational model . 117

5.2.1 Denotation of deterministic process terms 118
5.2.2 Denotation of probabilistic process terms 121
5.2.3 Denotation of nondeterministic probabilistic process terms 129

5.3 Distance between composed processes . 131
5.3.1 Operations on process denotations . 131
5.3.2 Properties of operations on process denotations 134
5.3.3 Approximating the distance of composed processes 145
5.3.4 Discussion . 161

5.4 Compositional reasoning . 162
5.4.1 Compositional operators . 163
5.4.2 Compositional contexts . 167

5.5 Closing remarks . 170

6 Axiomatizing bisimulation equivalences and metrics 173
6.1 Introduction . 173
6.2 Preliminaries . 174

6.2.1 Many-sorted signatures and term algebras 174
6.2.2 Probabilistic transition system specifications 177

6.3 Axiomatization of bisimilarity equivalence . 180
6.3.1 Axiomatizing finite probabilistic trees 180

ii

CONTENTS

6.3.2 Probabilistically lifted operators . 183
6.3.3 Axiomatizing distinctive and smooth operators 184
6.3.4 Axiomatizing non-smooth operators 186

6.4 Axiomatization of the bisimilarity metric . 190
6.4.1 Axiomatizing finite probabilistic trees 190
6.4.2 Axiomatization of bisimilarity metric of PGSOS 195

6.5 Closing remarks . 196

7 Conclusions 199

Bibliography 203

Summary 211

Samenvatting 213

iii

Preface

Doing a PhD is a wonderful journey of constant challenges. First, I would like to thank my
supervisors Wan Fokkink and Pedro R. D’Argenio for their continued support and the great
scientific freedom they provided. While it became quickly clear that the initial research
question would be only an incremental research contribution, my desire to work on more
fundamental research questions and to explore significant and profound ideas grew. The
recently developed metric behavioral semantics was not only untapped territory for the
language specification community but meant also that we had to fully understand and
combine numerous non-trivial concepts from pure mathematics such as measure theory
and real analysis, and concepts from applied mathematics such as optimization, linear
programming and transportation theory. Your uninterrupted support allowed me to ex-
plore ideas and directions that may have been initially more peripheral to your core sci-
entific fields. Thank you for the ongoing trust that these ideas will eventually lead to a
fully satisfactory consistent and coherent theory. I’m also grateful for the opportunity to
run the local research seminar and reading group where we had over the last years many
interesting talks and scientific debates.

One of my first and most prolific research contacts was Simone Tini. After an ini-
tial contact in early 2012 we started later that year to explore in-depth the connection
between metric compositionality properties and language specification properties. Ow-
ing to favorable circumstances Simone was looking for a new research direction and had
significant amount of research time available. Additionally, we had a very compatible
working schedule. This meant in practice frequent Skype calls late at night and substan-
tial research progress also along the weekends. I’m indebted and very thankful to this
wonderful prolific collaboration over the last years.

Another fundamental research collaboration started at FoSSaCS’12 in Tallinn (Esto-
nia) where I met Pedro D’Argenio and Matias Lee. After I studied their paper on probab-
ilistic SOS languages I got very much excited about this research direction. The talk itself
may have left more questions than answers but it triggered enough interest and curios-
ity to decide that language specification theory of probabilistic systems should become
the main topic of my thesis. Shortly afterwards we published already our first common
paper at EXPRESS/SOS’12 and collaborated until recently on numerous papers together.
Thanks for the great collaboration over those years, the wonderful time we had in Cór-
doba including BBQs, unparalleled Argentinian steaks, Mate cocktails and much more.
Pedro’s group is a great example how a highly committed and dedicated research group
can make with very limited funding both significant and lasting contributions.

I attended a number of great research schools that did not only provide a broad per-

v

Preface

spective on formal methods and quantitative systems theory but allowed me also to build
up many valuable and lasting connections into the research community. Most promin-
ently let me mention ROCKS’12 in Varna (Italy) where we post-published three survey
papers, QMC’12 in Copenhagen (Denmark) which provided a deep understanding of the
various notions of probabilistic parallel composition, GAMES’13 in Champéry (Switzer-
land) which revealed a surprisingly simple connection between operational and logical
semantics in terms of bisimulation games, SMC’14 in Lyon (France) which made the im-
portance of real analysis and topology for quantitative specification and verification theory
clear, and MOVEP’14 in Nantes (France) which provided extensive feedback on my line
of research and future scientific ambitions.

A very important contribution to the notions of compositionality developed in this
thesis is due to Kim G. Larsen and the Schloss Dagstuhl seminar on “Quantitative Models:
Expressiveness, Analysis, and New Applications” (January 2014, Germany). While dis-
cussing with Kim existing notions of metric compositionality he outlined his proposal of
uniform continuity. Even if the notion of uniform continuity could not be applied (at this
time) to compute behavioral distances compositionally, it should become the right notion
to specify languages compositionally. Even more, it should become the unifying notion
of metric compositionality and the foundation for the language specification theory de-
veloped in this thesis. A research visit of the Kim’s group in Aalborg (Denmark) in spring
2015 and extensive discussions also with Radu, Giovanni, and Giorgio proved very helpful
to understand deeply the properties of bisimulation metric semantics. I’m very grateful
to Kim for the Dagstuhl invitation and the productive fruitful follow-up collaboration.

Another great research experience started at CONCUR’13 in Buenos Aires. After meet-
ing with Marco Bernardo and discussing the status of the concurrency community it got
clear that we needed to reactivate collaboration and stimulate the search for new substan-
tial profound ideas in concurrency theory. We organized together with Michele Loreti the
invitation only workshop “Open Problems in Concurrency Theory” at the wonderful medi-
eval town of Bertinoro (Italy). The healthy mix between talks on recent research results,
survey like overviews, and controversial talks on emerging unhealthy trends and situ-
ations provided a great platform for productive conversations. The special issue journal
of this workshop will ensure a lasting effect to the concurrency research community.

Aside organizing workshops and conferences, it was also a great pleasure to serve as
a PC member in 2014 and PC chair in 2015 and 2016 for the EXPRESS/SOS workshop.
While the PC membership may have been a logical consequence of being quite active in
the community, the PC chairing was an unexpected honor. Chairing the workshop in 2015
(where my co-chair Silvia Crafa couldn’t attend), running the steering committee meeting,
kicking-off multiple new initiatives and actively headhunting for a co-chair for 2016 was
a great learning experience! I’m thankful to Silvia Crafa and Johannes Borgström for
offering me this opportunity.

I got numerous invitations to present my work and discuss recent research results. I’m
very grateful for all these opportunities which certainly helped me to form and finalize
this thesis. Without claiming to be exhaustive I would like to thank Holger Hermanns,
Tom Henzinger, Joost-Pieter Katoen, Kim Larsen, Radu Mardare, Rocco De Nicola, Catus-
cia Palamidessi, and Daniele Varacca. Appologies to all those where I couldn’t follow
the invitation. Additionally I would like to thank Luca Aceto, Yuxin Deng, Matteo Mio,
Mohammad Mousavi for valuable discussions and comments over the years.

vi

Bringing the research of multiple years together in a thesis is not only demanding
for the author but means also that the thesis committee needs to take time of their busy
schedules to read the dissertation. I would like to thank Matthew Hennessy, Joost-Pieter
Katoen, Jan Willem Klop, and Mohammad Mousavi for reading the thesis carefully and
provide valuable feedback to improve the manuscript.

Performing theoretical research means that a small community meets regularly on
exotic places to discuss topics which may seem obscure to the external observer. Never-
theless, this strengthen the community inside and many friendships arise naturally. Spe-
cial thanks goes to Alexandra, Christian, David, Dennis, Florian, Helle, Jurriaan, Lili, Gijs,
Mark, Matteo, Michele, Giorgio, Giovanni, Hassan, Simone, and Vahid. Similarly, also my
colleagues at the VU provided a great environment to pursue research, esp. Andrew, Bas,
Clemens, David, Dimitri, Femke, Jan Willem, Jeroen, Jörg, Rena, Roel, Stefan, and Wan.

The academic research trajectory has been complemented by a wonderful business
and startup experience which I wouldn’t have wanted to miss. First and foremost to
mention is my recent involvement in the online supermarket startup Picnic. Big thanks to
Frederik and Joris for their patience, support and trust that this PhD journey takes a happy
end. Thanks also to the exceptionally gifted technology enthusiasts Alecio, Bruno, Eva,
Fernando, Henrique, Keith, Iliana, Jasper, Joris-Jan, Lars, Marc, Niek, Paul, Sid, Siebe,
Stephan, Sunny, Victoria (and soon Renske) that make this entrepreneurial environment
so exciting. Thanks also to all the growth hackers and business veterans in Picnic which
will without any doubt make this ambition a major success! Thanks also to my former
Fredhopper colleagues and friends Andreas, David & Nynke, Francisca & Stan, Frank,
Georg & Christy, Jens & Lietsa, Lucas, Nikolay, Peter & Wendy, Ronny & Rocio, and Tim.

Last but not least such a long research trajectory would not have been possible without
the continued support of my family. The dense travel schedule and demanding deadlines
did challenge Stephanie and my kids Julian and Annika at times but I hope that the
souvenirs and growing Lego-collection could make up for it. Thank you for your love
and support!

Daniel Gebler, 2015

vii

Chapter 1

Introduction

Information and computing systems play a fundamental role in nearly all aspects of the
modern society. They are central in many industries such as transportation, energy, fin-
ance, healthcare, and telecommunication, as well as ubiquitous in almost all aspects of
daily life. Many of those systems are safety-critical whose malfunctioning may result in
significant harm on people, environment, or property. The increasing complexity of those
systems requires rigorous modeling and analysis techniques to specify, verify, and valid-
ate their requirements and behavior. Formal methods are popular mathematically based
techniques used in computing science that provide the necessary means to support the
development process from design to deployment, to ensure correct behavior.

For instance, consider a navigation satellite system consisting of earth orbiting satel-
lites that are deployed in satellite constellations to provide geo-spatial positioning ser-
vices [HLW08]. Many systems in transportation, aviation, and defense depend on the
correct functioning of the navigation satellite system. Incorrect or missing position data,
miscommunication of data, and many more malfunctions could result in loss of life, sig-
nificant property damage, or damage to the environment. Hence navigation satellite sys-
tems are one of the prime examples of safety- and mission-critical systems.

In this context formal methods are applied as follows. First, we specify the system
by describing in mathematical terms the system requirements and expectations of the
system user. Then we formulate the concrete functional behavior and non-functional
properties of the actual systems. Finally we verify that the actual system satisfies precisely
(or approximately) the system requirements. While on the one hand precise satisfaction
of functional properties is essential, on the other hand approximate or partial satisfaction
of non-functional properties may be enough. For instance, it may suffice that a system
satisfies the performance requirements by only an acceptance interval of +−5%.

An essential component of the navigation satellite system is its communication pro-
tocol. It allows for communication and coordination of the satellites and for the terrestrial
remote management of the satellite system. The communication protocol is formalized
by describing the sending unit, the receiving unit and the communication logic between
sender and receiver. In the remainder of the introduction we will refer to this sketched
communication protocol in order to explain the fundamental concepts and approaches of
formal specification and verification.

1

Chapter 1. Introduction

1.1 Research context

The advent of large-scale distributed and concurrent systems requires formal specification
and verification methods which capture both qualitative and quantitative properties of
systems [HS06]. The scientific context of this thesis is defined by an appropriate formal
model, an adequate formal semantics and a suitable formal language to describe and
reason over those systems.

Operational model

We start by discussing a few important models that capture qualitative and quantitative
aspects of the system behavior separately and later introduce a unified model that repres-
ents both aspects together and has a suitable structure for compositional reasoning. Here
we emphasize on intuitive explanations rather than mathematical rigor.

Labeled transition systems [Kel76], LTSs for short, are directed graph structures that
capture the qualitative (functional) aspects of software and hardware systems. An LTS
is an event-based model that describes the operational reactive behavior of a discrete
system in terms of states and action-labelled transitions. Formally, a system model consists
of a set of states S and transitions of the form s

a
−→ s′ (with s, s′ ∈ S) describing that

the system in state s can evolve to state s′ by performing a transition with label a. To
exemplify the LTS model, consider again the communication protocol sketched above.
There are various states of the LTS that represent, respectively, the sender and receiver
in different configurations. For instance, there is one state that represents the sender in
the event of having sent a single data item, and there is another state that represents
the receiver in the event of not having received that data item yet. The evolution of the
system is modeled by transitions between the states. Action labels allow us to describe
the kind of computation or interaction steps performed by system. A typical action label
of a communication protocol would describe that a data item gets sent, or that a data
item is received. The synchronized execution of both actions describes the successful
transmission of data formalized as interaction between the sender and receiver.

LTSs allow us to model uncertainty about the reactive behavior of a system by non-
deterministic choices. Nondeterminism is essential to model scheduling freedom, im-
plementation freedom, abstractions or uncertainties in the external environment, and
incomplete information [Hoa85; Alf97; Seg95; Sto02]. For instance, the choice between
different implementations of some behavior such as the initiation of a transmission in a
communication protocol may be a nondeterministic choice. Technically, this is modeled
by a state with multiple equally labelled outgoing transitions. Those transitions describe
the possible reactions of a system to the same event. Concrete implementations of the
system will resolve those nondeterministic choices by schedulers that select one of the
possible choices.

Quantitative (or random) phenomena occur whenever the behavior of a system is not
deterministic and the uncertainty can be quantified. They arise in nearly every system
either by construction or from the physical properties of the system and its environment.
Probability is one of the most important measures of uncertainty and has become indis-
pensable in areas such as networks, data mining, security, artificial intelligence, embed-
ded systems, bioinformatics and many more. For instance, distributed algorithms like the

2

1.1. Research context

Zeroconf protocol [SC05] are by construction based on random choices to break sym-
metry. Similarly, cryptographic protocols like SSL insert uncertainty in order to achieve
their goals. Additionally, the physical properties of transmission channels determine that
message passing between distributed systems suffers typically from a failure rate. The
corruption or loss of messages on a channel may be the result of unreliability of the trans-
mission medium (system internal property) or of interference and collisions with other
concurrent transmissions (system external environment property).

Quantitative phenomena are typically modeled by Markov chains [KS60]. The most
prominent probabilistic model is the Discrete Time Markov Chain [Ste94; HJ94], DTMC
for short. In DTMCs the time evolves in discrete steps, i.e., the system performs one op-
eration per clock tick, and the evolution of the system is determined only by the current
state and the specified probabilistic choices (Markov property). Formally, a DTMC model
consists of a set of states S and transitions of the form s −→ π, with π a distribution over S,
describing that the system in state s can evolve to state s′ with probability π(s′). DTMCs
are widely used to analyze and evaluate the performance of computer and communication
systems [Hav01]. An important extension of DTMCs are probabilistic LTSs [LS91; GSS95]
that decorate probabilistic transitions with action labels. On the one hand, action labels
allow us to express the kind of computation that a system executes. On the other hand,
they provide also the means to express various notions of communication, synchroniz-
ation and coordination between systems in terms of appropriate composition operators.
Formally, a probabilistic LTS model is an action-indexed family of DTMCs that describe
for each action label a by transition s −→a π that the system in state s can evolve to state
s′ with probability π(s′) by performing action a. However, probabilistic LTSs do not allow
for nondeterministic choices, i.e., for each action label the successor states are determ-
ined only by the probabilistic choices. To summarize, LTSs are powerful models to specify
and verify the functional correctness of systems, while DTMCs and probabilistic LTSs are
suitable models to evaluate the performance of systems. However, as argued in [Seg95;
HS06] and above, both nondeterminism and probability are essential to model distributed
concurrent and embedded systems.

Nondeterministic probabilistic labeled transition systems, PTSs for short, combine
LTSs and DTMCs by separately modeling the reactive system behavior, nondetermin-
istic choices and probabilistic choices. PTSs have been introduced as probabilistic auto-
mata in [Seg95] and are successfully applied to model distributed and concurrent sys-
tems [Seg95; Sto02]. Essentially, a system is modeled by a set of states S and a set of
transitions of the form s

a
−→ π that describe that the system in state s may perform a

transition labelled with a and evolve to a state s′ with probability π(s′). PTSs allow for
nondeterministic choices, i.e., there may be different transitions s

a
−→ π and s

a
−→ π′ rep-

resenting that the system in state s may perform action a and then choses nondeterminist-
ically either distribution π or π′. We will employ PTSs as the operational model to study
the compositionality properties of distributed and concurrent systems.

Behavioral semantics

The development of an appropriate model of a real system is a non-trivial task. A dis-
tributed and concurrent system may be represented by different PTS models, e.g., prob-
abilistic choices may be differently encoded, multiple equivalent implementation options

3

Chapter 1. Introduction

may be given, or naming may be different. Behavioral semantics gives a formal notion to
compare systems. Behavioral equivalences are behavioral semantics that allow us to de-
termine the observational equivalence of systems by abstracting from behavior that may
not be observable or otherwise not relevant in the application context. The most promin-
ent notion is bisimulation equivalence which dates back to Park and Milner [Mil80; Par81]
and provides a well-understood standard framework to express behavioral equivalences
of dynamic systems. Two states are bisimilar if they can mimic each other’s behavior.
There is a plethora of behavioral equivalences that form a linear-time branching-time
spectrum [Gla93; Gla90]. In this thesis we will focus on bisimulation semantics due to its
canonicity. Nevertheless, we will indicate how the developed techniques and results may
be transferred to other behavioral semantics.

The concept of bisimulation equivalence on LTSs was lifted by Larsen and Skou to
probabilistic LTSs [LS91], and later by Segala and Lynch to PTSs [SL95; Seg95]. Two
states of a PTS are bisimilar if each transition can be mimicked by an equally labelled
transition and the probability mass of bisimilar states coincide. This basic idea dates back
to the well-known notion of lumpability in Markov chain theory [KS60]. Bisimulation
equivalence on PTSs enjoys similar nice properties as bisimulation equivalence on LTSs
and allows for neat coinductive, fixed point and logical characterizations [PS07; Her+11].
Similar to the spectrum of behavioral equivalences on LTSs there is also some recent work
to develop comparative probabilistic semantics and a spectrum of behavioral equivalences
on PTSs [CR11; BDL13].

Recently it became clear that the notion of behavioral equivalence is too strict in
the context of probabilistic models. The probability values in those models originate
either from observations (statistical sampling) or from requirements (probabilistic spe-
cification). Behavioral equivalences such as bisimulation equivalence are binary notions
that can only answer the question if two systems behave precisely the same way or not.
However, a tiny variation of the probabilities, which may be due to a measurement error
or limitations how precise a specified probabilistic choice can be realized in a concrete sys-
tem, will make these systems behaviorally inequivalent without any further information
how far the behavior of these systems is apart.

In practice, many systems are approximately correct. This leads immediately to the
question of what is an appropriate notion to measure the quality of the approximation.
There are multiple approaches that aim for a quantitative notion of behavioral semantics.
The most prominent notion is behavioral metric semantics [Des+04; BW05; Den+05]
which provides a behavioral distance that characterizes how far the behavior of two sys-
tems is apart. For instance, behavioral metrics allow us to express that an ideal transmis-
sion channel (no transmission errors) is closer to a lossy channel with failure rate ε than to
another lossy channel with failure rate 2ε. Bisimulation metrics are the quantitative ana-
logue to bisimulation equivalences and assign to each pair of processes a distance which
measures the proximity of their quantitative properties. The distances form a pseudo-
metric with bisimilar processes at distance 0. Alternative approaches towards a quantit-
ative semantics for probabilistic processes are approximate bisimulation [GJS90; DLT08;
TDZ11; GT13] and bisimulation degrees [Yin02a; Yin02b; ZZ08]. However, aside from
the less elegant mathematical formulations of approximate bisimulation and bisimulation
degrees, only (discounted) bisimulation metric satisfies important and natural properties
that are required to measure the quality of approximation in a meaningful sense (tech-

4

1.1. Research context

nically these are parameter and property continuity [Mar+14]). Hence, we follow the
convincing argumentation1 in [GJS90; Des+04; BW05] and will consider in this thesis
bisimulation metric semantics.

Compositional specification

Process algebras [Mil89; Hoa85; Hen88; Fok13] are languages to formally describe the
behavior of concurrent systems in a compositional way. A process algebra provides a
set of primitive operators (also called process combinators or process connectors) that
allow us to describe complex systems by successively composing subsystems and primitive
components. Probabilistic process algebras [JLY01; Den15] are process algebras with
probabilistic connectors that allow us to describe the behavior of distributed concurrent
systems. The probabilistic connector describes a probabilistic choice that is the result
of some uncertain behavior which cannot be affected and does not interact or depend on
the environment. The probabilistic choice provides information on the outcome of the
choice but abstracts away from the details of how the choice is made. Each process term
of a probabilistic process algebra induces a PTS that describes the operational semantics
of the respective system.

The operational semantics of process algebras and programming languages is usually
described by Structural Operational Semantics (SOS) specifications [Plo81]. An SOS spe-
cification assigns to each language expression a transition system with transitions induct-
ively defined by means of SOS rules. The terms are inductively defined over the alphabet
of the language. The rules define how a process should behave (i.e., perform certain
activities) in terms of the behavior of its subprocesses. In other words, the rules define
compositionally the transition system associated to each term of the language. Intuit-
ively, the terms denote programs or processes with an associated stepwise computation
behavior described by the state transition relation.

An important early insight [Sim84; Sim85] in SOS research was that many properties
of process algebra and programming language operators depend only on the structure of
the SOS inference rules used to specify their behavior. This started the important branch
of SOS meta-theory that investigates which syntactic properties of the rules ensure by
construction semantic properties of the induced transition systems [GV92; BIM95; Gro93;
BG96; MRG07]. The main objective of this research branch is to define constraints on
the structure of the rules and specifications (called rule and specification formats) that
guarantee, by construction, a given semantic property.

In order to specify and verify systems in a compositional manner, it is necessary that
the behavioral semantics is compatible with all operators of the language that describe
these systems. For behavioral equivalence semantics there is common agreement that
compositional reasoning requires that the considered behavioral equivalence is a con-
gruence with respect to all language operators. For example, consider a term f (s1, s2)
which describes a system consisting of subcomponents s1 and s2 that are composed by
the binary operator f . When replacing s1 with a behaviorally equivalent s′1, and s2 with
a behaviorally equivalent s′2, congruence of the operator f guarantees that the composed

1The importance of behavioral metric semantics has also been recognized by international funding agencies,
e.g., ERC advanced grant “Quantitative Reactive Modeling” [Hen13], 2010, Tom Henzinger, and ERC advanced
grant “Learning, Analysis, SynthesiS and Optimization of Cyber-Physical Systems”, 2015, Kim G. Larsen.

5

Chapter 1. Introduction

system f (s1, s2) is behaviorally equivalent to the resulting replacement system f (s′1, s′2).
This implies that equivalent systems are inter-substitutable: Whenever a system s in a
language context C[s] is replaced by an equivalent system s′, the obtained context C[s′]
is equivalent to C[s]. The congruence property is important as it allows to reason about
systems in an equational framework. Also it is usually much easier to model and study (a
set of) small systems and then combine them together rather than to work with a large
monolithic system.

On these grounds, the congruence property is one of the most studied properties of
SOS rules and specifications. Over the last decades, numerous rule and specification
formats have been defined that ensure the congruence property on the induced LTS w.r.t.
various behavioral equivalences, see e.g. [AFV01b; MRG07] for an overview. One of
the most important formats is the GSOS format [BIM95] that ensures congruence of the
specified operators w.r.t. bisimulation equivalence on LTS. A first attempt to generalize
this format to the probabilistic setting was made in [Bar02; LT05; LT09] by using literals
of the form t

a,p
−−→ t ′ that decorate transitions with a probability in order to partially

specify a probabilistic jump. However, this approach required complicated consistency
conditions to ensure that all partially specified probabilistic jumps together define a valid
transition to a full distribution. Hence, Bartels and later D’Argenio and Lee [Bar04; DL12]
introduced the probabilistic GSOS format that uses triples of the form t

a
−→ θ (with t a

state term and θ a distribution term) to specify in a single literal all probabilistic choices
of a transition. The probabilistic GSOS format [Bar04; DL12; LGD12; DGL14; DGL15]
ensures that bisimulation equivalence is a congruence w.r.t. all operators specified by rules
in this format. Finally we remark that we introduced in [DL12; LGD12] the even more
expressive ntµfθ/ntµxθ format which allows additionally for look-ahead and still ensures
that bisimulation equivalence is a congruence for the specified operators.2 Nevertheless,
look-ahead is not compatible with metric compositionality and allows to define operators
that are not compositional w.r.t. bisimulation metric semantics [GT13]. Hence we employ
throughout this thesis the probabilistic GSOS format.

1.2 Research questions

The PTS operational model, bisimulation metric semantics and probabilistic GSOS spe-
cifications provide the formal context for the research questions explored in this thesis.
While the theory of compositional specification and reasoning w.r.t. behavioral equival-
ence semantics is reasonably well-developed [Bai+04; RS14; DGL15; Den15], there exists
so far no adequate theory in the context of behavioral metric semantics. The objective
and goal of this thesis is to develop a specification theory of probabilistic nondetermin-
istic systems w.r.t. bisimulation metric semantics. This provides language designers, sys-
tem developers, and operations engineers with the necessary theory, methods and tools
to specify and verify those systems in an efficient compositional way.

2Additionally we proposed in [DLG15a] sub-formats of the ntµfθ/ntµxθ format for convex bisimulation equi-
valence, probability obliterated bisimulation equivalence, and probability abstracted bisimulation equivalence.
Moreover, Lee and de Vink proposed in [LV15] a sub-format for rooted branching bisimulation equivalence.

6

1.2. Research questions

Compositional metric reasoning

A language allows for compositional reasoning if the behavioral semantics is in some
sense compatible with all operators of the language. While for behavioral equivalence se-
mantics compositionality is given by the well-understood and extensively studied property
of congruence, for behavioral metric semantics there is no satisfactory understanding of
which property an operator should satisfy in order to facilitate compositional reasoning.
Intuitively, what is needed is a formalization of the idea that systems close to each other
should be approximately inter-substitutable: Whenever a system s in a language context
C[s] is replaced by a close system s′, the obtained context C[s′] should be close to C[s].
In other words, there should be some relation between the behavioral distance between
s and s′ and the behavioral distance between C[s] and C[s′]. This ensures that any lim-
ited change in the behavior of a subcomponent s implies a smooth and limited change
in the behavior of the composed system C[s] (absence of chaotic behavior when system
components and parameter are modified in a controlled manner). Earlier proposals such
as non-expansiveness [Des+04] and non-extensiveness [Bac+13] are only partially sat-
isfactory for non-recursive operators and even worse, they do not allow at all to reason
compositionally over recursive processes. More fundamentally, those proposals are kind
of ‘ad hoc’ and do not capture systematically the essential nature of compositional metric
reasoning. This leads us to the first research questions:

What is an appropriate notion of metric compositionality? (Q1)

We study this question in Chapter 3 and argue that uniform continuity (generalizing
non-expansiveness and non-extensiveness) captures the essential nature of compositional
metric reasoning and allows us now to reason also compositionally about recursive pro-
cesses. Uniform continuity ensures that a small variance in the behavior of the parts leads
to a bounded small variance in the behavior of the composed processes. Technically, this
is expressed by a modulus of continuity that relates the behavioral distance between the
parts s and s′ with the behavioral distance between the composed systems C[s] and C[s′].
Since uniformly continuous operators preserve the convergence of sequences, this allows
us to approximate composed systems by approximating its subsystems. In summary, uni-
form continuity allows us to investigate the behavior of systems by disassembling them
into their components, analyze at the component level, and then derive properties of the
composed system.

We investigate this newly proposed notion of metric compositionality in the context of
probabilistic process calculi and analyze which operators are uniformly continuous and
hence allow for compositional reasoning w.r.t. bisimulation metric semantics. Uniform
continuity does not only formalize when an operator is compositional but quantifies also
by means of the modulus of continuity how the distance between composed processes
relates to the distance between their subprocesses. Hence we derive also for all standard
operators of probabilistic process calculi the least possible modulus of continuity, i.e. a
tight bound on the distance between composed processes given the distance between
their parts. Combining these results, we demonstrate how compositional metric reasoning

7

Chapter 1. Introduction

about systems specified by uniformly continuous process algebra operators allows for
metric assume-guarantee like performance validation.

Specification of compositional operators

With an appropriate notion of metric compositional reasoning at hand and after having
gained understanding of how this notion applies to some concrete probabilistic process
algebra, the natural next question is how those results can be generalized to arbitrary pro-
cess algebras and programming languages. By observing that the compositionality results
for the concrete probabilistic process algebra operators depended only on the specifica-
tion rules of those operators, the question boils down to developing SOS meta-theoretical
results and appropriate rule and specification formats that guarantee that the specified
operators are uniformly continuous. While there is a rich and well established SOS meta-
theory for behavioral equivalence semantics [AFV01b; MRG07], the following pressing
question has been open until now:

How can we specify compositional process combinators? (Q2)

In Chapter 4 we investigate which SOS specifications define uniformly continuous
operators. Aside the canonical metric compositionality property of uniform continuity
we consider also the stricter properties of Lipschitz-continuity, non-expansiveness, and
non-extensiveness that allow to specify bounded recursive operators, non-recursive oper-
ators, and behavioral choice operators. The stricter compositionality properties play an
important role to get a tight bound on the distance between the terms built of operat-
ors with different compositionality properties. Building on that analysis, we develop (a
spectrum of) SOS rule and specification formats that allow us to simultaneously specify
operators with different compositionality properties (e.g., one operator is non-extensive
and another operator is Lipschitz continuous) in one SOS specification.

Conceptually, the specification of compositional operators works as follows. A lan-
guage designer defines for each operator the required compositionality property in terms
of the modulus of continuity. The specification format determines then structural prop-
erties of the specification rules to ensure that a) the kernel relation of the bisimulation
metric (i.e. bisimulation equivalence) is a congruence relation w.r.t. all operators of the
specified language, and b) the language operators satisfy the defined modulus of continu-
ity. We obtain property a) by defining our format as a subformat of the probabilistic GSOS
format (which satisfies already the congruence property), and achieve property b) by de-
termining carefully the additional rule and specification restrictions to satisfy the required
modulus of continuity. Each rule and specification format exploits the (possibly different)
compositionality guarantees of all operators used in the specification rules. This admits
an expressive class of specifications.

Our formats allow us to derive the modulus of continuity of process algebra and pro-
gramming language operators by simple inspection of the syntactic pattern of the specific-
ation rules. We remark that our specification format is the first that allows to specify sim-
ultaneously operators of different compositionality properties. We show how the modulus

8

1.2. Research questions

of continuity can be used to derive a bound on the distance between two closed instances
of a partial program specification or open process algebra expressions. More general,
our SOS meta-theoretical results are the very first for bisimulation metric semantics. The
only earlier attempt to answer the question Q2 was done by Tini in [Tin08; Tin10] by
considering only probabilistic LTSs (i.e. excluding non-deterministic choice), employing
approximate bisimulation equivalence (i.e. a notion of bisimulation distance with major
drawbacks), and by analyzing only non-expansiveness as compositionality property.

A denotational model of metric compositionality

In order to answer the first two questions we developed tools and methods to specify
and reason about probabilistic nondeterministic systems. However, those methods and
tools provide only partial and indirect insights into the fundamental relation between
structural specification properties and the related metric compositionality properties of
the specified operators. Hence, in order to get a deeper understanding of the relation
between syntactical properties and the associated metric behavioral semantics properties,
the following question arises:

Which primitive process behavior determines the

compositionality property of a process combinator?
(Q3)

In Chapter 5 we analyze the class of all finite probabilistic processes (specified by basic
probabilistic process algebra operators) and deduce that process replication, probabilistic
choice, and nondeterministic choice are the primitive operational process behavior that
determine the moduli of continuity of the specified operators. This allows us to define a
denotational model that formalizes these primitive behaviors in a stratified manner. The
domain model allows us to systematically analyze how the various primitive process be-
havior interact, e.g. that a unary operator that replicates its argument once but evolves
only by probability 0.5 has the same modulus of continuity as a unary operator that does
not replicate its argument but evolves by probability of 1. Reversely, the domain model
allows us to analyze for a given modulus of continuity (understood as compositionality re-
quirement) what is the optimal set of primitive operational process behavior that satisfies
this modulus of continuity.

The denotational model associates with each operator a denotation that characterizes
the primitive operational behavior of processes combined by that operator. The denota-
tion of an operator is computed by recursively counting how many times the combined
processes are replicated along their evolution, weighted by the likelihood of the replic-
ation. The modulus of continuity of an operator can then directly be derived from its
denotation. More fundamentally, we will show that compositionality on the syntactic
level (composing operators to terms), semantic level (composing moduli of continuity
of operators to gain moduli of continuity of terms) and denotational level (composing
denotations of operators to gain denotations of terms) coincide.

The denotational model opens the door for a new approach to derive SOS rule and
specification formats. Traditionally, SOS rule formats were developed by an explorat-

9

Chapter 1. Introduction

ive approach as follows: First, one analyzes the operational and compositional behavior
induced by the structural properties of a representative set of rules. Then one general-
izes (and simplifies) the structural properties of all those rules that specify operators of
the desired semantical property. As a final step one defines the rule format by (reason-
able) argumentation for admissible rules satisfying the generalized structural properties,
typically by showing that obvious relaxations of the format constraints may violate the in-
tended semantical property. Prominent examples are the GSOS format [BIM95] and the
ntyft/ntyxt [Gro93] format, as well as more recently the probabilistic GSOS format [DL12;
LGD12] and the newly introduced metric GSOS format of Chapter 4. An alternative ap-
proach was enabled by the development of compositional logical proof systems for the
satisfaction relation of HML-formulae [LX91; FGW06a; GF12]. The logical approach de-
rives SOS rule formats from the logical characterization of the behavioral equivalence
under investigation [BFG04; FGW06b; FGW06c; FGW12].

We propose a new denotational approach that derives an adequate SOS rule and spe-
cification format from the denotational model that defines the required compositionality
properties of the operators. One of the interesting benefits of this approach is that it
allows us to derive for a given modulus of continuity different rule formats from which
the language designer may select the best one based on his application context.

Axiomatizing bisimulation equivalences and metrics

At this point we have gained a comprehensive understanding of compositional metric
reasoning, the required underlying formal notions and developed a powerful toolbox that
allows us to specify new probabilistic process algebras and programming languages. In
other words, we have developed SOS meta-theoretical results that relate the syntactic
properties of specification languages with the operational and metric semantics behavior
of the specified operators. However, to understand algebraic properties of the specified
operators, such as associativity, commutativity, idempotence, distributivity etc., the per-
spective of algebraic semantics and equational reasoning is required. Hence, we round
up the thesis by raising the following question:

Which equational algebraic properties do compositional

process combinators satisfy?
(Q4)

In chapter 6 we develop a method that generates from any probabilistic GSOS spe-
cification a sound and ground-complete equational axiomatization for bisimulation equi-
valence. The construction is based on the nondeterministic GSOS axiomatization method
of [ABV94] and the equational theory for probabilistic languages of [BS01; Hen12]. The
novelty in our approach is to employ multi-sorted algebras to axiomatize separately non-
deterministic choice, probabilistic choice and its interaction. Furthermore, we generalize
this method to the axiomatize metric bisimulation distance of probabilistic GSOS specific-
ations.

This method allows us to analyze the algebraic properties of operators and processes.
For instance, it allows to derive in a systematic way by formal equational reasoning that

10

1.3. Organization of the thesis

parallel composition is commutative and associative, i.e. x | y = y | x and (x | y) | z = x |
(y | z). In a similar way, it allows to derive that parallel composition is non-expansive, i.e.
d(x1 | x2, y1 | y2) ≤ d(x1, y1) + d(x2, y2), and that the n-time iteration of processes is n-
Lipschitz, i.e. d(xn, yn)≤ n ·d(x , y). Hence, it provides an alternative approach to derive
the modulus of continuity of operators. For instance, we can derive that an operator f
specified as f (x) = x | x is 2-Lipschitz continuous.

1.3 Organization of the thesis

The remainder of the thesis is organized as follows. The preliminaries in Chapter 2
cover all standard technical definitions and important known results of the research con-
text described above. If the reader is familiar with probabilistic concurrency theory and
structural operational semantics, then he may directly dive into the technical material
of Chapters 3–6. Otherwise, a basic study of the preliminaries is advisable to allow for a
gentle study and easy reading of the technical material. Each of the technical Chapters 3–
6 answers one of the research questions Q1 – Q4. When studying the technical material
for the first time it may be easiest if the reader focuses first on the formal concepts, their
intuitive motivation, the clarification by examples, and the key results. Since the research
context and results are very technical by nature, we opted to provide all proofs in the main
text to make it easy for the interested reader to study also immediately the argumentation
and reasoning that lead to the results. Each chapter closes with a section that briefly sum-
marizes the results and outlines proposals for possible future research directions. In a few
cases we sketch possible solution ideas for the raised future research questions that may
be used to continue the line of research of this thesis. The thesis concludes in Chapter 7 by
summarizing the research questions and results and providing a comprehensive outlook
to possible future research directions.

The thesis covers the main results of the published papers [GLT15; GT13; GT14; GT15;
DGL14]. We developed a number of other results that are published in [GF12; LGD12;
GGM13; Cha+14; DGL15; DLG15a; Yux15] but are not covered in the thesis. Besides
that we would like to refer the interested reader to our survey papers [Deh+14; GHT14;
Arn+14] which provide an extensive introduction to probabilistic modeling and verifica-
tion and offer many references to standard literature and recent advances in the field.

11

Chapter 2

Preliminaries

This chapter provides the necessary mathematical background used in the thesis. We limit
ourselves to those notions and concepts that will be used later in the technical chapters.
An introduction to the standard concepts from lattice theory, probability theory, and set
theory may be found in [DP02; Fel08; Kal06; Hal60].

We start by introducing algebraic languages in Section 2.1, then define the operational
model in Section 2.2, followed by the behavioral semantics in Section 2.3, and finish with
the specification framework in Section 2.4. Most of the material is standard except for
the important new result in Theorem 2.33 and Corollary 2.34 that shows how moduli of
continuity of language operators distribute over probabilistic choices. This result will be
of fundamental importance for the development of the specification formats.

2.1 Algebraic languages

A formal language is defined by an alphabet and a grammar. We will use algebraic lan-
guages that are defined by a signature and a simple grammar given by the freely generated
term algebra that defines the sentences as terms over the alphabet.

Definition 2.1 (Signature). A signature is a structure Σ = (F, r), where F is a countable
set of operators, and r : F → N is a rank function.

The rank function gives by r(f) the arity of operator f . We call operators with arity 0
constants. If the rank of f is clear from the context we will use the symbol n for r(f). We
may write f ∈ Σ as shorthand for Σ= (F, r) with f ∈ F .

Terms are defined by structural recursion over the signature. We assume an infinite
set of state variables V s disjoint from F .

Definition 2.2 (State terms). The set of state terms over a signature Σ and a set V ⊆ V s
of state variables, notation T(Σ, V), is the least set satisfying:

• V ⊆ T(Σ, V), and

• f (t1, . . . , tn) ∈ T(Σ, V) whenever f ∈ Σ and t1, . . . , tn ∈ T(Σ, V).

13

Chapter 2. Preliminaries

We write c for c() if c is a constant. The set of closed state terms T(Σ,;) is abbreviated as
T(Σ). The set of open state terms T(Σ,V s) is abbreviated as T(Σ). To clarify the notation
of operands in terms, we may write operators together with underscores to denote the
position of the operands. For instance, for a binary operator f , we may write f_ _ when
using the prefix notation, _ _ f when using the postfix notation, and _ f_ when using the
infix notation. In the context of process algebra, we may refer to operators as process
combinators, to state variables as process variables, and to closed state terms as processes.

Notation 2.3 (Notations for state terms). Let t ∈ T(Σ) be any term. We denote by Var(t)
the set of all state variables in t, i.e. Var(x) = {x} and Var(f (t1, . . . , tn)) =

⋃n
i=1 Var(t i). If

the number of occurrences of variables is important, we will use the expression Var(t, x)
to denote how many times the variable x occurs in term t, defined by Var(x , x) = 1,
Var(x , y) = 0 if x 6= y , and Var(f (t1, . . . , tn), x) =

∑n
i=1 Var(t i , x). By depth(t), we

mean the depth of term t, defined by depth(x) = 0 and depth(f (t1, . . . , tn)) = 1 +
maxn

i=1 depth(t i).

Probability distributions formalize the concept of probabilistic choices by describing
how likely a specific state is selected. Technically, a probability distribution is a mapping
π: T(Σ) → [0, 1] with

∑

t∈T(Σ)π(t) = 1 that assigns to each closed term t ∈ T(Σ) its
respective probability π(t). We denote by ∆(T(Σ)) the set of all probability distributions
on T(Σ). We let π,π′ range over ∆(T(Σ)).

Notation 2.4 (Notations for probability distributions). The probability mass of a set of
closed terms T ⊆ T(Σ) in some probability distribution π ∈∆(T(Σ)) is given by π(T) =
∑

t∈T π(t). We denote by δ(t)with t ∈ T(Σ) the Dirac distribution defined by (δ(t))(t) =
1 and (δ(t))(t ′) = 0 if t 6= t ′. The convex combination

∑

i∈I piπi of a family {πi}i∈I of
probability distributions πi ∈ ∆(T(Σ)) with pi ∈ (0,1] and

∑

i∈I pi = 1 is defined by
(
∑

i∈I piπi)(t) =
∑

i∈I (piπi(t)) for all terms t ∈ T(Σ). The expression f (π1, . . . ,πn)
with f ∈ Σ and πi ∈ ∆(T(Σ)) denotes the product distribution of π1, . . . ,πn defined
by (f (π1, . . . ,πn))(f (t1, . . . , tn)) =

∏n
i=1πi(t i) and (f (π1, . . . ,πn))(t) = 0 for all terms

t ∈ T(Σ) not in the form t = f (t1, . . . , tn). For binary operators f we may use the infix
notation and write π1 f π2 for f (π1,π2).

Next, we introduce a language to describe probability distributions. We assume an
infinite set of distribution variables Vd and let µ,ν range over Vd . We denote by V the set
of state and distribution variables V = V s ∪Vd and let ζ,ζ′ range over V .

Definition 2.5 (Distribution terms). The set of distribution terms over a signature Σ,
a set of state variables Vs ⊆ V s and a set of distribution variables Vd ⊆ Vd , notation
DT(Σ, Vs, Vd), is the least set satisfying:

1. Vd ⊆DT(Σ, Vs, Vd),

2. {δ(t) | t ∈ T(Σ, Vs)} ⊆DT(Σ, Vs, Vd),

3.
∑

i∈I piθi ∈DT(Σ, Vs, Vd)whenever θi ∈DT(Σ, Vs, Vd) and pi ∈ (0, 1]with
∑

i∈I pi =
1, and

4. f (θ1, . . . ,θn) ∈DT(Σ, Vs, Vd) whenever f ∈ Σ and θi ∈DT(Σ, Vs, Vd).

14

2.1. Algebraic languages

Distribution terms have the following meaning. A distribution variable µ ∈ Vd is a
variable that takes values from ∆(T(Σ)). An instantiable Dirac distribution δ(t) is an
expression that takes as value the Dirac distribution δ(t ′) when state variables in t are
substituted such that t becomes the closed term t ′. Case 3 allows us to construct con-
vex combinations of distributions. Case 4 lifts structural recursion from state terms to
distribution terms.

The set of closed distribution terms DT(Σ,;,;) is abbreviated as DT(Σ). The set of
open distribution terms DT(Σ,V s,Vd) is abbreviated as DT(Σ). We write θ1 ⊕p θ2 for
∑2

i=1 piθi with p1 = p and p2 = 1− p. Furthermore, we may write θ1 f θ2 for f (θ1,θ2).

Notation 2.6 (Notations for distribution terms). For a distribution term θ ∈ DT(Σ), we
denote by Var(θ) the set of all state and distribution variables in θ , i.e. Var(µ) = {µ},
Var(δ(t)) = Var(t), Var(

∑

i∈I piθi) =
⋃

i∈I Var(θi), and Var(f (θ1, . . . ,θn)) =
⋃n

i=1 Var(θi).
Then, we denote by Var(θ ,ζ) the number of occurrences of variable ζ in term θ , i.e.
Var(µ,µ) = 1, Var(µ,ν) = 0 if µ 6= ν, Var(δ(t), x) = Var(t, x), Var(

∑

i∈I piθi ,ζ) =
∑

i∈I piVar(θi ,ζ), and Var(f (θ1, . . . ,θn),ζ) =
∑n

i=1 Var(θi ,ζ). By depth(θ) we mean
the depth of distribution term θ defined by depth(x) = 0, depth(δ(t)) = depth(t),
depth(

∑

i∈I piθi) =maxi∈I depth(θi), and depth(f (θ1, . . . ,θn)) = 1+maxn
i=1 depth(θi).

Definition 2.7 (Substitution). A substitution is a mapping σ : V → T(Σ) ∪ DT(Σ) such
that σ(x) ∈ T(Σ), if x ∈ V s, and σ(µ) ∈ DT(Σ), if µ ∈ Vd . A substitution extends to a
mapping from state terms to state terms by σ(f (t1, . . . , tn)) = f (σ(t1), . . . ,σ(tn)). A sub-
stitution extends to a mapping from distribution terms to distribution terms by σ(δ(t)) =
δ(σ(t)), σ(

∑

i∈I piθi) =
∑

i∈I piσ(θi), and σ(f (θ1, . . . ,θn)) = f (σ(θ1), . . . ,σ(θn)).

A substitution σ is closed if σ(x) ∈ T(Σ) for all x ∈ V s and σ(µ) ∈ DT(Σ) for all
µ ∈ Vd . Notice that closed distribution terms are distributions in ∆(T(Σ)).

In order to simplify later the proofs and argumentation over distribution terms, we
will introduce a normal form of distribution terms. A distribution term θ ∈ DT(Σ) is in
normal form if either there is no convex combination in θ or there is only one convex
combination as outermost operation. Moreover, the Dirac operator is only applied to
single variables δ(x) and not to non-variable terms δ(t) with t 6∈ V s.

Definition 2.8 (Distribution terms in normal form). A distribution term θ ∈ DT(Σ) is in
normal form iff either

• θ = µ ∈ Vd , or

• θ = δ(x) with x ∈ V s, or

• θ =
∑

i∈I piθi where all θi are in normal form and no convex combination appears
in any of the θi , or

• θ = f (θ1, . . . ,θn) where all θi are in normal form and no convex combination ap-
pears in any of the θi .

We call distribution terms θ1,θ2 ∈ DT(Σ) equivalent, notation θ1 ≡ θ2, if σ(θ1) =
σ(θ2) for all closed substitutions σ. In other words, θ1 ≡ θ2 iff the closed instances
σ(θ1) and σ(θ2) denote the same distribution. For each distribution term an equivalent
distribution term in normal form can be constructed.

15

Chapter 2. Preliminaries

Proposition 2.9. For each θ1 ∈ DT(Σ) there is a θ2 ∈ DT(Σ) in normal form with θ1 ≡ θ2.

Proof. We construct θ2 from θ1 by recursively applying

δ(f (t1, . . . , tn)) = f (δ(t1), . . . ,δ(tn))
n
∑

i=1

pi

ni
∑

j=1

pi, jθi, j =
∑

i=1...n
j=1...ni

(pi · pi, j)θi, j

f

n1
∑

j=1

p1, jθ1, j , . . . ,
nn
∑

j=1

pn, jθn, j

!

=
∑

i=1...n
ji=1...ni

n
∏

i=1

pi, ji f (θ1, j1 , . . . ,θn, jn).

Equivalence θ1 ≡ θ2 follows by soundness of the equations. It is easy to see that the
resulting term θ2 is in normal form. ut

2.2 Probabilistic transition systems

Since the main objective of our study is formal languages, we will define all concepts,
structures and notations specific to this language context. For instance, we will define the
transition systems not w.r.t. arbitrary state spaces but w.r.t. the language expressions for
which we want to specify the operational semantics.

Probabilistic nondeterministic labelled transition systems [Seg95], PTSs for short, ex-
tend labelled transition systems [Arn94] by allowing for probabilistic choices in the trans-
itions. As state space we will take the set of all closed terms T(Σ). The transitions will be
specified later inductively by means of so-called SOS rules.

We define now PTSs as transition systems over the state space of all closed state terms
and labelled transitions from terms to distributions over terms.

Definition 2.10 (PTS, [Seg95]). A probabilistic nondeterministic labeled transition system
(PTS) over the signature Σ is given by a triple (T(Σ), A,−→), where

• T(Σ) is the set of all closed terms over Σ,

• A is a countable set of actions, and

• −→ ⊆ T(Σ)× A×∆(T(Σ)) is a transition relation.

We call (t, a,π) ∈ −→ a transition from state t to distributionπ labelled by action a. We
write t

a
−→ π for (t, a,π) ∈ −→. Moreover, we write t

a
−→ if there exists some distribution

π ∈ ∆(T(Σ)) with t
a
−→ π, and t

a
−→6 if there is no distribution π ∈ ∆(T(Σ)) with t

a
−→ π.

For a closed term t ∈ T(Σ) and an action a ∈ A, let der(t, a) = {π ∈ ∆(T(Σ)) | t
a
−→ π}

denote the set of all distributions reachable from t by performing an a-labeled transition.
We call der(t, a) also the a-derivatives of t.

Example 2.11. We start by defining a simple language. Let Σ = ({_ | _ , s, t, 0}, r) be a
signature with r(|) = 2 and r(s) = r(t) = r(0) = 0. In other words, s, t, 0 are constants
and | is a binary operator (introduced in detail later in Chapter 3 as synchronous parallel

16

2.3. Bisimulation semantics

composition operator). Then, s | t is a closed state term and x | x , with x a state variable,
is an open state term. The term variables are Var(s | t) = ; and Var(s | t, x) = 0 for all
x ∈ V s, and Var(x | x) = {x}, Var(x | x , x) = 2 and Var(x | x , y) = 0 if x 6= y . Moreover,
depth(x) = 0, depth(s) = depth(t) = depth(0) = depth(x | x) = 1 and depth(s | t) = 2.

Now we define a PTS over the language defined above. Let (T(Σ), A,−→) be a PTS
over Σ with actions A = {a} and transitions −→ = {s

a
−→ δ(s), t

a
−→ 0.5δ(t) + 0.5δ(0), s |

t
a
−→ 0.5δ(s | t)+0.5δ(s | 0)}. Note that 0.5δ(t)+0.5δ(0) is a distribution with (0.5δ(t)+

0.5δ(0))(t) = (0.5δ(t)+0.5δ(0))(0) = 0.5 and (0.5δ(t)+0.5δ(0))(t ′) = 0 for any term
t ′ ∈ T(Σ) with t 6= t ′ 6= 0.

2.3 Bisimulation semantics

Behavioral semantics are comparative semantics that assign a meaning to PTSs by defining
appropriate notions of behavioral equivalence or behavioral distance between states.

2.3.1 Bisimulation equivalence

Behavioral equivalences are equivalence relations that relate states which cannot be dis-
tinguished by an external observer. There are various notions of external observer in
terms of different discrimination behavior, e.g. based on branching trees, linear traces
and tests [Gla93; Gla90]. One of the most prominent notions for PTSs is bisimulation
equivalence [LS91; Seg95] that relates states which mimic each other’s behavior in a
step-wise manner.

The classical notion of bisimulation equivalence on labelled transition systems [Mil80;
Par81] relates two states if each transition of one state can be mimicked by an equally
labelled transition of the other state such that both transitions lead again to related states.
In order to adapt this concept to PTSs we need a notion to express that an equivalence
relation on states is lifted to an equivalence relation on distributions. This will allow us to
express that related states can mimic each other’s behavior an lead to related distributions.

The lifting of a state relation to a distribution relation is formalized as follows. A
matching1 for a pair of distributions (π,π′) ∈∆(T(Σ))×∆(T(Σ)) is a distribution over the
product state spaceω ∈∆(T(Σ)×T(Σ))with left marginalπ, i.e.

∑

t ′∈T(Σ)ω(t, t ′) = π(t)
for all t ∈ T(Σ), and right marginal π′, i.e.

∑

t∈T(Σ)ω(t, t ′) = π′(t ′) for all t ′ ∈ T(Σ). Let
Ω(π,π′) denote the set of all matchings for (π,π′). Intuitively, a matching ω ∈ Ω(π,π′)
may be understood as a transportation schedule that describes the shipment of probability
mass from π to π′. Historically this motivation dates back to the Monge-Kantorovich
optimal transport problem [Vil08].

Definition 2.12 (Relational lifting matching based). Let R ⊆ T(Σ)×T(Σ) be any binary
relation. The lifting of R is a relation R ⊆∆(T(Σ))×∆(T(Σ)) defined by

πRπ′ iff ∃ω ∈ Ω(π,π′). (∀t, t ′ ∈ T(Σ). (ω(t, t ′)> 0⇒ t R t ′))

1Matchings have been introduced in [JL91; Seg95] under the name weight function with the additional
condition that ω(t, t ′) implies t R t ′ for all t, t ′ ∈ T(Σ). The additional condition is part of the lifting Defini-
tion 2.12.

17

Chapter 2. Preliminaries

for all π,π′ ∈∆(T(Σ)).

This formalization of lifting is elegant since it allows later for a natural quantitative
generalization to behavioral metrics. An equivalent alternative definition [DD11] relates
those distributions that have the same probability mass w.r.t. sets closed under the state
relation. To formalize this idea, we need the following notation. Let R ⊆ T(Σ)×T(Σ) be
a symmetric relation. We define R(X) = {t ′ ∈ T(Σ) | ∃t ∈ X . t R t ′} for any set of closed
terms X ⊆ T(Σ). We call X closed w.r.t. R, notation R-closed(X), if R(X) ⊆ X .

Definition 2.13 (Relational lifting closed set based). Let R ⊆ T(Σ)×T(Σ) be a symmetric
relation. The lifting of R is a relation R ⊆∆(T(Σ))×∆(T(Σ)) defined by

πRπ′ iff π(X) = π′(X) for all X ⊆ T(Σ) with R-closed(X)

for all π,π′ ∈∆(T(Σ)).

Note that for equivalence relations the set of R-closed sets is the set of all equivalence
classes closed under union. Hence, for an equivalence relation R the definition simplifies
to πRπ′ iff π(X) = π′(X) for all equivalence classes X ∈ T(Σ)/R. The lifting allows us
now to define the notion of bisimulation equivalence on PTSs.

Definition 2.14 (Bisimulation equivalence). A symmetric relation R ⊆ T(Σ) × T(Σ) is
a bisimulation equivalence if whenever t R t ′ and t

a
−→ π then there exists a transition

t ′
a
−→ π′ for a distribution π′ ∈∆(T(Σ)) such that πR π′.

We call two terms bisimilar if they are related by some bisimulation. Bisimulation
equivalences are closed under arbitrary union [Seg95]. Hence, we can define the greatest
bisimulation equivalence as the union of all bisimulation equivalences. We call the greatest
bisimulation equivalence bisimilarity equivalence and denote it by the symbol ∼.

Example 2.15. We reconsider the language defined in Example 2.11. Let (T(Σ), A,−→)
be a PTS with transitions −→ = {s

a
−→ πs, t

a
−→ πt} whereby πs = 0.5δ(s) + 0.5δ(0) and

πt = 0.25δ(t) + 0.25δ(s) + 0.5δ(0). To show that s ∼ t, we need to show that πs∼πt .
Assume that ∼= {(0,0), (s, s), (t, t), (s, t), (t, s)}.

First we consider the lifting based on Definition 2.12. Let ω ∈ ∆(T(Σ) × T(Σ)) be
defined by ω(s, s) = 0.25, ω(s, t) = 0.25, ω(0, 0) = 0.5. Clearly, ω ∈ Ω(πs,πt) since the
left marginal of ω is πs and the right marginal is πt . Since ω assigns only those pairs of
states a non-zero probability that are related by ∼, we conclude πs∼πt .

Alternatively, consider the lifting based on Definition 2.13. The sets ;,{0},{s, t},{0, s, t}
are all∼-closed sets. Note that {s} is not∼-closed since∼ ({s}) = {s, t} 6⊆ {s} (and similar
for {t}). It is easy to verify that πs(X) = πt(X) for all ∼-closed sets X . Hence, πs∼πt .

To summarize: For states s and t with s ∼ t we verified that the a-labelled transition
s

a
−→ πs can be mimicked by the equally labelled transition t

a
−→ πt with πs∼πt . The ar-

gument for t ∼ s is symmetric. The remaining relations of ∼ are reflexive, which is trivial
to verify. Hence, ∼ is indeed a bisimulation relation. Moreover, it is the largest bisim-
ulation equivalence, i.e. no more states can be related. Hence ∼ is also the bisimilarity
equivalence.

18

2.3. Bisimulation semantics

2.3.2 Bisimulation metric

Bisimulation equivalence is a very elegant and well-developed behavioral equivalence.
However, as argued already in the introduction, bisimulation equivalence (and in fact
most behavioral equivalences) is too sensitive to the exact probabilities of transitions.
The slightest perturbation of the probabilities can destroy bisimilarity.

Bisimulation metric2 [Des+04; BW05; Den+05] provides a robust semantics for PTSs.
It is the quantitative analogue to bisimulation equivalence and assigns to each pair of
states a distance which measures the proximity of their quantitative properties. The dis-
tances form a pseudometric where bisimilar processes are at distance 0.

Definition 2.16 (Pseudometric). A function d : T(Σ) × T(Σ) → [0, 1] is a 1-bounded
pseudometric if

• d(t, t) = 0 for all t ∈ T(Σ),

• d(t, t ′) = d(t ′, t) for all t, t ′ ∈ T(Σ) (symmetry), and

• d(t, t ′)≤ d(t, t ′′) + d(t ′′, t ′) for all t, t ′, t ′′ ∈ T(Σ) (triangle inequality).

We will define later bisimulation metrics as 1-bounded pseudometrics that measure
how much two states disagree on their reactive behavior and their probabilistic choices.
Note that a pseudometric d permits that d(t, t ′) = 0 even if t and t ′ are different terms (in
contrast to a metric d). This will allow us to assign distance 0 to different bisimilar states.
We will provide two (equivalent) characterizations of bisimulation metrics in terms of a
coinductive definition pattern (employed in Chapters 3 and 6) and in terms of fixed points
(employed in Chapters 4 and 5).

Both characterizations require the following lattice structure. Let ([0,1]T(Σ)×T(Σ),v)
be the complete lattice of functions d : T(Σ) × T(Σ) → [0, 1] ordered by d1 v d2 iff
d1(t, t ′) ≤ d2(t, t ′) for all t, t ′ ∈ T(Σ). Then for each D ⊆ [0,1]T(Σ)×T(Σ) the supremum
and infinimum are sup(D)(t, t ′) = supd∈D d(t, t ′) and inf(D)(t, t ′) = infd∈D d(t, t ′) for all
t, t ′ ∈ T(Σ). The bottom element is the constant zero function 0 given by 0(t, t ′) = 0, and
the top element is the constant one function 1 given by 1(t, t ′) = 1, for all t, t ′ ∈ T(Σ).

Metrical lifting

Bisimulation metric is characterized using the classical bisimulation game where related
states can mimic each other’s transitions and evolve to distributions that are again re-
lated. In the metric context this means that states at some given distance can mimic each
other’s transitions and evolve to distributions that are at distance not greater than the
distance between the source states. Hence, bisimulation metric assigns distances to pairs
of states that do not increase along their evolution. Technically, this means that we need,
just as in the bisimulation equivalence case, a notion that lifts pseudometrics from states
to distributions (to capture probabilistic choices). With this concept at hand, it will be
straightforward to define the quantitative notion of bisimulation equivalence.

2A bisimulation metric is in fact a pseudometric. In line with the literature we use the term bisimulation
metric instead of bisimulation pseudometric.

19

Chapter 2. Preliminaries

A 1-bounded pseudometric on terms T(Σ) is lifted to a 1-bounded pseudometric on
distributions ∆(T(Σ)) by means of the Kantorovich pseudometric [DD09]. This lifting is
the quantitative analogue to the relational lifting given in Definition 2.12 [BW01].

Definition 2.17 (Kantorovich lifting). Let d : T(Σ) × T(Σ) → [0,1] be a 1-bounded
pseudometric. The Kantorovich lifting of d is a 1-bounded pseudometric K(d): ∆(T(Σ))×
∆(T(Σ))→ [0, 1] defined by

K(d)(π,π′) = min
ω∈Ω(π,π′)

∑

t,t ′∈T(Σ)

d(t, t ′) ·ω(t, t ′)

for all π,π′ ∈∆(T(Σ)). We call K(d) the Kantorovich pseudometric of d.

Example 2.18. We reconsider the language defined in Example 2.11. Assume a 1-bounded
pseudometric d with d(s, s) = d(0,0) = 0 and d(s, 0) = d(0, s) = 1. Let πs = 0.5δ(s) +
0.5δ(0) and πt = (0.5 + ε)δ(s) + (0.5 − ε)δ(0) for some arbitrary ε ∈ [0,0.5]. Let us
first consider the matching ω1 ∈ Ω(πs,πt) defined by ω1(s, 0) = 0.5 − ε, ω1(s, s) = ε,
ω1(0, s) = 0.5. Now,

∑

t,t ′∈T(Σ) d(t, t ′) · ω1(t, t ′) = 1 − ε. Another matching is ω2 ∈
Ω(πs,πt) defined byω2(s, s) = 0.5,ω2(0, s) = ε,ω2(0,0) = 0.5−ε. Now,

∑

t,t ′∈T(Σ) d(t, t ′)·
ω2(t, t ′) = ε. Even more, ω2 is the optimal matching, i.e.

∑

t,t ′∈T(Σ) d(t, t ′) ·ω2(t, t ′) ≤
∑

t,t ′∈T(Σ) d(t, t ′) ·ω(t, t ′) for any ω ∈ Ω(πs,πt). Hence, K(d)(πs,πt) = ε.

In order to capture nondeterministic choices, we need to lift pseudometrics on distri-
butions to pseudometrics on sets of distributions.

Definition 2.19 (Hausdorff lifting). Let d̂ : ∆(T(Σ))×∆(T(Σ))→ [0, 1] be a 1-bounded
pseudometric. The Hausdorff lifting of d̂ is a 1-bounded pseudometric H(d̂): P(∆(T(Σ)))×
P(∆(T(Σ)))→ [0,1] defined by

H(d̂)(Π1,Π2) =max

�

sup
π1∈Π1

inf
π2∈Π2

d̂(π1,π2), sup
π2∈Π2

inf
π1∈Π1

d̂(π2,π1)

�

for all Π1,Π2 ⊆ ∆(T(Σ)), with inf; = 1, and sup; = 0. We call H(d̂) the Hausdorff
pseudometric of d̂.

Example 2.20. We consider again the language defined in Example 2.11, and the pseudo-
metric d and distributionsπs,πt from Example 2.18. Additionally, letπ′ = (0.5+ε′)δ(s)+
(0.5−ε′)δ(0) with ε′ ∈ [0,0.5]. The distance between the distributions is K(d)(πs,πt) =
ε, K(d)(πs,π

′) = ε′, and K(d)(πt ,π
′) = |ε − ε′|. Consider now the sets of distribution

{πs} and {πt ,π
′}. Intuitively, the Hausdorff distance between {πs} and {πt ,π

′} mod-
els the bisimulation game, i.e. the game that πs has to match with either πt or π′, and
vice versa. Formally, the distance between {πs} and {πt ,π

′} is H(K(d))({πs}, {πt ,π
′}) =

max(inf(K(d)(πs,πt),K(d)(πs,π
′)), sup(K(d)(πt ,πs),K(d)(π′,πs))) =max(ε,ε′). Yet an-

other example is the distance between {πs,π
′} and {πt} given by H(K(d))({πs,π

′}, {πt}) =
max(sup(K(d)(πs,πt),K(d)(π′,πt)), inf(K(d)(πt ,πs),K(d)(πt ,π

′))) = ε.

Coinductive characterization

A 1-bounded pseudometric is a bisimulation metric if for all pairs of terms t and t ′ each
transition of t can be mimicked by a transition of t ′ with the same label and the distance

20

2.3. Bisimulation semantics

between the accessible distributions does not exceed the distance between t and t ′. By
means of a discount factor λ ∈ (0,1], we allow to specify how much the behavioral dis-
tance of future transitions is taken into account [AHM03; Des+04]. The discount factor
λ= 1 expresses no discount, meaning that the differences in the behavior between t and
t ′ are considered irrespective of after how many steps they can be observed.

Definition 2.21 (Bisimulation metric [Des+04]). A 1-bounded pseudometric d : T(Σ)×
T(Σ)→ [0,1] is a λ-bisimulation metric with λ ∈ (0,1] if for all terms t, t ′ ∈ T(Σ) with
d(t, t ′)< 1, if t

a
−→ π then there exists a transition t ′

a
−→ π′ for a distribution π′ ∈∆(T(Σ))

such that λ ·K(d)(π,π′)≤ d(t, t ′).

We refer to λ · K(d)(π,π′) ≤ d(t, t ′) as the bisimulation transfer condition. We call
the smallest (w.r.t. v) λ-bisimulation metric λ-bisimilarity metric and denote it by the
symbol d. We mean by λ-bisimulation distance between t and t ′ the distance d(t, t ′). If
λ is clear from the context, we may refer by bisimulation metric, bisimilarity metric and
bisimulation distance to λ-bisimulation metric, λ-bisimilarity metric and λ-bisimulation
distance. Moreover, we may call the 1-bisimilarity metric also non-discounting bisimilarity
metric.

Example 2.22. We reconsider the language defined in Example 2.11. Let (T(Σ), A,−→)
be a PTS with transitions −→ = {s

a
−→ πs, t

a
−→ πt} whereby πs = 0.5δ(s) + 0.5δ(0) and

πt = (0.5+ ε)δ(s) + (0.5− ε)δ(0) for some arbitrary ε ∈ [0,0.5]. Furthermore, assume
a 1-bounded pseudometric d with d(s, s) = d(0, 0) = 0 and d(s, 0) = d(0, s) = 1. As
shown in Example 2.18 we have K(d)(πs,πt) = ε. Then, d is a bisimulation metric if it
satisfies the bisimulation transfer condition d(s, t) ≥ λK(d)(πs,πt) = λε. Moreover, the
bisimilarity metric assigns the distance d(t, s) = λε.

Fixed point characterization

We provide now an alternative characterization of bisimulation metric in terms of prefixed
points of an appropriate monotone bisimulation functional [Den+05]. Bisimilarity metric
is then the least fixed point of this functional. Moreover, the fixed point approach allows
us also to express up-to-k bisimulation metrics which measure the bisimulation distance
for only the first k steps.

Definition 2.23 (Bisimulation metric functional). Let B: [0,1]T(Σ)×T(Σ)→ [0,1]T(Σ)×T(Σ)

be the function defined by

B(d)(t, t ′) = sup
a∈A

�

H(λ ·K(d))(der(t, a), der(t ′, a))
	

for d : T(Σ)×T(Σ)→ [0,1] and t, t ′ ∈ T(Σ), with (λ ·K(d))(π,π′) = λ ·K(d)(π,π′).

It is easy to show that B is a monotone function on ([0,1]T(Σ)×T(Σ),v). The following
Proposition characterizes bisimulation metrics as prefixed points of B.

Proposition 2.24 ([Den+05]). Let d : T(Σ)×T(Σ)→ [0,1] be a 1-bounded pseudometric.
Then B(d)v d iff d is a bisimulation metric.

21

Chapter 2. Preliminaries

Proposition 2.24 provides the fixed point characterization of bisimulation metrics and
shows that it coincides with the coinductive characterization of Definition 2.21. Since B
is a monotone function on the complete lattice ([0,1]T(Σ)×T(Σ),v), we can characterize
the bisimilarity metric as least fixed point of B.

Proposition 2.25 ([Den+05]). The bisimilarity metric d is the least fixed point of B.

Moreover, the fixed point approach allows us to define a notion of bisimulation dis-
tance that considers only the first k steps. Intuitively, this is a bisimulation distance based
on an external observer that discriminates states by considering only the first k transitions.
The resulting notion of up-to-k bisimilarity metric will be a very important tool to prove
the compositionality results by induction over the transition structure.

Definition 2.26 (Up-to-k bisimilarity metric). We define the up-to-k bisimilarity metric
dk for k ∈ N by dk = Bk(0).

We call dk(s, t) the up-to-k bisimulation distance between s and t. Since B is continu-
ous, the closure ordinal of B isω [Bre12]. Hence, up-to-k bisimulation distances converge
to the bisimulation distances when k →∞. This opens the door to show properties of
the bisimulation metric by using a simple inductive argument.

Proposition 2.27 ([Bre12]). d= limk→∞ dk.

Example 2.28. We reconsider the language defined in Example 2.11. Let (T(Σ), A,−→)
be a PTS with transitions −→ = {s

a
−→ πs, t

a
−→ πt} whereby πs = 0.5δ(s) + 0.5δ(0) and

πt = (0.5+ε)δ(t)+(0.5−ε)δ(0) for some arbitrary ε ∈ [0,0.5]. Note that the distribution
πt has now state t in the support instead of state s as in Example 2.22.

By definition, d0(s, t) = 0. Hence, d1(s, t) = λ·K(d0)(πs,πt) = 0. However, d1(s, 0) =
1 since der(s, a) = {πs}, der(0, a) = ; and inf;= 1. Similarly, we have d1(t, 0) = 1. Thus,
K(d1)(πs,π0) = ε and d2(s, t) = λε.

The up-to-2 bisimulation distance between πs and πt is K(d2)(πs,πt) = ε + 0.5λε.
Hence, d3(s, t) = λ(ε+ 0.5λε). In general, the up-to-k bisimulation distance between s
and t is dk(s, t) = ε

∑k−2
n=0 0.5nλn+1. Hence, the bisimulation distance between states s

and t is d(s, t) = limk→∞ dk(s, t) = limk→∞ ε
∑k−2

n=0 0.5nλn+1 = ε
∑∞

n=0 0.5nλn+1 = ε/(1−
0.5λ).

Finally, we remark that bisimulation metrics have been also characterized by real-
valued modal logics [Des+04], and in terms of coalgebras [BW05].

Properties of bisimulation metrics

We will discuss now a few important properties of bisimulation metrics that are essential
for the argumentation later in the technical chapters. We start by showing that bisimilarity
equivalence is the kernel of the λ-bisimilarity metric.

Proposition 2.29 ([Des+04]). Let t, t ′ ∈ T(Σ) be any terms. Then d(t, t ′) = 0 iff t ∼ t ′.

The bisimulation distance between states t and t ′ measures the difference of the re-
active behavior of t and t ′ (i.e. which actions can or cannot be performed) along their

22

2.3. Bisimulation semantics

evolution. An important distinction is if two states can perform the same initial actions.
In this case, the behavioral distance is given by the bisimulation game on the derivatives.
Otherwise, the two states get the maximal distance of 1 assigned since there is a transition
by one of these states that cannot be mimicked by the other state.

We say that states t and t ′ do not totally disagree if d(t, t ′)< 1. If states do not totally
disagree, then they agree on which actions they can perform immediately.

Proposition 2.30. Let d : T(Σ)×T(Σ)→ [0, 1] be a 1-bounded pseudometric. Then

1. B(d)(t, t ′)< 1 implies t
a
−→⇔ t ′

a
−→ for all a ∈ A,

2. d(t, t ′)< 1 implies t
a
−→⇔ t ′

a
−→ for all a ∈ A, if d is a bisimulation metric.

Proof. We start with Proposition 2.30.1 and reason as follows.

B(d)(t, t ′)< 1

⇔ ∀a ∈ A.H(λ ·K(d))(der(t, a), der(t ′, a))< 1

⇒ ∀a ∈ A.((der(t, a) = ;= der(t ′, a)) ∨ (der(t, a) 6= ; 6= der(t ′, a)))

⇔ ∀a ∈ A.(t
a
−→⇔ t ′

a
−→).

Now we show Proposition 2.30.2. By Proposition 2.24 we get that d(t, t ′)< 1 implies
B(d)(t, t ′)< 1. The thesis follows now from Proposition 2.30.1. ut

Moreover, if λ < 1 the implications in both cases also holds in the other direction.

Remark 2.31. The bisimulation distance d(t, t ′) between terms t and t ′ is in [0,λ]∪{1}.
If λ ∈ (0,1), then d(t, t ′) = 1 iff t can perform an action which t ′ cannot (or vice versa),
d(t, t ′) = 0 iff t and t ′ have the same reactive behavior (are bisimilar), and d(t, t ′) ∈ (0,λ]
iff t and t ′ have different reactive behavior after performing the same initial actions. If
λ = 1 then d(t, t ′) = 0 iff t and t ′ have the same reactive behavior (are bisimilar), and
d(t, t ′) ∈ (0,1] iff t and t ′ have different reactive behavior.

Properties of the Kantorovich lifting

The Kantorovich pseudometric satisfies important properties that will be essential to define
the specification formats. In detail, the Kantorovich lifting functional is monotone, the
Dirac operator is a non-expansive embedding of the metric space of states into the metric
space of distributions3, and probabilistic choice distributes over the Kantorovich lifting.

Proposition 2.32 ([Pan09]). Let d and d ′ be any 1-bounded pseudometrics. Then

1. K(d)v K(d ′) if d v d ′;

2. K(d)(δ(t),δ(t ′))≤ d(t, t ′) for all t, t ′ ∈ T(Σ);

3. K(d)(
∑

i∈I piπi ,
∑

i∈I piπ
′
i) ≤

∑

i∈I pi · K(d)(πi ,π
′
i) for all πi ,π

′
i ∈ ∆(T(Σ)) and

pi ∈ [0, 1] with
∑

i∈I pi = 1.
3In fact, the Kantorovich lifting operator is an isometric embedding of the metric space of states into the

metric space of distributions. However, for the specification formats developed later non-expansiveness suffices.

23

Chapter 2. Preliminaries

Now we will show a very important new result stating that the Kantorovich lifting
preserves concave moduli of continuity of language operators. In other words, moduli of
continuity of language operators distribute over probabilistic choices. This property is es-
sential to reason compositionally over probabilistic systems. Moreover, Proposition 2.32,
Theorem 2.33 and Corollary 2.34 together form the cornerstones for the specification
formats developed later in this thesis.

Theorem 2.33. Let d : T(Σ)×T(Σ)→ [0, 1] be any 1-bounded pseudometric. Assume an
n-ary operator f ∈ Σ and a concave4 function z : [0,1]n→ [0,1] with

d(f (t1, . . . , tn), f (t ′1, . . . , t ′n))≤ z(d(t1, t ′1), . . . , d(tn, t ′n))

for all terms t1, t ′1, . . . , tn, t ′n ∈ T(Σ). Then we have

K(d)(f (π1, . . . ,πn), f (π′1, . . . ,π′n))≤ z(K(d)(π1,π′1), . . . ,K(d)(πn,π′n))

for all probability distributions π1,π′1, . . . ,πn,π′n ∈∆(T(Σ)).

Proof. We assume ωi ∈ Ω(πi ,π
′
i) to be an optimal matching such that K(d)(πi ,π

′
i) =∑

t,t ′∈T(Σ) d(t, t ′) · ωi(t, t ′), i.e. a matching between πi and π′i which yields the Kan-
torovich distance K(d)(πi ,π

′
i). We define a new distribution over the product space

ω ∈∆(T(Σ)×T(Σ)) by

ω(f (t1, . . . , tn), f (t ′1, . . . , t ′n)) =
n
∏

i=1

ωi(t i , t ′i)

for all t1, t ′1, . . . , tn, t ′n ∈ T(Σ). First, we show that ω is a joint probability distribution
with left marginal f (π1, . . . ,πn) and right marginal f (π′1, . . . ,π′n). The left marginal is

∑

t ′∈T(Σ)

ω(f (t1, . . . , tn), t ′)

=
∑

t ′1,...,t ′n∈T(Σ)

ω(f (t1, . . . , tn), f (t ′1, . . . , t ′n))

=
∑

t ′1,...,t ′n∈T(Σ)

n
∏

i=1

ωi(t i , t ′i)

=
n
∏

i=1

∑

t ′i∈T(Σ)

ωi(t i , t ′i)

=
n
∏

i=1

πi(t i)

= f (π1, . . . ,πn)(f (t1, . . . , tn))

4A function z : [0,1]n → [0, 1] is called concave if, for any x1, . . . , xn, y1, . . . , yn ∈ [0, 1] and any λ ∈ [0,1],
z((1−λ)x1 +λy1, . . . , (1−λ)xn +λyn)≥ (1−λ)z(x1, . . . , xn) +λz(y1, . . . , yn).

24

2.3. Bisimulation semantics

with
∑

t ′1,...,t ′n∈T(Σ)
∏n

i=1ωi(t i , t ′i) =
∏n

i=1

∑

t ′i∈T(Σ)
ωi(t i , t ′i) by induction over n with in-

duction step

∑

t ′1,...,t ′n+1∈T(Σ)

n+1
∏

i=1

ωi(t i , t ′i)

=
∑

t ′1,...,t ′n∈T(Σ)

∑

t ′n+1∈T(Σ)

ωn+1(tn+1, t ′n+1)
n
∏

i=1

ωi(t i , t ′i)

=
∑

t ′n+1∈T(Σ)

ωn+1(tn+1, t ′n+1)
∑

t ′1,...,t ′n∈T(Σ)

n
∏

i=1

ωi(t i , t ′i)

=
∑

t ′n+1∈T(Σ)

ωn+1(tn+1, t ′n+1)
n
∏

i=1

∑

t ′i∈T(Σ)

ωi(t i , t ′i)

=
n+1
∏

i=1

∑

t ′i∈T(Σ)

ωi(t i , t ′i).

The right marginal is computed analogously. Hence,ω ∈ Ω(f (π1, . . . ,πn), f (π′1, . . . ,π′n)),
i.e. ω is a matching for distributions f (π1, . . . ,πn) and f (π′1, . . . ,π′n).

The proof obligation can be derived now by

K(d)(f (π1, . . . ,πn), f (π′1, . . . ,π′n))

≤
∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

d(f (t1, . . . , tn), f (t ′1, . . . , t ′n)) ·ω(f (t1, . . . , tn), f (t ′1, . . . , t ′n))

=
∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

d(f (t1, . . . , tn), f (t ′1, . . . , t ′n)) ·
n
∏

i=1

ωi(t i , t ′i)

≤
∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

z(d(t1, t ′1), . . . , d(tn, t ′n)) ·
n
∏

i=1

ωi(t i , t ′i)

≤ z







∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

(d(t1, t ′1), . . . , d(tn, t ′n)) ·
n
∏

i=1

ωi(t i , t ′i)







= z







∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

�

d(t1, t ′1) ·
n
∏

i=1

ωi(t i , t ′i), . . . , d(tn, t ′n) ·
n
∏

i=1

ωi(t i , t ′i)

�







= z













∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

d(t1, t ′1) ·
n
∏

i=1

ωi(t i , t ′i), . . . ,
∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

d(tn, t ′n) ·
n
∏

i=1

ωi(t i , t ′i)













25

Chapter 2. Preliminaries

= z









∑

t1,t ′1∈T(Σ)

d(t1, t ′1)ω1(t1, t ′1), . . . ,
∑

tn,t ′n∈T(Σ)

d(tn, t ′n)ωn(tn, t ′n)









= z(K(d)(π1,π′1), . . . ,K(d)(πn,π′n))

whereby the reasoning steps are derived as follows: step 1 from the fact thatω is a match-
ing for f (π1, . . . ,πn) and f (π′1, . . . ,π′n), step 2 by the definition ofω, step 3 by the assump-
tion d(f (t1, . . . , tn), f (t ′1, . . . , t ′n)) ≤ z(d(t1, t ′1), . . . , d(tn, t ′n)), step 4 by using Jensen’s
inequality for the concave function z, step 7 by

∑

t1,...,tn
t′1,...,t′n

∈T(Σ) d(t1, t ′1) ·
∏n

i=1ωi(t i , t ′i) =
∑

t1,t ′1∈T(Σ)
d(t1, t ′1)ω1(t1, t ′1), and step 8 by the definition of K. ut

Since linear functions are concave, we get that the Kantorovich lifting preserves linear
moduli of continuity of language operators.

Corollary 2.34. Let d : T(Σ)×T(Σ)→ [0,1] be any 1-bounded pseudometric. Assume an
n-ary operator f ∈ Σ and K ∈ R≥0 with

d(f (t1, . . . , tn), f (t ′1, . . . , t ′n))≤ K
n
∑

i=1

d(t i , t ′i)

for all terms t1, t ′1, . . . , tn, t ′n ∈ T(Σ). Then we have

K(d)(f (π1, . . . ,πn), f (π′1, . . . ,π′n))≤ K
n
∑

i=1

K(d)(πi ,π
′
i)

for all probability distributions π1,π′1, . . . ,πn,π′n ∈∆(T(Σ)).

However, non-concave moduli of continuity may not be preserved, e.g. the q-norm
with q > 1 (cf. Example 4.2 on page 56 below).

2.4 PGSOS specifications

Programming languages are algebraic languages with an operational semantics given by
an appropriate PTS. The state space of the PTS is formed by the terms of the language
(cf. Definitions 2.10). The transitions are usually described by means of Structural Oper-
ational Semantics (SOS) specifications. An SOS specification consists of SOS rules which
are syntax-driven inference rules that define inductively the behavior of complex language
expressions in terms of the behavior of their components [MRG07]. An important class of
programming languages are process algebras which are languages that consists of a small
set of well-designed operators that describe the interaction and communication between
concurrent programs.

We will specify the operational semantics of operators by SOS rules in the probabilistic
GSOS format [Bar04; LGD12; DGL15]. The probabilistic GSOS format, PGSOS format for
short, is the quantitative generalization of the nondeterministic GSOS format [BIM95].
The nondeterministic GSOS format has been successfully applied to specify many non-
deterministic process algebras, most prominently CCS [Mil89] and CSP [BHR84]. In the

26

2.4. PGSOS specifications

same vein, the probabilistic GSOS format allows to specify probabilistic nondeterministic
process algebras, such as probabilistic CCS [JLY01; Bar04; DD07], probabilistic CSP [JLY01;
Bar04; Den+07; DL12] and probabilistic ACP [And99; And02].

Definition 2.35 (PGSOS rule, [Bar04; LGD12]). A PGSOS rule r has the form:

{x i

ai,k
−−→ µi,k | i ∈ I , k ∈ Ki} {x i

bi,l
−→6 | i ∈ I , l ∈ Li}

f (x1, . . . , xn)
a
−→ θ

with f ∈ Σ an operator with rank n, I = {1, . . . , n} indices for the arguments of f , Ki , Li
finite index sets, ai,k, bi,l , a ∈ A actions, x i ∈ V s state variables, µi,k ∈ Vd distribution
variables, and θ ∈ DT(Σ) a distribution term. Furthermore, the following constraints
need to be satisfied:

1. all µi,k for i ∈ I , k ∈ Ki are pairwise different;

2. all x1, . . . , xn are pairwise different;

3. Var(θ) ⊆ {µi,k | i ∈ I , k ∈ Ki} ∪ {x1 . . . , xn}.

The PGSOS constraints 1–3 are precisely the constraints of the nondeterministic GSOS
format [BIM95] where the variables in the right-hand side of the literals are replaced by
distribution variables.

Notation 2.36 (Notations for rules). Let r be a PGSOS rule. The expressions x i

ai,k
−−→ µi,k,

x i

bi,l
−→6 and f (x1, . . . , xn)

a
−→ θ are called, resp., positive premises, negative premises and

conclusion. The set of all premises is denoted by prem(r) and the conclusion by conc(r).
The term f (x1, . . . , xn) is called the source (notation src(r)), the variables x1, . . . , xn are
called source variables (notation x i ∈ src(r)), and the distribution term θ is called the tar-

get (notation trgt(r)). Let der(r, x i) = {µi,k | x i

ai,k
−−→ µi,k ∈ prem(r)} denote the variables

derived from the source variable x i . We call µ ∈ der(r, x i) a derivative of x i .
Given a set of rules R we denote by R f the rules specifying operator f , i.e. all rules of

R with source f (x1, . . . , xn), and by R f ,a the rules specifying an a-labelled transition for
operator f , i.e. all rules of R f with a conclusion that is a-labelled.

Definition 2.37 (PTSS). A probabilistic transition system specification (PTSS) in PGSOS
format is a triple P = (Σ, A, R), where

• Σ is a signature,

• A is a countable set of actions,

• R is a countable set of PGSOS rules, and

• R f ,a is finite for all f ∈ Σ and a ∈ A.

The last property ensures that the supported model (Defintion 2.39) is image-finite
such that the fixed point characterization of bisimulation metrics coincides with the coin-
ductive characterization (Proposition 2.25).

27

Chapter 2. Preliminaries

The operational semantics of terms is given by inductively applying the respective
PGSOS rules. Then, a supported model of a specification describes the operational se-
mantics of all terms. In other words, a supported model of a PGSOS specification P is a
PTS M with transition relation −→ such that −→ contains all and only those transitions for
which the rules of P offer a justification.

Definition 2.38 (Supported transition). Let P = (Σ, A, R) be a PTSS and r ∈ R be a rule.
Given a PTS M = (T(Σ), A,−→) and a closed substitution σ, we say that the σ-instance of
r is satisfied in M and allows to derive t

a
−→ π, formally M |=σr t

a
−→ π, if

• σ(x i)
ai,k
−−→ σ(µi,k) ∈ −→ for all x i

ai,k
−−→ µi,k ∈ prem(r),

• σ(x i)
bi,l
−→ π 6∈ −→ for any π ∈∆(T(Σ)), for all x i

bi,l
−→6 ∈ prem(r), and

• t
a
−→ π ∈ −→ for t

a
−→ π= σ(conc(r)).

We call a transition t
a
−→ π in M supported by P, notation M |=P t

a
−→ π, if there is some

r ∈ R and a closed substitution σ such that M |=σr t
a
−→ π.

The supported transitions of a specification P form the supported model of P.

Definition 2.39 (Supported model). Let P = (Σ, A, R) be a PTSS. A PTS M = (T(Σ), A,−→)
is a supported model if

t
a
−→ π iff M |=P t

a
−→ π

for all t
a
−→ π ∈ −→.

Each PTSS in PGSOS format has a supported model which is moreover unique [BIM95;
Bar04]. We call the single supported PTS of a specification P also the induced model of P.

Intuitively, a term f (t1, . . . , tn) represents the composition of terms t1, . . . , tn by oper-
ator f . A rule r specifies some transition f (t1, . . . , tn)

a
−→ π that represents the evolution

of the composed term f (t1, . . . , tn) by action a to the distribution π. We say that a rule
with conclusion f (x1, . . . , xn)

a
−→ θ delays the evolution of the source term x i if x i appears

in the rule target θ , and that the source term x i evolves to µ ∈ der(r, x i) if µ appears in
the rule target θ . Note that a rule may both delay and evolve a source term. We say
that r replicates a source variable x i if multiple instances of either x i or x i-derivatives in
der(r, x i) appear in the target θ of rule r.

Example 2.40. We reconsider the language defined in Example 2.11. Let P = (Σ, A, R)
be a PTSS with the following rules in R:

s
a
−→ δ(s) t

a
−→ 0.5δ(t) + 0.5δ(0)

x
a
−→ µ y

a
−→ ν

x | y
a
−→ µ | ν

We refer to the three rules by r1, r2, r3. It is easy to verify that all rules are in PGSOS
format. Let M = (T(Σ), A,−→) be the induced model of P.

The rules r1 and r2 are called axioms since they have no premises. In this case,
any instance of the conclusion is a supported transition of P. Hence, we get {s

a
−→

28

2.4. PGSOS specifications

δ(s), t
a
−→ 0.5δ(t) + 0.5δ(0)} ⊆ −→. Now we apply the third rule to derive another sup-

ported transition. Let σ be a substitution defined by σ(x) = s, σ(y) = t, σ(µ) = δ(s),
σ(ν) = 0.5δ(t) + 0.5δ(0). Now we derive M |=σr3

s | t
a
−→ 0.5δ(s | t) + 0.5δ(s | 0). An-

other transition may be derived by using the substitution σ(x) = t, σ(y) = t, σ(µ) =
0.5δ(t)+0.5δ(0), σ(ν) = 0.5δ(t)+0.5δ(0). Then M |=σr3

t | t
a
−→ 0.25δ(t | t)+0.25δ(t |

0) + 0.25δ(0 | t) + 0.25δ(0 | 0). Finally, let us remark that there are many more states,
e.g. (s | s) | t, (t | t) | s, (t | t) | t, with transitions defined by the rules in R.

We will study specifications where not all operators satisfy the same compositionality
property. In order to exploit the particular compositionality property of each specified
operator, we will stratify the specifications based on the strength of the compositionality
property of the specified operators. We formalize this by using the concept of disjoint
extension.

Definition 2.41 (Disjoint extension [ABV94]). Let P1 = (Σ1, A, R1) and P2 = (Σ2, A, R2) be
two PGSOS PTSSs. P2 is a disjoint extension of P1, notation P1 v P2, iff Σ1 ⊆ Σ2, R1 ⊆ R2
and R2 introduces no new rule for any operator in Σ1. We may write P2 w P1 for P1 v P2.

Example 2.42. Consider the PTSS P = (Σ, A, R) specified in Example 2.40. The rules in
R specify the operator | as synchronous parallel composition operator. Assume that we
would like to specify that the process s | t may evolve both synchronously and asynchron-
ously. Then, we need to specify additionally the following rules:

x
a
−→ µ

x | y
a
−→ µ | δ(y)

y
a
−→ µ

x | y
a
−→ δ(x) | µ

Let R′ be the set with these two rules, R2 = R∪ R′ and Σ2 = Σ.
Note that the specification P2 = (Σ2, A, R2) is not a disjoint extension of P since R2

introduces new rules R′ for the operator | ∈ Σ. On the operational semantics level, we
have M |=P2

s | t
a
−→ δ(s) | δ(t) but M 6|=P s | t

a
−→ δ(s) | δ(t). In other words, the rules

of P2 introduce new transitions on terms of P. Those new transition on terms of P may
change the compositionality properties of those terms. In other words, if an extension
is not disjoint, then the extension may not preserve the compositionality properties of
the already specified operators. The concept of disjoint extensions allows us to extend
specifications without changing the operational semantics of already specified operators
and terms. In other words, disjoint extensions preserve the compositionality properties
of already specified operators. We remark that the more general concept of conservative
extension [GV92; AFV01a; DGL15]would already suffice to preserve the compositionality
properties. However, the technically simpler concept of disjoint extension is sufficient for
all practically relevant cases and allows for simpler argumentation and proofs.

A possible approach to model that process s and t evolves both synchronously and
asynchronously is to introduce a new operator for asynchronous composition and an op-
erator for the choice between both behavior. Let R′′ be a set with the following rules:

x
a
−→ µ

x ||| y
a
−→ µ ||| δ(y)

y
a
−→ ν

x ||| y
a
−→ δ(x) ||| ν

x
a
−→ µ

x + y
a
−→ µ

y
a
−→ ν

x + y
a
−→ ν

29

Chapter 2. Preliminaries

Let Σ′′ = ({|||,+}, {|||7→ 2,+ 7→ 2}), Σ3 = Σ∪Σ′′ and R3 = R∪R′′. It is easy to verify that
P v (Σ3, A, R3). Moreover, the term (s | t) + (s ||| t) expresses now a parallel composition
between s and t that may evolve synchronously or asynchronously.

30

Chapter 3

Compositional metric reasoning

3.1 Introduction

Probabilistic process algebras are languages to describe probabilistic concurrent commu-
nicating systems (probabilistic processes for short). In this chapter we will study com-
positional reasoning over probabilistic processes. A probabilistic process is specified by a
process term of some probabilistic process algebra. The operational semantics of a pro-
cess term is a probabilistic nondeterministic transition system with transitions derived
from SOS rules in the probabilistic GSOS format.

In order to specify and verify systems in a compositional manner, it is necessary that
the behavioral semantics is compatible with all operators of the language that describe
these systems. For behavioral equivalence semantics, there is a common agreement that
compositional reasoning requires that the considered behavioral equivalence is a congru-
ence w.r.t. all operators. On the other hand, for behavioral metric semantics there are
several proposals of properties that operators should satisfy in order to facilitate com-
positional reasoning. Most prominent examples are non-expansiveness [Des+04] and
non-extensiveness [Bac+13]. We discuss these properties and propose uniform continu-
ity as the most natural property of process operators to facilitate compositional reasoning
w.r.t. behavioral metric semantics especially in presence of recursion. Uniform continuity
generalizes non-extensiveness and non-expansiveness and captures the essential nature
of compositional reasoning w.r.t. behavioral metric semantics. A uniformly continuous
binary process operator f ensures that for any non-zero bisimulation distance ε (under-
stood as the admissible tolerance from the operational behavior of the composed process
f (p1, p2)) there are non-zero bisimulation distances δ1 and δ2 (understood as the admiss-
ible tolerances from the operational behavior of the processes p1 and p2) such that the
distance between the composed processes f (p1, p2) and f (p′1, p′2) is at most ε whenever
the component p′1 (resp. p′2) is in distance of at most δ1 from p1 (resp. at most δ2 from
p2).

The main contributions of this chapter are:

1. We develop for many non-recursive and recursive process operators used in various
probabilistic process algebras tight upper bounds on the distance between processes

31

Chapter 3. Compositional metric reasoning

combined by those operators (Sections 3.2.2 and 3.3.2).

2. We show that non-recursive process operators, esp. (nondeterministic and probab-
ilistic variants of) sequential, alternative and parallel composition, allow for com-
positional reasoning w.r.t. the compositionality criteria of non-expansiveness and
hence also w.r.t. uniform continuity (Section 3.2).

3. We show that recursive process operators, e.g. (nondeterministic and probabilistic
variants of) Kleene-star iteration and π-calculus bang replication, allow for com-
positional reasoning w.r.t. the compositionality criterion of uniform continuity, but
not w.r.t. non-expansiveness and non-extensiveness (Section 3.3).

4. We demonstrate the usefulness of compositional reasoning using a network protocol
built from uniformly continuous operators. In particular, we show how it is possible
to derive performance guarantees for the entire system from performance assump-
tions about individual components. Conversely, we show how it is also possible
to derive performance requirements on individual components from performance
requirements on the complete system (Section 3.4).

This chapter has been partially published as [GLT15].

3.2 Non-recursive processes

We start by discussing compositional reasoning over probabilistic processes that are com-
posed by non-recursive process combinators. First we introduce the most common non-
recursive process combinators, then study the distance between processes composed by
these combinators, and conclude by analyzing their compositionality properties. Our
study of compositionality properties generalizes earlier results of [Des+04; Den+05]
which considered only a small set of process combinators and only the property of non-
expansiveness. The development of tight bounds on the distance between composed pro-
cesses (necessary for effective metric assume-guarantee performance validation) is novel.

3.2.1 Non-recursive process combinators

We introduce a probabilistic process algebra that comprises many of the probabilistic
process combinators from CCS [Bar04; DD07] and CSP [DL12; Den+07]. Let ΣPA be
a signature with the following operators: i) constants 0 (stop process) and ε (skip pro-
cess); ii) a family of n-ary probabilistic prefix operators a.([p1]_⊕ . . .⊕ [pn]_) with a ∈ A,
n ≥ 1, p1, . . . , pn ∈ (0,1] and

∑n
i=1 pi = 1; iii) binary operators _ ; _ (sequential composi-

tion), _+ _ (alternative composition), _+p _ (probabilistic alternative composition), _ | _
(synchronous parallel composition), _ ||| _ (asynchronous parallel composition), _ |||p _
(probabilistic parallel composition), and _ ‖B _ for each for each B ⊆ A (CSP parallel com-
position). The PTSS PPA = (ΣPA, A, RPA) is given by the set of PGSOS rules RPA in Table 3.1
and Table 3.2.

The probabilistic prefix operator expresses that the process a.([p1]t1 ⊕ . . . ⊕ [pn]tn)
can perform action a and evolves to process t i with probability pi . We write a.

⊕n
i=1[pi]t i

for a.([p1]t1 ⊕ . . . ⊕ [pn]tn) and a.t for a.([1]t) (deterministic prefix operator). The

32

3.2. Non-recursive processes

ε
p

−→ δ(0) a.
n
⊕

i=1

[pi]x i
a
−→

n
∑

i=1

piδ(x i)

x
a
−→ µ a 6=

p

x; y
a
−→ µ;δ(y)

x
p

−→ µ y
a
−→ ν

x; y
a
−→ ν

x
a
−→ µ

x + y
a
−→ µ

y
a
−→ ν

x + y
a
−→ ν

x
a
−→ µ y

a
−→ ν a 6=

p

x | y
a
−→ µ | ν

x
p

−→ µ y
p

−→ ν

x | y
a
−→ δ(0)

x
a
−→ µ a 6=

p

x ||| y
a
−→ µ ||| δ(y)

y
a
−→ ν a 6=

p

x ||| y
a
−→ δ(x) ||| ν

x
p

−→ µ y
p

−→ ν

x ||| y
p

−→ δ(0)

x
a
−→ µ y

a
−→ ν a ∈ B \ {

p
}

x ||B y
a
−→ µ ||B ν

x
p

−→ µ y
p

−→ ν

x ||B y
p

−→ δ(0)

x
a
−→ µ a /∈ B ∪ {

p
}

x ||B y
a
−→ µ ||B δ(y)

y
a
−→ ν a /∈ B ∪ {

p
}

x ||B y
a
−→ δ(x) ||B ν

Table 3.1: Standard non-recursive process combinators

sequential composition and the alternative composition are as usual. The synchronous
parallel composition t | t ′ describes the simultaneous evolution of processes t and t ′,
while the asynchronous parallel composition t ||| t ′ describes the interleaving of t and
t ′ where both processes can progress by alternating at any rate the execution of their
actions. The CSP-like parallel composition t ‖B t ′ describes multi-party synchronization
where t and t ′ synchronize on actions in B and evolve independently for all other actions.

The probabilistic variants of the alternative composition and the asynchronous par-
allel composition replace the nondeterministic choice of their non-probabilistic variant
by a probabilistic choice. The probabilistic alternative composition t +p t ′ evolves to the
probabilistic choice between a distribution reached by t (with probability p) and a dis-
tribution reached by t ′ (with probability 1 − p) for actions which can be performed by
both processes. For actions that can be performed by either only t or only t ′, the prob-
abilistic alternative composition t +p t ′ behaves just like the nondeterministic alternative
composition t + t ′. Similarly, the probabilistic parallel composition t |||p t ′ evolves to a
probabilistic choice between the nondeterministic choices of t ||| t ′.

3.2.2 Distance between non-recursive processes

We develop now tight bounds on the distance between processes combined by the non-
recursive process combinators presented in Table 3.1 and Table 3.2. This will allow us to

33

Chapter 3. Compositional metric reasoning

x
a
−→ µ y

a
−→6

x +p y
a
−→ µ

x
a
−→6 y

a
−→ ν

x +p y
a
−→ ν

x
a
−→ µ y

a
−→ ν

x +p y
a
−→ µ⊕p ν

x
a
−→ µ y

a
−→6 a 6=

p

x |||p y
a
−→ µ |||p δ(y)

x
a
−→6 y

a
−→ ν a 6=

p

x |||p y
a
−→ δ(x) |||p ν

x
a
−→ µ y

a
−→ ν a 6=

p

x |||p y
a
−→ µ |||p δ(y)⊕p δ(x) |||p ν

x
p

−→ µ y
p

−→ ν

x |||p y
p

−→ δ(0)

Table 3.2: Standard non-recursive probabilistic process combinators

derive the compositionality properties of those operators. As we will discuss two different
compositionality properties for non-recursive processes, we split in this section the discus-
sion on the distance bounds accordingly. We use disjoint extensions of the specification of
the process combinators in order to reason over the composition of arbitrary processes.

We will express the bound on the distance between composed processes f (s1, . . . , sn)
and f (t1, . . . , tn) in terms of the distance between their respective components si and t i .
Intuitively, given a probabilistic process f (s1, . . . , sn) we provide a bound on the distance
to the respective probabilistic process f (t1, . . . , tn)where each component si is replaced by
the component t i . We start with those process combinators that satisfy the later discussed
compositionality property of non-extensiveness (Definition 3.4).

Proposition 3.1. Let P = (Σ, A, R) be any PTSS with PPA v P. For all terms si , t i ∈ T(Σ) it
holds

(a) d(a.
⊕n

i=1[pi]si , a.
⊕n

i=1[pi]t i)≤ λ ·
∑n

i=1 pid(si , t i);

(b) d(s1 + s2, t1 + t2)≤max(d(s1, t1),d(s2, t2));

(c) d(s1 +p s2, t1 +p t2)≤max(d(s1, t1),d(s2, t2)).

Proof. We start with the probabilistic prefix operator (Proposition 3.1.a). There are the
transitions a.

⊕n
i=1[pi]si

a
−→
∑n

i=1 piδ(si) and a.
⊕n

i=1[pi]t i
a
−→
∑n

i=1 piδ(t i). Hence we
need to show that λ · K(d)(

∑n
i=1 piδ(si),

∑n
i=1 piδ(t i)) ≤ λ ·

∑n
i=1 pid(si , t i). By Proposi-

tion 2.32 we obtain the following inequations:

K(d)

�

n
∑

i=1

piδ(si),
n
∑

i=1

piδ(t i)

�

≤
n
∑

i=1

pi K(d)(δ(si),δ(t i)) (Proposition 2.32.3)

≤
n
∑

i=1

pid(si , t i) (Proposition 2.32.2)

34

3.2. Non-recursive processes

We proceed with the alternative composition operator (Proposition 3.1.b). If either
d(s1, t1) = 1 or d(s2, t2) = 1 then the statement is trivial since d is a 1-bounded pseudo-
metric. Hence, we assume d(s1, t1) < 1 and d(s2, t2) < 1. We consider now the two
different rules specifying the alternative composition operator and show that in each case
whenever s1+s2

a
−→ π is derivable by some of the rules then there is a transition t1+t2

a
−→ π′

derivable by the same rule s.t. λ ·K(d)(π,π′)≤max(d(s1, t1),d(s2, t2)).

1. If s1 + s2
a
−→ π is derived from s1

a
−→ π, then, since d(s1, t1) < 1 and d satisfies the

transfer condition of the bisimulation metrics, there exists a transition t1
a
−→ π′ for

a distribution π′ with λ · K(d)(π,π′) ≤ d(s1, t1) ≤ max(d(s1, t1),d(s2, t2)). Finally,
from t1

a
−→ π′ we derive t1 + t2

a
−→ π′.

2. If s1 + s2
a
−→ π is derived from s2

a
−→ π then the argument is analogous.

We conclude with probabilistic alternative composition operator (Proposition 3.1.c).
If either d(s1, t1) = 1 or d(s2, t2) = 1 then the statement is trivial since d is a 1-bounded
pseudometric. Hence, we assume d(s1, t1) < 1 and d(s2, t2) < 1. We consider now
the three different rules specifying the probabilistic alternative composition operator and
show that in each case whenever s1 + s2

a
−→ π is derivable by some of the rules then

there is a transition t1 + t2
a
−→ π′ derivable by the same rule s.t. λ · K(d)(π,π′) ≤

max(d(s1, t1),d(s2, t2)).

1. Assume that s1+ps2
a
−→ π is derived from s1

a
−→ π and s2

a
−→6 . Since d(s1, t1)< 1 and d

satisfies the metric bisimulation transfer condition, there exists a transition t1
a
−→ π′

with λ · K(d)(π,π′) ≤ d(s1, t1) ≤ max(d(s1, t1),d(s2, t2)). Since d(s2, t2) < 1, by
Proposition 2.30.2 the processes s2 and t2 agree on the actions they can perform
immediately. Thus t2

a
−→6 . Hence we can derive the transition t1 +p t2

a
−→ π′.

2. Assume that s1 +p s2
a
−→ π is derived from s1

a
−→6 and s2

a
−→ π. The argument is the

same of the previous case.

3. Assume that s1 +p s2
a
−→ π with π = p(π1) + (1 − p)π2 is derived from s1

a
−→ π1

and s2
a
−→ π2. Then, since d(s1, t1) < 1 and d(s2, t2) < 1 and d satisfies the

transfer condition of the bisimulation metrics, there exist transitions t1
a
−→ π′1 with

λ ·K(d)(π1,π′1)≤ d(s1, t1) and t2
a
−→ π′2 with λ ·K(d)(π2,π′2)≤ d(s2, t2). Therefore

we derive t1 +p t2
a
−→ pπ′1 + (1− p)π′2, with

λ ·K(d)(pπ1 + (1− p)π2, pπ′1 + (1− p)π′2)
≤λ · (p K(d)(π1,π′1) + (1− p)K(d)(π2,π′2)) (Proposition 2.32.3)

≤λ ·max(K(d)(π1,π′1),K(d)(π2,π′2))
≤max(d(s1, t1),d(s2, t2)).

ut

35

Chapter 3. Compositional metric reasoning

We note that the distance between action prefixed processes (Proposition 3.1.a) is dis-
counted by λ since the processes a.

⊕n
i=1[pi]si and a.

⊕n
i=1[pi]t i perform first the action

a before the processes si and t i may evolve and their distance is observed. The dis-
tances between processes composed by either the nondeterministic alternative composi-
tion operator or by the probabilistic alternative composition operator are both bounded
by the maximum of the distances between their respective arguments (Propositions 3.1.b
and 3.1.c). The distance bounds for these operators coincide since the first two rules spe-
cifying the probabilistic alternative composition define the same operational behavior as
the nondeterministic alternative composition and the third rule defines a convex combin-
ation of these transitions. If the probabilistic alternative composition would be defined
by only the third rule of Table 3.2, then d(s1+p s2, t1+p t2)≤ pd(s1, t1)+ (1− p)d(s2, t2).

We proceed with those process combinators that satisfy the later discussed composi-
tionality property of non-expansiveness (Definition 3.7).

Proposition 3.2. Let P = (Σ, A, R) be any PTSS with PPA v P. For all terms si , t i ∈ T(Σ) it
holds

(a) d(s1; s2, t1; t2)≤

¨

1 if d(s1, t1) = 1

max(da
1,2,d(s2, t2)) if d(s1, t1) ∈ [0, 1)

(b) d(s1 | s2, t1 | t2)≤ ds

(c) d(s1 ||| s2, t1 ||| t2)≤ da

(d) d(s1 ‖B s2, t1 ‖B t2)≤

¨

ds if B \ {
p
} 6= ;

da otherwise

(e) d(s1 |||p s2, t1 |||p t2)≤ da

with

ds =







1 if d(s1, t1) = 1

1 if d(s2, t2) = 1

d(s1, t1) + (1− d(s1, t1)/λ)d(s2, t2) otherwise

da =







1 if d(s1, t1) = 1

1 if d(s2, t2) = 1

max(da
1,2 , da

2,1) otherwise

da
1,2 = d(s1, t1) +λ(1− d(s1, t1)/λ)d(s2, t2)

da
2,1 = d(s2, t2) +λ(1− d(s2, t2)/λ)d(s1, t1)

Proof. We will prove only Proposition 3.2.d (CSP-like parallel composition ‖B). The syn-
chronous and asynchronous parallel composition operators (Propositions 3.2.b and 3.2.c)
are special cases, since | coincides with ‖A and ||| coincides with ‖;. The proofs for the
probabilistic parallel composition operator |||p (Proposition 3.2.e) and the sequential com-
position ; (Proposition 3.2.a) are analogous.

36

3.2. Non-recursive processes

We consider B \ {
p
} 6= ; (the case B \ {

p
} = ; is similar). First we need to introduce

the notion of congruence closure for d as the quantitative analogue of the well-known
concept of congruence closure of a process equivalence. We define the metric congruence
closure of d for operator ‖B w.r.t. the bound provided in Proposition 3.2.d as a function
d : T(Σ)×T(Σ)→ [0,1] defined by

d(t, t ′) =



























min(λ[1− (1− d(t1, t ′1)/λ)(1− d(t2, t ′2)/λ)],d(t, t ′)) if











t = t1 ‖B t2∧
t ′ = t ′1 ‖B t ′2∧
d(t1, t ′1)< 1∧
d(t2, t ′2)< 1

d(t, t ′) otherwise

We note that d satisfies by construction d(s1 ‖B s2, t1 ‖B t2) ≤ ds since λ[1 − (1 −
d(s1, t1)/λ)(1− d(s2, t2)/λ)] = d(s1, t1) + (1− d(s1, t1)/λ)d(s2, t2). We note also that d
satisfies by construction d v d. It remains to show that d v d, thus giving d = d, and
Proposition 3.2.d holds. Since d is the least prefixed point of B, to show dv d it is enough
to prove that d is a prefixed point of B.

To prove that B(d) v d we need to show that d satisfies the transfer condition of the
bisimulation metrics, namely

for all t
a
−→ π there exists a transition t ′

a
−→ π′ with λ ·K(d)(π,π′)≤ d(t, t ′) (3.1)

for all terms t, t ′ ∈ T(Σ) with d(t, t ′)< 1.
We prove Equation 3.1 by induction over the overall number k of occurrences of op-

erator ‖B occurring in t and t ′.
Consider the base case k = 0. We have that d(t, t ′) = d(t, t ′). Since d(t, t ′) < 1

we are sure that the transition t
a
−→ π is mimicked by some transition t ′

a
−→ π′ for some

distribution π′ ∈ ∆(T(Σ)) such that λ · K(d)(π,π′) ≤ d(t, t ′). By Proposition 2.32 from
d v d we infer K(d)v K(d). Therefore we conclude

λ ·K(d)(π,π′)≤ λ ·K(d)(π,π′)≤ d(t, t ′) = d(t, t ′)

which confirms that Equation 3.1 holds for t and t ′.
Consider the inductive step k > 0. If either t is not of the form t = t1 ‖B t2, or t ′ is not

of the form t ′ = t ′1 ‖B t ′2, we have d(t, t ′) = d(t, t ′) and Equation 3.1 follows precisely
as in the base case k = 0. If both t = t1 ‖B t2 and t ′ = t ′1 ‖B t ′2, then we distinguish
two cases, namely d(t, t ′) = d(t, t ′) (either d(t1, t ′1) = 1 or d(t2, t ′2) = 1) and d(t, t ′) =
λ[1 − (1 − d(t1, t ′1)/λ)(1 − d(t2, t ′2)/λ)] (both d(t1, t ′1) < 1 and d(t2, t ′2) < 1). In case
d(t, t ′) = d(t, t ′) Equation 3.1 follows precisely as in the base case k = 0. Consider the
case d(t, t ′) = λ[1− (1− d(t1, t ′1)/λ)(1− d(t2, t ′2)/λ)]. We have four different subcases:

1. t1
a
−→ π1, t2

a
−→ π2, a ∈ B \ {

p
} and π= π1 ‖B π2;

2. t1
a
−→ π1, t2

a
−→6 , a 6∈ B ∪ {

p
} and π= π1 ‖B δ(t2);

3. t2
a
−→ π2, t1

a
−→6 , a 6∈ B ∪ {

p
} and π= δ(t1) ‖B π2;

37

Chapter 3. Compositional metric reasoning

4. t1
a
−→ π1, t2

a
−→ π2, a =

p
and π= δ(0).

We start with the first case. By d(t1, t ′1)< 1 and d(t2, t ′2)< 1 and d v d, we get d(t1, t ′1)<
1 and d(t2, t ′2) < 1. By the inductive hypothesis we get that there are also transitions

t ′1
a
−→ π′1 and t ′2

a
−→ π′2 with λ · K(d)(π1,π′1) ≤ d(t1, t ′1) and λ · K(d)(π2,π′2) ≤ d(t2, t ′2).

Hence, there is also the transition t ′1 ‖B t ′2
a
−→ π′1 ‖B π

′
2. Then

λ ·K(d)(π1 ‖B π2,π′1 ‖B π
′
2)

≤λ2[1− (1−K(d)(π1,π′1)/λ)(1−K(d)(π2,π′2)/λ)]

≤λ2[1− (1− d(t1, t ′1)/λ
2)(1− d(t2, t ′2)/λ

2)]
≤λ[1− (1− d(t1, t ′1)/λ)(1− d(t2, t ′2)/λ)]
=d(t1 ‖B t2, t ′1 ‖B t ′2)

with the first step by Theorem 2.33 (using the fact that the candidate modulus of con-
tinuity of operator ‖B given by z(ε1,ε2) = λ[1− (1− ε1/λ)(1− ε2/λ)] is concave) and
the second step by the inductive hypothesis λ · K(d)(πi ,π

′
i) ≤ d(t i , t ′i). Thus, the metric

bisimulation transfer condition is satisfied for d in this case.
Consider now the second case. By d(t1, t ′1)< 1 and d v d, we get d(t1, t ′1)< 1. By the

inductive hypothesis we get that there is also a transitions t ′1
a
−→ π′1 with λ·K(d)(π1,π′1)≤

d(t1, t ′1). By Proposition 2.30.2 we have that t ′2 6
a
−→, therefore we can derive the transition

t ′1 ‖B t ′2
a
−→ π′1 ‖B δ(t ′2). Then

λ ·K(d)(π1 ‖B δ(t2),π
′
1 ‖B δ(t

′
2))

≤λ2[1− (1−K(d)(π1,π′1)/λ)(1−K(d)(δ(t2),δ(t
′
2))/λ)]

≤λ2[1− (1− d(t1, t ′1)/λ
2)(1− d(t2, t ′2)/λ)]

≤λ2[1− (1− d(t1, t ′1)/λ
2)(1− d(t2, t ′2)/λ

2)]
≤λ[1− (1− d(t1, t ′1)/λ)(1− d(t2, t ′2)/λ)]
=d(t1 ‖B t2, t ′1 ‖B t ′2)

with step 1 again from Theorem 2.33 like in the first case and the second step by the
inductive hypothesis λ ·K(d)(π1,π′1)≤ d(t1, t ′1) and Proposition 2.32.2.

The third step is analogous to the second one.
Consider now the fourth case. By d(t1, t ′1) < 1 and d(t2, t ′2) < 1 and d v d, we get

d(t1, t ′1) < 1 and d(t2, t ′2) < 1. By the inductive hypothesis we get that there are also

transitions t ′1

p

−→ π′1 and t ′2

p

−→ π′2. Hence, there is also the transition t ′1 ‖B t ′2

p

−→ δ(0).
Then λ · K(d)(δ(0),δ(0)) = 0 ≤ d(t1 ‖B t2, t ′1 ‖B t ′2). Thus, the metric bisimulation
transfer condition is satisfied for d also in this case.

ut

The expression ds captures the distance bound between the synchronously evolving
processes s1 and s2 on the one hand and the synchronously evolving processes t1 and t2
on the other hand. We remark that distances d(s1, t1) and d(s2, t2) contribute symmetric-
ally to ds since d(s1, t1) + (1− d(s1, t1)/λ)d(s2, t2) = d(s2, t2) + (1− d(s2, t2)/λ)d(s1, t1).

38

3.2. Non-recursive processes

The expressions da
1,2, da

2,1, da cover different scenarios of the asynchronous evolution of
those processes. The expression da

1,2 (resp. da
2,1) denotes the distance bound between the

asynchronously evolving processes s1 and s2 on the one hand and the asynchronously
evolving processes t1 and t2 on the other hand, at which the first transition is performed
by the processes s1 and t1 (resp. the first transition is performed by processes s2 and t2).
Finally, da captures the distance between asynchronously evolving processes independent
of which of those processes moves first.

If d(s1, t1) = 1 or d(s2, t2) = 1, then the processes s1 and t1 and the processes s2 and
t2 may disagree on the initial actions they can perform, and also the composed processes
may disagree on their initial actions and have then also the maximal distance of 1 (cf.
Remark 2.31). We analyze the bound for the process combinator in details assuming
both d(s1, t1)< 1 and d(s2, t2)< 1.

The distance between the sequentially composed processes s1; s2 and t1; t2 (Propos-
ition 3.2.a) is given if d(s1, t1) ∈ [0,1) as the maximum of (i) the distance da

1,2, which
captures the case that first the processes s1 and t1 evolve followed by s2 and t2, and
(ii) the distance d(s2, t2), which captures the case that the processes s2 and t2 evolve
immediately because both s1 and t1 terminate successfully. The distance da

1,2 weights
the distance between s2 and t2 by λ(1− d(s1, t1)/λ). The discount λ expresses that the
distance between processes s2 and t2 is observable just after s1 and t1 have performed
at least one step. Additionally, note that the difference between s2 and t2 can only be
observed when s1 and t1 agree to terminate. When processes s1 and t1 evolve by one
step, they disagree by d(s1, t1)/λ on their behavior. Hence they agree by 1− d(s1, t1)/λ.
Thus, the distance between processes s2 and t2 needs to be additionally weighted by
(1− d(s1, t1)/λ). In case (ii) the distance between s2 and t2 is not discounted since both
processes start immediately.

The distance bound between synchronous parallel composed processes s1 | s2 and
t1 | t2 is the expression ds, which is d(s1, t1) + (1− d(s1, t1)/λ)d(s2, t2) = d(s2, t2) + (1−
d(s2, t2)/λ)d(s1, t1) = λ(1 − (1 − d(s1, t1)/λ)(1 − d(s2, t2)/λ)) when both d(s1, t1) < 1
and d(s2, t2) < 1. Hence the distance between s1 | s2 and t1 | t2 is bounded by the sum
of the distance between s1 and t1, which is the degree of dissimilarity between s1 and t1,
and the distance between s2 and t2 weighted by the probability that s1 and t1 agree on
their behavior, which is the degree of dissimilarity between s2 and t2 under equal behavior
of s1 and t1. Alternatively, the bound to the distance between s1 | s2 and t1 | t2 can be
understood as composing processes on the behavior they agree upon, i.e. s1 | s2 and t1 | t2
agree on their behavior if s1 and t1 agree (probability of similarity 1−d(s1, t1)/λ) and if s2
and t2 agree (probability of similarity 1− d(s2, t2)/λ). The resulting distance is then the
probability of dissimilarity of the respective behavior expressed by 1−(1−d(s1, t1)/λ)(1−
d(s2, t2)/λ) multiplied by the discount factor λ.

The distance bound between asynchronous parallel composed processes s1 ||| s2 and
t1 ||| t2 is the expression da. Hence the distance bound is the maximum of da

1,2, namely
the distance observable when first processes s1 and t1 evolve and then s2 and t2, and da

2,1,
namely the distance observable when first processes s2 and t2 evolve and then s1 and t1.
Both da

1,2 and da
2,1 differ from the distance ds of the synchronously evolving processes only

by the discount factor λ that is applied to the distance of the delayed processes.
The distance between processes composed by the probabilistic parallel composition

operator s1 |||p s2 and t1 |||p t2 is bounded by the same expression da since the first two

39

Chapter 3. Compositional metric reasoning

rules specifying the probabilistic parallel composition define the same operational beha-
vior as the nondeterministic parallel composition, and the third rule defining a convex
combination of these transitions applies only for those actions that can be performed by
both processes s1 and s2 and resp. t1 and t2.

Processes that are composed by the CSP parallel composition operator _ ‖B _ evolve
synchronously for actions in B \ {

p
}, evolve asynchronously for actions in A\ (B ∪ {

p
}),

and the action
p

leads always to the stop process if both processes can perform
p

. Since
ds ≥ da, the distance is bounded by ds if there is at least one action a ∈ B with a 6=

p
for

which the composed processes can evolve synchronously, and otherwise by da.
The distance bounds on the distance between processes composed by non-recursive

process combinators (Proposition 3.1 and 3.2) are tight.

Proposition 3.3. Let εi ∈ [0,1]. There are processes si , t i ∈ T(ΣPA) with d(si , t i) = εi such
that the inequalities in Propositions 3.1 and 3.2 become equalities.

Proof. Consider Proposition 3.1. The maximal distance is realized if the composed pro-
cesses perform different initial actions. Let A= {ai | 1≤ i ≤ n} ∪ {

p
}. We define

• si = t i = ai .ε, if εi = 0;

• si = ai .([1− εi/λ]ε ⊕ [εi/λ]0) and t i = ai .ε, if εi ∈ (0,λ);

• si = ai .0 and t i = ai .ε, if εi = λ;

• and si = 0 and t i = ai .ε, if εi = 1.

These processes yield for all process combinators of Proposition 3.1 exactly the stated
upper bound.

Consider Proposition 3.2. The maximal distance is realized if the composed processes
may perform the same actions and can synchronize. Let A= {a,

p
}. We define

• si = t i = a.ε, if εi = 0;

• si = a.([1− εi/λ]ε ⊕ [εi/λ]0) and t i = a.ε, if εi ∈ (0,λ);

• si = a.0 and t i = a.ε, if εi = λ;

• si = 0 and t i = a.ε if εi = 1.

These processes yield for all process combinators of Proposition 3.2 exactly the stated
upper bound. ut

3.2.3 Compositional reasoning over non-recursive processes

In order to specify and verify systems in a compositional manner, it is necessary that the
behavioral semantics is compatible with all operators of the language that describe these
systems. There are multiple proposals which properties of process combinators facilit-
ate compositional reasoning. In this section we discuss non-extensiveness [Bac+13] and
non-expansiveness [Des+02a; Des+04; Den+05; Cha+14]), which are compositionality
properties based on the p-norm. They allow for compositional reasoning over probab-
ilistic processes that are built of non-recursive process combinators. Non-extensiveness

40

3.2. Non-recursive processes

and non-expansiveness are very strong forms of uniform continuity. For instance, a non-
expansive operator ensures that the distance between the composed processes is at most
the sum of the distances between its parts. Later in Section 3.3.3 we will propose uni-
form continuity as generalization of these properties that allows also for compositional
reasoning over recursive processes.

Definition 3.4 (Non-extensive process combinator). A process combinator f ∈ Σ is non-
extensive w.r.t. λ-bisimilarity metric d if

d(f (s1, . . . , sn), f (t1, . . . , tn))≤
n

max
i=1

d(si , t i)

for all closed process terms si , t i ∈ T(Σ).

Probabilistic action prefix, nondeterministic alternative composition, and probabilistic
alternative composition are non-extensive w.r.t. d.

Theorem 3.5. The process combinators

• probabilistic action prefix a.
⊕n

i=1[pi]_

• nondeterministic alternative composition _+ _

• probabilistic alternative composition _+p _

are non-extensive w.r.t. λ-bisimilarity metric d for any λ ∈ (0,1].

Proof. Follows directly from Proposition 3.1. ut

All other operators of ΣPA are not non-extensive (cf. Proposition 3.2 and 3.3).

Proposition 3.6. None of the process combinators

• sequential composition _ ; _

• synchronous parallel composition _ | _

• asynchronous parallel composition _ ||| _

• CSP-like parallel composition _ ‖B _

• probabilistic parallel composition _ |||p _

is non-extensive w.r.t. λ-bisimilarity metric d for any λ ∈ (0,1].

Proof. Follows directly from Propositions 3.2 and 3.3. ut

We proceed now with the compositionality property of non-expansiveness.

Definition 3.7 (Non-expansive process combinator). A process combinator f ∈ Σ is non-
expansive w.r.t. λ-bisimilarity metric d if

d(f (s1, . . . , sn), f (t1, . . . , tn))≤
n
∑

i=1

d(si , t i)

for all closed process terms si , t i ∈ T(Σ).

41

Chapter 3. Compositional metric reasoning

It is clear that if a process combinator f is non-extensive, then f is non-expansive.

Theorem 3.8. All non-recursive process combinators of ΣPA are non-expansive w.r.t. d for
any λ ∈ (0, 1].

Proof. Follows directly from Propositions 3.1 and 3.2 and the observation that da ≤ ds ≤
d(s1, t1) + d(s2, t2). ut

Theorem 3.8 generalizes a similar result of [Des+04] which considered only PTSs
without nondeterministic branching and only a small set of process combinators. The
analysis which operators are non-extensive (Theorem 3.5) and the tight distance bounds
(Propositions 3.1 and 3.2) are novel.

3.3 Recursive processes

Recursion is necessary to express infinite (non-terminating) behavior in terms of finite
process expressions. Moreover, recursion allows to express repetitive finite behavior in a
compact way. We will discuss now compositional reasoning over probabilistic processes
that are composed by recursive process combinators. We will see that the composition-
ality properties used for non-recursive process combinators (Section 3.2.3) fall short for
recursive process combinators. We will propose the more general property of uniform
continuity (Section 3.3.3) that captures the inherent nature of compositional reasoning
over probabilistic processes. In fact, it allows to reason compositionally over processes
that are composed by both recursive and non-recursive process combinators. In the next
section we apply these results to reason compositionally over a communication protocol
and derive its respective performance properties. To the best of our knowledge this is
the first study which explores systematically compositional reasoning over recursive pro-
cesses in the context of bisimulation metric semantics. We remark that recursive process
combinators are indispensable for effective modeling and verification of safety critical
systems, network protocols, and systems biology.

3.3.1 Recursive process combinator

We define PPA� as disjoint extension of PPA with the operators finite iteration _n, infinite
iteration _ω, binary Kleene-star iteration _∗_, probabilistic Kleene-star iteration _∗p _, finite
replication !n_, infinite replication (bang) operator !_, and probabilistic bang operator !p_.
The operational semantics of these operators is specified by the rules in Table 3.3.

The finite iteration tn (resp. infinite iteration tω) of process t expresses that t is per-
formed n times (resp. infinitely often) in sequel. The binary Kleene-star expresses for
t∗1 t2 that either t1 is performed infinitely often in sequel, or t1 is performed a finite num-
ber of times in sequel, followed by t2. The bang operator expresses for !t (resp. finite
replication !n t) that infinitely many copies (resp. n copies) of t evolve asynchronously.
The probabilistic variants of Kleene-star iteration [Bar04, Section 5.2.4(vi)] and bang
replication [MS13, Fig. 1] substitute the nondeterministic choice of the non-probabilistic
variants by a respective probabilistic choice.

42

3.3. Recursive processes

x
a
−→ µ a 6=

p

xn+1 a
−→ µ;δ(xn)

x
p

−→ µ

xn+1
p

−→ µ x0
p

−→ δ(0)

x
p

−→ µ x
a
−→ ν a 6=

p
n> m

xn a
−→ ν;δ(xm)

x
a
−→ µ a 6=

p

xω
a
−→ µ;δ(xω)

x
a
−→ µ a 6=

p

x∗ y
a
−→ µ;δ(x∗ y)

y
a
−→ ν

x∗ y
a
−→ ν

x
a
−→ µ y

a
−→ ν a 6=

p

x∗p y
a
−→ ν⊕p µ;δ(x∗p y)

x
a
−→ µ y

a
−→6 a 6=

p

x∗p y
a
−→ µ;δ(x∗p y)

x
a
−→6 y

a
−→ ν a 6=

p

x∗p y
a
−→ ν

y
p

−→ ν

x∗p y
p

−→ ν

x
a
−→ µ a 6=

p

!n+1 x
a
−→ µ ||| δ(!n x)

x
p

−→ µ

!n+1 x
p

−→ µ !0 x
p

−→ δ(0)

x
a
−→ µ a 6=

p

!x
a
−→ µ ||| δ(!x)

x
a
−→ µ a 6=

p

!p x
a
−→ µ⊕p (µ ||| δ(!p x))

Table 3.3: Standard recursive process combinators

3.3.2 Distance between recursive processes

We develop now tight bounds for recursive process combinators.

Proposition 3.9. Let P = (Σ, A, R) be any PTSS with PPA� v P. For all terms s, si , t, t i ∈
T(Σ) it holds

(a) d(sn, tn)≤ dn

(b) d(!ns, !n t)≤ dn

(c) d(sω, tω)≤ dω

(d) d(!s, !t)≤ dω

(e) d(s1
∗s2, t1

∗ t2)≤max(d(s1
ω, t1

ω),d(s2, t2))

(f) d(s
∗p

1 s2, t
∗p

1 t2)≤ d(s1
∗s2, t1

∗ t2)

(g) d(!ps, !p t)≤

¨

d(s, t) 1
1−(1−p)(λ−d(s,t)) if d(s, t) ∈ (0,1)

d(s, t) if d(s, t) ∈ {0, 1}

with

dn =

¨

d(s, t) 1−(λ−d(s,t))n

1−(λ−d(s,t)) if d(s, t) ∈ (0,1)
d(s, t) if d(s, t) ∈ {0,1}

43

Chapter 3. Compositional metric reasoning

dω =

¨

d(s, t) 1
1−(λ−d(s,t)) if d(s, t) ∈ (0,1)

d(s, t) if d(s, t) ∈ {0,1}

Proof. First of all we observe that 1−(λ−d(s,t))n

1−(λ−d(s,t)) =
∑n−1

k=0(λ− d(s, t))k.
Consider first the finite iteration operator _n. The cases d(s, t) = 0 and d(s, t) = 1

are immediate. Consider the case 0 < d(s, t) < 1. The proof obligation can be rewritten
as d(sn, tn) ≤ d(s, t)

∑n−1
k=0(λ − d(s, t))k. We can reason by induction over n. The base

case n = 0 is immediate. Let us consider the inductive step n+ 1. By the rules in Tables
3.1–3.3, we infer that sn+1 is bisimilar to s; sn (i.e. they are in bisimulation distance 0) and
that tn+1 is bisimilar to t; tn. Hence d(sn+1, tn+1) = d(s; sn, t; tn). By Proposition 3.2.a we
have d(s; sn, t; tn)≤ d(s, t) +d(sn, tn)(λ−d(s, t)) = (by the inductive hypothesis over n)
d(s, t)+(d(s, t)

∑n−1
k=0(λ−d(s, t))k)(λ−d(s, t))= d(s, t)

∑n
k=0(λ−d(s, t))k. Summarizing,

d(sn+1, tn+1)≤ d(s, t)
∑n

k=0(λ− d(s, t))k, thus confirming the thesis.
Consider now the finite replication operator !n_. The cases d(s, t) = 1 and d(s, t) = 0

are immediate. Consider the case 0 < d(s, t) < 1. The proof obligation can be re-
written as d(!ns, !n t) ≤ d(s, t)

∑n−1
k=0(λ − d(s, t))k. We reason by induction over n. The

base case n = 0 is immediate. Let us consider the inductive step n + 1. By the rules
in Tables 3.1–3.3, we infer that !n+1s is bisimilar to s |||!ns and that !n+1 t is bisimilar to
t |||!n t. Hence d(!n+1s, !n+1 t) = d(s |||!ns, t |||!n t). By Proposition 3.2.c we get d(s |||
!ns, t |||!n t) ≤ d(s, t) + (λ − d(s, t))d(!ns, !n t) ≤ (inductive hypothesis) d(s, t) + (λ −
d(s, t))d(s, t)

∑n−1
k=0(λ − d(s, t))k = d(s, t)

∑n
k=0(λ − d(s, t))k. Summarizing, we have

d(!n+1s, !n+1 t)≤ d(s, t)
∑n

k=0(λ− d(s, t))k. This confirms the thesis.
Consider the infinite iteration operator _ω. The cases d(s, t) = 1 and d(s, t) = 0 are

immediate. Consider the case 0< d(s, t)< 1. By the rules in Tables 3.1–3.3, we infer that
sω is bisimilar to s; sω and that tω is bisimilar to t; tω. Hence d(sω, tω) = d(s; sω, t; tω).
By Proposition 3.2 we get d(s; sω, t; tω)≤ d(s, t)+(λ−d(s, t))d(sω, tω). From d(sω, tω)≤
d(s, t) + (λ− d(s, t))d(sω, tω) we infer d(sω, tω)≤ d(s, t) 1

1−(λ−d(s,t)) = dω.
Consider now the bang operator !_. The cases d(s, t) = 1 and d(s, t) = 0 are imme-

diate. Consider the case 0 < d(s, t) < 1. By the rules in Tables 3.1–3.3, we infer that !s
is bisimilar to s |||!s and that !t is bisimilar to t |||!t. Hence d(!s, !t) = d(s |||!s, t |||!t).
By Proposition 3.2 we get d(s |||!s, t |||!t) ≤ d(s, t) + (λ− d(s, t))d(!s, !t). By d(!s, !t) ≤
d(s, t) + (λ− d(s, t))d(!s, !t) we get d(!s, !t)≤ d(s, t) 1

1−(λ−d(s,t)) = dω.
Consider the binary Kleene star operator _∗_. Observe that the term s1

∗s2 is bisimilar
to (s1; (s1

∗s2)) + s2 and that t1
∗ t2 is bisimilar to (t1; (t1

∗ t2)) + t2. Then d(s1
∗s2, t1

∗ t2) =
d((s1; (s1

∗s2))+ s2, (t1; (t1
∗ t2))+ t2) =max{d((s1; (s1

∗s2)), (t1; (t1
∗ t2))),d(s2, t2)} by Pro-

position 3.2. Now d((s1; (s1
∗s2)), (t1; (t1

∗ t2))) = d(s1, t1)+(λ−d(s1, t1))d(s1
∗s2, t1

∗ t2)) =
d(s1, t1) + (λ − d(s1, t1))max{d((s1; (s1

∗s2)), (t1; (t1
∗ t2))),d(s2, t2)} by Proposition 3.2.

Since s1
∗s2 is bisimilar to (s1; (s1

∗s2)) + s2 and t1
∗ t2 is bisimilar to (t1; (t1

∗ t2)) + t2 we
have max{d((s1; (s1

∗s2)), (t1; (t1
∗ t2))),d(s2, t2)} = d((s1; (s1

∗s2)), (t1; (t1
∗ t2))). Then we

get d(s1
∗s2, t1

∗ t2) = d(s1, t1) + (λ− d(s1, t1))(d(s1, t1) + (λ− d(s1, t1))(d(s1
∗s2, t1

∗ t2)))).
Now we get d(s1

∗s2, t1
∗ t2) = d(s1, t1)

∑∞
k=0(λ − d(s1, t1)) = d(s1, t1)

1
1−(λ−d(s1,t1))

. Sum-
marizing, it follows that d(s1

∗s2, t1
∗ t2) = max{d((s1; (s1

∗s2)), (t1; (t1
∗ t2))),d(s2, t2)} =

max{d(s1, t1)
1

1−(λ−d(s1,t1))
,d(s2, t2)}=max{d(sω1 , tω1),d(s2, t2)}.

Consider now the probabilistic Kleene star operator. The second, third and fourth rule
specifying the probabilistic Kleene star operator define the same operational behavior

44

3.3. Recursive processes

as the nondeterministic Kleene star operator. Since the target of the first rule for the
probabilistic Kleene star operator is a convex combination of the targets of the second
and the third rule, the thesis follows.

Consider now the probabilistic bang operator. The bound on the distance of processes
composed by the probabilistic bang operator can be understood by observing that !ps be-
haves as !n+1s with probability p(1− p)n. Hence, by Proposition 3.9.b we get d(!ps, !p t)≤
∑∞

n=0 p(1−p)nd(!n+1s, !n+1 t)≤
∑∞

n=0 p(1−p)ndn+1 = d(s, t)/(1−(1−p)(λ−d(s, t))). ut

First we explain the distance bounds for the nondeterministic recursive process com-
binators. To understand the distance bound between processes that iterate finitely many
times (Proposition 3.9.a), observe that sn and s; . . . ; s, with s; . . . ; s denoting n sequentially
composed instances of s, denote the same PTSs (up to renaming of states). Recursive ap-
plication of the distance bound for operator _; _ (Proposition 3.2.a) yields d(sn, tn) =
d(s; . . . ; s, t; . . . ; t) ≤ d(s, t)

∑n−1
k=0(λ − d(s, t)) = dn. The same reasoning applies to the

finite replication operator (Proposition 3.9.b) by observing that !ns and s ||| . . . ||| s, with
s ||| . . . ||| s denoting n occurrences of s that evolve asynchronously, denote the same PTSs
(up to renaming of states) and that the bounds in Proposition 3.2.a and 3.2.c coincide if
s1 = s2 = s and t1 = t2 = t. The distance between processes that may iterate infinitely
many times (Proposition 3.9.c), and the distance between processes that may spawn in-
finitely many copies that evolve asynchronously (Proposition 3.9.d) are the limit of the
respective finite iteration and replication bounds. The distance between the Kleene-star
iterated processes s1

∗s2 and t1
∗ t2 (Proposition 3.9.e) is bounded by the maximum of the

distance d(s1
ω, t1

ω) (infinite iteration of s1 and t1 s.t. s2 and t2 never evolve), and the
distance d(s2, t2) (s2 and t2 evolve immediately). The case where s1 and t1 iterate n-times
and then s2 and t2 evolve leads always to a distance d(s1

n, t1
n)+(λ−d(s1, t1))nd(s2, t2)≤

max(d(s1
ω, t1

ω),d(s2, t2)).
Now we explain the bounds for the probabilistic recursive process combinators. The

distance between processes composed by the probabilistic Kleene star is bounded by the
distance between those processes composed by the nondeterministic Kleene star (Pro-
position 3.9.f), since the second and the third rule specifying the probabilistic Kleene star
define the same operational behavior as the nondeterministic Kleene star, and the first rule
which defines a convex combination of these transitions applies only for those actions that
both of the combined processes can perform. In fact, d(s1

∗p s2, t1
∗p t2) = d(s1

∗s2, t1
∗ t2)

if the initial actions that can be performed by processes s1, t1 are disjoint from the ini-
tial actions that can be performed by processes s2, t2 (and hence the first rule defining
_∗p _ cannot be applied). Thus, the distance bound of the probabilistic Kleene star co-
incides with the distance bound of the nondeterministic Kleene star. The bound on the
distance of processes composed by the probabilistic bang operator can be understood
by observing that !ps behaves as !n+1s with probability p(1 − p)n. Hence, by Proposi-
tion 3.9.b we get d(!ps, !p t) ≤

∑∞
n=0 p(1 − p)nd(!n+1s, !n+1 t) ≤

∑∞
n=0 p(1 − p)ndn+1 =

d(s, t)/(1− (1− p)(λ− d(s, t))).
The distance bounds on the distance between processes composed by recursive process

combinators (Proposition 3.9) are tight.

Proposition 3.10. Let εi ∈ [0, 1]. There are si , t i ∈ T(ΣPA) with d(si , t i) = εi such that the
inequalities in Proposition 3.9 become equalities.

45

Chapter 3. Compositional metric reasoning

Proof. The witness processes of Proposition 3.3 that were used to show Proposition 3.2
suffice. ut

3.3.3 Compositional reasoning over recursive processes

From Propositions 3.9 and 3.10 it follows that none of the recursive process combinators
discussed in this section satisfies the compositionality property of non-expansiveness.

Proposition 3.11. All recursive process combinators of ΣPA� (unbounded recursion and
bounded recursion with n≥ 2) are not non-expansive w.r.t. d for any λ ∈ (0,1].

Proof. Follows directly from Propositions 3.9 and 3.10 and the observation that dω ≥
dn > d(s, t) whenever 0< d(s, t)< 1. ut

However, a weaker property suffices to facilitate compositional reasoning. To reason
compositionally over probabilistic processes it is enough if the distance between the com-
posed processes can be related to the distance between their parts. In essence, composi-
tional reasoning over probabilistic processes is possible whenever a small variance in the
behavior of the parts leads to a bounded small variance in the behavior of the composed
processes.

We introduce uniform continuity as the compositionality property for both recursive
and non-recursive process combinators. Uniform continuity generalizes the properties
non-extensiveness and non-expansiveness for non-recursive process combinators.

Definition 3.12 (Uniformly continuous process combinator). A process combinator f ∈ Σ
is uniformly continuous w.r.t. λ-bisimilarity metric d if for all ε > 0 there are δ1, . . . ,δn > 0
such that

∀i = 1, . . . , n. d(si , t i)< δi =⇒ d(f (s1, . . . , sn), f (t1, . . . , tn))< ε

for all closed process terms si , t i ∈ T(Σ).

Note that by definition each non-expansive operator is also uniformly continuous (by
δi = ε/n). A uniformly continuous combinator f ensures that for any non-zero bisim-
ulation distance ε there are appropriate non-zero bisimulation distances δi s.t. for any
composed process f (s1, . . . , sn) the distance to the composed process where each si is re-
placed by any t i with d(si , t i) < δi is d(f (s1, . . . , sn), f (t1, . . . , tn)) < ε. We consider the
uniform notion of continuity (technically, the δi depend only on ε and are independent
of the concrete states si) because we aim at universal compositionality guarantees.

The distance bounds of Section 3.3.2 allow us to derive that finitely recursing process
combinators are uniformly continuous w.r.t. both non-discounted and discounted bisimil-
arity metric (Theorem 3.13). On the contrary, unbounded recursing process combinators
are uniformly continuous only w.r.t. discounted bisimilarity metric (Theorem 3.14 and
Proposition 3.15).

Theorem 3.13. The process combinators

• finite iteration _n

• finite replication !n_

46

3.3. Recursive processes

• probabilistic replication (bang) !p_

are uniformly continuous w.r.t. λ-bisimilarity metric d for any λ ∈ (0, 1].

Proof. For each operator f , we prove the stronger property that there is a constant K ∈
R≥0 (depending on f) such that d(f (s1, . . . , sn), f (t1, . . . , tn)) ≤ K

∑n
i=1 d(si , t i). (This is

the well-known Lipschitz continuity, which implies uniform continuity by δi = ε/(n ·K).)
For finite iteration and finite replication operators, this follows directly from Proposi-
tions 3.9.a and 3.9.b, respectively, and the observation that 1−(λ−d(s,t))n

1−(λ−d(s,t)) ≤ n = K . For
the probabilistic bang operator it follows from Proposition 3.9.g and the observation

1
1−(1−p)(λ−d(s,t)) ≤

1
1−(1−p)λ = K . ut

Note that the probabilistic bang operator is uniformly continuous w.r.t. non-discounted
bisimilarity metric d with λ = 1 because in each step there is a non-zero probability that
the process is not copied. On the contrary, the process s1

∗p s2 applying the probabilistic
Kleene star creates with probability 1 a copy of s1 for actions that s1 can and s2 cannot
perform. Hence, the probabilistic Kleene star operator _∗p _ is uniformly continuous only
for discounted bisimilarity metric with λ < 1.

Theorem 3.14. The process combinators

• infinite iteration _ω

• nondeterministic Kleene-star iteration _∗_

• probabilistic Kleene-star iteration _∗p _, and

• infinite replication (bang) !_

are uniformly continuous w.r.t. discounted λ-bisimilarity metric d for any λ ∈ (0,1).

Proof. Also in this case, for each of the operators, we prove the stronger property that
there is a K ∈ R≥0 such that d(f (s1, . . . , sn), f (t1, . . . , tn)) ≤ K

∑n
i=1 d(si , t i). This follows

directly from Proposition 3.9.c–3.9.f and the observation that 1
1−(λ−d(s,t)) ≤

1
1−λ = K . ut

Proposition 3.15. None of the process combinators

• infinite iteration _ω

• nondeterministic Kleene-star iteration _∗_

• probabilistic Kleene-star iteration _∗p _, and

• infinite replication (bang) !_

is uniformly continuous w.r.t. the non-discounted λ-bisimilarity metric d with λ= 1.

Proof. Follows directly from Propositions 3.9 and 3.10. We will reason in detail for the
first case of infinite iteration operator. Let ε be any fixed real with 0< ε < 1. We will show
that there is no δ > 0 s.t. for all s, t ∈ T(Σ) with d1(s, t)< δ we have d1(sω, tω)< ε. We
will show this by contradiction. Assume there is some δ > 0. Consider s = a.([1−δ/2]ε⊕
[δ/2]0) and t = a.ε. We have d1(s, t) = δ/2 < δ and d1(sω, tω) = 1 > ε. Contradiction.
Similar reasoning applies also to the other process combinators. ut

47

Chapter 3. Compositional metric reasoning

BRP(N , T, p, q) = RC(N , T, p, q) ‖B TV, where B = {c(d, b) | d ∈ D, b ∈ {0,1}} ∪ {ack, lost}

RC(N , T, p, q) =

�

∑

0≤n≤N ,n=2k

i(n).
�

CH(0, T, p, q) ; CH(1, T, p, q)
�

n
2

+

∑

0≤n≤N ,n=2k+1

i(n).
��

CH(0, T, p, q) ; CH(1, T, p, q)
�

n−1
2

; CH(0, T, p, q)
�

�

; res(OK).ε

CH(b, t, p, q) =
∑

d∈D

i(d).CH′(d, b, t, p, q)

CH′(d, b, t, p, q) =

¨

(⊥. CH′(d, b, t − 1, p, q)) ⊕p (c(d, b).CH2(d, b, t, p, q)) if t > 0

res(NOK) if t = 0

CH2(d, b, t, p, q) =

¨

(lost.CH′(d, b, t − 1, p, q)) ⊕q (ack.ε) if t > 0

res(NOK) if t = 0

T V =
���

∑

d∈D

c(d, 1).(ack.ε + lost.ε)
�∗�∑

d∈D

c(d, 0).o(d).(ack.ε + lost.ε)
��

;

��

∑

d∈D

c(d, 0).(ack.ε + lost.ε)
�∗�∑

d∈D

c(d, 1).o(d).(ack.ε + lost.ε)
���ω

Figure 3.1: Specification of the Bounded Retransmission Protocol

3.4 Application

To advocate both uniform continuity as adequate property for compositional reasoning as
well as bisimulation metric semantics as a suitable distance measure for performance val-
idation of communication protocols, we exemplify the discussed compositional reasoning
method by analyzing the bounded retransmission protocol (BRP) as a case study.

The BRP allows to transfer streams of data from a sender (e.g. a remote control RC)
to a receiver (e.g. a TV). The RC tries to send to the TV a stream of n data, d0, . . . , dn−1,
with each di a member of the finite data domain D. The length n of the stream is bounded
by a given N . Each datum di is sent separately and has probability p to get lost. When
the TV receives a datum di , it sends back an acknowledgment message, which may also
get lost, with probability q. If the RC does not receive the acknowledgment for datum di
within a given time, it assumes that di got lost and retries to transmit it. However, the
maximal number of attempts for di is T . Since also the acknowledgment may get lost, it
may happen that the RC sends more than once the same datum di notwithstanding that it
was correctly received by the TV. Therefore, the RC attaches a control bit b to each datum
di that it sends to the TV, s.t. the TV can recognize if this datum is original or already
received. Data items at even positions, i.e. d2k for some k ∈ N, get control bit 0 attached,
and data items d2k+1 get control bit 1 attached.

The BRP is specified in Fig. 3.1. Our specification adapts the nondeterministic process
algebra specification of [Fok07] by refining the configuration of lossy channels. While

48

3.4. Application

in the nondeterministic setting a lossy channel (nondeterministically) either successfully
transmits a datum or loses it, we attached a success and failure probability to this choice.
The protocol specification BRP(N , T, p, q) is parametrized by the quadruple (N , T, p, q),
with N denoting the maximum length of the data stream, T denoting how often a single
datum may be retransmitted, p the probability that a single attempt to transmit a datum
may fail, and q the probability that the acknowledgment may fail. BRP(N , T, p, q) repres-
ents a system consisting of the RC interface to the TV modeled as process RC(N , T, p, q),
the TV interface to the RC modeled as process TV, and the channels CH(b, t, p, q) for data
transmission and CH2(d, b, t, p, q) for acknowledgment. The processes RC(N , T, p, q) and
TV synchronize over the actions: (i) c(d, b), with d ∈ D and b ∈ {0, 1}, modeling the cor-
rect transmission of datum d ∈ D and control bit b ∈ {0, 1} from the RC to the TV; (ii) ack,
modeling the correct transmission of the acknowledgment message from the TV to the
RC, and (iii) lost, used to model the timeout due to loss of the acknowledgment message.
Timeout due to the loss of pair (d, b) is modeled by action ⊥ by the RC. RC(N , T, p, q)
starts by receiving the size n ≤ N of the data stream by some other RC component, by
means of action i(n). Then, for n times it reads the datum di by means of action i(d) and
tries to send it to the TV. If all data are sent successfully, then the other RC components
are notified by means of action res(OK). In case of T failures for one datum, the whole
transmission fails and emits res(NOK). If TV receives a pair (d, b) by action c(d, b) then, if
d is original, namely b is the expected control bit, then d is sent to other TV components
by o(d), otherwise (d, b) is ignored.

To advocate bisimulation metric semantics as a suitable distance measure for perform-
ance validation of communication protocols we translate performance properties of a BRP
implementation with lossy channels BRP(N , T, p, q) to the bisimulation distance between
this implementation and the specification with perfect channels BRP(N , T, 0, 0).

Proposition 3.16. Let N , T ∈ N and p, q ∈ [0, 1].

1. Bisimulation distance d(BRP(N , T, 0, 0), BRP(N , T, p, q)) = ε relates as follows to the
protocol performance properties:

(a) The likelihood that N data items are sent and acknowledged without any retry
(i.e. BRP(N , T, p, q) behaves as BRP(N , T, 0, 0)) is 1− ε.

(b) The likelihood that N data items are sent and acknowledged with exactly k retries
for some 0≤ k ≤ N · T, is (1− ε)(1− (1− ε)1/N)k.

(c) The likelihood that N data items are sent and acknowledged with at most k ≤ N ·T
retries is (1− ε) 1−(1−(1−ε)1/N)k

(1−ε)1/N .

(d) The likelihood that at least n≤ N of the N data items are sent and acknowledged
is (1− ε) 1−(1−(1−ε)1/n)nT

(1−ε)1/n .

(e) The likelihood that N items are sent and acknowledged is (1− ε) 1−(1−(1−ε)1/N)N ·T
(1−ε)1/N .

2. Bisimulation distance d(CH(b, T, 0, 0), CH(b, T, p, q)) = δ relates as follows to the
channel performance properties:

(a) The likelihood that one datum is sent and acknowledged without any retry is 1−δ.

49

Chapter 3. Compositional metric reasoning

(b) The likelihood that one datum is sent and acknowledged with exactly k ≤ T retries
is (1−δ) ·δk.

(c) The likelihood that one datum is sent and acknowledged with at most k ≤ T retries
is 1−δk.

Proof. The results in items 1a–1c can be understood by observing that ε = 1 − ((1 −
p)(1−q))N is the likelihood that at least one retry is needed to send the stream of N data,
(1−ε)(1−(1−ε)1/N)k is the probability to have k failures in sending or acknowledging a

datum together with N successes, and (1−ε) 1−(1−(1−ε)1/N)k
(1−ε)1/N =

∑k
i=0(1−ε)(1−(1−ε)

1/N)i .
Then, item 1d is item 1c with N instantiated with n and k instantiated with n · T , and
item 1e is item 1c with k instantiated with n ·T . The results in item (2) can be understood
by observing that δ = 1−(1−p)(1−q) is the likelihood that a single datum requires at least
one retry to be successfully transmitted and acknowledged, (1−δ)·δk = (1−p)(1−q)·(1−
(1− p)(1− q))k is the likelihood to have k failures followed by a successful transmission,
and 1 − δk =

∑k
i=0(1 − δ) · δ

i . It follows that a channel CH(b, T, p, q) eventually (with
possibly up to T retries) succeeds to sent and acknowledge one datum by probability
1− d1(CH(b, T, 0, 0), CH(b, T, p, q))T . ut

Now we show that by applying the compositionality results given in the previous sec-
tions (Propositions 3.1, 3.2, 3.9) we can relate the bisimulation distance between the
specification BRP(N , T, 0, 0) and some implementation BRP(N , T, p, q) of the entire pro-
tocol with the distances between the specification and some implementation of its re-
spective components. On the one hand, this allows to derive from specified performance
properties of the entire protocol individual performance requirements of its components
(compositional verification). On the other hand, it allows to infer from performance prop-
erties of the protocol components suitable performance guarantees on the entire protocol
(compositional specification).

Proposition 3.17. Let N , T ∈ N and p, q ∈ [0, 1]. For all d ∈ D and b ∈ {0,1} it holds

(a) d(BRP(N , T, 0, 0), BRP(N , T, p, q))≤ 1− (1− d(CH(b, T, 0, 0), CH(b, T, p, q)))N ;

(b) d(CH(b, T, 0, 0), CH(b, T, p, q)) = 1− (1− p)(1− q).

Proof. Case (a) follows from Propositions 3.1, 3.2 and 3.9 and case (b). Case (b) follows
directly from Propositions 3.1 and 3.2. Moreover, by combining (a) and (b), we can infer
that d(BRP(N , T, p, q), BRP(N , T, 0, 0))≤ 1− ((1− p)(1− q))N . ut

To advocate uniform continuity as adequate property for compositional reasoning,
we show that the uniform continuity of process combinators in BRP(N , T, p, q) allows us
to relate the distance between this implementation and the specification BRP(N , T, 0, 0)
(which relates by Proposition 3.16 to performance properties of the entire protocol) to
the concrete parameters p, q and N of the system. In detail, by Theorems 3.5, 3.8,
3.13 and Proposition 3.17 we can derive that d(BRP(N , T, p, q), BRP(N , T, 0, 0)) ≤ N/2 ·
(d(CH(0, T, p, q), CH(0, T, 0, 0))+d(CH(1, T, p, q), CH(1, T, 0, 0)))≤ N(1− (1− p)(1−q)).
Then we infer the following result.

Proposition 3.18. Let N , T ∈ N and p, q ∈ [0,1]. For all ε≥ 0, p+ q− pq < ε/N ensures

d(BRP(N , T, p, q), BRP(N , T, 0, 0))< ε

50

3.5. Closing remarks

Proof. Assume N is even. Then:

d(BRP(N , T, p, q), BRP(N , T, 0, 0))
≤d(RC(N , T, p, q), RC(N , T, 0, 0)) + d(T V, T V) (Theorem 3.8)

=d(RC(N , T, p, q), RC(N , T, 0, 0))

≤d((CH(0, T, p, q); CH(1, T, p, q))N/2, (CH(0, T, 0, 0); CH(1, T, 0, 0))N/2) (Theorem 3.5)

≤N/2 · d(CH(0, T, p, q); CH(1, T, p, q), CH(0, T, 0, 0); CH(1, T, 0, 0)) (Theorem 3.13)

≤N/2 · (d(CH(0, T, p, q), CH(0, T, 0, 0)) + d(CH(1, T, p, q), CH(1, T, 0, 0))) (Theorem 3.8)

=N(1− (1− p)(1− q)).

The case that N is odd is analogous. From d(BRP(N , T, p, q), BRP(N , T, 0, 0))≤ N(1−(1−
p)(1− q)) the thesis follows. ut

Combining Propositions 3.16 – 3.18 allows us now to reason compositionally over a
concrete scenario. We derive from a given performance requirement to transmit a stream
of data the necessary performance properties of the channel components.

Example 3.19. Consider the following scenario. We want to transmit a data stream of
N = 20 data items with at most T = 1 retry per data item. We want to build an implement-
ation that should satisfy the performance property ‘The likelihood that all 20 data items
are successfully transmitted is at least 99%’. By applying Proposition 3.16.1 we translate
this performance property to the bisimulation distance d(BRP(N , T, 0, 0), BRP(N , T, p, q))≤
0.01052 on the entire system. By applying Proposition 3.17.a we derive the bisimulation
distance for its channel component d(CH(b, T, 0, 0), CH(b, T, p, q)≤ 0.00053. By Proposi-
tion 3.17.b this distance can be translated to appropriate parameters of the channel com-
ponent, e.g. p = 0.0002 and q = 0.00032 or equivalently p = 0.020% and q = 0.032%.
Finally, Proposition 3.16.2 allows to translate the distance between the specification and
implementation of the channel component back to an appropriate performance require-
ment, e.g. ‘The likelihood that one datum is successfully transmitted is at least 99.95%’.

3.5 Closing remarks

In this chapter we argued that uniform continuity (Definition 3.12, generalizing non-
expansiveness and non-extensiveness discussed by other researchers) is an appropriate
property of process combinators to facilitate compositional reasoning w.r.t. bisimulation
metric semantics. We showed that all standard (non-recursive and recursive) process al-
gebra operators are uniformly continuous (Theorems 3.5, 3.8, 3.13, 3.14). In addition, we
provided for all standard process algebra operators tight bounds on the distance between
the composed processes (Propositions 3.1, 3.2, 3.9). We exemplified how these results
can be used to reason compositionally over protocols. In fact, they allow to derive from
performance requirements on the entire system appropriate performance properties of
the respective components, and in reverse to induce from performance assumptions on
the system components performance guarantees on the entire system.

We remark that the abstraction operator of probabilistic process algebras (that hides
actions and makes them observable as non-distinguishable τ-actions) is non-extensive.

51

Chapter 3. Compositional metric reasoning

However, the power of abstraction and hiding can only be utilized by using also a beha-
vioral semantics that treats the τ-actions respectively as internal actions. We leave the
development of weak and branching bisimulation metrics and the analysis of process al-
gebra operators for those metrics as future work. A first analysis for weak bisimulation
metric and observational congruence weak bisimulation metric (weak bisimulation met-
ric with kernel equivalence being the largest congruence w.r.t. CSS operators contained
in weak bisimulation equivalence) may be found in [Des+02a].

The metric reasoning approach exemplified in Section 3.4 is a sound method to reason
compositionally over systems. However, the distance between composed systems might
not be tight. Let p[x] be an open term describing a composed system with x the place-
holder for a subsystem. Given subsystems s and t, the distance d(p[s], p[t]) might be
below the composition of the compositionality properties of the operators in p if some
of the differences in the behaviors between s and t do not induce different behaviors
between p[s] and p[t]. To exemplify this effect, consider the context p[x] = x | b.0 and
subsystems s = a.0 and t = a.([1 − ε/λ]ε ⊕ [εi/λ]0) . Clearly d(s, t) = ε. Then the
compositional analysis gives d(p[s], p[t]) ≤ ε. However, d(p[s], p[t]) = 0 because the
behavioral distance between s and t (observable only after executing action a) cannot
be observed in the context p[x] (which can only perform an action if the instances of x
perform action b). Thus, d(p[s], p[t]) = 0 since s and t agree on the inability to perform
action b.

One idea to tackle this problem is to develop the notion of context bisimulation. Given
a context p, the p-bisimulation distance (bisimulation distance w.r.t. context p) between
s and t would measure only that degree of the bisimulation distance between s and t
that would induce different behavior between p instantiated by s and p instantiated by t.
Using the notation dp for the p-bisimulation distance this would give the behavioral dis-
tance dp(s, t) = 0 (since p derives only behavior from an initial b-move and s and t agree
on their inability to perform b-moves), while dp(s = b.0, b.([1− ε/λ]ε ⊕ [εi/λ]0) = ε.
It is clear that the context bisimulation distance is bounded by the bisimulation dis-
tance. While it still allows for sound compositional metric reasoning it may lead to tighter
bounds. We leave the detailed technical development and analysis as future work.

52

Chapter 4

Specification of compositional
operators

4.1 Introduction

We will generalize now the compositionality results of the former chapter (which were
developed for some concrete probabilistic process algebra) to arbitrary probabilistic pro-
gramming languages and probabilistic process algebras. The compositionality property
of some language operator is given as a modulus of continuity that relates the distance
between composed processes to the distance between their parts. We explore and general-
ize the earlier discussed compositionality properties of non-extensiveness (Definition 3.4),
non-expansiveness (Definition 3.7), Lipschitz continuity, and uniform continuity (Defini-
tion 3.12). Figure 4.1 shows the whole spectrum of compositionality properties (ordered
from the strongest to the most liberal).

We develop for each compositionality property an expressive SOS specification format
guaranteeing that the specified operators satisfy the compositionality property. The formats
are developed by systematically analyzing which rule and specification patterns define
and which do not define operators satisfying the compositionality properties. As a result
we obtain (a spectrum of) SOS rule and specification formats that allow us to simultan-
eously specify operators with different compositionality properties (e.g. one operator is
1-Lipschitz continuous and another operator is 2-Lipschitz continuous) in one SOS spe-
cification. To the best of our knowledge, our rule and specification formats are the first
that allow to specify simultaneously operators of different compositionality properties.
Moreover, each rule and specification format exploits additionally the (possibly different)
compositionality guarantees of all operators used in the specification rules. This admits
an expressive class of specifications.

A fundamental insight of our study is that the modulus of continuity of the compos-
itionality property defines the maximal process replication behavior that is allowed for
the operators of the language. More precisely, while on the one hand operators that are
non-extensive (as the most demanding compositionality property) may allow that at most
one of the composed processes evolves, on the other hand operators that are uniformly

53

Chapter 4. Specification of compositional operators

∞-non-extensiveness

q-non-extensiveness

1-non-extensiveness
non-expansiveness

1-Lipschitz continuity

L-Lipschitz continuity
(L ≥ 1)

Uniform continuity

Figure 4.1: Lattice of compositionality properties

continuous (as the most relaxed compositionality property) may allow that finitely many
copies of each of the composed processes evolve. In addition, our rule and specification
formats provide also novel insights in the interplay between the replication of processes,
probabilistic choices between processes, and the (step) discount of the bisimilarity met-
ric. More general, we relate algebraic properties of the bisimilarity metric with structural
properties of the specification rules.

Another crucial insight is that an operator is uniformly continuous if it is Lipschitz
continuous for each finite projection. The Lipschitz factor of some operator w.r.t. the k-
th projection, i.e. w.r.t. the up-to-k bisimilarity metric, is determined by the replication
of processes in the first k steps, the probabilistic choices in those steps, and the (step)
discount of the bisimulation metric. The SOS specification format derives then from the
definition of Lipschitz factors of the finite projections the guarantee that the specified
operator is uniformly continuous.

We develop also a coinductive characterization of the spectrum of rule formats. This
allows us then to derive from any modulus of continuity the respective syntactic require-
ments on the specifications ensuring that the specified operators satisfy this modulus of
continuity. Furthermore, the coinductive approach allows also to show by direct argu-
mentation that syntactic compositionality (composing syntactic rule formats) preserves
and is preserved by semantic compositionality (composition of moduli of continuity).

The main contributions of this chapter are:

1. We develop for each of the compositionality properties of non-extensiveness, non-
expansiveness, Lipschitz continuity and uniform continuity appropriate SOS rule

54

4.2. Non-extensive operators

and specification formats guaranteeing that the specified operators satisfy the re-
spective compositionality property (Definitions 4.4,4.18,4.28,4.37).

2. We show for each SOS rule and specification format by appropriate examples that
our syntactic rule constraints cannot be relaxed in any obvious way.

3. We analyze the SOS specifications of several process algebra operators and determ-
ine their respective compositionality properties (Corollaries 4.10,4.23,4.25).

4. We apply those results and derive an upper bound on the distance between two
language expressions by inspecting solely the syntactic compositionality proper-
ties of the operators used in the expressions (Propositions 4.12,4.26,4.40 and The-
orem 4.61).

5. We provide a method that allows us to derive for any uniformly continuous oper-
ator its respective modulus of continuity (i.e. its compositionality property) from its
specification rules (Theorems 4.53 and 4.54).

6. We provide a method that given any modulus of continuity determines sufficient
syntactic requirements s.t. any specification satisfying these requirements defines
an operator with that modulus of continuity (Theorem 4.58).

7. We identify sufficient properties of any behavioral metric ensuring that the compos-
itionality results (modulus of continuity of the specified operators and the distance
bounds between language expressions) are applicable also to this behavioral metric
(Theorem 4.73).

This chapter has been partially published as [GT15].

4.2 Non-extensive operators

We start in this section with non-extensiveness as the strictest compositionality property
and proceed in the subsequent sections with the weaker compositionality properties of
non-expansiveness, Lipschitz continuity and uniform continuity. We will start by intro-
ducing formally the compositionality property then propose an appropriate rule and spe-
cification format guaranteeing that all specified operators satisfy the considered com-
positionality property, proceed by exploring which process algebra operators satisfy the
considered compositionality property, and conclude with a simple method to compute an
upper bound on the distance between closed instances of terms by inspecting solely the
compositionality properties of their operators. The specification formats for the weaker
compositionality properties build on top of the specification formats for the stricter com-
positionality properties in order to allow for expressive specification formats.

The compositionality property of q-non-extensiveness bases on the q-norm. In the
former chapter we focussed only on∞-non-extensiveness (Definition 3.4) and will gen-
eralize now to q-non-extensiveness for arbitrary q ∈ [1,∞].

55

Chapter 4. Specification of compositional operators

a.
n
⊕

i=1

[pi]x i
a
−→

n
∑

i=1

piδ(x i)

x
a
−→ µ

x + y
a
−→ µ

y
a
−→ ν

x + y
a
−→ ν

x
a
−→ µ y

a
−→6

x +p y
a
−→ µ

x
a
−→6 y

a
−→ ν

x +p y
a
−→ ν

x
a
−→ µ y

a
−→ ν

x +p y
a
−→ µ⊕p ν

Figure 4.2: Non-extensive process algebra operators

Definition 4.1 (Non-extensive operator). Let P = (Σ, A, R) be a PTSS. Given q ∈ [1,∞]
we say that an operator f ∈ Σ is q-non-extensive w.r.t. λ-bisimilarity metric d if

d(f (s1, . . . , sn), f (t1, . . . , tn))≤

(

�∑n
i=1 d(si , t i)q

�
1
q if q ∈ [1,∞)

n
max
i=1

d(si , t i) if q =∞

for all closed terms si , t i ∈ T(Σ). We call f non-extensive w.r.t. d if f is∞-non-extensive
w.r.t. d.

If an operator f is q-non-extensive for some q ∈ [1,∞], then f is also q′-non-extensive
for all 1 ≤ q′ ≤ q. In other words, the compositionality property of q-non-extensiveness
gets weaker if q decreases. In this section we focus on∞-non-extensiveness and consider
q-non-extensiveness for q ∈ [1,∞) in Section 4.4.

4.2.1 Analysis of non-extensive operators

We discuss first a few examples that show which rule patterns specify and which rule
patterns do not specify non-extensive operators. We start by analyzing how many times
a source process or its derivatives may appear in the rule target. Intuitively, multiple
occurrences of some source process or its derivatives in the rule target may be understood
as replication of this process along the transition specified by that rule. We start with
analyzing unary operators.

Example 4.2. Consider the rules

x
a
−→ µ

f (x)
a
−→ θ

x
a
−→ µ

x + y
a
−→ µ

y
a
−→ ν

x + y
a
−→ ν

with θ ∈ DT(Σ) any open distribution term. For the discussion in this example we assume
that the nondeterministic alternative composition operator + is non-extensive (formally
shown below in Corollary 4.10). In the following we analyze in which cases the specified
operator f is non-extensive by considering various distribution terms θ . As arguments
for operator f we will use the closed terms s = a.b.0 and t = a.([1 − ε]b.0 ⊕ [ε]c.0)
with ε some fixed value in (0, 1). The operators a.([p1]_ ⊕ . . . ⊕ [pn]_) (probabilistic
prefix operator a.

⊕n
i=1[pi]_) and constant 0 (stop process) are specified by the rules

56

4.2. Non-extensive operators

given in Figure 4.2. For brevity, we write a._ for a.([1]_). The SOS rules allow us to
derive the transitions s

a
−→ δ(b.0) and t

a
−→ (1 − ε)δ(b.0) + εδ(c.0). Hence d(s, t) =

λ ·K(d)(δ(b.0), (1− ε)δ(b.0) + εδ(c.0)) = λ · ((1− ε) · 0+ ε · 1) = λ · ε.
Consider θ = δ(x) + δ(x). The source process x appears twice in the rule target

in the context of the alternative composition operator. Intuitively, the source process
x gets replicated, but the two instances of x do not evolve in the specified transition.
The transitions f (s)

a
−→ δ(s) + δ(s) and f (t)

a
−→ δ(t) + δ(t) are derivable. We get

d(f (s), f (t)) = λ·K(d)(δ(s)+δ(s),δ(t)+δ(t)) = λ·d(s+s, t+t) = λ·d(s, t)≤ d(s, t). The
non-extensiveness condition is satisfied for these specific arguments s and t. Theorem 4.5
below will confirm that this specification of operator f is non-extensive.

Consider θ = µ+µ. The x-derivative µ appears twice in the rule target θ in the context
of the alternative composition operator. Intuitively, the source process x evolves and gets
replicated in the specified transition. The transitions f (s)

a
−→ πs, with πs = δ(b.0+ b.0),

and f (t)
a
−→ πt , with πt = (1− ε)2δ(b.0+ b.0) + ε(1− ε)δ(b.0+ c.0) + ε(1− ε)δ(c.0+

b.0) + ε2δ(c.0 + c.0), are derivable. Now, K(d)(πs,πt) = 1 − (1 − ε)2. The terms s
and t are witnesses for the violation of the non-extensiveness condition d(f (s), f (t)) =
λ ·K(d)(πs,πt) = λ · (1− (1− ε)2) > λ · ε = d(s, t). Hence, this specification of operator
f is not non-extensive.

Consider θ = (µ+µ)⊕r δ(0) for some fixed r ∈ (0, 1). Intuitively, the source process
x evolves and gets replicated with probability r, while x terminates with the remaining
probability 1 − r. The transitions f (s)

a
−→ π′s = rπs + (1 − r)δ(0) and f (t)

a
−→ π′t =

rπt + (1 − r)δ(0) are derivable, with πs and πt from the former case θ = µ + µ. The
distributions π′s and π′t have a distance K(d)(π′s,π

′
t) = r(1− (1−ε)2). Hence, for r ≤ 0.5

we get d(f (s), f (t)) = λ·K(d)(π′s,π
′
t) = λr ·(1−(1−ε)2)≤ λr ·2ε≤ λ·ε= d(s, t) and the

non-extensiveness condition is satisfied for these specific arguments s and t. Theorem 4.5
below will confirm that for r ≤ 0.5 this specification of operator f is non-extensive.

Consider θ = (δ(x)+µ)⊕r δ(0) for some fixed r ∈ (0, 1). Intuitively, with probability
r the source process x gets replicated but only one of the two instances evolves, while with
the remaining probability 1−r the source process x terminates. The transitions f (s)

a
−→ πs,

with πs = rδ(s+ b.0)+(1− r)δ(0), and f (t)
a
−→ πt , with πt = r((1−ε)δ(t+ b.0)+εδ(t+

c.0)) + (1 − r)δ(0), are derivable. Now, K(d)(πs,πt) = r((1 − ε)d(s, t) + ε). For these
specific arguments s and t the non-extensiveness condition is satisfied if λK(d)(πs,πt) =
λr((1− ε)λε+ ε) ≤ λε, i.e. if r ≤ 1/(1+λ(1− ε)). Since 1/(1+λ(1− ε)) ≥ 1/(1+λ),
the non-extensiveness condition is satisfied if r ≤ 1/(1 + λ). Note that this expression
is independent of the bisimulation distance between s and t. Theorem 4.5 below will
confirm that for r ≤ 1/(1+λ) this specification of operator f is non-extensive.

In essence, Example 4.2 shows that non-extensive operators may copy processes that
do not evolve in the specified transition (technically, multiple instances of the source
process may occur in the rule target). Furthermore, if a process evolves, then the number
of evolved instances weighted by the probability of their realization may not exceed 1
(technically, the number of occurrences of derivatives in the rule target weighted by the
probability of their respective convex combination contexts has to be at most 1).

We proceed now by analyzing operators with multiple arguments and investigate how
many instances of each source process may get delayed or may evolve.

57

Chapter 4. Specification of compositional operators

Example 4.3. Consider the rules

x
a
−→ µ y

a
−→ ν

f (x , y)
a
−→ θ

x
a
−→ µ

x + y
a
−→ µ

y
a
−→ ν

x + y
a
−→ ν

with θ ∈ DT(Σ) any open distribution term. Recall that the operator + is non-extensive.
We consider again various distribution terms θ and analyze in which cases the specified
operator f is non-extensive. As arguments for operator f we will use the pairs of terms
s1 = a.b1.0 and s2 = a.b2.0, and t1 = a.([1−ε1]b1.0⊕[ε1]c1.0) and t2 = a.([1−ε2]b2.0⊕
[ε2]c2.0) with some fixed ε1,ε2 ∈ (0,1). Clearly, d(s1, t1) = λ · ε1 and d(s2, t2) = λ · ε2.

Consider θ = (δ(x) + δ(y)) + (δ(x) + δ(y)). The source process x and the source
process y each appear twice in the rule target in the context of the non-extensive al-
ternative composition operator. Intuitively, the source processes x and y both get rep-
licated but do not evolve in the specified transition. The transitions f (s1, s2)

a
−→ πs, with

πs = δ((s1 + s2) + (s1 + s2)), and f (t1, t2)
a
−→ πt , with πt = δ((t1 + t2) + (t1 + t2)),

are derivable. We get d(f (s1, s2), f (t1, t2)) = λ · K(d)(πs,πt) = λ · K(d)(δ((s1 + s2) +
(s1+ s2)),δ((t1+ t2)+ (t1+ t2)))≤ λ ·max(d(s1, t1),d(s2, t2))≤max(d(s1, t1),d(s2, t2)).
The non-extensiveness condition is satisfied for these specific pairs of arguments (s1, s2)
and (t1, t2). Theorem 4.5 below will confirm that this specification of operator f is non-
extensive.

Consider θ = µ+ ν. Both the x-derivative µ and the y-derivative ν appear once in
the rule target θ in the context of the non-extensive alternative composition operator.
Intuitively, both source processes x and y evolve in the specified transition. The trans-
itions f (s1, s2)

a
−→ πs, with πs = δ(b1.0+ b2.0), and f (t1, t2)

a
−→ πt , with πt = (1−ε1)(1−

ε2)δ(b1.0+b2.0)+ε1(1−ε2)δ(c1.0+b2.0)+(1−ε1)ε2δ(b1.0+c2.0)+ε1ε2δ(c1.0+c2.0), are
derivable. Now, K(d)(πs,πt) = 1− (1−ε1)(1−ε2). The pairs of terms (s1, s2) and (t1, t2)
are witnesses for the violation of the non-extensiveness condition d(f (s1, s2), f (t1, t2)) =
λ ·K(d)(πs,πt) = λ(1− (1− ε1)(1− ε2)) >max(λ · ε1,λ · ε2) =max(d(s1, t1),d(s2, t2)).
Hence, this specification of operator f is not non-extensive.

Consider θ = (µ+ ν)⊕r δ(0) for some fixed r ∈ (0, 1). Intuitively, with probability r
both source processes x and y evolve in the specified transition, while they terminate with
the remaining probability 1− r. The distributions accessible from f (s1, s2) and f (t1, t2)
are π′s = rπs + (1 − r)δ(0) and π′t = rπt + (1 − r)δ(0), resp. , with πs and πt from
the former case θ = µ + ν, and have a distance K(d)(π′s,π

′
t) = r · K(d)(πs,πt) = r ·

(1 − (1 − ε1)(1 − ε2)) ≤ r · (ε1 + ε2). Hence, d(f (s1, s2), f (t1, t2)) = λ · K(d)(π′s,π
′
t) ≤

λ · r · (ε1+ε2) = r · (d(s1, t1)+d(s2, t2)). For these specific pairs of arguments (s1, s2) and
(t1, t2) the non-extensiveness condition r · (d(s1, t1)+d(s2, t2))≤max(d(s1, t2),d(s2, t2))
is satisfied if r ≤ 0.5. Theorem 4.5 below will confirm that for r ≤ 0.5 this specification
of operator f is non-extensive.

Consider θ = (δ(x) + ν)⊕r δ(0) for some fixed r ∈ (0, 1). Intuitively, with probab-
ility r the source process x gets delayed by one step and the source process y evolves
in the specified transition, while both processes terminate with the remaining probab-
ility 1 − r. The transitions f (s1, s2)

a
−→ πs, with πs = rδ(s1 + b2.0) + (1 − r)δ(0), and

f (t1, t2)
a
−→ πt , with πt = r((1 − ε2)δ(t1 + b2.0) + ε2δ(t1 + c2.0)) + (1 − r)δ(0) are

derivable. Now, K(d)(πs,πt) = r((1 − ε2)d(s1, t1) + ε2). For these specific pairs of
arguments (s1, s2) and (t1, t2) the non-extensiveness condition d(f (s1, s2), f (t1, t2)) =

58

4.2. Non-extensive operators

λ · K(d)(πs,πt) = λ · r · ((1 − ε2)d(s1, t1) + ε2) ≤ max(d(s1, t1),d(s2, t2)) is satisfied if
r ≤max(d(s1, t1),d(s2, t2))/(λ((1−ε2)d(s1, t1)+ε2)) =max(ε1,ε2)/((1−ε2)λ1ε1+ε2).
Theorem 4.5 below will confirm that for r ≤max(ε1,ε2)/((1−ε2)λ1ε1+ε2) this specific-
ation of operator f is non-extensive.

In essence, Example 4.3 shows that non-extensive operators may copy all argument
processes that do not evolve in the specified transition (technically, multiple instances
of each of the source processes may occur in the rule target). Furthermore, if processes
evolve, then the number of instances of all evolved processes together weighted by the
probability of their realization may not exceed 1 (technically, the number of all occur-
rences of all derivatives in the rule target weighted by the probability of their respective
convex combination contexts has to be be at most 1).

4.2.2 Specification of non-extensive operators

The compositionality properties of non-extensiveness, non-expansiveness, Lipschitz con-
tinuity and uniform continuity require that the respective operators copy their arguments
only a limited number of times. To formalize these requirements we introduce the map-
ping Var: (V × (T(Σ) ∪DT(Σ)))→ R≥0 that gives for any state or distribution term the
weighted number of occurrences of its variables (cf. analysis in Examples 4.2 and 4.3).
Applying Var to the target of rules will allow us to formulate for each compositionality
property an expressive sufficient condition to verify if the specified operator satisfies the
compositionality property.

Since the number of occurrences of some source variable x ∈ V s in the rule target
does not affect non-extensiveness of the specified operator, we define Var(x , f (t1, . . . , tn))
(resp. Var(x , f (θ1, . . . ,θn))) as the maximum over the values Var(x , t i) (resp. Var(x ,θi)).
On the contrary, since non-extensiveness of the specified operator depends on how many
times the derivatives µ ∈ Vd of source variables appear in the rule target, we define
Var(µ, f (θ1, . . . ,θn)) by summing up the values Var(µ,θi). Finally, the number of occur-
rences of variables in a distribution term θ are weighted by the probabilistic choices in
the convex combinations occurring in θ . Formally:

Var(ζ, t) =











1 if t = ζ
n

max
i=1

Var(ζ, t i) if t = f (t1, . . . , tn)

0 otherwise

Var(ζ,θ) =























































1 if θ = ζ

Var(ζ, t) if θ = δ(t)
∑

i∈I

pi · Var(ζ,θi) if θ =
∑

i∈I

piθi

n
max
i=1

Var(ζ,θi) if θ = f (θ1, . . . ,θn)∧ ζ ∈ V s
n
∑

i=1

Var(ζ,θi) if θ = f (θ1, . . . ,θn)∧ ζ ∈ Vd

0 otherwise.

(4.1)

59

Chapter 4. Specification of compositional operators

We proceed by formalizing the copying of processes in rules (cf. analysis in Examples 4.2
and 4.3). We define the mapping copy : R × (0, 1] → R≥0 to characterize for each rule
r ∈ R how many instances of the source processes are delayed (technically, the number
of occurrences of the source variables in the rule target) and how many instances of the
source processes evolve (technically, the number of occurrences of derivatives in the rule
target). Since source variables x i may appear multiple times in the target of a rule r
without compromising non-extensiveness, we consider the maximum of Var(x i , trgt(r))
over all x i . Moreover, since source variables that appear in the rule target represent pro-
cesses that are delayed by one step, we need to discount them by λ. On the contrary,
since non-extensiveness of the specified operator depends on how many times derivatives
appear in the rule target, we consider the sum of Var(µ, trgt(r)) over all derivatives µ.
Formally:

copy(r,λ) = λ · max
i∈{1,...,n}

Var(x i , trgt(r)) +
∑

i∈{1,...,n}
µ∈der(r,xi)

Var(µ, trgt(r)). (4.2)

A PGSOS rule specifies a non-extensive operator if the number of (evolved and delayed)
source process instances does not exceed 1.

Definition 4.4 (Non-extensiveness format). A PGSOS rule r is a λ-non-extensive rule if

copy(r,λ)≤ 1.

A PTSS (Σ, A, R) is a λ-non-extensive PTSS if all rules r ∈ R are λ-non-extensive rules.

Non-extensive PTSSs specify non-extensive operators.

Theorem 4.5. Let P = (Σ, A, R) be a λ-non-extensive PTSS. Then all operators f ∈ Σ are
non-extensive w.r.t. λ-bisimilarity metric d.

To prove Theorem 4.5 we define the congruence closure of a pseudometric as the
quantitative analogous to the well-known congruence closure of an equivalence. The
congruence closure of a 1-bounded pseudometric d w.r.t. a Σ-indexed family of moduli of
continuity1 (m) f ∈Σ is the largest function clm(d): T(Σ)×T(Σ)→ [0,1] with clm(d) v d
such that each operator f ∈ Σ satisfies the respective modulus of continuity m f . To prove
Theorem 4.5 we show then that the congruence closure clm(d) of the bisimilarity metric
d is a prefixed point of B on ([0, 1]T(Σ)×T(Σ),v), i.e. B(clm(d))v clm(d). From clm(d)v d
and the fact that d is the least prefixed point of B on ([0, 1]T(Σ)×T(Σ),v) we conclude then
clm(d) = d. Hence, each operator f ∈ Σ satisfies the modulus of continuity m f w.r.t. d.

Definition 4.6 (Congruence closure). Assume any signature Σ and a Σ-indexed fam-
ily of moduli of continuity (m) f ∈Σ with m f : [0, 1]n → [0,1]. The congruence closure
of some pseudometric d : T(Σ) × T(Σ) → [0, 1] w.r.t. (m) f ∈Σ is defined as the function
clm(d): T(Σ)×T(Σ)→ [0,1] with

clm(d)(s, t) =







min(d(s, t), m f (clm(d)(s1, t1), . . . ,clm(d)(sn, tn))) if

�

s = f (s1, . . . , sn)
t = f (t1, . . . , tn)

d(s, t) otherwise

for all s, t ∈ T(Σ).
1The notion of modulus of continuity is standard and recalled in Definition 4.30.

60

4.2. Non-extensive operators

By induction over the minimum depth of s and t it can be shown that the congruence
closure is well-defined (existence and uniqueness). By the construction of clm(d) it is
clear that clm(d)v d and all operators f ∈ Σ satisfy the respective modulus of continuity
m f , i.e. clm(d)(f (s1, . . . , sn), f (t1, . . . , tn))≤ m f (clm(d)(s1, t1), . . . ,clm(d)(sn, tn)).

Definition 4.7 (Non-extensive congruence closure). Let d : T(Σ)×T(Σ)→ [0, 1] be any
function. We call clm(d) with (m) f ∈Σ defined by

m f (ε1, . . . ,εn) =
n

max
i=1
εi

for all f ∈ Σ the non-extensive congruence closure of d w.r.t. Σ.

The following two lemmas give an upper bound on the distance between closed in-
stances of state and distribution terms built of non-extensive operators.

Lemma 4.8. Let Σ be any signature, d1 : T(Σ)×T(Σ) → [0, 1] any function, and d2 the
non-extensive congruence closure of d1 w.r.t. Σ. Then, for any state term t ∈ T(Σ) we have

d2(σ(t),σ
′(t))≤max

x∈V s

d2(σ(x),σ
′(x)) · Var(x , t)

for all closed substitutions σ,σ′ : V s → T(Σ).

Proof. By structural induction over t. The base case t = x with x ∈ V s follows immedi-
ately from Var(x , x) = 1. Consider the induction step t = f (t1, . . . , tn). Then we have

d2(σ(t),σ
′(t))

≤ max
i=1,...,n

d2(σ(t i),σ
′(t i)) (definition of d2)

≤ max
i=1,...,n

max
x∈V s

d2(σ(x),σ
′(x)) · Var(x , t i) (inductive hypothesis)

=max
x∈V s

max
i=1,...,n

d2(σ(x),σ
′(x)) · Var(x , t i)

=max
x∈V s

d2(σ(x),σ
′(x)) · Var(x , t) (definition of Var).

ut

Lemma 4.9. Let Σ be any signature, d1 : T(Σ)×T(Σ) → [0,1] any function, and d2 the
non-extensive congruence closure of d1 w.r.t. Σ. Then, for any distribution term θ ∈ DT(Σ)
we have

K(d2)(σ(θ),σ
′(θ))≤max

x∈V s

d2(σ(x),σ
′(x)) ·Var(x ,θ)+

∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ)) ·Var(µ,θ)

for all closed substitutions σ,σ′ : V → T(Σ)∪DT(Σ).

Proof. Without loss of generality, assume that θ is in normal form (Definition 2.8 and
Proposition 2.9). By induction over θ . The base case θ = µ follows immediately from
Var(µ,µ) = 1. For θ = δ(x) the thesis follows directly from K(d2)(σ(δ(x)),σ′(δ(x))) ≤
d2(σ(x),σ′(x)) (Proposition 2.32.2), d2(σ(x),σ′(x))≤maxx∈V s

d2(σ(x),σ′(x))·Var(x , x)
(Lemma 4.8) and Var(x , x) = Var(x ,δ(x)).

61

Chapter 4. Specification of compositional operators

Consider the induction step θ = f (θ1, . . . ,θn). Remind that none of the distribution
terms θi contains any convex combination since θ is in normal form. We will prove the
thesis in two steps. First, we build a suitable matching ωθ ∈ Ω(σ(θ),σ′(θ)) satisfying

K(d2)(σ(θ),σ
′(θ))≤

∑

t,t ′∈T(Σ)

ωθ (t, t ′) · d2(t, t ′). (4.3)

Subsequently, we show that the matching ωθ satisfies the thesis as follows

∑

t,t ′∈T(Σ)

ωθ (t, t ′) · d2(t, t ′)≤

max
x∈V s

d2(σ(x),σ
′(x)) · Var(x ,θ) +

∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ)) · Var(µ,θ).

(4.4)

To construct the matching ωθ , we define first a matching ωζ for all variables ζ ∈
Var(θ). For any x ∈ V s ∩Var(θ), let ωx ∈ Ω(δ(σ(x)),δ(σ′(x))) be the unique matching
betweenσ(δ(x)) andσ′(δ(x)) defined byωx(σ(x),σ′(x)) = 1. For any µ ∈ Vd∩Var(θ),
let ωµ ∈ Ω(σ(µ),σ′(µ)) be any of the optimal (possibly not unique) matchings between
σ(µ) and σ′(µ) such that K(d2)(σ(µ),σ′(µ)) =

∑

t,t ′∈T(Σ)ωµ(t, t ′) · d2(t, t ′).
Then, let ωθ be defined by ωg(θ1,...,θn)(g(t1, . . . , tn), g(t ′1, . . . , t ′n)) =

∏n
i=1ωθi

(t i , t ′i).
We show thatωθ is a matching betweenσ(θ) andσ′(θ), i.e.ω ∈ Ω(σ(θ),σ′(θ)). We pro-
ceed by inductively showing that ωg(θ1,...,θn) is a matching between σ(g(θ1, . . . ,θn)) and
σ′(g(θ1, . . . ,θn)), i.e. ωg(θ1,...,θn) ∈ Ω(σ(g(θ1, . . . ,θn)),σ′(g(θ1, . . . ,θn))), by assuming
thatωθi

is a matching forσ(θi) andσ′(θi), i.e.ωθi
∈ Ω(σ(θi),σ′(θi)). In detail, we show

that the left marginal of ωg(θ1,...,θn) is σ(g(θ1, . . . ,θn)), the proof that the right marginal
is σ′(g(θ1, . . . ,θn)) is analogous. Let t = g(t1, . . . , tn). Recall that ωθi

∈ Ω(σ(θi),σ′(θi))
implies that

∑

t ′i∈T(Σ)
ωθi
(t i , t ′i) = σ(θi)(t i). Then we have

∑

t ′∈T(Σ)

ωg(θ1,...,θn)(t, t ′)

=
∑

t ′1,...,t ′n∈T(Σ)

ωg(θ1,...,θn)(g(t1, . . . , tn), g(t ′1, . . . , t ′n))

=
∑

t ′1,...,t ′n∈T(Σ)

n
∏

i=1

ωθi
(t i , t ′i)

=
n
∏

i=1

∑

t ′i∈T(Σ)

ωθi
(t i , t ′i)

=
n
∏

i=1

σ(θi)(t i)

=σ(g(θ1, . . . ,θn))(t)

whereby the distribution of the summation over the product from step 3 to 4 can be shown
by induction as in the proof of Theorem 2.33. Hence we conclude that ωθ is a matching
satisfying Equation 4.3.

62

4.2. Non-extensive operators

Now we construct for the distribution term θ a state term tθ s.t. all terms in the
support of σ(θ) and σ′(θ) are instances of tθ . Let kµ be the number of occurrences of the
distribution variable µ in θ . We define tθ as that state term derived from θ by replacing
δ(x)with x and by replacing each distribution variable µwith some fresh variable y(µ, j) 6∈
Var(θ) such that each y(µ, j) (with j = 1, . . . , kµ) occurs only once in tθ . Clearly, for any
closed substitution σ1 with σ1(x) = σ(x) we have

σ(θ)(σ1(tθ)) =
∏

µ∈Var(θ)

kµ
∏

j=1

σ(µ)(σ1(yµ, j)).

Then, for any closed substitutions σ1,σ′1 with σ1(x) = σ(x) and σ′1(x) = σ
′(x) for

all x ∈ Var(t), the matching ωθ is

ωθ (σ1(tθ),σ
′
1(tθ)) =

∏

x∈Var(θ)

ωx(σ1(x),σ
′
1(x))

!

·





∏

µ∈Var(θ)
j=1,...,kµ

ωµ(σ1(y(µ, j)),σ
′
1(y(µ, j)))



 .

It remains to show Equation 4.4. We have
∑

t,t ′∈T(Σ)

ωθ (t, t ′) · d2(t, t ′)

=
∑

σ1,σ′1∈T(Σ)Vs

ωθ (σ1(tθ),σ
′
1(tθ)) · d2(σ1(tθ),σ

′
1(tθ))

=
∑

σ1,σ′1∈T(Σ)Vs





∏

x∈Var(θ)

ωx(σ1(x),σ
′
1(x))

!

·





∏

µ∈Var(θ)
j=1,...,kµ

ωµ(σ1(y(µ, j)),σ
′
1(y(µ, j)))







 ·

d2(σ1(tθ),σ
′
1(tθ))

≤
∑

σ1,σ′1∈T(Σ)Vs





∏

x∈Var(θ)

ωx(σ1(x),σ
′
1(x))

!

·





∏

µ∈Var(θ)
j=1,...,kµ

ωµ(σ1(y(µ, j)),σ
′
1(y(µ, j)))







 ·

max

max
x∈Var(θ)

d2(σ1(x),σ
′
1(x)), max

µ∈Var(θ)
j=1,...,kµ

d2(σ1(y(µ, j)),σ
′
1(y(µ, j)))

!

(by Lemma 4.8)

=
∑

σ1,σ′1∈T(Σ)
Vs

σ1(x)=σ(x)
σ′1(x)=σ

′(x)





∏

µ∈Var(θ)
j=1,...,kµ

ωµ(σ1(y(µ, j)),σ
′
1(y(µ, j)))



 ·

max

max
x∈Var(θ)

d2(σ1(x),σ
′
1(x)), max

µ∈Var(θ)
j=1,...,kµ

d2(σ1(y(µ, j)),σ
′
1(y(µ, j)))

!

(by ωx(σ1(x),σ
′
1(x)) = 1 whenever σ1(x) = σ(x) and σ′1(x) = σ

′(x), and

63

Chapter 4. Specification of compositional operators

ωx(σ1(x),σ
′
1(x)) = 0 otherwise)

≤
�

max
x∈Var(θ)

d2(σ(x),σ
′(x))

�

+

∑

σ1,σ′1∈T(Σ)
Vs

σ1(x)=σ(x)
σ′1(x)=σ

′(x)





∏

µ∈Var(θ)
j=1,...,kµ

ωµ(σ1(y(µ, j)),σ
′
1(y(µ, j)))



 · max
µ∈Var(θ)
j=1,...,kµ

d2(σ1(y(µ, j)),σ
′
1(y(µ, j)))

≤
�

max
x∈Var(θ)

d2(σ(x),σ
′(x))

�

+

∑

σ1,σ′1∈T(Σ)
Vs

σ1(x)=σ(x)
σ′1(x)=σ

′(x)





∏

µ∈Var(θ)
j=1,...,kµ

ωµ(σ1(y(µ, j)),σ
′
1(y(µ, j)))



 ·
∑

µ∈Var(θ)
j=1,...,kµ

d2(σ1(y(µ, j)),σ
′
1(y(µ, j)))

≤
�

max
x∈Var(θ)

d2(σ(x),σ
′(x))

�

+
∑

µ∈Var(θ)
j=1,...,kµ

∑

σ1,σ′1∈T(Σ)
Vs

σ1(x)=σ(x)
σ′1(x)=σ

′(x)

d2(σ1(yµ, j),σ
′
1(y(µ, j))) ·ωµ(σ1(y(µ, j)),σ

′
1(y(µ, j)))

=
�

max
x∈Var(θ)

d2(σ(x),σ
′(x))

�

+
∑

µ∈Var(θ)
j=1,...,kµ

K(d2)(σ1(µ),σ
′
1(µ))

=max
x∈V s

d2(σ1(x),σ
′
1(x)) · Var(x ,θ) +

∑

µ∈Vd

K(d2)(σ1(µ),σ
′
1(µ)) · Var(µ,θ)

(since Var(x ,θ) = 1 for all x ∈ Var(θ) and kµ = Var(µ,θ) for all µ ∈ Var(θ)).

thus confirming that ωθ satisfies Equation 4.4.
We conclude the proof by considering the induction step θ =

∑

i∈I piθi . Remind that
the convex combination operator is the outermost operator for distribution terms in nor-
mal form. Then by Proposition 2.32.3 and by the induction hypothesis (Equation 4.4) we
get

K(d2)(σ(θ),σ
′(θ))

≤
∑

i∈I

pi K(d2)(σ(θi),σ
′(θi))

≤
∑

i∈I

pi

max
x∈V s

d2(σ(x),σ
′(x)) · Var(x ,θi) +

∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ)) · Var(µ,θi)

!

=max
x∈V s

d2(σ(x),σ
′(x)) · Var(x ,θ) +

∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ)) · Var(µ,θ)

which is precisely the proof obligation in Equation 4.4. ut

Lemmas 4.8 and 4.9 provide bounds on the distance between non-extensive state and
distribution terms. Now we can prove the main Theorem 4.5.

64

4.2. Non-extensive operators

Proof of Theorem 4.5. Let d be the non-extensive congruence closure of the λ-bisimilarity
metric d (Definition 4.7). To prove the thesis it is enough to show that d is a prefixed
point of B on ([0, 1]T(Σ)×T(Σ),v), i.e. B(d) v d. Then, from d v d and the fact that d is
the least prefixed point of B on ([0,1]T(Σ)×T(Σ),v) it follows that d = d. Finally, since by
construction of d all operators in Σ are non-extensive w.r.t. d, we can conclude that each
operator f ∈ Σ is non-extensive w.r.t. d.

In order to show B(d) v d, it suffices to prove that d satisfies the transfer condition
of bisimulation metric

∀(t, a,π) ∈−→ . ∃(t ′, a,π′) ∈−→ . λ ·K(d)(π,π′)≤ d(t, t ′) (4.5)

for all t, t ′ ∈ T(Σ)with d(t, t ′)< 1. If t and t ′ have different outermost function symbols,
then by the definition of congruence closure (Definition 4.6) we have d(t, t ′) = d(t, t ′).
Since the λ-bisimilarity metric d satisfies the transfer condition of bisimulation metric we
have that for each t

a
−→ π there exists a transition t ′

a
−→ π′ with λ ·K(d)(π,π′) ≤ d(t, t ′).

Now by d v d and monotonicity of K (Proposition 2.32.1) we get

λ ·K(d)(π,π′)≤ λ ·K(d)(π,π′)≤ d(t, t ′) = d(t, t ′)

and Equation 4.5 is given.
Hence, it remains to show that for any given open term t ∈ T(Σ) and closed substi-

tutions σ,σ′ with σ(x) and σ′(x) having different outermost function symbols for all
x ∈ Var(t), the transfer condition of bisimulation metric (Equation 4.5) is satisfied for
terms σ(t) and σ′(t). We will show this by structural induction over t. The base case
t = x is trivial and follows precisely from the earlier argumentation where σ(x) and
σ′(x) had different outermost function symbols.

The induction step t = f (t1, . . . , tn) requires to distinct two subcases. The first subcase
d(σ(t),σ′(t)) = d(σ(t),σ′(t)) (first argument of the min operator in Definition 4.6) is
trivial and follows precisely from the earlier argumentation where t and t ′ had different
outermost function symbols. The second subcase d(σ(t),σ′(t)) =maxn

i=1 d(σ(t i),σ′(t i))
(second argument of the min operator in Definition 4.6) will be shown assuming as in-
duction hypothesis that the transfer condition of bisimulation metric is satisfied for σ(t i)
and σ′(t i) for all i = 1, . . . , n, i.e.

∀(σ(t i), ai,m,πi,m) ∈ −→.∃(σ′(t i), ai,m,π′i,m) ∈ −→.λ ·K(d)(πi,m,π′i,m)≤ d(σ(t i),σ
′(t i))

(4.6)
if d(σ(t i),σ′(t i))< 1. We use symbols ai,m and πi,m,π′i,m to allow for an easy match with
the rule r (Equation 4.7 below) that specifies the respective transitions.

Suppose the transition σ(t)
a
−→ π is derived from the λ-non-extensive PGSOS-rule

r ∈ R given by

{x i

ai,m
−−→ µi,m | i ∈ I , m ∈ Mi} {x i

bi,n
−−→6 | i ∈ I , n ∈ Ni}

f (x1, . . . , xn)
a
−→ θ

(4.7)

with the substitution σ defined by σ(x i) = σ(t i) for i ∈ I . Notice that σ(θ) = π.

In the remainder we will first give suitable moves σ′(t i)
ai,m
−−→ π′i,m. This allows us to

define the substitution σ′ as σ′(x i) = σ′(t i) and σ′(µi,m) = π′i,m. Subsequently we show

65

Chapter 4. Specification of compositional operators

that σ′(x i)
bi,n
−−→6 for all i ∈ I and n ∈ Ni . Thus, all premises of r are satisfied and the

transition σ′(f (x1, . . . , xn))
a
−→ σ′(θ) can be derived from r with substitution σ′. Finally

we show

λ ·K(d)(σ(θ),σ′(θ))≤ d(σ(f (x1, . . . , xn)),σ
′(f (x1, . . . , xn))) (4.8)

which confirms that σ′(θ) is the distribution π′ we were looking for.

Consider the positive premises x i

ai,m
−−→ µi,m of rule r. Since d(σ(t i),σ′(t i)) < 1 we

get from the inductive hypothesis (Equation 4.6) that there is a transition σ′(t i)
ai,m
−−→ π′i,m

with λ ·K(d)(σ(µi,m),π′i,m)≤ d(σ(t i),σ′(t i)). Define σ′(µi,m) = π′i,m.

Consider the negative premises x i

bi,n
−−→6 of rule r. Since d(σ(t i),σ′(t i))< 1 we get by

Proposition 2.30.2 that σ′(x i)
bi,n
−−→6 .

To summarize, all premises of r are satisfied by σ′. It follows that the transition
σ′(f (x1, . . . , xn))

a
−→ σ′(θ) can be derived. It remains to show the proof obligation Equa-

tion 4.8. From Lemma 4.9 we derive

K(d)(σ(θ),σ′(θ))≤max
x∈V s

(d(σ(x),σ′(x)) · Var(x ,θ)) +
∑

µ∈Vd

K(d)(σ(µ),σ′(µ)) · Var(µ,θ)

(4.9)
which implies Equation 4.8 by

λ ·K(d)(σ(θ),σ′(θ))

≤max
x∈V s

λ · d(σ(x),σ′(x)) · Var(x ,θ) +
∑

µ∈Vd

λ ·K(d)(σ(µ),σ′(µ)) · Var(µ,θ)

=max
i∈I
λ · d(σ(x i),σ

′(x i)) · Var(x i ,θ) +
∑

i∈I
µ∈der(r,xi)

λ ·K(d)(σ(µ),σ′(µ)) · Var(µ,θ)

≤max
i∈I
λ · d(σ(x i),σ

′(x i)) · Var(x i ,θ) +
∑

i∈I
µ∈der(r,xi)

d(σ(x i),σ
′(x i)) · Var(µ,θ)

≤
�

max
i∈I

d(σ(x i),σ
′(x i))

�

·



max
i∈I
λ · Var(x i ,θ) +

∑

i∈I
µ∈der(r,xi)

Var(µ,θ)





=
�

max
i∈I

d(σ(x i),σ
′(x i))

�

· copy(r,λ)

≤max
i∈I

d(σ(x i),σ
′(x i))

=d(σ(f (x1, . . . , xn),σ
′(f (x1, . . . , xn))).

with step 3 by the fact thatσ(x i) andσ′(x i) satisfy the λ-bisimulation metric transfer con-
dition, step 5 by definition of copy, step 6 by property copy(r,λ)≤ 1 satisfied by the λ-non
extensive rule r (Definition 4.4), and step 7 from the assumption maxn

i=1 d(σ(t i),σ′(t i)) =
d(σ(t),σ′(t)) and the equalities σ(t i) = σ(x i), σ′(t i) = σ′(x i), σ(t) = σ(f (x1, . . . , xn))
and σ′(t) = σ′(f (x1, . . . , xn)).

66

4.2. Non-extensive operators

We conclude by observing that the transition σ(f (x1, . . . , xn))
a
−→ σ(trgt(r)) derived

from the f -defining rule r can be mimicked by σ′(f (x1, . . . , xn))
a
−→ σ′(trgt(r)) such that

the metric bisimulation transfer condition

λK(d)(σ(trgt(r)),σ′(trgt(r)))
≤d(σ(f (x1, . . . , xn)),σ

′(f (x1, . . . , xn)))

=
n

max
i=1

d(σ(x i),σ
′(x i))

holds. Hence, operator f is non-extensive. ut

4.2.3 Non-extensive process algebra operators

Theorem 4.5 allows us to determine which process algebra operators are non-extensive
by inspecting their respective specification rules and verifying that the rule constraints of
Definition 4.4 are satisfied.

Corollary 4.10. The process algebra operators

• probabilistic action prefix a.
⊕n

i=1[pi]_

• nondeterministic alternative composition _+ _

• probabilistic alternative composition _+p _

(specified in Figure 4.2) are non-extensive w.r.t. λ-bisimilarity metric d for any λ ∈ (0,1].

Proof. By simple inspection of the specification rules in Figure 4.2 and validation of the
rule constraint given in Definition 4.4. ut

This result coincides with Theorem 3.5. However, while the result of Theorem 3.5 was
derived by a detailed analysis of the distance between composed processes, we exploit
here the structural properties of the specification rules. More general, the specification
format provides a simple method to verify the compositionality properties of arbitrary
(non-standard, experimental, domain-specific) process algebra or programming language
operators by solely inspecting the structural properties of their respective specifications.

On the other hand, none of the operators in the Figures 4.3 and 4.4 (except the skip
process constant ε) is specified by only λ-non-extensive rules, for any λ ∈ (0, 1]. It is easy
to show that all those operators are not non-extensive w.r.t. d. As example, we consider
the synchronous parallel composition operator, whose specification rule r is not λ-non
extensive for any λ ∈ (0,1] by copy(r,λ) = 2.

Example 4.11. Consider the term t = x | x ′ and let σ1 and σ2 be the closed substitu-
tions defined by σ1(x) = σ1(x ′) = a.a.0, and σ2(x) = a.([1− ε]a.0 ⊕ [ε]0), σ2(x ′) =
a.([1− ε′]a.0 ⊕ [ε′]0) with any fixed ε,ε′ ∈ (0, 1). We have d(σ1(x),σ2(x)) = λε and
d(σ1(x ′),σ2(x ′)) = λε′. Then d(σ1(t),σ2(t)) = λ(1− (1− ε)(1− ε′)) > max(λε,λε′)
for any λ ∈ (0,1]. Hence, the synchronous parallel composition operator | is not non-
extensive w.r.t. d for any λ ∈ (0, 1].

67

Chapter 4. Specification of compositional operators

4.2.4 Distance between non-extensive terms

We call a term t non-extensive if all operators used in t are non-extensive. The composi-
tionality properties of the operators in t allow us to give an upper bound on the distance
between closed instances of t.

Proposition 4.12. Let P1 = (Σ1, A, R1) be a λ-non-extensive PTSS and P2 = (Σ2, A, R2) be
any PGSOS PTSS with P1 v P2. Then for any term t ∈ T(Σ1) we have

d(σ(t),σ′(t))≤max
x∈V s

Var(x , t) · d(σ(x),σ′(x))

for all closed substitutions σ,σ′ : V s → T(Σ2).

Proof. Follows directly from Lemma 4.8. ut

It is important to note that the variables in t can be instantiated by arbitrary terms in
T(Σ2) (not necessarily built of only non-extensive operators in Σ1).

4.3 Lipschitz continuous operators

The compositionality property of non-extensiveness discussed in the former section is very
strong. This allows us to give a tight bound on the distance between closed instances of
non-extensive terms (Proposition 4.12). However many operators like parallel composi-
tion and recursion are not non-extensive.

We proceed now with Lipschitz continuity which captures a wide class of non-recursive
and recursive process algebra and programming language operators and provides still a
powerful compositional reasoning method (cf. Section 3.4). However, we will reuse all
results of the former section to give an expressive rule and specification format and tight
distance bounds for specifications which consist of both Lipschitz continuous and non-
extensive operators.

Definition 4.13 (Lipschitz continuous operator). Let P = (Σ, A, R) be a PTSS and L ∈ R≥0
be any fixed non-negative real. An operator f ∈ Σ is L-Lipschitz continuous w.r.t. λ-
bisimilarity metric d if

d(f (s1, . . . , sn), f (t1, . . . , tn))≤ L
n
∑

i=1

d(si , t i)

for all closed terms si , t i ∈ T(Σ). We call f Lipschitz continuous w.r.t. d if f is L-Lipschitz
continuous w.r.t. d for some L ∈ R≥0.

Lipschitz continuity is of great practical importance since it provides a bound on the
ratio of the distance between composed systems and the distance between their parts.
This is the cornerstone for metric assume-guarantee like performance validation using
probabilistic process algebras (Section 3.4).

1-Lipschitz continuity is also known as non-expansiveness which is the most widely
studied compositionality property for behavioral metric semantics (e.g. [KBL01; Des+02b;

68

4.3. Lipschitz continuous operators

ε
p

−→ δ(0)

x
a
−→ µ a 6=

p

x; y
a
−→ µ;δ(y)

x
p

−→ µ y
a
−→ ν

x; y
a
−→ ν

x
a
−→ µ y

a
−→ ν a 6=

p

x | y
a
−→ µ | ν

x
p

−→ µ y
p

−→ ν

x | y
a
−→ δ(0)

x
a
−→ µ a 6=

p

x ||| y
a
−→ µ ||| δ(y)

y
a
−→ ν a 6=

p

x ||| y
a
−→ δ(x) ||| ν

x
p

−→ µ y
p

−→ ν

x ||| y
p

−→ δ(0)

x
a
−→ µ y

a
−→ ν a ∈ B \ {

p
}

x ||B y
a
−→ µ ||B ν

x
p

−→ µ y
p

−→ ν

x ||B y
p

−→ δ(0)

x
a
−→ µ a /∈ B ∪ {

p
}

x ||B y
a
−→ µ ||B δ(y)

y
a
−→ ν a /∈ B ∪ {

p
}

x ||B y
a
−→ δ(x) ||B ν

x
a
−→ µ y

a
−→6 a 6=

p

x |||p y
a
−→ µ |||p δ(y)

x
a
−→6 y

a
−→ ν a 6=

p

x |||p y
a
−→ δ(x) |||p ν

x
a
−→ µ y

a
−→ ν a 6=

p

x |||p y
a
−→ µ |||p δ(y)⊕p δ(x) |||p ν

x
p

−→ µ y
p

−→ ν

x |||p y
p

−→ δ(0)

Figure 4.3: Non-expansive process algebra operators

Des+04; Den+05; SDC07; Tin08; Tin10; TDZ11; GT13; Cha+14]). By definition an op-
erator f is 1-non-extensive iff f is non-expansive. Moreover, if f is q-non-extensive for
any q ≥ 1, then f is also non-expansive. We consider the uniform notion of continuity
because we aim at universal compositionality guarantees.

4.3.1 Analysis of Lipschitz continuous operators

We discuss first a few examples that analyze which rule patterns specify and which do
not specify Lipschitz continuous operators. We will show the interplay between (i) the
Lipschitz factors of the operators in the rule target, (ii) the probabilistic choices in the
rule target, and (iii) the discount factor of the bisimilarity metric. We start with analyzing
unary operators specified by rules with only non-expansive operators in the target.

Example 4.14. Consider the rules

x
a
−→ µ

f (x)
a
−→ θ

x
a
−→ µ y

a
−→ ν

x | y
a
−→ µ | ν

69

Chapter 4. Specification of compositional operators

with θ ∈ DT(Σ) any open distribution term. For the discussion in this example we assume
that the synchronous parallel composition operator | (specified in Figure 4.3) is non-
expansive (formally shown below in Corollary 4.23). Remember from Example 4.11 that
| is not non-extensive. In the following we analyze for various distribution terms θ for
which L ∈ R≥0 the specified operator f is L-Lipschitz continuous. We will use the terms
s = a.a.a.0 and t = a.([1−ε]a.a.0⊕ [ε]0) with ε some fixed value in (0, 1) as arguments
for operator f . Then d(s, t) = λε.

Consider θ = δ(x) | δ(x). The source process x appears twice in the rule target in
the context of the synchronous parallel composition operator. The transitions f (s)

a
−→ πs

with πs = δ(s) | δ(s), and f (t)
a
−→ πt with πt = δ(t) | δ(t), are derivable. We have

K(d)(πs,πt) = d(s | s, t | t) = λ(1 − (1 − ε)2). Hence d(f (s), f (t)) = λK(d)(πs,πt) =
λ2(1− (1−ε)2)≤ λ2 ·2ε= 2λd(s, t). Therefore, for these specific arguments s and t the
L-Lipschitz continuity condition is satisfied if L ≥ 2λ. Theorem 4.19 below will confirm
that this specification of operator f is 2λ-Lipschitz continuous. Hence, f is non-expansive
if λ≤ 0.5.

Consider θ = (δ(x) | δ(x))⊕r δ(0) for some r ∈ (0, 1). Now, the two instances of the
source process x are realized only by probability r. We get d(f (s), f (t)) = rλ2(1− (1−
ε)2) ≤ 2rλd(s, t). Theorem 4.19 below will confirm that this specification of operator f
is 2rλ-Lipschitz continuous. Hence, f is non-expansive if r ·λ≤ 0.5.

Consider θ = µ | µ. The x-derivative µ appears twice in the rule target θ in the
context of the synchronous parallel composition operator. The transitions f (s)

a
−→ πs,

with πs = δ(a.a.0 | a.a.0), and f (t)
a
−→ πt , with πt = (1 − ε)2δ(a.a.0 | a.a.0) + ε(1 −

ε)δ(a.a.0 | 0) + ε(1 − ε)δ(0 | a.a.0) + ε2δ(0 | 0), are derivable. Now, K(d)(πs,πt) =
1− (1− ε)2. Thus, d(f (s), f (t)) = λK(d)(πs,πt) = λ(1− (1− ε)2) ≤ λ · 2ε = 2d(s, t).
Therefore, for these specific arguments s and t the L-Lipschitz continuity condition is
satisfied if L ≥ 2. Theorem 4.19 below will confirm that this specification of operator f
is 2-Lipschitz continuous. Moreover, for no λ ∈ (0,1] this specification of operator f is
non-expansive w.r.t. d. Note that the Lipschitz factor is independent from the bisimulation
discount λ since the x-derivative µ is copied and not as before the source process x itself.
Probabilistic choice applies as before s.t. the operator f with rule target θ = (µ | µ)⊕r
δ(0) is 2r-Lipschitz continuous. Similarly, the combination of evolution and delay of the
argument process leads for operator f with rule target θ = (µ | δ(x))⊕rδ(0) to a Lipschitz
factor of (1+λ)r.

In essence, Example 4.14 shows that a unary operator is L-Lipschitz continuous if at
most L copies of the argument process are spawned in the transitions derived from the
rules specifying that operator. Technically, if the operator is specified by rules with only
non-expansive operators in the target, then the sum of the number of source variables,
weighted by λ since those instances are delayed, and the number of derivatives, both
weighted by the probability of their realization, may not exceed the Lipschitz factor L.

We proceed with analyzing unary operators that are specified by rules with arbitrary
Lipschitz operators in the target.

Example 4.15. Consider the rules

x
a
−→ µ

f (x)
a
−→ θ

x
a
−→ µ

g(x)
a
−→ µ | µ

x
a
−→ µ y

a
−→ ν

x | y
a
−→ µ | ν

70

4.3. Lipschitz continuous operators

with θ ∈ DT(Σ) any open distribution term. For the discussion in this example we as-
sume that, as argued in Example 4.14, operator g is 2-Lipschitz continuous and | is non-
expansive. We will use the terms s = a.a.a.0 and t = a.a.([1−ε]a.0⊕ [ε]0) with ε some
fixed value in (0,1) as arguments for operator f . Then d(s, t) = λ2ε.

Consider θ = δ(g(x)). In the rule specifying f the source process x appears in the
context of the 2-Lipschitz operator g. The transitions f (s)

a
−→ δ(g(s)), and f (t)

a
−→

δ(g(t)) are derivable. Since g is 2-Lipschitz continuous, we infer d(f (s), f (t)) ≤ λ ·
K(d)(δ(g(s)),δ(g(t))) = λ · d(g(s), g(t)) ≤ 2λd(s, t). Theorem 4.19 below will confirm
that this specification of operator f is 2λ-Lipschitz continuous.

Consider θ = g(µ). In the rule specifying g, the x-derivative µ appears in the con-
text of the 2-Lipschitz continuous operator g. The transitions f (s)

a
−→ πs, with πs =

δ(g(a.a.0)), and f (t)
a
−→ πt , with πt = δ(g(a.([1− ε]a.0⊕ [ε]0))) are derivable. Now,

K(d)(πs,πt) = λ(1 − (1 − ε)2) ≤ 2λε. Thus, d(f (s), f (t)) = λK(d)(πs,πt) ≤ 2λ2ε =
2d(s, t). Theorem 4.19 below will confirm that this specification of operator f is 2-
Lipschitz continuous.

Probabilistic choice applies as in Example 4.14 s.t. the operator f with θ = g(δ(x)⊕r
δ(0)) is 2λr-Lipschitz continuous, and that f with θ = g(µ⊕r δ(0)) is 2r-Lipschitz con-
tinuous.

In essence, Example 4.15 confirms that a unary operator f is L-Lipschitz continuous
if at most L copies of the argument process t are spawned along the evolution of the
combined process f (t). Technically, this means that in the target of a rule specifying a
L-Lipschitz continuous operator the sum of the number of source variables, weighted by
λ, and the number of derivatives, both weighted by the probability of their realization,
and additionally weighted by the Lipschitz factors of respective operators, may not exceed
the Lipschitz factor L.

We proceed with analyzing binary operators.

Example 4.16. Consider the rules

x
a
−→ µ y

a
−→ ν

f (x , y)
a
−→ θ

x
a
−→ µ y

a
−→ ν

x | y
a
−→ µ | ν

with θ ∈ DT(Σ) any open distribution term. Recall that the synchronous parallel com-
position operator | is non-expansive. We consider again various distribution terms θ and
analyze for which L ∈ R≥0 the specified operator f is L-Lipschitz continuous. We will
use the pairs of terms (s1, s2) and (t1, t2) as arguments for operator f , with s1 = a.a.a.0,
s2 = a.a.a.0, t1 = a.([1−ε1]a.a.0⊕ [ε1]0) and t2 = a.([1−ε2]a.a.0⊕ [ε2]0), with ε1,ε2
any fixed value in (0,1). Then d(s1, t1) = λε1 and d(s2, t2) = λε2.

Consider θ = (δ(x) | δ(y)) | (δ(x) | δ(y)). The source processes x and y occur each
twice in the rule target in the context of the synchronous parallel composition operator.
We get d(f (s1, s2), f (t1, t2)) ≤ λK(d)(δ((s1 | s2) | (s1 | s2)),δ((t1 | t2) | (t1 | t2))) =
λd((s1 | s2) | (s1 | s2), (t1 | t2) | (t1 | t2)) ≤ 2λd(s1 | s2, t1 | t2) ≤ 2λ(d(s1, t1) + d(s2, t2)).
For these specific pairs of arguments (s1, s2) and (t1, t2) the L-Lipschitz continuity con-
dition is satisfied if L ≥ 2λ. Theorem 4.19 below will confirm that this specification of
operator f is 2λ-Lipschitz continuous.

71

Chapter 4. Specification of compositional operators

Consider θ = (δ(x) | δ(y)) | (δ(x) | δ(y)) ⊕r δ(0) for some fixed r ∈ (0, 1). The
probabilistic choice applies exactly as in Example 4.14. Since d(f (s1, s2), f (t1, t2)) =
2rλ(d(s1, t1)+d(s2, t2)), the L-Lipschitz continuity condition is for these specific pairs of
arguments (s1, s2) and (t1, t2) satisfied if L ≥ 2rλ. Theorem 4.19 below will confirm that
this specification of operator f is 2rλ-Lipschitz continuous.

Consider θ = (µ | ν) | (µ | ν). Both the x-derivative µ and the y-derivative ν ap-
pear each twice in the context of the synchronous parallel composition operator. We
get d(f (s1, s2), f (t1, t2)) = λ(1 − (1 − ε1)2(1 − ε2)2) = λ(1 − (1 − d(s1, t1)/λ)2(1 −
d(s2, t2)/λ)2) ≤ 2(d(s1, t1) + d(s2, t2)). For these specific pairs of arguments (s1, s2) and
(t1, t2) the L-Lipschitz continuity condition is satisfied if L ≥ 2. Theorem 4.19 below will
confirm that this specification of operator f is 2-Lipschitz continuous. Note again that
the Lipschitz factor is independent from the bisimulation discount λ since the derivatives
µ,ν are copied and not as before the source process x , y themselves. Probabilistic choice
applies as before s.t. the operator f with rule target θ = ((µ | ν) | (µ | ν))⊕r δ(0) is 2r-
Lipschitz continuous. The combination of evolution and delay of the argument processes
leads for operator f with rule target θ = ((µ | δ(y)) | (µ | δ(y)))⊕r δ(0) to a Lipschitz
factor of max(2, 2λ) · r = 2r.

In essence, Example 4.16 shows that an n-ary operator f is L-Lipschitz continuous if
at most L copies of each of the processes t1, . . . , tn are spawned along the evolution of
the composed process f (t1, . . . , tn). Technically, this boils down to verifying for all rules
specifying the operator f , that for each source variable the sum of the number of its occur-
rences weighted by the discount factor and the number of occurrences of its derivatives,
both weighted by the probability of their realization, and additionally weighted by the
Lipschitz factors of the applied operators, may not exceed L.

4.3.2 Specification of Lipschitz continuous operators

Given any state or distribution term, the mapping Var defined in Equation 4.1 (Sec-
tion 4.2) gives for each variable the number of its occurrences in that term, weighted by
the probability of their realization. Now we refine this mapping by weighting the number
of occurrences of some variable additionally by the Lipschitz factors of those operators
that are applied on top of that variable.

Notation 4.17. Let P1 = (Σ1, A, R1) be a λ-non-extensive PTSS, and P2 = (Σ2, A, R2) with
P1 v P2 be any PGSOS PTSS. Let L : Σ→ R∞≥0 with Σ= Σ2 \Σ1 be a mapping that assigns
to each operator its respective Lipschitz factor, or assigns∞ if the operator is not Lipschitz
continuous. We denote by LΣ the set of all mappings Σ→ R∞≥0.

72

4.3. Lipschitz continuous operators

x
a
−→ µ a 6=

p

xn+1 a
−→ µ;δ(xn)

x
p

−→ µ

xn+1
p

−→ µ x0
p

−→ δ(0)

x
p

−→ µ x
a
−→ ν a 6=

p
n> m

xn a
−→ ν;δ(xm)

x
a
−→ µ a 6=

p

xω
a
−→ µ;δ(xω)

x
a
−→ µ a 6=

p

x∗ y
a
−→ µ;δ(x∗ y)

y
a
−→ ν

x∗ y
a
−→ ν

x
a
−→ µ y

a
−→ ν a 6=

p

x∗p y
a
−→ ν⊕p µ;δ(x∗p y)

x
a
−→ µ y

a
−→6 a 6=

p

x∗p y
a
−→ µ;δ(x∗p y)

x
a
−→6 y

a
−→ ν a 6=

p

x∗p y
a
−→ ν

y
p

−→ ν

x∗p y
p

−→ ν

x
a
−→ µ a 6=

p

!n+1 x
a
−→ µ ||| δ(!n x)

x
p

−→ µ

!n+1 x
p

−→ µ !0 x
p

−→ δ(0)

x
a
−→ µ a 6=

p

!x
a
−→ µ ||| δ(!x)

x
a
−→ µ a 6=

p

!p x
a
−→ µ⊕p (µ ||| δ(!p x))

Figure 4.4: Lipschitz continuous process algebra operators

The mapping Var: (V × (T(Σ)∪DT(Σ)))→ R≥0 is now defined as follows:

Var(ζ, t) =







































1 if t = ζ
n

max
i=1

Var(ζ, t i) if

�

t = f (t1, . . . , tn) ∧
f ∈ Σ1

L(f)
n
∑

i=1

Var(ζ, t i) if

�

t = f (t1, . . . , tn) ∧
f ∈ Σ2 \Σ1

0 otherwise

Var(ζ,θ) =







































































































1 if θ = ζ
Var(ζ, t) if θ = δ(t)
∑

i∈I

pi · Var(ζ,θi) if θ =
∑

i∈I

piθi

n
max
i=1

Var(ζ,θi) if

�

θ = f (θ1, . . . ,θn) ∧
ζ ∈ V s ∧ f ∈ Σ1

n
∑

i=1

Var(ζ,θi) if

�

θ = f (θ1, . . . ,θn) ∧
ζ ∈ Vd ∧ f ∈ Σ1

L(f)
n
∑

i=1

Var(ζ,θi) if

�

θ = f (θ1, . . . ,θn) ∧
ζ ∈ V s ∧ f ∈ Σ2 \Σ1

L(f)
n
∑

i=1

Var(ζ,θi) if

�

θ = f (θ1, . . . ,θn) ∧
ζ ∈ Vd ∧ f ∈ Σ2 \Σ1

0 otherwise

(4.10)

73

Chapter 4. Specification of compositional operators

with L(f) = max(L(f), 1). Note that Var applied to non-extensive terms, i.e. only oper-
ators of Σ1, coincides with the former definition in Equation 4.1. Case 5 and case 7 with
L(f)< 1 of the Var(ζ,θ) definition capture the application of operators f to distribution
terms where f has a modulus of continuity on state terms that is strictly below 1-Lipschitz
continuity. As shown in Example 5.37 (Section 5.3.3) this yields a modulus of continuity
of 1-Lipschitz continuity on the respective distribution terms.

Using the refined definition of Var we define now the mapping copy : R×(0,1]×V s →
R∞≥0 as:

copy(r,λ, x i) = λ · Var(x i , trgt(r)) +
∑

µ∈der(r,x i)

Var(µ, trgt(r)). (4.11)

Given some rule r, the expression copy(r,λ, x i) describes how many copies of the source
x i and its derivatives µ ∈ der(r, x i) emerge in the transition specified by r. An operator is
L-Lipschitz continuous if at most L instances of each source process or its derivatives (up
to probabilistic weighting and discounting) evolve.

Definition 4.18 (Lipschitz continuity format). Let P1, P2, L as in notation 4.17. A rule
r ∈ R2 that specifies some operator f is a (L,λ)-Lipschitz rule if

copy(r,λ, x i)≤ L(f)

for all source variables x i ∈ {x1, . . . , xn} of r. We call P2 a (L,λ)-Lipschitz PTSS if all rules
r ∈ R2 are (L,λ)-Lipschitz rules.

To understand the rule format, observe that L(f) = Var(x i , f (x1, . . . , xn)) for any x i ∈
{x1, . . . , xn}. Then, the condition is copy(r,λ, x i) ≤ Var(x i , f (x1, . . . , xn)). This mimics
precisely the transfer condition of the bisimulation metric in the sense that the distance
between two instances of f (x1, . . . , xn) is at least the distance between the accessible
distributions which are instances of trgt(r).

Lipschitz PTSS specify Lipschitz continuous operators.

Theorem 4.19. Let P1, P2, L as in notation 4.17 with P2 a (L,λ)-Lipschitz PTSS. Then all
operators f ∈ Σ with L(f) <∞ are L(f)-Lipschitz-continuous w.r.t. λ-bisimilarity metric
d.

We prove Theorem 4.19 by following the same line of argumentation as in the proof
of Theorem 4.5.

Definition 4.20 (Lipschitz congruence closure). Let P1, P2, L as in notation 4.17 and
d : T(Σ2)×T(Σ2)→ [0,1] be any function. We call clm(d) with (m) f ∈Σ2

defined by

m f (ε1, . . . ,εn) =











n
max
i=1
εi if f ∈ Σ1

L(f)
n
∑

i=1

εi if f ∈ Σ2 \Σ1

the Lipschitz congruence closure of d w.r.t. Σ1,Σ2, L.

Again, we define first an upper bound on the distance between state and distribution
terms composed of either non-extensive or Lipschitz continuous operators.

74

4.3. Lipschitz continuous operators

Lemma 4.21. Let P1, P2, L as in notation 4.17, d1 : T(Σ2)×T(Σ2)→ [0,1] be any function,
and d2 the Lipschitz congruences closure of d1 w.r.t. Σ1,Σ2, L. Then, for any term t ∈ T(Σ2)
we have

d2(σ(t),σ
′(t))≤

∑

x∈V s

d2(σ(x),σ
′(x)) · Var(x , t)

for all closed substitutions σ,σ′ : V s → T(Σ).

Proof. By structural induction over t. The base case t = x ∈ V s follows immediately by
Var(x , x) = 1. Consider the induction step t = f (t1, . . . , tn). If f ∈ Σ1, then we have

d2(σ(t),σ
′(t))

≤ max
i=1,...,n

d2(σ(t i),σ
′(t i)) (definition of d2)

≤ max
i=1,...,n

∑

x∈V s

d2(σ(x),σ
′(x)) · Var(x , t i) (inductive hypothesis)

≤
∑

x∈V s

d2(σ(x),σ
′(x)) ·

�

max
i=1,...,n

Var(x , t i)
�

=
∑

x∈V s

d2(σ(x),σ
′(x)) · Var(x , t) (definition of Var).

Otherwise, if f ∈ Σ2 \Σ1, then we have

d2(σ(t),σ
′(t))

≤L(f)
∑

i=1,...,n

d2(σ(t i),σ
′(t i)) (definition of d2)

≤L(f)
∑

i=1,...,n

∑

x∈V s

d2(σ(x),σ
′(x)) · Var(x , t i) (inductive hypothesis)

=
∑

x∈V s

d2(σ(x),σ
′(x))

�

L(f)
∑

i=1,...,n

Var(x , t i)

�

=
∑

x∈V s

d2(σ(x),σ
′(x)) · Var(x , t) (definition of Var).

ut

Lemma 4.22. Let P1, P2, L as in notation 4.17, d1 : T(Σ2)×T(Σ2)→ [0,1] be any function,
and d2 the Lipschitz congruence closure of d1 w.r.t. Σ1,Σ2, L. Then, for any distribution term
θ ∈ DT(Σ2) we have

K(d2)(σ(θ),σ
′(θ))≤

∑

x∈V s

d2(σ(x),σ
′(x)) ·Var(x ,θ)+

∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ)) ·Var(µ,θ)

for all closed substitutions σ,σ′ : V → T(Σ)∪DT(Σ).

Proof. The proof of this lemma follows the same line of argumentation as the proof
of Lemma 4.9. Without loss of generality, assume that θ is in normal form (Defini-
tion 2.8 and Proposition 2.9). We proceed by induction over θ . The base case θ = µ

75

Chapter 4. Specification of compositional operators

follows immediately by Var(µ,µ) = 1. For the base case θ = δ(x) the thesis follows
by K(d2)(σ(δ(x)),σ′(δ(x))) ≤ d2(σ(x),σ′(x)) (Proposition 2.32.2), d2(σ(x),σ′(x)) ≤
∑

x∈V s
d2(σ(x),σ′(x)) · Var(x , x) (Lemma 4.21) and Var(x , x) = Var(x ,δ(x)).

Consider the induction step θ = f (θ1, . . . ,θn). If f ∈ Σ2\Σ1, then by definition of d2 as
Lipschitz congruence closure of d1 w.r.t. Σ1,Σ2, L we get d2(f (s1, . . . , sn), f (t1, . . . , tn))≤
L(f)

∑n
i=1 d2(si , t i) for all si , t i ∈ T(Σ). Hence we get

K(d2)(σ(f (θ1, . . . ,θn)),σ
′(f (θ1, . . . ,θn)))

≤L(f)
n
∑

i=1

K(d2)(σ(θi),σ
′(θi))

≤L(f)
n
∑

i=1

∑

x∈V s

d2(σ(x),σ
′(x)) · Var(x ,θi) +

∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ)) · Var(µ,θi)

!

=
∑

x∈V s

d2(σ(x),σ
′(x))L(f)

n
∑

i=1

Var(x ,θi) +
∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ))L(f)

n
∑

i=1

Var(µ,θi)

≤
∑

x∈V s

d2(σ(x),σ
′(x))L(f)

n
∑

i=1

Var(x ,θi) +
∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ))L(f)

n
∑

i=1

Var(µ,θi)

=
∑

x∈V s

d2(σ(x),σ
′(x)) · Var(x ,θ) +

∑

µ∈Vd

K(d2)(σ(µ),σ
′(µ)) · Var(µ,θ).

with step 1 by Corollary 2.34, step 2 by the induction hypothesis on θi and the last step
by the definition of Var.

If f ∈ Σ1, then the reasoning follows precisely the argumentation and proof steps of
Lemma 4.9. In summary, first we construct an appropriate matchingωθ ∈ Ω(σ(θ),σ′(θ))
for σ(θ) and σ′(θ), then a state term tθ such that all terms in the support of σ(θ)
and σ′(θ) are instances of tθ , and finally show that proof obligation in the two steps
K(d2)(σ(θ),σ′(θ)) ≤

∑

t,t ′∈T(Σ)ωθ (t, t ′) · d2(t, t ′) and
∑

t,t ′∈T(Σ)ωθ (t, t ′) · d2(t, t ′) ≤
∑

x∈V s
d2(σ(x),σ′(x)) · Var(x ,θ) +

∑

µ∈Vd
K(d2)(σ(µ),σ′(µ)) · Var(µ,θ).

The final case θ =
∑

i∈I piθi follows precisely the proof steps of Lemma 4.9. ut

Now we can show the main Theorem 4.19.

Proof of Theorem 4.19. The reasoning will follow the same line of argumentation as the
proof of Theorem 4.5. Assume notation 4.17 and let d be the Lipschitz congruence closure
of the λ-bisimilarity metric d w.r.t. Σ1,Σ2, L (Definition 4.20). As before, we show that
d is a prefixed point of B on ([0,1]T(Σ)×T(Σ),v) by proving that d satisfies the transfer
condition of bisimulation metric

∀(t, a,π) ∈−→ . ∃(t ′, a,π′) ∈−→ . λK(d)(π,π′)≤ d(t, t ′) (4.12)

for all t, t ′ ∈ T(Σ2) with d(t, t ′) < 1. The thesis then follows by the same argument in
the proof of Theorem 4.5.

If t and t ′ have different outermost function symbols, then Equation 4.12 follows as
in the case of Theorem 4.5.

76

4.3. Lipschitz continuous operators

Hence, it remains to show that for any given open term t ∈ T(Σ) and closed substi-
tutions σ,σ′ with σ(x) and σ′(x) having different outermost function symbols for all
x ∈ Var(t), the transfer condition of bisimulation metric (Equation 4.12) is satisfied for
terms σ(t) and σ′(t). We will show this by structural induction over t. The base case
t = x is trivial and follows precisely from the earlier argumentation where σ(x) and
σ′(x) had different outermost function symbols.

The induction step t = f (t1, . . . , tn) requires three subcases. The first subcase given
by d(σ(t),σ′(t)) = d(σ(t),σ′(t)) (first argument of the min operator in Definition 4.6)
is trivial and follows precisely from the earlier argumentation where t and t ′ had different
outermost function symbols. The second subcase d(σ(t),σ′(t)) =maxn

i=1 d(σ(t i),σ′(t i))
(second argument of the min operator in Definition 4.6 and, then, case f ∈ Σ1 in Defini-
tion 4.20) follows as in Theorem 4.5.

The third remaining subcase is d(σ(t),σ′(t)) = L(f)
∑n

i=1 d(σ(t i),σ′(t i)) (second
argument of the min operator in Definition 4.6 and, then, case f ∈ Σ2 \ Σ1 in Defini-
tion 4.20). Assume d(σ(t),σ′(t)) < 1. Let σ be any closed substitution with σ(x i) =
σ(t i) and r be any (L,λ)-Lipschitz rule defining operator f with θ = trgt(r) such that the

transition σ(f (x1, . . . , xn))
a
−→ σ(θ) is derivable from r by σ. Like in the proof of The-

orem 4.5 we construct an appropriate closed substitution σ′ with σ′(x i) = σ′(t i) such

that a transition σ′(f (x1, . . . , xn))
a
−→ σ′(θ) can be derived from r by σ′ for which the

metric transfer condition

λ ·K(d)(σ(θ),σ′(θ))≤ d(σ(f (x1, . . . , xn)),σ
′(f (x1, . . . , xn))) (4.13)

holds. In fact, we get by Lemma 4.22 the stricter statement

K(d)(σ(θ),σ′(θ))≤
∑

x∈V s

(d(σ(x),σ′(x)) ·Var(x ,θ)) +
∑

µ∈Vd

(K(d)(σ(µ),σ′(µ)) ·Var(µ,θ)

which implies equation 4.13 since

λ ·K(d)(σ(θ),σ′(θ))

≤
∑

x∈V s

λ · d(σ(x),σ′(x)) · Var(x ,θ) +
∑

µ∈Vd

λ ·K(d)(σ(µ),σ′(µ)) · Var(µ,θ)

=
∑

i∈I

λ · d(σ(x i),σ
′(x i)) · Var(x i ,θ) +

∑

µ∈der(r,x i)

λ ·K(d)(σ(µ),σ′(µ)) · Var(µ,θ)

!

≤
∑

i∈I

λ · d(σ(x i),σ
′(x i)) · Var(x i ,θ) +

∑

µ∈der(r,x i)

d(σ(x i),σ
′(x i)) · Var(µ,θ)

!

=
∑

i∈I

d(σ(x i),σ
′(x i))

λ · Var(x i ,θ) +
∑

µ∈der(r,x i)

Var(µ,θ)

!

=
∑

i∈I

d(σ(x i),σ
′(x i)) · copy(r,λ, x i)

≤
∑

i∈I

d(σ(x i),σ
′(x i)) · L(f)

77

Chapter 4. Specification of compositional operators

=L(f)
∑

i∈I

d(σ(x i),σ
′(x i))

=d(σ(f (x1, . . . , xn)),σ
′(f (x1, . . . , xn)))

with step 2 by the fact that the only variables in the target θ of the PGSOS rules r are
source variables and their derivatives, step 3 by the fact that σ(x i) and σ′(x i) satisfy
the λ-bisimulation metric transfer condition, step 5 by definition of copy, step 6 by prop-
erty copy(r,λ, x i) ≤ L(f) satisfied by the (L,λ)-Lipschitz rule r, and step 8 from the
assumption d(σ(t),σ′(t)) = L(f)

∑n
i=1 d(σ(t i),σ′(t i)) and the equalities σ(t i) = σ(x i),

σ′(t i) = σ′(x i), σ(t) = σ(f (x1, . . . , xn)) and σ′(t) = σ′(f (x1, . . . , xn)).
We conclude by observing that the transition σ(f (x1, . . . , xn))

a
−→ σ(trgt(r)) derived

from the f -defining rule r can be mimicked by σ′(f (x1, . . . , xn))
a
−→ σ′(trgt(r)) (derived

by the same r) such that the metric bisimulation transfer condition

λK(d)(σ(trgt(r)),σ′(trgt(r)))
≤d(σ(f (x1, . . . , xn)),σ

′(f (x1, . . . , xn)))

=L(f)
n
∑

i=1

d(σ(x i),σ
′(x i))

holds. Hence, operator f is L(f)-Lipschitz continuous. ut

It follows that a (L,λ)-Lipschitz PTSS specifies a non-expansive operator f if L(f)≤ 1.

4.3.3 Lipschitz continuous process algebra operators

Theorem 4.19 allows us to determine which process algebra operators are non-expansive
(1-Lipschitz continuous) by inspecting their respective specification rules and verifying
that the rule constraints of Definition 4.18 are satisfied for a Lipschitz factor of at most 1.

Corollary 4.23. All standard non-recursive process algebra operators (specified in Figures 4.2
and 4.3), i.e.

• sequential composition _ ; _

• synchronous parallel composition _ | _

• asynchronous parallel composition _ ||| _

• CSP-like parallel composition _ ‖B _

• probabilistic parallel composition _ |||p _

(and the non-extensive operators of Corollary 4.10) are non-expansive w.r.t. λ-bisimilarity
metric d for any λ ∈ (0,1].

Proof. Let P1 = (Σ1, A, R1) be the PTSS consisting of all rules of Figure 4.2. Let P2 =
(Σ2, A, R2) be the PTSS extending P1 by the rules of Figure 4.3. Let L be defined as L(f) =
1 for all operators specified in Figure 4.3. It can be easily checked that the constraints in
Definition 4.18 are satisfied. The thesis follows then directly by Theorem 4.19. ut

78

4.3. Lipschitz continuous operators

This result is similar to Theorem 3.8. However, just like for non-extensiveness, we
derive this result now by simple inspection of the structural properties of the specification
rules.

On the other hand, the rules in Figure 4.4 specifying recursive process algebra oper-
ators do not admit any L ∈ LΣ that assigns value 1 (for non-expansiveness) to any of its
operators (except single iteration _1 and single replication !1_). It is easy to show that all
those operators have a Lipschitz factor that is strictly greater than 1. As an example, we
consider the finite iteration operator and show that the finite iteration operator with at
least two iterations is not non-expansive.

Example 4.24. Consider the term t = xn and let σ1 and σ2 be the closed substitutions
defined byσ1(x) = a.([1−ε/λ]ε⊕[ε/λ]0) andσ2(x) = a.ε, with any fixed ε ∈ (0,1) and
n > 1. We have d(σ1(x),σ2(x)) = ε. Then by Proposition 3.9.a and Proposition 3.10
we get d(σ1(t),σ2(t)) = ε(1 − (λ − ε)n)/(1 − (λ − ε)) > ε = d(σ1(x),σ2(x)), thus
confirming that these arguments σ1(x) and σ2(x) are witnesses of the violation of the
non-expansiveness condition for the n-iteration operator.

We consider now the specification of the finite iteration operator _n. First, observe
that L(_0) = 0 since no rule specifies the operator _0. By induction, we get L(_n+1) =
1 + λL(_n). Since λ > 0, we conclude L(_n) > 1 for all n ≥ 2, thus confirming that
no Lipschitz factor L ∈ LΣ with L(_n) ≤ 1 gives rise to a (L,λ)-consistent PTSS for any
λ ∈ (0, 1].

Theorem 4.19 allows us also to determine which process algebra operators are Lipschitz
continuous by inspecting their respective specification rules and verifying that the rule
constraints of Definition 4.18 are satisfied.

Corollary 4.25. Consider the recursive process algebra operators of CCS and CSP specified
in Figure 4.4. Then:

1. All finitely bounded recursive process algebra operators are Lipschitz continuous w.r.t.
λ-bisimilarity metric d for any λ ∈ (0, 1].

2. All unbounded recursive process algebra operators are Lipschitz continuous w.r.t. λ-
bisimilarity metric d for any λ ∈ (0, 1).

Proof. Let P1 = (Σ1, A, R1) be the PTSS consisting of all rules of Figure 4.2. Let P2 =
(Σ2, A, R2) be the PTSS extending P1 by the rules of Figures 4.3 and 4.4. Let L be defined
as L(f) = 1 for all operators specified in Figure 4.3. Let L(_0) = L(!0) = 0. For the
remaining operators we define L(_n) = L(!n) =

∑n−1
i=0 λ

i = (1−λn)/(1−λ), if λ ∈ (0,1),
and L(_n) = L(!n) =

∑n−1
i=0 λ

i = n, if λ = 1. Then we define L(_ω) = L(_ ∗_) =
∑∞

i=0λ
i

which is L(_ω) = L(_ ∗_) =∞ if λ = 1 and L(_ω) = L(_ ∗_) = 1/(1 − λ) if λ ∈ (0,1).
Additionally, we define L(_ ∗p _) = L(_ ∗_) and L(!p_) = 1/(pλ). It can be easily checked
that the constraints in Definition 4.18 are satisfied. Cases 1 and 2 can now easily be
verified by analyzing which operators f have L(f)<∞. The thesis follows then directly
by Theorem 4.19. ut

This result is similar to Theorems 3.13 and 3.14. Note however, just as for non-
extensiveness and non-expansiveness, that we derive this result now by simple inspec-
tion of the structural properties of the respective specifications. The unbounded recursive

79

Chapter 4. Specification of compositional operators

process algebra operators are not Lipschitz continuous w.r.t. undiscounted bisimilarity
metric.

4.3.4 Distance between Lipschitz continuous terms

We call a term t Lipschitz continuous if all operators used in t are Lipschitz continuous.
Similar to non-extensive terms we can define an upper bound on the distance between
closed instances of Lipschitz continuous terms. As before we will exploit the composi-
tionality properties (i.e. Lipschitz factors) of each operator. The distance between closed
instances of some Lipschitz continuous term t is the distance between the instances of
the variables of t multiplied by the Lipschitz factors of the operators applied on top of the
variables (expressed by the refined definition of Var provided in Equation 4.10).

Proposition 4.26. Let P1, P2, L as in notation 4.17 and P = (Σ′, A, R) be any PGSOS PTSS
with P2 v P. Then for any term t ∈ T(Σ2) we have

d(σ(t),σ′(t))≤
∑

x∈V s

Var(x , t) · d(σ(x),σ′(x))

for all closed substitutions σ,σ′ : V → T(Σ′).

Proof. Follows directly from Lemma 4.21. ut

Note that Proposition 4.26 resembles Proposition 4.12 used for non-extensive con-
texts. Note again that the variables in t can be instantiated by arbitrary terms in T(Σ′)
(not necessarily built of Lipschitz continuous operators in Σ2).

4.4 q-non-extensive operators

The specification format for Lipschitz continuous operators developed in Section 4.3 al-
lows now also to define a specification format for q-non-extensive operators with q ∈
(1,∞). We start with analyzing which rule patterns specify and which do not specify q-
non-extensive operators. Since ∞-non-extensiveness and q-non-extensiveness coincide
for unary operators, the analysis of Example 4.2 in Section 4.2 (∞-non-extensiveness
unary operators) carries over to q-non-extensiveness. It remains to explore binary oper-
ators.

Example 4.27. We consider the same rules specifying the binary operator f and the
processes s1, s2, t1, t2 as in Example 4.3 in Section 4.2. However, we consider now any
arbitrary fixed q ∈ (1,∞). Since∞-non-extensiveness implies q-non-extensiveness, we
revisit only those cases of Example 4.3 that may define operators that are not ∞-non-
extensive.

Consider θ = µ + ν. We already argued in Example 4.3 that this specification of f
is not ∞-non extensive, whereas it follows by Theorem 4.19 that f is 1-non-extensive
(which is 1-Lipschitz continuous). In Example 4.3 we argued that d(f (s1, s2), f (t1, t2)) =
λ(1−(1−ε1)(1−ε2)). The pairs of terms (s1, s2) and (t1, t2) are witnesses for the violation
of the q-non-extensiveness condition, since for all q > 1 we have d(f (s1, s2), f (t1, t2)) =

80

4.4. q-non-extensive operators

λ(1− (1− ε1)(1− ε2)) > λε1 +λε2 > ((λε1)q + (λε2)q)
1
q = ((d(s1, t1))q + (d(s2, t2))q)

1
q .

Hence, this specification of operator f is not q-non-extensive for any q ∈ (1,∞).
Consider θ = (µ + ν) ⊕r δ(0) for some fixed r ∈ (0,1). In Example 4.3 we de-

rived d(f (s1, s2), f (t1, t2)) = r · λ(1 − (1 − ε1)(1 − ε2)) ≤ r · (λε1 + λε2). The q-non-
extensiveness condition is then given if rq(λε1+λε2)q ≤ (λε1)q +(λε2)q = (d(s1, t1))q +
(d(s2, t2))q. Since rq(λε1 + λε2)q ≤ rq · 2q−1((λε1)q + (λε2)q) (Hölder inequality), the
q-non-extensiveness condition is satisfied if rq · 2q−1((λε1)q + (λε2)q)≤ (λε1)q + (λε2)q.
This is given if rq · 2q−1 ≤ 1, i.e. if r ≤ 2(1/q)−1. Theorem 4.29 will confirm that this spe-
cification of operator f is q-non-extensive if the probabilistic choice in the rule target is
r ≤ 2(1/q)−1.

Consider θ = (µ+ µ)⊕r δ(0) for some fixed r ∈ (0, 1). Then d(f (s1, s2), f (t1, t2)) =
r · λ · (1− (1− ε1)2) ≤ 2rλε1. The q-non-extensiveness condition is given if (2rλε1)q ≤
(λε1)q + (λε2)q = (d(s1, t1))q + (d(s2, t2))q. This inequality holds if r ≤ 0.5 by using
(2rλε1)q ≤ (λε1)q ≤ (λε1)q + (λε2)q. Note that the constraint r ≤ 0.5 on probability r
is independent of the norm q. If θ = (µ+ µ+ µ)⊕r δ(0), then with similar arguments
we get that the specified operator f is q-non-extensive if r ≤ 1/3 (for any q ∈ (1,∞)).
Theorem 4.29 will confirm that the specified operators are q-non-extensive whenever the
constraints on the probabilistic choice r are given.

Consider θ = (δ(x) + ν) ⊕r δ(0) for some fixed r ∈ (0,1). In Example 4.3 we
argued that d(f (s1, s2), f (t1, t2)) = r · λ((1 − ε2)λε1 + ε2). The q-non-extensiveness
condition (r · λ((1 − ε2)λε1 + ε2))q ≤ (λε1)q + (λε2)q is given for r ≤ 2(1/q)−1 since
(r ·λ((1−ε2)λε1+ε2))q ≤ rq2q−1((1−ε2)q(λ2ε1)q+(λε2)q)≤ rq2q−1((λε1)q+(λε2)q)≤
(by r ≤ 2(1/q)−1) (λε1)q + (λε2)q. Theorem 4.29 will confirm that this specification of f

is q-non-extensive whenever r ≤ 2(1/q)−1.

In essence, Example 4.27 shows that a binary operator f is q-non-extensive if the
total number of instances of t1, t2 that are spawned along the evolution of the composed
process f (t1, t2), weighted by the probability of their realization, is at most 2(1/q)−1.

The q-norm is related to the 1-norm (which coincides with 1-Lipschitz continuity)

by n(1/q)−1
∑n

i=1 d(t i , t ′i) ≤
�∑n

i=1 d(t i , t ′i)
q
�1/q

(by Hölder inequality). Hence, each n-ary
operator that is n(1/q)−1-Lipschitz continuous is also q-non-extensive.

Definition 4.28 (q-non-extensiveness format). Let P1, P2, L as in notation 4.17 and as-
sume that P2 is a (L,λ)-Lipschitz PTSS. We say that a rule r ∈ R2 specifying an n-ary
operator is a (L,λ, q)-non-extensive rule if

copy(r,λ, x i)≤ n(1/q)−1

for all source variables x i ∈ {x1, . . . , xn} of r.

Theorem 4.29. Let P = (Σ, A, R) be a (L,λ)-Lipschitz PTSS. Then, each n-ary operator
f ∈ Σ with L(f)≤ n(1/q)−1 for some q ∈ [1,∞] is q-non-extensive.

Proof. Directly by Theorem 4.19 and n(1/q)−1
∑n

i=1 d(t i , t ′i)≤
�∑n

i=1 d(t i , t ′i)
q
�1/q

(by Hölder
inequality). ut

We note that q-non-extensiveness is mainly of theoretical interest. The practically
important case of∞-non-extensiveness was already discussed in Section 4.2 and 1-non-
extensiveness (which is 1-Lipschitz continuity) was discussed in Section 4.3.

81

Chapter 4. Specification of compositional operators

4.5 Uniformly continuous operators

Uniform continuity is the most general compositionality property considered and hence
will allow also for the largest class of possible specifications. A uniformly continuous
operator ensures that a small variance in the behavior of a system component leads to a
bounded small variance in the behavior of the composed system.

Definition 4.30 (Modulus of continuity). Let P = (Σ, A, R) be a PTSS, f ∈ Σ some n-ary
operator and d any 1-bounded pseudometric on T(Σ). A mapping ω: [0, 1]n → [0, 1] is
an upper bound on the distance between f -composed terms w.r.t. d if

d(f (s1, . . . , sn), f (t1, . . . , tn))≤ω(d(s1, t1), . . . , d(sn, tn))

for all si , t i ∈ T(Σ). An upper bound ω of f w.r.t. d is a modulus of continuity of f w.r.t.
d if ω is continuous at (0, . . . , 0), i.e. lim(ε1,...,εn)→(0,...,0)ω(ε1, . . . ,εn) = ω(0, . . . , 0), and
ω(0, . . . , 0) = 0.

An operator is uniformly continuous if this operator admits any modulus of continuity.
Intuitively, a uniformly continuous binary operator f ensures that for any non-zero bisim-
ulation distance ε (understood as the admissible tolerance from the operational behavior
of the composed process f (p1, p2)) there are non-zero bisimulation distances δ1 and δ2
(understood as the admissible tolerances from the operational behavior of the processes
p1 and p2) s.t. the distance between the composed processes f (p1, p2) and f (p′1, p′2) is
at most ε whenever the component p′1 (resp. p′2) is in distance of at most δ1 from p1
(resp. at most δ2 from p2). More complex recursion patterns such as the fork operator of
operating systems [BIM95] are only uniformly continuous (but not Lipschitz continuous,
cf. Example 4.34 below).

Definition 4.31 (Uniformly continuous operator). Let P = (Σ, A, R) be a PTSS and d any
1-bounded pseudometric on T(Σ). We say that an operator f ∈ Σ is

1. uniformly continuous w.r.t. d if f admits some modulus of continuity w.r.t. d,

2. L-Lipschitz continuous w.r.t. d with L ∈ R≥0 ifω(ε1, . . . ,εn) = L
∑n

i=1 εi is a modulus
of continuity of f w.r.t. d,

3. Lipschitz continuous w.r.t. d if f is L-Lipschitz continuous w.r.t. d for some L ∈ R≥0,
and

4. q-non-extensive w.r.t. d with q ∈ [1,∞] if ω(ε1, . . . ,εn) = (
∑n

i=1 ε
q
i)

1/q, if q <∞,
and ω(ε1, . . . ,εn) =maxn

i=1 εi , if q =∞, is a modulus of continuity of f w.r.t. d.

Moreover, f is non-expansive w.r.t. d if f is 1-Lipschitz continuous w.r.t. d, and f is non-
extensive w.r.t. d if f is∞-non-extensive w.r.t. d.

Note that Definition 4.31.1 resembles Definition 3.12 of the former chapter (notion
of modulus of continuity captures that for each ε > 0 there exists some (δ1, . . . ,δn)> 0),
Definition 4.31.2 resembles earlier Definition 4.13 and Definition 4.31.4 resembles earlier
Definition 4.1.

The behavioral distance between two arbitrary terms s and t can be divided in the
distance observable by the first k steps and the distance observable after step k. The step
discount λ allows us to give the upper bound λk on the distance observable after step k.

82

4.5. Uniformly continuous operators

Proposition 4.32. Let P = (Σ, A, R) be a PTSS and s, t ∈ T(Σ) arbitrary closed terms. Then

d(s, t)≤ dk(s, t) +λk

for all k ∈ N.

Proof. By induction. Case k = 0 is trivial since λ0 = 1. Let (d−ε): T(Σ)×T(Σ)→ [0,ε]
with ε ∈ [0,1] be the function defined by (d − ε)(s, t) = max(d(s, t) − ε, 0). For the
induction step, assume dk w d− λk. It remains to show dk+1 w d− λk+1. We reason as
follows:

dk+1(s, t)
= sup

a∈A
{H(λ ·K(dk))(der(s, a), der(t, a))}

≥ sup
a∈A

�

H(λ ·K(d−λk))(der(s, a), der(t, a))
	

≥ sup
a∈A
{H(λ ·K(d))(der(s, a), der(t, a))} −λk+1

=d(s, t)−λk+1

by using the properties

K(d)w K(d ′) if d w d ′

H(d)w H(d ′) if d w d ′

K(d − ε)(π,π′)≥ K(d)(π,π′)− ε
H(d − ε)(π,π′)≥ H(d)(π,π′)− ε

(4.14)

for any pseudometrics d, d ′ and any ε ∈ [0,1], definition of dk+1 applied in step 1, induc-
tion hypothesis applied in step 2, the fixpoint property of bisimulation metric d(s, t) =
supa∈A{H(λ ·K(d))(der(s, a), der(t, a))} applied in step 4, and properties of Equation 4.14
applied in steps 2 and 3. ut

A fundamental insight that we will use later to define the specification format for
uniform continuity is that an operator is uniformly continuous w.r.t. the bisimilarity metric
d if this operator is Lipschitz continuous w.r.t. all up-to-k bisimilarity metrics dk. This
will allows us later to specify uniformly continuous operators by specifying the Lipschitz
factors of these operators for each up-to-k bisimulation distances.

Theorem 4.33. Let P = (Σ, A, R) be a PTSS and λ < 1. If an operator f ∈ Σ is Lipschitz
continuous w.r.t. dk for each k ∈ N, then f is uniformly continuous w.r.t. d.

Proof. Assume that f ∈ Σ is any n-ary operator. We will provide a modulus of continuity
of f w.r.t. d. Let Lk ∈ R≥0 be the Lipschitz factor for f w.r.t. dk, i.e.

ωk(ε1, . . . ,εn) = Lk

n
∑

i=1

εi

is a modulus of continuity of f w.r.t. dk. Together with Proposition 4.32 and property
dk v d we get

d(f (s1, . . . , sn), f (t1, . . . , tn))≤ Lk

n
∑

i=1

d(si , t i) +λ
k (4.15)

83

Chapter 4. Specification of compositional operators

for all k ∈ N. Let ω: Rn→ R be the mapping defined by

ω(ε1, . . . ,εn) = inf
k∈N

�

Lk

n
∑

i=1

εi +λ
k

�

.

From Equation 4.15 it is clear that ω is an upper bound on the distance between f -
composed terms w.r.t. d. Furthermore, ω(0, . . . , 0) = 0. To conclude that ω is a modulus
of continuity, it remains to show thatω is continuous at (0, . . . , 0). Assume any δ ∈ (0,1].
Since λ < 1, there is some m ∈ N s.t. λm < δ. Now, for any (ε1, . . . ,εn) ∈ (0,1]n with

εi <
δ−λm

n · Lm

we get

ω(ε1, . . . ,εn)

= inf
k∈N

�

Lk

n
∑

i=1

εi +λ
k

�

≤ inf
k∈N

�

Lk

n
∑

i=1

δ−λm

n · Lm
+λk

�

≤ inf
k∈N

�

Lm

n
∑

i=1

δ−λm

n · Lm
+λk

�

≤ inf
k∈N

�

δ−λm +λk
�

<δ

Hence, ω is continuous at (0, . . . , 0). Thus, ω is a modulus of continuity of f w.r.t. d. We
conclude that f is uniformly continuous w.r.t. d. ut

4.5.1 Analysis of uniformly continuous operators

We analyze now the structural patterns of SOS rules that define uniformly continuous
operators and give representative examples of rules that specify operators that are not
uniformly continuous. Moreover, we derive from the structural properties of the rules the
moduli of continuity of the specified operators.

Examples 4.14–4.16 in Section 4.3 showed that the number of process replications,
weighted by the probability of their realization, and weighted by the discount factor if
processes are delayed, determines the Lipschitz factor of the operator. Furthermore, the
examples showed that if the number of recurring process replications is finitely bounded,
then the specified operator is Lipschitz continuous.

Now we will analyze which rule patterns specify and which do not specify uniformly
continuous operators.

Example 4.34 (Uniformly continuous operators). We analyze now the fork operation of
operating systems specified by the copy operator of [BIM95; FGW12] with the rules

x
a
−→ µ

cp(x)
a
−→ µ

(a 6∈ {l, r})
x

l
−→ µ x

r
−→ ν

cp(x)
s
−→ cp(µ) | cp(ν)

84

4.5. Uniformly continuous operators

Actions l and r are the left and right forking actions, and s is the resulting split action.
The fork of t is the process cp(t) evolving by t to the parallel composition of the left fork
(l-derivative of t) and the right fork (r-derivative of t). For all other actions a 6∈ {l, r}
the process cp(t) mimics the behavior of t.

First, we show that the copy operator is not Lipschitz continuous. Formally, for any
L ∈ R≥0, we show that d(cp(s),cp(t)) > Ld(s, t) for some CCS processes s, t. Let s1 =
l.([1 − ε]a ⊕ [ε]0) + r.([1 − ε]a ⊕ [ε]0) and t1 = l.a + r.a, and sk+1 = l.sk + r.sk and
tk+1 = l.tk + r.tk. Clearly d(sk, tk) = λkε. Then d(cp(sk),cp(tk)) = λk(1 − (1 − ε)2

k
).

Hence, for any k with 2k > L, d(cp(s),cp(t))/d(s, t) = (1 − (1 − ε)2
k
)/ε > L holds for

s = sk, t = tk and all 0 < ε < (2k − L)/(2k−1(2k − 1)). Thus, the copy operator is not
Lipschitz continuous.

However, Proposition 4.40 below (exploiting Proposition 4.32) will confirm that if
λ < 1 then ω(ε) = infk∈N(2kε+ λk) is a (non-linear) modulus of continuity of the copy
operator. Intuitively, the copy operator creates in k steps at most 2k copies of the source
process x , i.e. the copy operator is 2k-Lipschitz continuous w.r.t. the up-to-k bisimulation
metric dk. Thus, the copy operator is uniformly continuous (Theorem 4.33).

In essence, Example 4.34 shows that an operator is uniformly continuous if in each
step only finitely many process copies are spawned.

Example 4.35 (Non-uniformly continuous operators). Assume A = {ak | k ∈ N}. Con-
sider the unary operators f and g specified by the following rules for all k ∈ N:

x
ak−→ µ

f (x)
ak−→ µ | . . . | µ
︸ ︷︷ ︸

k−times

g(x)
ak−→ δ(h(. . . h(

︸ ︷︷ ︸

k−times

x)))

x
ak−→ µ

h(x)
ak−→ µ | µ

We will show that both operators are not uniformly continuous w.r.t. λ-bisimilarity metric
d for any λ ∈ (0,1]. As arguments for the operators f and g we will use the terms
sk = ak.ak.0 and tk,ε = ak.([1−ε]ak.0⊕[ε]0)with any ε ∈ (0, 1). Clearly, d(sk, tk,ε) = λε.

We start with operator f . We get d(f (sk), f (tk,ε)) = λ(1− (1−ε)k). Hence, if follows
supk∈N d(f (sk), f (tk,ε)) = supk∈Nλ(1 − (1 − ε)k) = λ. The least upper bound on the
distance between f -composed processes is ω(ε) = λ if ε > 0 and ω(0) = 0. However, ω
is not a modulus of continuity since it is not continuous at 0. Hence, operator f is not
uniformly continuous.

We proceed with operator g. We get supk∈N d(g(sk), g(tk,ε)) = supk∈Nλ
2(1 − (1 −

ε)2
k
) = λ2. Following the same line of argumentation as with operator f we conclude

that operator g is not uniformly continuous.

In essence, Example 4.35 shows that an operator may be not uniformly continuous if
it spawns in a single step an unbounded number of process copies.

4.5.2 Specification of uniformly continuous operators

We develop now a specification format that allows us to specify uniformly continuous
operators.

85

Chapter 4. Specification of compositional operators

We exploit Theorem 4.33 and specify uniformly continuous operators by defining suit-
able Lipschitz factors w.r.t. all up-to-k bisimilarity metrics. Technically, we will refine the
Lipschitz factor assignments (Notation 4.17), and the operators Var and copy character-
izing the process replication in rules (Equations 4.10 and 4.11) to consider the respective
up-to-k notion of bisimilarity metric.

Notation 4.36. Let P1 = (Σ1, A, R1) be a λ-non-extensive PTSS, and P2 = (Σ2, A, R2) with
P1 v P2 be any PGSOS PTSS. Let L : (N × Σ) → R∞≥0 with Σ = Σ2 \ Σ1 be a mapping2

that assigns to each operator its respective up-to-k Lipschitz factors, or assigns∞ if the
operator is not Lipschitz continuous w.r.t. the up-to-k bisimulation metric. Let LΣ be the
set of all mappings (N×Σ)→ R∞≥0. We call L ∈ LΣ a Lipschitz factor assignment (LFA, for
short) for operators in Σ.

Intuitively, Lk(f) gives either the Lipschitz factor of operator f ∈ Σw.r.t. λ-bisimilarity
metric dk, or∞ if f is not Lipschitz continuous w.r.t. dk.

We refine now the mapping Var (Equation 4.10) to incorporate the up-to-k Lipschitz
factors by defining Var(ζ, t, k) as the number of occurrences of variable ζ in t, weighted
by the probability of their realization, and weighted by the up-to-k Lipschitz factors of the
operators applied on top of ζ. Formally, Var: V ×T(Σ)∪DT(Σ)×N→ R∞≥0 is defined by

Var(ζ, t, k) =







































1 if t = ζ
n

max
i=1

Var(ζ, t i , k) if

�

t = f (t1, . . . , tn) ∧
f ∈ Σ1

Lk(f)
n
∑

i=1

Var(ζ, t i , k) if

�

t = f (t1, . . . , tn) ∧
f ∈ Σ2 \Σ1

0 otherwise

Var(ζ,θ , k) =







































































































1 if θ = ζ
Var(ζ, t, k) if θ = δ(t)
∑

i∈I

pi · Var(ζ,θi , k) if θ =
∑

i∈I

piθi

n
max
i=1

Var(ζ,θi , k) if

�

θ = f (θ1, . . . ,θn) ∧
ζ ∈ V s ∧ f ∈ Σ1

n
∑

i=1

Var(ζ,θi , k) if

�

θ = f (θ1, . . . ,θn) ∧
ζ ∈ Vd ∧ f ∈ Σ1

Lk(f)
n
∑

i=1

Var(ζ,θi , k) if

�

θ = f (θ1, . . . ,θn) ∧
ζ ∈ V s ∧ f ∈ Σ2 \Σ1

Lk(f)
n
∑

i=1

Var(ζ,θi , k) if

�

θ = f (θ1, . . . ,θn) ∧
ζ ∈ Vd ∧ f ∈ Σ2 \Σ1

0 otherwise

(4.16)

2We will write the first argument of L as subscript, i.e. Lk(f) for L(k, f), to align with the notation dk of
up-to-k bisimilarity metric. Hence, Lk denotes a function Σ→ R∞≥0 defined by Lk(f) = L(k, f).

86

4.5. Uniformly continuous operators

with Lk(f) =max(Lk(f), 1).
We refine now the mapping copy (Equation 4.11) by using the refined definition of

Var. The mapping copy : R× (0,1]×V s ×N→ R∞≥0 is defined as:

copy(r,λ, x i , k+ 1) = λ · Var(x i , trgt(r), k) +
∑

µ∈der(r,x i)

Var(µ, trgt(r), k) (4.17)

Intuitively, the expression copy(r,λ, x i , k+1) describes how many copies of the source x i
and its derivatives µ ∈ der(r, x i) emerge after k+1 steps, with first transition specified by
rule r.

An operator f ∈ Σ is uniformly continuous if at most Lk(f) instances of each source
process or its derivatives (up to probabilistic weighting and discounting) evolve along the
first k steps, for some Lk(f)<∞.

Definition 4.37 (Uniform continuity format). Let P1, P2, L as in notation 4.36. A rule
r ∈ R2 is a (L,λ)-uniformly continuous rule if

copy(r,λ, x i , k)≤ Lk(f)

for all source variables x i ∈ {x1, . . . , xn} of r and for all k ∈ N. We call P2 a (L,λ)-uniformly
continuous PTSS if all rules r ∈ R2 are (L,λ)-uniformly continuous rules.

Uniformly continuous PTSSs specify uniformly continuous operators.

Theorem 4.38. Let P1, P2, L as in notation 4.36 with P2 a (L,λ)-uniformly continuous
PTSS. Given any operator f ∈ Σ, if Lk(f)<∞ for all k ∈ N, then

1. f is Lk(f)-Lipschitz continuous w.r.t. dk for any k ∈ N, and

2. f is uniformly continuous if λ < 1.

Proof. We start with Theorem 4.38.1. Given the PTSS P2 = (Σ2, A, R2) we will construct
a PTSS P ′2 such each term t ∈ T(Σ2) has for any k ∈ N a corresponding term tk ∈ T(Σ′2)
that behaves for the first k steps as t and stops afterwards. Hence, if f is Lk(f)-Lipschitz
continuous w.r.t. dk in the induced model of P2, then fk is Lk(f)-Lipschitz continuous w.r.t.
d in the induced model of P ′2. This reduces the proof of uniform continuity to the case of
Lipschitz continuity (Theorem 4.33 and Theorem 4.19).

Given the signature Σ2 = (F, r) we define the signature Σ′2 = (F
′, r′) by F ′ = { fk |

f ∈ F} and r′(fk) = r(f). For each term t ∈ T(Σ2) ∪ DT(Σ2) we define by tk the term
in T(Σ′2) ∪ DT(Σ

′
2) obtained by replacing each function symbol f in t by fk. Formally,

for state terms we have xk = x and (f (t1, . . . , tn))k = fk(t1
k , . . . , tn

k)), and for distribution
terms we have µk = µ, δ(t)k = δ(tk), (

∑

i∈I piθ i)k =
∑

i∈I piθ i
k, and (f (θ n, . . . ,θ n))k =

fk(θ n
k , . . . ,θ n

k). For distributions π ∈∆(T(Σ2)) we define the distribution πk ∈∆(T(Σ′2))
defined by πk(tk) = π(t). Given a rule r ∈ R2 we define the rule rk+1 as a rule with
the same premises, i.e. prem(r ′) = prem(r), and conc(rk+1) = fk+1(x1, . . . , xn)

a
−→ θk if

conc(r) = f (x1, . . . , xn)
a
−→ θ . Note that no rule specifies a transition for operators f0. In

other words, terms f0(t1, . . . , tn) cannot perform any transition. Let R′2 denote the set of
rules R′2 = {rk | r ∈ R and k ∈ N}.

87

Chapter 4. Specification of compositional operators

Consider the PTSS (Σ′2, A, R′2). A term tk ∈ T(Σ′2) behaves like t for the first k moves

and then stops. Formally, we have that t0 makes no move and tk+1
a
−→ πk iff t

a
−→ π. It

follows that dk(s, t) = dk(sk, tk) = d(sk, tk) for all s, t ∈ T(Σ2). Therefore, to prove the
proof obligation that f is Lk(f)-Lipschitz continuous w.r.t. dk it is enough to prove that
fk is Lk(f)-Lipschitz continuous w.r.t. d.

Let L′ : (Σ′2 \Σ
′
1)→ R

∞
≥0 such that L′(fk) = Lk(f) for all f ∈ Σ2 \Σ1 and k ∈ N. The

proof obligation becomes now that fk is L′(fk)-Lipschitz continuous w.r.t. d. For each rule
r ∈ R and k ∈ N we have copy(r,λ, x i , k) = copy(rk,λ, x i). Hence copy(rk,λ, x i)≤ L′(fk)
follows from copy(r,λ, x i , k) ≤ Lk(f). Finally, since L′(fk) <∞, by Theorem 4.19 we
get that fk is L′(fk)-Lipschitz continuous w.r.t. d. Hence, f is Lk(f)-Lipschitz continuous
w.r.t. dk.

Then Theorem 4.38.2 follows directly from Theorem 4.38.1 and Theorem 4.33. ut

Note that if Lk(f) = Lk′(f) for all k, k′ ∈ N then the up-to-k Lipschitz factor assign-
ment L : (N × (Σ2 \ Σ1)) → R∞≥0 (Notation 4.36) becomes a Lipschitz factor assignment
L : (Σ2 \ Σ1) → R∞≥0 (Notation 4.17). Then, the uniform continuity rule format (Defin-
ition 4.37) coincides with the Lipschitz continuity format (Definition 4.18). Hence the
specified operator is Lipschitz continuous.

4.5.3 Uniformly continuous process algebra operators

Theorem 4.38 allows us to determine which process algebra operators are uniformly con-
tinuous by inspecting their respective specification rules and verifying that the rule con-
straints of Definition 4.37 are satisfied. We provide now an example that shows how to
derive Lipschitz factor assignment that makes the specification uniformly continuous, and
then how to determine the resp. modulus of continuity.

Corollary 4.39. The copy operator cp is uniformly continuous w.r.t. λ-bisimilarity metric
d for any λ ∈ (0,1).

Proof. Let P = (Σ, A, R) be the PTSS specifying the synchronous parallel composition
operator and the copy operator (Example 4.34). Let L ∈ LΣ be defined as Lk(|) = 1 and
Lk(cp) = 2k for any k ∈ N. Let r1 and r2 denote the rules for operator cp, namely

r1 =
x

a
−→ µ

cp(x)
a
−→ µ

r2 =
x

l
−→ µ x

r
−→ ν

cp(x)
s
−→ cp(µ) | cp(ν)

First, note that for each k ∈ N we have Var(µ,µ, k) = 1 and Var(cp(µ) | cp(ν),µ, k) =
Var(cp(µ) | cp(ν),ν, k) = 2k. Then copy(r1,λ, x , k + 1) = 1 and copy(r2,λ, x , k + 1) =
2k + 2k = 2k+1. Since supr∈R f

copy(r,λ, x , k) ≤ Lk(f) the PTSS P is (L,λ)-uniformly
continuous. Thus, if λ < 0 we get that cp is uniformly continuous (Theorem 4.38.2). ut

4.5.4 Distance between uniformly continuous terms

We call a term t uniformly continuous if all operators used in t are uniformly continuous.
As before we define now an upper bound on the distance between closed instances of
uniformly continuous terms.

88

4.6. Coinductive rule format characterization

Proposition 4.40. Let P1, P2, L as in notation 4.36 and P = (Σ′, A, R′) be any PGSOS PTSS
with P2 v P. Then for any term t ∈ T(Σ2) we have

d(σ(t),σ′(t))≤ inf
k∈N

∑

x∈V s

Var(x , t, k) · d(σ(x),σ′(x)) +λk

!

for all closed substitutions σ,σ′ : V → T(Σ′).

Proof. We use the same notation Σ′2 = (F
′, r′) as in the proof of Theorem 4.38. Notice

that Var(x , tk) = Var(x , t, k) for all x ∈ V s, t ∈ T(Σ)∪DT(Σ) and k ∈ N. Given a closed
substitution σ : V → T(Σ′) we define σk(x) = σ(x)k, i.e. σk(x) = tk if σ(x) = t. Then

d(σ(t),σ′(t))

≤ inf
k∈N

�

dk(σ(t),σ
′(t)) +λk

�

(Proposition 4.32)

= inf
k∈N

�

d((σ(t))k, (σ′(t))k) +λ
k
�

(see proof of Theorem 4.38)

= inf
k∈N

�

d(σk(tk),σ
′
k(tk)) +λ

k
�

≤ inf
k∈N

∑

x∈V s

Var(x , tk) · d(σk(x),σ
′
k(x))

!

+λk

!

(Proposition 4.26)

= inf
k∈N

∑

x∈V s

Var(x , t, k) · d(σ(x),σ′(x))

!

+λk

!

(Var(x , tk) = Var(x , t, k)).

ut

4.6 Coinductive rule format characterization

In the former Sections 4.2–4.5 we developed syntactic compositionality results (SOS rule
and specification formats) w.r.t. the compositionality properties of non-extensiveness,
non-expansiveness, Lipschitz continuity and uniform continuity. In this section we de-
velop now a theory to relate syntactic compositionality properties with semantic com-
positionality properties (moduli of continuity). This allows us not only to define for any
modulus of continuity an expressive specification format (Theorem 4.54) but also to de-
rive from any given specification the moduli of continuity of the specified operators (The-
orem 4.58). Technically, the specification rules induce a function on the space of Lipschitz
factor assignments such that the prefixed points of this function are consistent Lipschitz
factor assignments, i.e. those that denote valid Lipschitz factors of each operator. Intu-
itively, the function describes the process replication along the specified transitions and
the prefixed points satisfy a replication invariance condition (mimicking the bisimulation
metric invariance condition). In other words, consistent Lipschitz factor assignments are
those that are invariant along the transitions described by the rules.

4.6.1 Finite projection Lipschitz continuous operators

We will start by developing an alternative (coinductive) specification format to specify
Lipschitz continuous and uniformly continuous operators. To keep the presentation simple

89

Chapter 4. Specification of compositional operators

we consider only Lipschitz and uniformly continuous operators. It is straightforward to
extend all developments in this section to include also non-extensive operators. For the
remainder of this section we assume a PTSS P = (Σ, A, R) and a Lipschitz factor assign-
ments L ∈ LΣ, i.e. we assume Notation 4.36 with Σ1 an empty signature and Σ2 = Σ.

Proposition 4.41. (LΣ,v) is a complete lattice.

Proof. First, observe that (R∞≥0,≤) is a complete lattice. Let M ⊆ LΣ be an arbitrary
set of Lipschitz factor assignments. The supremum of M is given by (supM)k(f) =
supL∈M Lk(f), and the infimum of M is given by (infM)k(f) = infL∈M Lk(f). Hence,
(LΣ,v) is a complete lattice. ut

It is clear that the bottom element of (LΣ,v) is the LFA 0 ∈ LΣ given by 0k(f) = 0
for all k ∈ N and f ∈ Σ.

Definition 4.42 (Semantic consistency). Let L ∈ LΣ be a LFA and k ∈ N. We call L
consistent with the up-to-k bisimilarity metric dk if

dk(f (s1, . . . , sn), f (t1, . . . , tn))≤ Lk(f)
n
∑

i=1

dk(si , t i)

for all operators f ∈ Σ and all terms si , t i ∈ T(Σ). Furthermore, we call L consistent with
the bisimilarity metric d if L is consistent with dk for all k ∈ N.

Hence L ∈ LΣ is consistent with dk if each operator f with Lk(f) <∞ is Lk(f)-
Lipschitz continuous w.r.t. dk.

We proceed by lifting LFAs from operators to terms.

Definition 4.43 (Lifting of a Lipschitz factor assignment). Let L ∈ LΣ be a LFA. The
lifting of L is a Lipschitz factor assignment on terms given as the mapping L : (N× (T(Σ)∪
DT(Σ))×V)→ R∞≥0 defined by:

Lk(t,ζ) =















1 if t = ζ

Lk(f)
n
∑

i=1

Lk(t i ,ζ) if t = f (t1, . . . , tn)

0 otherwise

Lk(θ ,ζ) =























































1 if θ = ζ
Lk(t,ζ) if θ = δ(t)
∑

i∈I

pi · Lk(θi ,ζ) if θ =
∑

i∈I

piθi

Lk(f)
n
∑

i=1

Lk(θi ,ζ) if θ = f (θ1, . . . ,θn) and ζ ∈ V s

Lk(f)
n
∑

i=1

Lk(θi ,ζ) if θ = f (θ1, . . . ,θn) and ζ ∈ Vd

0 otherwise

with Lk(f) =max(Lk(f), 1).

90

4.6. Coinductive rule format characterization

The Lipschitz factor of a state term arises from the functional composition of the
Lipschitz moduli of continuity of the operators in the state term. This is also the case
for distribution terms except for operators with Lk(f)< 1 (case 5 of Lk(θ ,ζ)). As shown
in Examples 4.2 and 4.3, if f has a modulus of continuity on state terms below 1-Lipschitz
continuity (e.g.∞-non-extensiveness), then the modulus of continuity of f on distribu-
tion terms is 1-Lipschitz continuity (but not smaller).

The lifting of a LFA preserves consistency.

Proposition 4.44. Let L ∈ LΣ be a LFA and k ∈ N. If L is consistent with dk, then for all
closed substitutions σ1,σ2 : V → T(Σ)∪DT(Σ) we get

1. dk(σ1(t),σ2(t))≤
∑

x∈V s
Lk(t, x) · dk(σ1(x),σ2(x)) for any state term t ∈ T(Σ)

2. K(dk)(σ1(θ),σ2(θ))≤
∑

x∈V s
Lk(θ , x) · dk(σ1(x),σ2(x))+

∑

µ∈Vd
Lk(θ ,µ) ·K(dk)(σ1(µ),σ2(µ)) for any distribution term θ ∈ DT(Σ).

Proof. We start with showing Proposition 4.44.1. We reason by structural induction over
t. The base case t = x ∈ V s is immediate since Lk(x , x) = 1. Consider the inductive step
t = f (t1, . . . , tn). We have

dk(σ1(f (t1, . . . , tn)),σ2(f (t1, . . . , tn)))

≤Lk(f)
n
∑

i=1

dk(σ1(t i),σ2(t i))

≤Lk(f)
n
∑

i=1

∑

x∈V s

Lk(t i , x) · dk(σ1(x),σ2(x))

=
∑

x∈V s

�

Lk(f) ·
n
∑

i=1

Lk(t i , x)

�

· dk(σ1(x),σ2(x))

=
∑

x∈V s

Lk(f (t1, . . . , tn), x) · dk(σ1(x),σ2(x)).

with step 1 by consistency of Lk with dk, step 2 by the inductive hypothesis and step 4 by
the definition of Lk(f (t1, . . . , tn), x).

We proceed by showing Proposition 4.44.2. We reason by structural induction over
θ . The base case θ = µ is immediate since Lk(µ,µ) = 1. The base case θ = δ(t)
follows directly from K(dk)(σ1(δ(t)),σ2(δ(t))) = dk(σ1(t),σ2(t)), Proposition 4.44.1,
and Lk(δ(t), x) = Lk(t, x).

Consider the inductive step θ =
∑

i∈I piθi . We have

K(dk)
�

σ1

�

∑

i∈I

piθi

�

,σ2

�

∑

i∈I

piθi

��

≤
∑

i∈I

pi K(dk)(σ1(θi),σ2(θi))

≤
∑

i∈I

pi

�

∑

x∈V s

Lk(θi , x) · dk(σ1(x),σ2(x)) +
∑

µ∈Vd

Lk(θi ,µ) ·K(dk)(σ1(µ),σ2(µ))
�

91

Chapter 4. Specification of compositional operators

=
∑

x∈V s

Lk

�

∑

i∈I

piθi , x

�

· dk(σ(x),σ
′(x)) +

∑

µ∈Vd

Lk

�

∑

i∈I

piθi ,µ

�

·K(dk)(σ1(µ),σ2(µ))

with step 1 by Proposition 2.32.3, step 2 by the inductive hypothesis, and step 3 by the
definition of Lk.

Finally, consider the inductive step θ = f (θ1, . . . ,θn). We have

K(dk)(σ1(f (θ1, . . . ,θn)),σ2(f (θ1, . . . ,θn)))

≤Lk(f)
n
∑

i=1

K(dk)(σ1(θi),σ2(θi))

≤Lk(f)
n
∑

i=1

∑

x∈V s

Lk(θi , x) · dk(σ1(x),σ2(x)) +
∑

µ∈Vd

Lk(θi ,µ) ·K(dk)(σ1(µ),σ2(µ))

!

=
∑

x∈V s

dk(σ1(x),σ2(x)) · Lk(f) ·
n
∑

i=1

Lk(θi , x) +

∑

µ∈Vd

K(dk)(σ1(µ),σ2(µ)) · Lk(f) ·
n
∑

i=1

Lk(θi ,µ)

≤
∑

x∈V s

dk(σ1(x),σ2(x)) · Lk(f) ·
n
∑

i=1

Lk(θi , x) +

∑

µ∈Vd

K(dk)(σ1(µ),σ2(µ)) · Lk(f) ·
n
∑

i=1

Lk(θi ,µ)

=
∑

x∈V s

Lk(f (θ1, . . . ,θn), x) · dk(σ1(x),σ2(x)) +

∑

µ∈Vd

Lk(f (θ1, . . . ,θn),µ) ·K(dk)(σ1(µ),σ2(µ))

with step 1 by Corollary 2.34, step 2 by the inductive hypothesis, and step 5 by the defin-
ition of Lk. ut

The rules R give rise to a mapping R: LΣ → LΣ with R(L) defined as the Lipschitz
factor assignment obtained by applying the rules of R to L.

Definition 4.45 (R-extension). The R-extension of LFAs is the mapping3 R: LΣ → LΣ
defined by

R(L)0(f) = 0

R(L)k+1(f) = sup
r∈R f

r(f)
max
i=1

λ · Lk(trgt(r), x i) +
∑

µ∈der(r,x i)

Lk(trgt(r),µ)

!

for all L ∈ LΣ and f ∈ Σ.

3The symbol R denotes both the set of rules of some specification and the R-extension mapping of LFAs
induced by a set of rules R. The meaning of symbol R will always be clear from the application context.

92

4.6. Coinductive rule format characterization

Intuitively, the lifted LFA on terms (Definition 4.43) is obtained by structural induc-
tion over terms, while the R-extended LFA (Definition 4.45) is obtained by operational
induction over rules. The R-extension of Lipschitz factor assignments preserves semantic
consistency.

Proposition 4.46. Let L ∈ LΣ be a LFA and k ∈ N. If L is consistent with dk, then R(L) is
consistent with dk+1.

Proof. We need to show that

dk+1(f (s1, . . . , sn), f (t1, . . . , tn))≤ (R(L))k+1(f)
n
∑

i=1

dk+1(si , t i)

for all si , t i ∈ T(Σ) and any f ∈ Σ, assuming that

dk(f (s1, . . . , sn), f (t1, . . . , tn))≤ Lk(f)
n
∑

i=1

dk(si , t i)

for all si , t i ∈ T(Σ) and any f ∈ Σ.
We will use the following notation. Given a closed substitutionσ : V → T(Σ)∪DT(Σ)

and a rule r ∈ R we write σ |= r if for all positive premises x i

ai,k
−−→ µi,k ∈ pprem(r) we

have σ(x i)
ai,k
−−→ σ(µi,k) ∈ −→, and for all negative premises x i

bi,l
−→6 ∈ nprem(r) we have

that σ(x i)
bi,l
−→ π 6∈ −→ for all π ∈ ∆(T(Σ)). We write X r for the set of source variables

{x1, . . . , xn} of r. We denote by r(σ1,σ2) the set of all pairs of substitutions (σ′1,σ′2)
that coincide on the source variables X r with (σ1,σ2) and that satisfy the bisimulation
transfer condition. Technically, (σ′1,σ′2) ∈ r(σ1,σ2) if σ′1 |= r, σ′2 |= r, σ′1 � X r = σ1 �

X r , σ
′
2 � X r = σ2 � X r , and for all positive premises x i

ai,k
−−→ µi,k ∈ pprem(r) we have

λ ·K(dk)(σ′1(µi,k),σ′2(µi,k))≤ dk+1(σ′1(x i),σ′2(x i)).
Let σ1,σ2 be the substitution defined by σ1(x i) = si , σ2(x i) = t i , and identity for all

other variables. Then

dk+1(f (s1, . . . , sn), f (t1, . . . , tn))
= sup

a∈A
{H(λ ·K(dk))(der(f (s1, . . . , sn), a), der(f (t1, . . . , tn), a))}

≤λ sup
r∈R f

(σ′1,σ′2)∈r(σ1,σ2)

�

K(dk)(σ
′
1(trgt(r)),σ′2(trgt(r)))

�

≤λ sup
r∈R f

(σ′1,σ′2)∈r(σ1,σ2)

¨

n
∑

i=1

�

dk(σ
′
1(x i),σ

′
2(x i)) · Lk(trgt(r), x i) +

∑

µ∈der(r,x i)

K(dk)(σ
′
1(µ),σ

′
2(µ)) · Lk(trgt(r),µ)

��

= sup
r∈R f

(σ′1,σ′2)∈r(σ1,σ2)

� n
∑

i=1

�

dk(σ
′
1(x i),σ

′
2(x i)) ·λ · Lk(trgt(r), x i)+

93

Chapter 4. Specification of compositional operators

∑

µ∈der(r,x i)

λ ·K(dk)(σ
′
1(µ),σ

′
2(µ)) · Lk(trgt(r),µ)

��

≤ sup
r∈R f

(σ′1,σ′2)∈r(σ1,σ2)

� n
∑

i=1

�

dk(σ
′
1(x i),σ

′
2(x i)) ·λ · Lk(trgt(r), x i)+

∑

µ∈der(r,x i)

dk+1(σ
′
1(x i),σ

′
2(x i)) · Lk(trgt(r),µ)

��

≤ sup
r∈R f

(σ′1,σ′2)∈r(σ1,σ2)

� n
∑

i=1

dk+1(σ
′
1(x i),σ

′
2(x i))

�

λ · Lk(trgt(r), x i)+

∑

µ∈der(r,x i)

Lk(trgt(r),µ)

��

≤ sup
r∈R f

(σ′1,σ′2)∈r(σ1,σ2)

�

n
max
i=1

�

λ · Lk(trgt(r), x i) +
∑

µ∈der(r,x i)

Lk(trgt(r),µ)

�

·

n
∑

i=1

dk+1(σ
′
1(x i),σ

′
2(x i))

�

= sup
r∈R f

�

n
max
i=1

�

λ · Lk(trgt(r), x i) +
∑

µ∈der(r,x i)

Lk(trgt(r),µ)

��

·

n
∑

i=1

dk+1(σ1(x i),σ2(x i))

=(R(L))k+1(f)
n
∑

i=1

dk+1(si , t i)

where step 2 follows by the definition of functional H, step 3 follows by Proposition 4.44.2,
step 5 follows from (σ′1,σ′2) ∈ r(σ1,σ2) and the bisimulation transfer condition H(λ ·
K(dk))(der(σ′1(x i), a), der(σ′2(x i), a))≤ dk+1(σ′1(x i),σ′2(x i)), and step 6 by dk v dk+1.

ut

Corollary 4.47. Let L ∈ LΣ be a LFA. If L is consistent with d, then R(L) is consistent with
d.

Proof. By definition, L is consistent with d iff L is consistent with dk for all k ∈ N. By
Proposition 4.46 we get that R(L) is consistent with dk for all k ∈ N>0. Finally, all LFAs
are clearly consistent with d0 = 0. Thus R(L) is consistent with dk for all k ∈ N, i.e. R(L)
is consistent with d. ut

94

4.6. Coinductive rule format characterization

The R-extension mapping allows us to specify a canonical LFA given as the least
fixed-point of R. Existence and uniqueness follow by the Knaster-Tarski theorem using
that (LΣ,v) is a complete lattice (Proposition 4.41) and that R is monotone (Proposi-
tion 4.48). Since the bottom LFA 0 ∈ LΣ is consistent with d0 and R preserves consistency
of LFAs (Proposition 4.46 and Corollary 4.47), we get that the canonical LFA is consistent
with d. The canonical LFA provides the least restricting syntactic requirements for the
specified operators.

Proposition 4.48. The R-extension mapping R is order-preserving on (LΣ,v).

Proof. Assume arbitrary Lipschitz factor assignments L, M ∈ LΣ with L v M . We need to
show R(L)v R(M), namely

∀k ∈ N. ∀ f ∈ Σ. R(L)k(f)≤ R(M)k(f). (4.18)

We proceed by induction over k. The base case k = 0 is trivial since R(L)0(f) = R(M)0(f) =
0 for all f ∈ Σ. For the induction step k+1 we assume for some fixed k ∈ N the induction
hypothesis

R(L)k(f)≤ R(M)k(f) (4.19)

for all f ∈ Σ. In order to show R(L)k+1(f) ≤ R(M)k+1(f) we apply Definition 4.45 and
show

sup
r∈R f

r(f)
max
i=1

λ · Lk(trgt(r), x i) +
∑

µ∈der(r,x i)

Lk(trgt(r),µ)

!

≤

sup
r∈R f

r(f)
max
i=1

λ ·Mk(trgt(r), x i) +
∑

µ∈der(r,x i)

Mk(trgt(r),µ)

! (4.20)

for each f ∈ Σ. First, note that the lifting of Lipschitz factor assignments L and M pre-
serves the order of the induction hypothesis (Equation 4.19), i.e.

Lk(θ ,ζ)≤ Mk(θ ,ζ)

for all θ ∈ DT(Σ) and each ζ ∈ V . By monotonicity of summation, multiplication with
positive scalar, max and sup (i.e. the operators used to define R(L)k+1 and R(M)k+1, Defin-
ition 4.45) Equation 4.20 is given and we derive now

R(L)k+1(f)≤ R(M)k+1(f)

for each f ∈ Σ. To summarize, R(L)k(f) ≤ R(M)k(f) for each f ∈ Σ and all k ∈ N.
Hence, the proof goal R(L)v R(M) of Equation 4.18 is given. Thus, R is order-preserving
on (LΣ,v). ut

Definition 4.49 (Canonical LFA). Let P = (Σ, A, R) be a PTSS. We call LP = limn→∞ Rn(0)
the canonical LFA of P.

Dual to the notion of semantic consistency of LFAs (Definition 4.42) we introduce
now the notion of syntactic consistency of LFAs. Intuitively, a syntactically consistent LFA
ensures that the Lipschitz factors are compatible with the rules.

95

Chapter 4. Specification of compositional operators

Definition 4.50 (Syntactic consistency). Let P = (Σ, A, R) be a PTSS and L ∈ LΣ some
LFA. We call L consistent with P (or alternatively L is P-consistent) if R(L)v L.

In other words, all prefixed points of R are consistent with P. In particular, the ca-
nonical LFA LP is consistent with P. Moreover, LP is the least LFA consistent with P. The
syntactic consistency condition R(L) v L of LFA L with a specification P = (Σ, A, R) is a
syntactical invariance condition on P that mimics the semantical bisimulation invariance
condition B(d)v d on the induced model (T(Σ), A,−→).

Semantic consistency of a LFA L (Definition 4.42) means consistency of L with the
bisimilarity metric d on the induced model (T(Σ), A,−→), whereas syntactic consistency of
L (Definition 4.50) means consistency of L with the specification P = (Σ, A, R) from which
the model is derived. As expected, syntactic consistency implies semantic consistency.

Proposition 4.51 (Syntactic consistency implies semantic consistency). Let P = (Σ, A, R)
be a PTSS and L ∈ LΣ a LFA. If L is consistent with P then L is also consistent with d.

Proof. By Definition 4.42, L is consistent with d iff Lk is consistent with dk for all k ∈ N.
Hence we have to prove that for an arbitrary k ∈ N, it holds that L is consistent with
dk. We proceed by induction over k. The base case k = 0 is immediate since d0 = 0
is the constant zero function and any L ∈ LΣ is consistent with d0. The inductive step
k + 1 follows directly by Proposition 4.46, relation R(L) v L, and the observation that
consistency is preserved by the order relation v on LΣ, i.e. for any M , M ′ ∈ LΣ with
M v M ′, if M is consistent with dk+1, then M ′ is consistent with dk+1. ut

4.6.2 Uniformly continuous operators

A P-consistent LFA allows us to derive for each operator f an upper bound on the distance
between f -composed terms.

Definition 4.52 (Induced upper bound). Let P = (Σ, A, R) be a PTSS and L ∈ LΣ a LFA.
We define for any n-ary operator f ∈ Σ the upper bound on the distance of f -composed
processes induced by L as the mapping ωL, f : (R≥0)n→ R∞≥0 defined by

ωL, f (ε1, . . . ,εn) = inf
k∈N

�

Lk(f)
n
∑

i=1

εi +λ
k

�

If L is consistent with P, then ωL, f is an upper bound on the distance between f -
composed terms w.r.t. d.

Theorem 4.53. Let P = (Σ, A, R) be a PTSS and L ∈ LΣ a LFA consistent with P. Then

d(f (s1, . . . , sn), f (t1, . . . , tn))≤ωL, f (d(s1, t1), . . . ,d(sn, tn))

for all operators f ∈ Σ and terms si , t i ∈ T(Σ).

Proof. Remember that by Proposition 4.51 the syntactic consistency of L implies semantic
consistency of L, namely we have that L is consistent with d, which means that L is
consistent with dk for all k ∈ N. Then we have

d(f (s1, . . . , sn), f (t1, . . . , tn))

96

4.6. Coinductive rule format characterization

≤ inf
k∈N

�

dk(f (s1, . . . , sn), f (t1, . . . , tn)) +λ
k
�

(by Proposition 4.32)

≤ inf
k∈N

�

Lk(f)
n
∑

i=1

dk(si , t i) +λ
k

�

(since L is consistent with dk)

≤ inf
k∈N

�

Lk(f)
n
∑

i=1

d(si , t i) +λ
k

�

(by dk v d)

=ωL, f (d(s1, t1), . . . ,d(sn, tn)).

ut

Moreover, if L is consistent with P, then ωL, f is a modulus of continuity of f w.r.t. d
if all Lipschitz factors Lk(f) of f are finite (c.f. Theorem 4.33).

Theorem 4.54. Let P = (Σ, A, R) be a PTSS and L ∈ LΣ a LFA consistent with P. An
operator f ∈ Σ is

1. uniformly continuous if Lk(f)<∞ for all k ∈ N,

2. Lipschitz continuous if supk∈N Lk(f)<∞, and

3. K-Lipschitz continuous if Lk(f)≤ K for all k ∈ N.

Proof. We start with Theorem 4.54.1. Since L is consistent with P, by Proposition 4.51
we get that L is consistent with d, namely Lk is consistent with dk for all k ∈ N. Formally,
for all k ∈ N we have (Definition 4.42):

dk(f (s1, . . . , sn), f (t1, . . . , tn))≤ Lk(f) ·
n
∑

i=1

dk(si , t i)

for all si , t i ∈ T(Σ). By the assumption Lk(f) <∞, we infer that f is Lk(f)-Lipschitz
continuous w.r.t. dk. Hence, f is Lipschitz continuous w.r.t. dk for each k ∈ N. By The-
orem 4.33 we get that f is uniformly continuous w.r.t. d.

We proceed with Theorem 4.54.2. Since, supk∈N Lk(f) <∞, let K = supk∈N Lk(f).
Then by Theorem 4.54.3 we get that f is K-Lipschitz continuous. Hence, f is Lipschitz
continuous.

Finally, we show Theorem 4.54.3. By Theorem 4.53 we know that

d(f (s1, . . . , sn), f (t1, . . . , tn))≤ inf
k∈N

�

Lk(f)
n
∑

i=1

d(si , t i) +λ
k

�

for all terms si , t i ∈ T(Σ). Remind that λ < 1. Since Lk(f)≤ K for all k ∈ N, we get

inf
k∈N

�

Lk(f)
n
∑

i=1

d(si , t i) +λ
k

�

≤ inf
k∈N

�

K
n
∑

i=1

d(si , t i) +λ
k

�

(since Lk(f)≤ K)

97

Chapter 4. Specification of compositional operators

=K
n
∑

i=1

d(si , t i) (since inf
k∈N
λk = 0)

Hence, f is K-Lipschitz continuous (Definition 4.31.2). ut

Hence, if f is Lipschitz continuous, then supk∈N Lk(f) is a Lipschitz factor of f . Since
the canonical LFA LP is the least LFA consistent with P it suffices to verify the conditions
of Theorem 4.54 on the canonical LFA.

We provide now an example that shows how to derive the canonical LFA, how to
compute the modulus of continuity, and how to determine the resp. compositionality
property.

Example 4.55. Let P = (Σ, A, R) be the PTSS specifying the synchronous parallel com-
position operator (Example 4.14) and the copy operator (Example 4.34). Let L ∈ LΣ be
defined as L0(|) = 0 and L0(cp) = 0, and Lk(|) = 1 and Lk(cp) = 2k for any k ∈ N>0.
First we show that L is the canonical LFA LP = limn→∞ Rn(0) (Definition 4.49). Ob-
serve that Rn+1(0)k = Rn(0)k for all k ≤ n. Hence, we need to prove that Rn(0)n = Ln
for each n ∈ N. We reason by induction over n. The base case R0(0)0(|) = 0 = L0(|
) and R0(0)0(cp) = 0 = L0(cp) is immediate. The induction step is Rn+1(0)n+1(|) =
max(λ · Rn(0)n(µ | ν, x) + Rn(0)n(µ | ν,µ),λ · Rn(0)n(µ | ν, y) + Rn(0)n(µ | ν,ν)) =
(inductive hypothesis)max(λ · Ln(µ | ν, x) + Ln(µ | ν,µ),λ · Ln(µ | ν, y) + Ln(µ | ν,ν)) =
max(0+ 1,0+ 1) = 1 = Ln+1(|), and Rn+1(0)n+1(cp) = max(Rn(0)n(µ,µ), Rn(0)n(cp(µ) |
cp(ν),µ) + Rn(0)n(cp(µ) | cp(ν),ν)) = (inductive hypothesis) max(Ln(µ,µ), Ln(cp(µ) |
cp(ν),µ) + Ln(cp(µ) | cp(ν),ν)) = max(1,2n + 2n) = 2n+1 = Ln+1(cp). Hence, we can
conclude that L is the canonical LFA. Then, by Theorem 4.53 we get that ω(L,|)(ε1,ε2) =
ε1 + ε2 and ω(L,cp)(ε) = infk∈N(2kε+λk) are upper bounds for | and cp w.r.t. d. By The-
orem 4.54 get that the operator | is 1-Lipschitz continuous and that the operator cp is
uniformly continuous. Moreover, the upper bounds are indeed moduli of continuity.

4.6.3 From modulus of continuity to operator specifications

In reverse, we derive now from any modulus of continuity ω a LFA L s.t. any PTSS P
consistent with L specifies an operator that has ω as modulus of continuity. The derived
LFA depends onω and the underlying model of process replication. The model of process
replication is given as a mapping χ : R≥0 × N → R≥0 assigning to each step k an upper
bound on the number of spawned process instances. The first argument is a fixed growth
factor.

Definition 4.56 (Growth function). We define the following growth functions χ : R≥0 ×
N→ R≥0

1. χ(c, k) = c (constant),

2. χ(c, k) = c · k (linear growth),

3. χ(c, k) = ck (exponential growth).

98

4.6. Coinductive rule format characterization

The constant growth function expresses that at most c process instances are spawned
irrespective of for how many steps the combined process evolves (cf. non-recurring pro-
cess replication, Examples 4.14–4.16). The linear growth function will be used to model
operators with bounded stepwise replication (cf. recurring step-bounded process replica-
tion, Example 4.24 and Corollary 4.25). Similarly, the exponential growth function allows
us to model continuously replicating operators (cf. recurring step-unbounded process rep-
lication, Example 4.34).

Definition 4.57 (LFA induced by ω and χ). Assume a function ω: [0,1]n → [0,1] such
that ω(0, . . . , 0) = 0 and lim(ε1,...,εn)→(0,...,0)ω(ε1, . . . ,εn) =ω(0, . . . , 0), a growth function
χ and an operator f ∈ Σ. The LFA L f

ω,χ induced by ω and χ for f is defined by

L f
ω,χ,k(g) =

¨

χ(C , k) if g = f
∞ if g 6= f

with C = sup
�

c ∈ R≥0 | ∀L ∈ LΣ.
�

(∀k ∈ N.Lk(f) = χ(c, k))⇒ωL, f ≤ω
�	

.

The LFA induced by the exponential growth function is the LFA arising from maximal
recurring process replications. The recurring process replication factor C is the maximal
process replication per single transition step (possibly repeated along the evolution of the
combined process).

Theorem 4.58. Let P = (Σ, A, R) be a PTSS and L f
ω,χ be the LFA induced by ω and χ for

an operator f ∈ Σ. If there exists a P-consistent LFA L ∈ LΣ with L v L f
ω,χ , then P specifies

f s.t. f admits ω as modulus of continuity.

Proof. Since L is P-consistent, by Theorem 4.53 we get that ωL, f is an upper bound on
the distance between f -composed processes. We get ωL, f ≤ω by

ωL, f (ε1, . . . ,εn)

= inf
k∈N

�

Lk(f)
n
∑

i=1

εi +λ
k

�

(Definition 4.52)

≤ inf
k∈N

�

L f
ω,χ,k(f)

n
∑

i=1

εi +λ
k

�

(L v L f
ω,χ)

= inf
k∈N

�

χ(C , k)
n
∑

i=1

εi +λ
k

�

(Definition of L f
ω,χ,k)

≤ω(ε1, . . . ,εn) (Definition of C)

thus implying that ω is an upper bound on the distance between f -composed processes.
Since by definition ω(0, . . . , 0) = 0 and ω is continuous at 0, we get that ω is a modulus
of continuity of f . ut

Example 4.59. To define a unary operator that may not increase the behavioral distance
of its argument, assume the modulus of continuity ω(ε) = ε (1-Lipschitz continuity).
The LFA L f

ω,χ induced by ω and χ(1, k) = 1 for f (Definition 4.56.1, Definition 4.57,

99

Chapter 4. Specification of compositional operators

Definition 4.52) gives L f
ω,χ,k(f) = 1. Let f be the operator specified by the rule (with

θ ∈ DT(Σ) be any distribution term)

x
a
−→ µ

f (x)
a
−→ θ

Clearly, θ = µ specifies operator f s.t. L f
ω,χ is consistent with P (Definition 4.50) and

that operator f admits as modulus of continuity ω (Theorem 4.58). Let t ∈ T(Σ) be any
closed term describing some alternative process behavior. With the same argument, also
θ = δ(µ | µ)⊕p δ(t) with p ≤ 1/2 (2 instances proceed with probability at most 1/2),
θ = δ(x | x) ⊕p δ(t) with p ≤ 1/(2λ) (2 instances proceed with one step delay with
probability at most 1/(2λ)), and θ = δ(an.(x | x)) ⊕p δ(t) with p ≤ 1/(2λn+1) (an._
is action prefix operator performing n-times action a followed by the argument process)
specify each operator f admitting ω as modulus of continuity (Theorem 4.58).

We conclude by observing that θ = f (µ) | µ specifies operator f s.t. P is consistent
with the LFA L f

ω,χ whereby L f
ω,χ,k(f) = 2k is obtained from the linear growth function

χ(2, k) = 2k and the modulus of continuityω(ε) = infk∈N(2kε+λk). In the same way we
can derive that θ = f (µ) | f (µ) specifies operator f s.t. P is consistent with the LFA L f

ω,χ

whereby L f
ω,χ,k(f) = 2k is obtained from the exponential growth function χ(2, k) = 2k

and the modulus of continuity ω(ε) = infk∈N(2kε+λk).

4.6.4 Syntactic and semantic compositionality

LFAs induced by moduli of continuity and growth functions (Definition 4.57) are compos-
itional. This allows us to determine the LFA for multiple operators separately, and then
to specify those operators simultaneously in a specification consistent with the composed
LFAs.

Theorem 4.60. Let P = (Σ, A, R) be a PTSS and G ⊆ Σ be a set of operators. For each g ∈ G
let L g

ωg ,χg
be the LFA induced by some ωg and χg for g. If for each g ∈ G the LFA L g

ωg ,χg
is

consistent with P, then also the LFA infg∈G L g
ωg ,χg

is consistent with P.

Proof. Since each L g
ωg ,χg

with g ∈ G is consistent with P, we have R(L g
ωg ,χg

) v L g
ωg ,χg

for each g ∈ G (Definition 4.50). It follows infg∈G R(L g
ωg ,χg

) v infg∈G L g
ωg ,χg

(Propos-
ition 4.41). By the monotonicity of R (Proposition 4.48) we have R(infg∈G L g

ωg ,χg
) v

infg∈G R(L g
ωg ,χg

). Thus, R(infg∈G L g
ωg ,χg

) v infg∈G L g
ωg ,χg

, namely infg∈G L g
ωg ,χg

is consist-
ent with P (Definition 4.50). ut

Upper bounds of operators (Definition 4.30) are compositional. Hence, we define now
an upper bound on the distance between two closed instances of a term by composing
the moduli of continuity of the operators of that term. In essence, the following theorem
lifts Theorem 4.53 to terms.

100

4.7. Deciding the compositionality property

Theorem 4.61. Let P = (Σ, A, R) be a PTSS, L ∈ LΣ a LFA consistent with P and t ∈ T(Σ)
any open term. For all closed substitutions σ1,σ2 : V → T(Σ) we get

d(σ1(t),σ2(t))≤ inf
k∈N

∑

x∈V s

Lk(t, x) · d(σ1(x),σ2(x)) +λ
k

!

Proof.

d(σ1(t),σ2(t))

≤ inf
k∈N

�

dk(σ1(t),σ2(t)) +λ
k
�

(Proposition 4.32)

≤ inf
k∈N

∑

x∈V s

Lk(t, x) · dk(σ1(x),σ2(x)) +λ
k

!

(Proposition 4.44)

≤ inf
k∈N

∑

x∈V s

Lk(t, x) · d(σ1(x),σ2(x)) +λ
k

!

(dk v d).

ut

Example 4.62. We start by exemplifying Theorem 4.60. We consider the specification
P = (Σ, A, R) of operators G = {_ | _,cp(_)}. As we showed earlier in Example 4.55
the LFAs L|

ω|,χ|,k
(|) = 1, L|

ω|,χ|,k
(cp) = ∞ and Lcp

ωcp,χcp,k(cp) = 2k, Lcp
ωcp,χcp,k(|) = ∞

(Definition 4.57) are consistent with P. Then by Theorem 4.60 L = infg∈G L g
ωg ,χg

with

Lk(|) = 1 and Lk(cp) = 2k is consistent with P.
We proceed by exemplifying Theorem 4.61. Consider terms t = cp(x | x). By us-

ing Lk(|) = 1 and Lk(cp) = 2k (Example 4.55), we get (Definition 4.43) Lk(cp(x |
x), x) = Lk(cp) · Lk(x | x , x) = 2k · (Lk(|) · (Lk(x , x) + Lk(x , x)) = 2k+1. Hence, by The-
orem 4.61 we get d(σ1(t),σ2(t)) ≤ infk∈N(2k+1 · d(σ1(x),σ2(x)) + λk) for all closed
substitutions σ1,σ2 : V → T(Σ). Equally, for t = cp(x) | cp(x) we get Lk(cp(x) |
cp(x), x) = 2k+1 and d(σ1(t),σ2(t)) ≤ infk∈N(2k+1 · d(σ1(x),σ2(x)) + λk). The nest-
ing of the copy operator cp(cp(x)) induces Lk(cp(cp(x)), x) = 22k with distance bound
d(σ1(cp(cp(x))),σ2(cp(cp(x))))≤ infk∈N(22k · d(σ1(x),σ2(x)) +λk).

4.7 Deciding the compositionality property

The rule formats developed in the former sections determine simultaneously the compos-
itionality property of all specified operators. To exemplify this, consider a specification
P1 = (Σ1, A, R1) and a conservative extension P2 = (Σ2, A, R2) w P1. Given a Lipschitz
factor assignment L1 ∈ LΣ1

consistent with P1, then for any Lipschitz factor assignment
L2 ∈ LΣ2

consistent with P2, the Lipschitz factors for the operators in Σ2 \Σ1 may depend
on the Lipschitz factors L1 for operators in Σ1. For instance, considering Example 4.14
and PTSSs P1 specifying operator _ | _ and P2 specifying operator f . Let r f be the rule
specifying operator f . If θ = trgt(r f) contains operator _ | _, then the Lipschitz factor
L(f) of operator f ∈ Σ2 \Σ1 depends on the Lipschitz factor L(|) of operator | ∈ Σ1. In
other words, (except if P2 is disjoint to P1), in order to decide which compositionality

101

Chapter 4. Specification of compositional operators

property the newly specified operators in Σ2 \Σ1 have we need to consider also the com-
positionality properties of the operators in Σ1. Thus, the compositonality property of an
operator in the extension f ∈ Σ2 \Σ1 cannot (in general) be decided by only inspecting
the specification rules r ∈ R f ⊆ R2 \ R1.

We investigate now which compositionality properties allow for a local decision pro-
cedure, i.e. for which the compositionality property of an operator can be decided by only
inspecting the specification rules of that operator with mild assumptions on the remaining
operators.

Definition 4.63 (Finitely branching and finitely copying PTSS). Let P = (Σ, A, R) be any
PTSS. We call P

• finitely branching if for each operator f ∈ Σ the set of rules R f specifying f is finite,

• finitely copying if there are mappings Kd , Kv : Σ→ N s.t. for each f ∈ Σ we have

– depth(trgt(r))≤ Kd(f), and

– |Var(trgt(r))| ≤ Kv(f)

for all rules r ∈ R f .

Intuitively, Kd(f) (resp. Kv(f)) gives an upper bound on the depth (resp. an upper
bound on the number of variables) of the targets of rules specifying operator f . We
remark that the property of finitely branching PTSS bases on the cardinality of the set of
specification rules, while the property of finitely copying PTSS bases on the syntactical
structure of the specification rules. It is not hard to show that if a PTSS P is finitely
branching then P is finitely copying. We will show that each finitely copying PTSS specifies
uniformly continuous operators (Theorem 4.66).

Lemma 4.64. If a PTSS P = (Σ, A, R) is finitely branching, then P is finitely copying.

Proof. We construct the mappings Kd , Kv : Σ→ N witnessing that P is finitely copying as
follows:

Kd(f) =max
r∈R f

depth(trgt(r))

Kv(f) =max
r∈R f

|Var(trgt(r))|

for all operators f ∈ Σ. Note that Kd and Kv are well-defined since R f , depth(trgt(r))
and |Var(trgt(r))| are all finite. It is immediate that for each operator f ∈ Σ we have

depth(trgt(r))≤ Kd(f)
|Var(trgt(r))| ≤ Kv(f)

for all rules r ∈ R f . ut

Notation 4.65. For state and distribution terms we define by ops: T(Σ)∪DT(Σ)→ P(F)
the mapping that gives for ops(t) the set of all operator symbols in state term t ∈ T(Σ),
defined as ops(x) = ; and ops(f (t1, . . . , tn)) = { f }∪

⋃n
i=1 ops(t i), and for ops(θ) the set of

all operator symbols in distribution term θ ∈ DT(Σ), defined as ops(µ) = ;, ops(δ(t)) =
ops(t), ops(

∑

i∈I piθi) =
⋃

i∈I ops(θi) and ops(f (θ1, . . . ,θn)) = { f } ∪
⋃n

i=1 ops(θi).

102

4.7. Deciding the compositionality property

Theorem 4.66. Let P = (Σ, A, R) be a PTSS.

1. If P is finitely branching, then each f ∈ Σ is uniformly continuous w.r.t. d.

2. If P is finitely copying, then each f ∈ Σ is uniformly continuous w.r.t. d.

Before proving Theorem 4.66 we develop first an upper bound on the Lipschitz factor
of terms from the Lipschitz factors of the operators and the term depth.

Lemma 4.67. Let P = (Σ, A, R) be a PTSS and L ∈ LΣ any Lipschitz factor assignment.
Then

Lk(t,ζ)≤

(

1 if ops(t) = ;

|Var(t)|
�

maxg∈ops(t) Lk(g)
�depth(t)

if ops(t) 6= ;

for all k ∈ N, state or distribution term t ∈ T(Σ)∪DT(Σ) and variable ζ ∈ V .

Proof. Consider arbitrary k ∈ N and ζ ∈ V . Then we start with state terms t ∈ T(Σ). We
reason by induction over the structure of t. The base case t = x ∈ V s is immediate since by
definition Lk(x ,ζ) ∈ {0, 1}, hence Lk(x ,ζ) ≤ 1 (case ops(x) = ;). We proceed with the

inductive step t = f (t1, . . . , tn) and show Lk(t,ζ) ≤ |Var(t)|
�

maxg∈ops(t) Lk(g)
�depth(t)

(since ops(t) 6= ;). Then

Lk(t,ζ)

=Lk(f)
n
∑

i=1

Lk(t i ,ζ)

≤Lk(f)
n
∑

i=1

(

1 if ops(t i) = ;

|Var(t i)|
�

maxg∈ops(t i) Lk(g)
�depth(t i)

if ops(t i) 6= ;

≤Lk(f)
n
∑

i=1

(

1 if ops(t i) = ;

|Var(t i)|
�

maxg∈ops(t) Lk(g)
�depth(t i)

if ops(t i) 6= ;

≤Lk(f)
n
∑

i=1

|Var(t i)|
�

max
g∈ops(t)

Lk(g)
�depth(t i)

≤
�

max
g∈ops(t)

Lk(g)
� n
∑

i=1

|Var(t i)|
�

max
g∈ops(t)

Lk(g)
�depth(t i)

≤
�

max
g∈ops(t)

Lk(g)
� n
∑

i=1

|Var(t i)|
�

max
g∈ops(t)

Lk(g)
�maxn

i=1 depth(t i)

=

�

n
∑

i=1

|Var(t i)|

�

�

max
g∈ops(t)

Lk(g)
��

max
g∈ops(t)

Lk(g)
�maxn

i=1 depth(t i)

=|Var(t)|
�

max
g∈ops(t)

Lk(g)
�1+maxn

i=1 depth(t i)

=|Var(t)|
�

max
g∈ops(t)

Lk(g)
�depth(t)

103

Chapter 4. Specification of compositional operators

with step 1 by the definition of Lk, step 2 by the inductive hypothesis, step 3 by ops(t i) ⊆
ops(t), step 4 from the observations that in case ops(t i) = ;, i.e. t i = x ∈ V s, we have
|Var(t i)|(maxg∈ops(t) Lk(g))depth(t i) ≥ 1, since |Var(x)|= 1, maxg∈ops(t) Lk(g)≥ Lk(f)≥ 1
and depth(x) = 0, step 5 by f ∈ ops(t) and the last step by the definition of depth.

Consider now θ ∈ DT(Σ) an open distribution term. We reason by induction over
the structure of θ . The base case with θ a distribution variable follows exactly as above.
The base case with θ = δ(t) follows from Lk(δ(t),ζ) = Lk(t,ζ), Var(δ(t)) = Var(t),
depth(δ(t)) = depth(t) and the already proved case for t ∈ T(Σ) an open state term.

Consider now the induction step θ =
∑

i∈I piθi . We distinguish two cases. The first
case is ops(θ) 6= ;. We have

Lk(θ ,ζ)

=
n
∑

i=1

pi Lk(θi ,ζ)

≤
n
∑

i=1

pi

(

1 if ops(θi) = ;

|Var(θi)|
�

maxg∈ops(θi) Lk(g)
�depth(θi)

if ops(θi) 6= ;

≤
n
∑

i=1

pi |Var(θ)|
�

max
g∈ops(θ)

Lk(g)
�maxn

i=1 depth(θi)

=
n
∑

i=1

pi |Var(θ)|
�

max
g∈ops(θ)

Lk(g)
�depth(θ)

=|Var(θ)|
�

max
g∈ops(θ)

Lk(g)
�depth(θ)

.

with step 1 by the definition of Lk, step 2 by the inductive hypothesis, step 3 following
from the observation that |Var(θ)|(maxg∈ops(θ) Lk(g))maxn

i=1 depth(θi) ≥ 1 if ops(θi) = ;, and
step 4 from the definition of depth. The second case is ops(θ) = ;. Then, also ops(θi) = ;
for all i ∈ I and we get Lk(θ ,ζ) =

∑n
i=1 pi Lk(θi ,ζ)≤

∑n
i=1 pi = 1.

Finally, the inductive step θ = f (θ1, . . . ,θn) follows exactly as the case t = f (t1, . . . , tn)
above. ut

Proof of Theorem 4.66. Since P is finitely copying if P is finitely branching (Lemma 4.64),
it suffices to show Theorem 4.66.2. By Theorem 4.54.1 it is enough to provide a Lipschitz
factor assignment L ∈ LΣ such that L is consistent with P and Lk(f)<∞ for all operators
f ∈ Σ and for each k ∈ N. We will show that the canonical Lipschitz factor assignment
LP (Definition 4.49) satisfies

∀k ∈ N. ∀ f ∈ Σ. LP,k(f)<∞. (4.21)

We will show Equation 4.21 by induction over k. Remind that LP,k = Rk(0) by Defin-
ition 4.49, with 0 ∈ LΣ. Moreover, note that Rl(0)m = Rk(0)m whenever m ≤ l ≤ k.
Hence, Rk fixes the first k-Lipschitz factors of all operators.

The base case k = 0 is trivial since by definition

LP,0(f) = 0 (4.22)

104

4.7. Deciding the compositionality property

for all f ∈ Σ. For the induction step assume as induction hypothesis that

∀ f ∈ Σ. LP,k(f)<∞ (4.23)

for any fixed k. Consider any operator f ∈ Σ. By Definition 4.45 (with LP,k+1(f) =
Rk+1(0)k+1(f)) we get

LP,k+1(f) = sup
r∈R f

r(f)
max
i=1

λ · LP,k(trgt(r), x i) +
∑

µ∈der(r,x i)

LP,k(trgt(r),µ)

!

. (4.24)

By Lemma 4.67 and the finitely copying assumption we get

LP,k(trgt(r),ζ)≤

(

1 if ops(trgt(r)) = ;

Kv(f)
�

maxg∈ops(trgt(r)) LP,k(g)
�Kd (f)

if ops(trgt(r)) 6= ;
(4.25)

for any ζ ∈ V . If ops(trgt(r)) = ; then the right hand side of Equation 4.25 is clearly
finite. If ops(trgt(r)) 6= ; then, since ops(trgt(r)) is finite, LP,k(g) <∞ by the induction
hypothesis Equation 4.23, and Kd(f), Kv(f) are finite by definition, we get that the right
hand side of Equation 4.25 is finite. Then

λ · LP,k(trgt(r), x i) +
∑

µ∈der(r,x i)

LP,k(trgt(r),µ)≤

(λ+ Kv(f))

(

1 if ops(trgt(r)) = ;

Kv(f)
�

maxg∈ops(trgt(r)) LP,k(g)
�Kd (f)

if ops(trgt(r)) 6= ;

(4.26)

since |der(r, x i)| ≤ Kv(f). With the same argumentation as before the right-hand side of
Equation 4.26 is finite. Since the right-hand side of Equation 4.26 does not depend on
the rule r nor on the index i, and from the arbitrarity of f we derive from Equation 4.24
the inequality

∀ f ∈ Σ. LP,k+1(f)<∞ (4.27)

Hence, by the base case Equation 4.22 and the induction step that Equation 4.23⇒ Equa-
tion 4.27 we derive the proof goal Equation 4.21. Thus, using Theorem 4.54.1 on this
Lipschitz factor assignment LP we conclude that all operators f ∈ Σ are uniformly con-
tinuous. ut

Since finitely copying PTSSs are closed under finite union, the specification of uni-
formly continuous operators may be verified compositionally.

Corollary 4.68. Let P1 and P2 be PTSSs. If P1 and P2 are finitely copying, then all operators
specified by P1 ∪ P2 are uniformly continuous.

Proof. Assume P1 = (Σ1, A, R1) and P2 = (Σ2, A, R2). Let K1
d , K1

v : Σ1→ N be the mappings
witnessing that P1 is finitely copying, and let K2

d , K2
v : Σ2→ N be the mappings witnessing

that P2 is finitely copying. We define now the mappings Kd , Kv : Σ1 ∪Σ2→ N as Kd(f) =
max(K1

d (f), K2
d (f)) and Kv(f) = max(K1

v (f), K2
v (f)) for all f ∈ Σ1 ∩Σ2, Kd(f) = K1

d (f)
and Kv(f) = K1

v (f) for all f ∈ Σ1 \ Σ2 and Kd(f) = K2
d (f) and Kv(f) = K2

v (f) for all
f ∈ Σ2 \ Σ1. It is clear that Kd and Kv are mappings witnessing that P1 ∪ P2 is finitely
copying. ut

105

Chapter 4. Specification of compositional operators

4.8 Compositionality w.r.t. any behavioral metric

We developed in the former sections expressive rule and specification formats w.r.t. the
bisimilarity metric d formed by a bisimulation game (Definition 2.21) using the Kan-
torovich lifting K (Definition 2.17). Now we explore starting from the rule and specifica-
tion formats which properties of the behavioral metric suffice s.t. the specified operators
satisfy the respective compositionality properties. We consider the compositional proper-
ties of Lipschitz and uniform continuity.

4.8.1 Lifting functional induced bisimulation metric

We start by generalizing bisimulation metrics and define the notion of bisimulation metric
induced by some functional that lifts state metrics to distribution metrics.

Definition 4.69 (Lifting functional induced bisimulation metric). Let D: [0, 1]T(Σ)×T(Σ)→
[0, 1]∆(T(Σ))×∆(T(Σ)) be any function that lifts 1-bounded pseudometrics on T(Σ) to 1-
bounded pseudometrics on∆(T(Σ)). A 1-bounded pseudometric d on T(Σ) is a D-induced
λ-bisimulation metric with λ ∈ (0,1] if for all terms s, t ∈ T(Σ) with d(s, t) < 1, if s

a
−→ π

then there exists a transition t
a
−→ π′ s.t. λ ·D(d)(π,π′)≤ d(s, t).

We will prove that a lifting functional D satisfying monotonicity (Proposition 2.32.1)
induces a notion of least bisimulation metric (Proposition 4.70). Moreover, if D satisfies
also non-expansiveness of Dirac-embedding and compatibility with convex combinations
(Proposition 2.32.2 and Proposition 2.32.3), and preserves linear moduli of continuity
of operators (Corollary 2.34), then the rule and specification formats of the former sec-
tions specify operators satisfying the respective compositionality properties w.r.t. the least
bisimulation metric induced by D (Theorems 4.73, 4.74, 4.76).

For an arbitrary function D: [0,1]T(Σ)×T(Σ) → [0,1]∆(T(Σ))×∆(T(Σ)), the bisimulation
functional BD,λ : [0,1]T(Σ)×T(Σ) → [0,1]T(Σ)×T(Σ) is defined analogous to Definition 2.23
by

BD,λ(d)(s, t) = sup
a∈A
{H(λ ·D(d))(der(s, a), der(t, a))}

for all functions d : T(Σ)×T(Σ)→ [0,1] and terms s, t ∈ T(Σ).
If D is monotone, then BD,λ has the least fixed point on the lattice ([0,1]T(Σ)×T(Σ),v).

Proposition 4.70. Let D: [0,1]T(Σ)×T(Σ)→ [0,1]∆(T(Σ))×∆(T(Σ)) be monotone. Then

1. BD,λ is monotone.

2. BD,λ has a least fixed point.

Proof. Lemma 4.70.1 follows directly from the monotonicity of H and the fact that the
composition of monotone functions yields a monotone function. Lemma 4.70.2 follows
from Lemma 4.70.1 and the Knaster-Tarski theorem (since ([0, 1]T(Σ)×T(Σ),v) is a com-
plete lattice). ut

The prefixed points of BD,λ are precisely the D-induced λ-bisimulation metrics.

106

4.8. Compositionality w.r.t. any behavioral metric

Lemma 4.71. Let d : T(Σ)×T(Σ)→ [0,1] be any pseudometric. Then BD,λ(d)v d iff d is
a D-induced λ-bisimulation metric.

Proof. We have

BD,λ(d)v d

⇔∀s, t ∈ T(Σ). sup
a∈A
{H(λ ·D(d))(der(s, a), der(t, a))} ≤ d(s, t)

⇔∀s, t ∈ T(Σ).
�

d(s, t)< 1 =⇒ sup
a∈A
{H(λ ·D(d))(der(s, a), der(t, a))} ≤ d(s, t)

�

⇔∀s, t ∈ T(Σ). (d(s, t)< 1 =⇒

∀a ∈ A.∀(s, a,π) ∈ −→.∃(t, a,π′) ∈ −→.(λ ·D(d))(π,π′)≤ d(s, t)
�

⇔ d is a D-induced λ-bisimulation metric.

We consider in the second reasoning step only d(s, t)< 1 because the inequality is trivial
if d(s, t) = 1 since both d and H(λ ·D(d)) are 1-bounded pseudometrics. ut

Hence, if D is monotone, then on the one hand there exists a least fixed point of
BD,λ, on the other hand there exists a smallest D-induced λ-bisimulation metric, and they
coincide. We denote by dD,λ the least fixed point of BD,λ, and we name it as the D-induced
λ-bisimilarity metric. Moreover, we denote by dD,λ,k the pseudometric Bk

D,λ(0), and we
name it as the D-induced up-to-k λ-bisimilarity metric.

Proposition 4.72. The generalized Kantorovich lifting KV [Cha+14, Equation 3] with V =
([0, 1], dV) built on a linear distance function4 dV satisfies Proposition 2.32 and Corol-
lary 2.34.

Proof. The generalized Kantorovich lifting [Cha+14] is defined by

KV (d)(π,π′) = sup{dV (f̂ (π), f̂ (π′)) | f ∈ (T(Σ), d)→1 (V, dV)}

with f ∈ (T(Σ), d)→1 (V, dV) iff f ∈ (T(Σ), d)→ (V, dV) is a mapping between the metric
space of terms (T(Σ), d) and (V, dV) with dV (f (s), f (t)) ≤ d(s, t) for all s, t ∈ T(Σ), and
the lifting f̂ is defined by f̂ (π) =

∑

t∈T(Σ)π(t) f (t).
Proposition 2.32.1 is proved as Proposition 2 in [Cha+14]. To show Proposition 2.32.2

observe that

dV (f̂ (δ(s)), f̂ (δ(t)))

= dV (f (s), f (t)) (by Definition of f̂)

≤ d(s, t) (since f ∈ (T(Σ), d)→1 (V, dV))

for all terms s, t ∈ T(Σ). Hence, KV (d)(δ(s),δ(t)) ≤ d(s, t). To show Proposition 2.32.3
we reason

KV (d)

�

∑

i∈I

piπi ,
∑

i∈I

piπ
′
i

�

4A distance function dV is linear if dV (cx + (1 − c)y, cz + (1 − c)w) = cdV (x , z) + (1 − c)dV (y, w) for all
x , y, z, w ∈ [0,1] and c ∈ [0, 1].

107

Chapter 4. Specification of compositional operators

= sup

¨

dV

�

f̂

�

∑

i∈I

piπi

�

, f̂

�

∑

i∈I

piπ
′
i

��

| f ∈ (T(Σ), d)→1 (V, dV)

«

= sup

¨

dV

�

∑

i∈I

pi f̂ (πi),
∑

i∈I

pi f̂ (π′i)

�

| f ∈ (T(Σ), d)→1 (V, dV)

«

= sup

¨

∑

i∈I

pidV (f̂ (πi), f̂ (π′i)) | f ∈ (T(Σ), d)→1 (V, dV)

«

≤
∑

i∈I

pi sup
�

dV (f̂ (πi), f̂ (π′i)) | f ∈ (T(Σ), d)→1 (V, dV)
	

=
∑

i∈I

pi KV (d)(πi ,π
′
i)

where steps 1 and 5 follow by Definition of KV , step 2 by Definition of f̂ and distributivity
of multiplication over addition, and step 3 by linearity of dV .

To show Corollary 2.34 assume that for some n-ary operator g ∈ Σ and fixed L ∈ R≥0
we have d(g(s1, . . . , sn), f (t1, . . . , tn)) ≤ L ·

∑n
i=1 d(si , t i) for all terms s1, t1, . . . , sn, tn ∈

T(Σ). In the following reasoning we will use in an elementary way that for linear dV
there is some α ∈ [0,1] s.t.

dV (x , y) = α|x − y|

for all x , y ∈ [0,1]. Then we have

KV (d)(g(π1, . . . ,πn), g(π′1, . . . ,π′n))

= sup
�

dV (f̂ (g(π1, . . . ,πn)), f̂ (g(π′1, . . . ,π′n))) | f ∈ (T(Σ), d)→1 (V, dV)
	

= sup

�

dV

�

∑

t1,...,tn∈T(Σ)

f (g(t1, . . . , tn))
n
∏

i=1

πi(t i),
∑

t ′1,...,t ′n∈T(Σ)

f (g(t ′1, . . . , t ′n))
n
∏

i=1

π′i(t
′
i)

�

|

f ∈ (T(Σ), d)→1 (V, dV)

�

= sup

�

dV

�

∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

f (g(t1, . . . , tn))
n
∏

i=1

πi(t i)π
′
i(t
′
i),

∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

f (g(t ′1, . . . , t ′n))
n
∏

i=1

πi(t i)π
′
i(t
′
i)

�

| f ∈ (T(Σ), d)→1 (V, dV)

�

= sup

�

∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

n
∏

i=1

πi(t i)π
′
i(t
′
i)dV (f (g(t1, . . . , tn)), f (g(t ′1, . . . , t ′n)))

| f ∈ (T(Σ), d)→1 (V, dV)

�

≤
∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

n
∏

i=1

πi(t i)π
′
i(t
′
i)αd(g(t1, . . . , tn), g(t ′1, . . . , t ′n))

108

4.8. Compositionality w.r.t. any behavioral metric

≤
∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

n
∏

i=1

πi(t i)π
′
i(t
′
i)L

n
∑

i=1

αd(t i , t ′i)

= L
∑

t1,...,tn
t′1,...,t′n

∈T(Σ)

�

n
∏

i=1

πi(t i)π
′
i(t
′
i)

�

n
∑

i=1

αd(t i , t ′i)

≤ L
n
∑

i=1

∑

t i ,t
′
i∈T(Σ)

πi(t i)π
′
i(t
′
i)αd(t i , t ′i)

= L
n
∑

i=1

∑

t i ,t
′
i∈T(Σ)

πi(t i)π
′
i(t
′
i) sup

�

dV (f (t i), f (t ′i)) | f ∈ (T(Σ), d)→1 (V, dV)
	

= L
n
∑

i=1

sup

�

dV

�

∑

t i ,t
′
i∈T(Σ)

f (t i)πi(t i)π
′
i(t
′
i),

∑

t i ,t
′
i∈T(Σ)

f (t ′i)πi(t i)π
′
i(t
′
i)

�

|

f ∈ (T(Σ), d)→1 (V, dV)

�

= L
n
∑

i=1

sup
�

dV (f̂ (πi), f̂ (π′i)) | f ∈ (T(Σ), d)→1 (V, dV)
	

= L
n
∑

i=1

KV (πi ,π
′
i)

with the first and last step follow by Definition of KV , second and second last step follow
by Definition of f̂ , and steps 4 by linearity of dV , step 5 by the fact that f is 1-Lipschitz
and dV is linear, step 6 by the fact that g is L-Lipschitz, and step 9 again by linearity of
dV . ut

4.8.2 Lipschitz continuity and q-non-extensiveness

In this section we assume a PTSS P = (Σ, A, R) and a Lipschitz factor assignments L : Σ→
R∞≥0, i.e. we assume Notation 4.17 with Σ1 an empty signature and Σ2 = Σ. Moreover,
we assume an arbitrary λ ∈ (0,1].

Theorem 4.73. Assume that (Σ, A, R) is a (L,λ)-Lipschitz PTSS, and let D: [0,1]T(Σ)×T(Σ)→
[0,1]∆(T(Σ))×∆(T(Σ)) be any function that lifts 1-bounded pseudometrics on T(Σ) to 1-bounded
pseudometrics on ∆(T(Σ)). If D satisfies Proposition 2.32 and Corollary 2.34 (where the
functional K is replaced by D), then any operator f ∈ Σ with L(f) <∞ is L(f)-Lipschitz
continuous w.r.t. the D-induced λ-bisimilarity metric dD,λ.

Proof. First we note that Lemma 4.21 and Lemma 4.22 holds also with functional K re-
placed by D. This can be viewed by observing that the only properties on K used in the
proofs of these lemmas are that K satisfies Proposition 2.32 and Corollary 2.34.

The reasoning follows now the same line of argumentation as the proof of Theorem 4.5
and Theorem 4.19. Let d be the Lipschitz congruence closure (Definition 4.20) of the D-
induced λ-bisimilarity metric dD,λ w.r.t. Σ1,Σ2, L. It is enough to show that d is a prefixed

109

Chapter 4. Specification of compositional operators

point of BD,λ on the lattice ([0,1]T(Σ)×T(Σ),v), namely d satisfies the transfer condition
of bisimulation metric

∀(s, a,π) ∈−→ . ∃(t, a,π′) ∈−→ . λ ·D(d)(π,π′)≤ d(s, t) (4.28)

for all terms s, t ∈ T(Σ) with d(s, t)< 1.
If s and t have different outermost function symbols, then Equation 4.28 follows as in

the case of Theorem 4.5 and Theorem 4.19.
Hence, it remains to show that for any given open term t ∈ T(Σ) and closed substi-

tutions σ,σ′ with σ(x) and σ′(x) having different outermost function symbols for all
x ∈ Var(t), the transfer condition of bisimulation metric (Equation 4.28) is satisfied for
terms σ(t) and σ′(t). We will show this by structural induction over t.

The base case t = x is trivial since it coincides with the case before where terms s and
t, i.e. σ(x) and σ′(x), have different outermost function symbols.

The induction step t = f (t1, . . . , tn) requires that we distinguish two subcases. The
first subcase d(σ(t),σ′(t)) = d(σ(t),σ′(t)) (first argument of the min operator in Defin-
ition 4.6) is trivial and follows precisely from the earlier argumentation where s and t
had different outermost function symbols.

The second remaining subcase is d(σ(t),σ′(t)) = L(f)
∑n

i=1 d(σ(t i),σ′(t i)) (second
argument of the min operator in Definition 4.6 and, then, case f ∈ Σ2 \ Σ1 in Defini-
tion 4.20). Assume d(σ(t),σ′(t)) < 1. Let σ be any closed substitution with σ(x i) =
σ(t i) and r be any (L,λ)-Lipschitz rule defining operator f with θ = trgt(r) such that

the transition σ(f (x1, . . . , xn))
a
−→ σ(θ) is derivable from r by σ. Like in the proof of

Theorem 4.19 we construct an appropriate closed substitution σ′ with σ′(x i) = σ′(t i)
such that a transition σ′(f (x1, . . . , xn))

a
−→ σ′(θ) can be derived from r by σ′ for which

the metric transfer condition

λ ·D(d)(σ(θ),σ′(θ))≤ d(σ(f (x1, . . . , xn)),σ
′(f (x1, . . . , xn))) (4.29)

holds. In fact, we get by Lemma 4.22 (with K replaced by D) the stricter statement

D(d)(σ(θ),σ′(θ))≤
∑

x∈V s

(d(σ(x),σ′(x)) · Var(x ,θ)) +
∑

µ∈Vd

(D(d)(σ(µ),σ′(µ)) · Var(µ,θ)

which implies Equation 4.29 since

λ ·D(d)(σ(θ),σ′(θ))

≤
∑

x∈V s

λ · d(σ(x),σ′(x)) · Var(x ,θ) +
∑

µ∈Vd

λ ·D(d)(σ(µ),σ′(µ)) · Var(µ,θ)

=
∑

i∈I

λ · d(σ(x i),σ
′(x i)) · Var(x i ,θ) +

∑

µ∈der(r,x i)

λ ·D(d)(σ(µ),σ′(µ)) · Var(µ,θ)

!

≤
∑

i∈I

λ · d(σ(x i),σ
′(x i)) · Var(x i ,θ) +

∑

µ∈der(r,x i)

d(σ(x i),σ
′(x i)) · Var(µ,θ)

!

=
∑

i∈I

d(σ(x i),σ
′(x i))

λ · Var(x i ,θ) +
∑

µ∈der(r,x i)

Var(µ,θ)

!

110

4.8. Compositionality w.r.t. any behavioral metric

=
∑

i∈I

d(σ(x i),σ
′(x i)) · copy(r,λ, x i)

≤
∑

i∈I

d(σ(x i),σ
′(x i)) · L(f)

=L(f)
∑

i∈I

d(σ(x i),σ
′(x i))

=d(σ(f (x1, . . . , xn)),σ
′(f (x1, . . . , xn)))

with step 2 by the fact that the only variables in the target θ of the PGSOS rule r are
source variables and their derivatives, step 3 by the fact that σ(x i) and σ′(x i) satisfy
the λ-bisimulation metric transfer condition, step 5 by definition of copy, step 6 by prop-
erty copy(r,λ, x i) ≤ L(f) satisfied by the (L,λ)-Lipschitz rule r, and step 8 from the
assumption d(σ(t),σ′(t)) = L(f)

∑n
i=1 d(σ(t i),σ′(t i)) and the equalities σ(t i) = σ(x i),

σ′(t i) = σ′(x i), σ(t) = σ(f (x1, . . . , xn)) and σ′(t) = σ′(f (x1, . . . , xn)).
Hence, the transition σ(f (x1, . . . , xn))

a
−→ σ(trgt(r)) derived from the f -defining rule

r can be mimicked by σ′(f (x1, . . . , xn))
a
−→ σ′(trgt(r)) (derived by the same r) such that

the metric bisimulation transfer condition holds. Thus, operator f is L(f)-Lipschitz con-
tinuous w.r.t. d. ut

Theorem 4.74. Assume that (Σ, A, R) is a (L,λ)-Lipschitz PTSS and let D: [0, 1]T(Σ)×T(Σ)→
[0,1]∆(T(Σ))×∆(T(Σ)) be any function that lifts 1-bounded pseudometrics on T(Σ) to 1-bounded
pseudometrics on ∆(T(Σ)). If D satisfies Proposition 2.32 and Corollary 2.34 (where the
functional K is replaced by D), then each n-ary operator f ∈ Σ with L(f)≤ n(1/q)−1 for some
q ∈ [1,∞] is q-non-extensive w.r.t. the D-induced λ-bisimilarity metric dD,λ.

Proof. Directly by Theorem 4.73 and n(1/q)−1
∑n

i=1 d(t i , t ′i)≤
�∑n

i=1 d(t i , t ′i)
q
�1/q

. ut

4.8.3 Uniform continuity

The following results are the anologous to Proposition 4.32 and Theorem 4.33.

Proposition 4.75. Let D: [0, 1]T(Σ)×T(Σ) → [0, 1]∆(T(Σ))×∆(T(Σ)) be monotone and s, t ∈
T(Σ) be arbitrary closed terms. Then

dD,λ(s, t)≤ dD,λ,k(s, t) +λk

for all k ∈ N.

Proof. The same arguments used in the proof of Proposition 4.32 with K replaced by D
apply. This can be viewed by observing that the only property of functional K used in the
proof of Proposition 4.32 is monotonicity. ut

Theorem 4.76. Assume λ < 1. Let D: [0, 1]T(Σ)×T(Σ) → [0,1]∆(T(Σ))×∆(T(Σ)) be any func-
tion that lifts 1-bounded pseudometrics on T(Σ) to 1-bounded pseudometrics on∆(T(Σ)). If
D is monotone, then if an operator f ∈ Σ is Lipschitz continuous w.r.t. dD,λ,k for each k ∈ N,
then f is uniformly continuous w.r.t. dD,λ.

111

Chapter 4. Specification of compositional operators

Proof. The same arguments used in the proof of Theorem 4.33 apply. This can be viewed
by observing that the only property of dk and d used in that proof are Proposition 4.32
and dk v d, which are now given by Proposition 4.75 and dD,λ,k v dD,λ. ut

For the remainder of this section we assume a PTSS P = (Σ, A, R) and a Lipschitz factor
assignments L : (N×Σ)→ R∞≥0, i.e. we assume Notation 4.36 with Σ1 an empty signature
and Σ2 = Σ. Moreover, we assume an arbitrary λ ∈ (0, 1].

Theorem 4.77. Let (Σ, A, R) be a (L,λ)-uniformly continuous PTSS and D: [0,1]T(Σ)×T(Σ)→
[0, 1]∆(T(Σ))×∆(T(Σ)) be any function that lifts 1-bounded pseudometrics on T(Σ) to 1-bounded
pseudometrics on ∆(T(Σ)). If D satisfies Proposition 2.32 and Corollary 2.34 (where the
functional K is replaced by D), then, given any operator f ∈ Σ, if Lk(f)<∞ for all k ∈ N,
then

1. f is Lk(f)-Lipschitz continuous w.r.t. dD,λ,k for any k ∈ N, and

2. f is uniformly continuous w.r.t. dD,λ if λ < 1.

Proof. The same argument of the proof of Theorem 4.77 apply. In that proof we construc-
ted from the PTSS P2 = (Σ2, A, R2) a PTSS P ′2 such each term t ∈ T(Σ2) has for any k ∈ N a
corresponding term tk ∈ T(Σ′2) that behaves for the first k steps as t and stops afterwards.
Hence, if f is Lk(f)-Lipschitz continuous w.r.t. dk in the induced model of P2, then fk is
Lk(f)-Lipschitz continuous w.r.t. d in the induced model of P ′2. This reduces the proof of
uniform continuity to the case of Lipschitz continuity (Theorem 4.33 and Theorem 4.19).
Analogously, if f is Lk(f)-Lipschitz continuous w.r.t. dD,λ,k in the induced model of P2,
then fk is Lk(f)-Lipschitz continuous w.r.t. dD,λ in the induced model of P ′2. This reduces
the proof of uniform continuity to the case of Lipschitz continuity (Theorem 4.76 and
Theorem 4.73). ut

4.9 Closing remarks

We developed SOS specification formats for an expressive spectrum of compositionality
properties. The explored compositionality properties capture all important process al-
gebra operators and many operators of programming languages. The formats allow us to
simultaneously specify operators with different compositionality properties. Our funda-
mental insight is that the modulus of continuity of an operator is closely related to how
many times this operator replicates its arguments. Hence, the formats restrict the replic-
ation of processes in the specification rules according to the modulus of continuity of the
compositionality property.

The rule and specification formats become less restrictive (i.e. allow a larger class
of specifications) when a less demanding (i.e. weaker) compositionality property is con-
sidered. The formats for Lipschitz continuous and uniformly continuous operators exploit
the compositionality guarantees provided by non-extensive operators in order to admit a
wide class of specifications. The rule and specification formats also give insight into the
interplay between the replication of processes, probabilistic choices between processes,
and the (step) discount of the bisimulation metric. Our format and results pave the way
for a robust and modular approach to specify and verify probabilistic systems using prob-
abilistic process algebras and probabilistic programming languages.

112

4.9. Closing remarks

We remark that our rule formats do not satisfy a completeness property, i.e. one may
define non-extensive, Lipschitz continuous or uniformly continuous operators specified
by rules that do not match our format. This does not come as a surprise since none of
the SOS rule formats developed so far (since the late 1980s) is complete. However, we
want to stress that for all process algebra operators discussed in this chapter (and many
other specifications of standard programming language operators) it holds that if the
specification does not satisfy a rule format w.r.t. some compositionality properties, then
the specified operator will actually also not satisfy that compositionality property.5

Following the development and analysis of weak behavioral metrics as proposed in
Section 3.5 the logical next step would be to develop SOS specification formats for the
spectrum of compositionality properties (Figure 4.1) w.r.t. those weak behavioral metrics
(and similarly also for behavioral metrics w.r.t. trace [AFS04; FL14] and test based se-
mantics). As a first step we need to develop SOS rule formats for the respective notion of
probabilistic behavioral equivalence. Preliminary results suggest that (at least for PGSOS
rules) the format restrictions on GSOS rules (that describe nondeterministic LTSs as op-
erational models), e.g. formats of [BFG04; MRG07], can be lifted directly to the probabil-
istic setting. As second step we need to develop SOS rule and specification formats for the
respective notion of probabilistic behavioral metric. We expect that the rule restrictions
on the process replication behavior induced by the various compositionality properties
apply orthogonally to the rule restrictions that are induced by the respective behavioral
equivalence (kernel of the behavioral metric).

Languages for probabilistic programming (cf. [Gor+14]) provide, additionally to the
usual functional or imperative programming constructs, constructs (a) to draw values at
random from distributions, and (b) to condition values of variables via observations. In
order to model those languages in the SOS framework we need to extend the language of
distribution terms. The language introduced in Definition 2.5 allows us to express (un-
conditional) probabilistic choice between distributions and (unconditional independent)
product of distributions. The first construct (a) requires to separate the draw of values
from a distribution and the construction of terms. First we provide an example showing
that the distribution terms of Definition 2.5 cannot express a single draw from a distribu-
tion and multiple applications of that draw to different positions in a term. Consider the
rule

x
a
−→ µ

f (x)
a
−→ g(µ,µ)

If s
a
−→ 0.5δ(t1) + 0.5δ(t2), then the rule allows to derive f (s)

a
−→ 0.25δ(g(t1, t1)) +

0.25δ(g(t1, t2)) + 0.25δ(g(t2, t1)) + 0.25δ(g(t2, t2)). In other words, the semantics of
the distribution term g(µ,µ) is to draw twice independently values y1 ∈ {t1, t2} and
y2 ∈ {t1, t2} from µ and then compose the respective term g(y1, y2). There is no rule
that allows us to derive from the transition s

a
−→ 0.5δ(t1)+0.5δ(t2) the transition f (s)

a
−→

0.5δ(g(t1, t1)) + 0.5δ(g(t2, t2)), i.e. only one draw y from µ and then compose f (y, y).
Motivated by [MS13, Definition 2] we propose to extend the language of distribu-

tion terms by the additional case {µ x}θ ∈ DT(Σ) if θ ∈ DT(Σ) with semantics
σ({µ x}θ)(t) =

∑

s∈T(Σ)σ(µ)(s) · (σ ◦ [s/x])(θ)(t) with [s/x] denoting the substi-
tution [s/x](x) = s and [s/x](y) = y if x 6= y . In fact, {µ x}θ allows us to express

5This property supports our claim that the rule formats are expressive.

113

Chapter 4. Specification of compositional operators

any f (θ1, . . . ,θn) by defining a new term θ ′ where each occurrence of any distribution
variable µ j in any of the θi is replaced by some fresh δ(x j) (i.e. θ ′ is a convex combina-
tion of distribution variables and Dirac embeddings of state terms). Then the semantics of
{µ1 x1} . . . {µm xm}θ ′ (with m the number of occurrences of distribution variables
in θ) coincides with f (θ1, . . . ,θn). The second construct to express conditional probab-
ilities would require an expression like θ |C with C a boolean formula built from atomic
propositions x

a
−→ and x

a
−→6 , with σ(θ |C)(t) = σ(θ)(t)/σ(θ)({s ∈ T(Σ) | s |= C) if

σ(θ)({s ∈ T(Σ) | s |= C)> 0 and σ(θ |C)(t) undefined otherwise (i.e. the transition with
θ |C in the rule target cannot be derived), whereby s |= x

a
−→ iff s

a
−→, s |= x

a
−→6 iff s

a
−→6 ,

and boolean connectives as usual. We leave the in-depth exploration of this extension
and their properties as future work.

As another research direction we propose to investigate the distance between operat-
ors (instead of closed terms) to describe the behavioral distance whenever one operator
needs to be replaced or approximated by another. Intuitively, if an operator becomes un-
available the distance between operators will suggest an optimal replacement operator to
build an alternative system which is closest to the original system. The distance between
operators dΣ : Σ×Σ→ [0,1] could be defined as

dΣ(f , g) =

(

sup
t1,...,tn∈T(Σ)

d(f (t1, . . . , tn), g(t1, . . . , tn)) if r(f) = r(g)

1 otherwise

The distance dΣ lifts to open terms in the obvious way. An interesting question is now
to determine compositionality properties of this pseudometric and to decide what is the
optimal replacement context t for a given operator f .

114

Chapter 5

A denotational model of metric
compositionality

5.1 Introduction

In the former chapters we explored the behavioral semantics of compositional operators
(Chapter 3) and developed a specification theory for compositional operators (Chapter 4).
Now we will develop a denotational model for the compositionality properties of oper-
ators by formalizing the essential structure that determines the modulus of continuity of
an operator. The denotation of an operator arises by composing the denotations of the
primitive operators such as action prefix, sequencing, probabilistic and nondeterministic
choice (similar to the construction of basic process algebra expressions that mimic the
operational semantics of an operator [ABV94]). The domain model will not only provide
a deeper understanding of the essential nature of metric compositionality but allows also
to analyze for each operator which aspects of its behavior (e.g. probabilistic choice vs.
process replication) contribute how much to its overall compositionality property.

We start by developing in Section 5.2 for a concrete process algebra an appropriate
denotational model. The denotation of an open process term describes for each resol-
ution of the nondeterministic choices how many instances of each process variable are
spawned while the process evolves. The number of spawned process replicas is weighted
by the likelihood of its realization just like the bisimulation metric weights the distance
between target states by their reachability. We derive from the denotation of an open
process term an upper bound on the bisimulation distance between the closed instances
of the denoted process. In Section 5.3 we generalize this method to arbitrary processes
whose operational semantics is specified by probabilistic GSOS rules. The denotation of
an open process term is derived from the rules that specify the operational semantics of the
operators used in the process term. In detail, we define a functional that computes from
a denotation of an open process term w.r.t. up-to-n bisimulation metric the denotation
of this process term w.r.t. up-to-(n+ 1) bisimulation metric. The least fixed point of this
functional defines then the denotation of an open process term w.r.t. bisimilarity metric.
The denotation of an open process terms allows to derive an upper bound on the bisim-

115

Chapter 5. A denotational model of metric compositionality

ulation distance between closed instances of that term. Section 5.4 applies those results
and derives the modulus of continuity of operators and open terms from their respsect-
ive denotation. In fact, the upper bound on the bisimulation distance between closed
instances of f (x1, . . . , xr(f)) is a modulus of continuity of operator f if the denotation of
f (x1, . . . , xr(f)) is finitely bounded. In this case the operator f is uniformly continuous
and allows for compositional reasoning.

On the one hand, the denotation allows us to study the composition of operators,
temporal invariance of compositionality properties, and to define a set of basic operators
that allow to describe operators of any compositionality property. On the other hand, the
denotational model opens also the door for a new approach to derive SOS rule and spe-
cification formats for any given compositionality property. While the specification formats
in Chapter 4 were derived from an extensive analysis of various rule patterns (similar to
the development of the GSOS format [BIM95] and the ntyft/ntyxt [Gro93] format) we
derive now specification formats from the denotation that describe the essential nature
of the compositionality of the denoted operators.

The main contributions of this chapter are:

1. We develop a denotational model for a concrete process algebra (Section 5.2) and
generalize this model and the computation method to arbitrary languages (Sec-
tion 5.3)

2. We derive from the denotation of operators and terms an upper bound on the
bisimulation distance between the closed instances of the denoted process (Defini-
tions 5.3, 5.13, 5.21, and Theorem 5.45).

3. We show that the denotation of basic process algebra operators form a basis for
the finite denotational model (similar to the fact the operational semantics of basic
process algebra operators forms a basis for finite PTS) (Table 5.1, Theorem 5.46).

4. We derive from the denotation of operators (resp. terms) a specification format of
uniformly continuous operators (Theorem 5.55, resp. Theorem 5.61)

5. We derive from any given modulus of continuity an appropriate denotation s.t. op-
erators (resp. terms) satisfying the denotation admit that modulus of continuity
(Theorem 5.57, resp. Theorem 5.64).

This chapter has been partially published as [GT13; GT14]. We developed in [GT13]
the fixed point approach to compute the upper bound on the distance between processes
and in [GT14] formalized the underlying denotational model. The denotational model
separates clearly between nondeterministic choice, probabilistic choice, and process rep-
lication. This chapter extends significantly the earlier published material as follows:

• We consider now discounted and nondiscounted bisimulation metric with a step
discount λ ∈ (0,1] whereby in [GT14] we considered only nondiscounted bisimu-
lation metric. In essence, the discount factor λ weights the multiplicities by λn if
the subprocesses are replicated just after performing n steps.

• We allow now that the variables in open processes are substituted by processes that
may disagree completely, i.e. that have a bisimulation distance of 1.

116

5.2. Denotational model

• We provide now a detailed discussion about the connection between operational
behavior, process replication and bisimulation distance (section 5.3.4).

• We extend the computation of the modulus of continuity of operators [GT13; GT14]
to open terms and derive from the metric bisimulation invariance condition a cor-
responding invariance condition of the modulus of continuity.

5.2 Denotational model

We will develop in this section a denotational model for open terms. Essentially, the
denotation of an open term t describes for each variable x occurring in t how many
copies of x are spawned while t evolves. The denotation of t will allows us to formulate
an upper bound on the bisimulation distance between the closed instances of t, given the
bisimulation distance between the closed instances of the variables occurring in t. In this
section we consider a concrete process algebra. In the next sections we generalize our
method to arbitrary PGSOS specifications.

Let ΣPA be the signature of the core operators of the probabilistic process algebra
in [DL12] defined by the stop process 0, a family of n-ary prefix operators a.([q1]_⊕· · ·⊕
[qn]_)with a ∈ A, n≥ 1, q1, . . . , qn ∈ (0,1] and

∑n
i=1 qi = 1, alternative composition _+_,

and synchronous parallel composition _ ‖ _. We write a.
⊕n

i=1[qi]_ for a.([q1]_ ⊕ · · · ⊕
[qn]_), and a._ for a.[1]_ (deterministic prefix operator). The PTSS PPA = (ΣPA, A, RPA) is
given by the following PGSOS rules in RPA (same as in Table 3.1 and repeated here for
convenience):

a.
n
⊕

i=1

[qi]x i
a
−→

n
∑

i=1

qiδ(x i)

x1
a
−→ µ1 x2

a
−→ µ2

x1 ‖ x2
a
−→ µ1 ‖ µ2

x1
a
−→ µ1

x1 + x2
a
−→ µ1

x2
a
−→ µ2

x1 + x2
a
−→ µ2

We call the open terms inT(ΣPA) nondeterministic probabilistic process terms. We define
two important subclasses of T(ΣPA) that allow for a simpler approximation of the distance
between the closed instances of open terms. Let Tdet(ΣPA) be the set of deterministic pro-
cess terms, which are those terms of T(ΣPA) that are built exclusively from the stop process
0, deterministic prefix a._, and synchronous parallel composition _ ‖ _ (no nondetermin-
istic and no probabilistic choices). We call the open terms in Tdet(ΣPA) deterministic
because all probabilistic or nondeterministic choices in the operational semantics of the
closed instances σ(t), with σ : V s → T(ΣPA) any closed substitution, arise exclusively
from the processes in σ. Let Tprob(ΣPA) be the set of probabilistic process terms, which are
those terms inT(ΣPA) that are built exclusively from the stop process 0, probabilistic prefix
a.
⊕n

i=1[qi]_, and synchronous parallel composition _ ‖ _ (no nondeterministic choices).
Again, all nondeterministic choices in σ(t) arise exclusively from the processes in σ.

The denotational model for Tdet(ΣPA) is developed in Section 5.2.1, the denotational
model for Tprob(ΣPA) is developed in Section 5.2.2, and the denotational model for T(ΣPA)
is developed in Section 5.2.3.

117

Chapter 5. A denotational model of metric compositionality

5.2.1 Denotation of deterministic process terms

We start with introducing the notion of multiplicity. Multiplicities will be used as denota-
tions for deterministic processes terms in Tdet(ΣPA).

Definition 5.1. A multiplicity is a mapping m: V → R∞≥0. The set of all multiplicities is
denoted byM .

The denotation of a deterministic process term t ∈ Tdet(ΣPA) is a multiplicity in M ,
denoted ¹tºM , that describes for each process variable x ∈ V how many copies of x
or some derivative of x are spawned while t evolves. The number of copies that are
delayed or spawned after the process evolved are discounted. Therefore, the multiplicity
¹tºM (x) of variable x is a non-negative extended real ¹tºM (x) ∈ R∞≥0 and not only a
natural number. The multiplicities ¹tºM are defined inductively over the structure of t
by

¹tºM (x) =



























0 if t = 0

1 if t = x
0 if t = y ∈ V and y 6= x
¹t1ºM (x) + ¹t2ºM (x) if t = t1 ‖ t2

λ · ¹t ′ºM (x) if t = a.t ′

for all x ∈ V .
We use notation 0 ∈M for the multiplicity that assigns 0 to each x ∈ V , and nV ∈M

with V ⊆ V for the multiplicity such that nV (x) = n if x ∈ V and nV (x) = 0 if x 6∈ V .
We write nx for n{x}. As it will become clear in the next sections, we need the denotation
m(x) =∞ for (unbounded) recursion and replication.

We will approximate the bisimulation distance between σ1(t) and σ2(t) for closed
substitutions σ1,σ2 using the denotation of t and the bisimulation distance between pro-
cesses σ1(x) and σ2(x) of variables x ∈ Var(t).

Definition 5.2. A process distance is a mapping e : V → [0,λ]∪{1}. The set of all process
distances is denoted by E .

Each pair of substitutions σ1,σ2 induces a process distance. We define the process
distance induced by closed substitutions σ1,σ2 as d(σ1,σ2) ∈ E defined by

d(σ1,σ2)(x) = d(σ1(x),σ2(x))

for all x ∈ V .

Definition 5.3. The deterministic distance approximation from above D: (M×E)→ [0,λ]∪
{1} is defined by

D(m, e) =







λ

�

1−
∏

x∈V

�

1− e(x)
λ

�m(x)
�

if ∀x ∈ V .e(x)< 1

1 if ∃x ∈ V .e(x) = 1

for all m ∈M and e ∈ E , with definition1 1∞ = 1 and 00 = 1.
1The expressions 1∞ and 00 are in general indeterminate. However, in our application context we assign a

value that reflects the meaning of the respective approximation functionals.

118

5.2. Denotational model

To understand the functional D in case e(x) < 1 for all x ∈ V , assume e = d(σ1,σ2).
Recall that e(x) is the distance between processes σ1(x) and σ2(x), and e(x) ≤ λ. In
other words, the processes σ1(x) and σ2(x) disagree by at most e(x)/λ on their behavior
after performing their initial actions. Hence,σ1(x) andσ2(x) agree by at least 1−e(x)/λ.
Thus, m(x) copies of σ1(x) and m(x) copies of σ2(x) agree after performing their ini-
tial actions by at least (1 − e(x)/λ)m(x). Then the instances of all processes in V agree
by at least

∏

x∈V (1 − e(x)/λ)m(x), and disagree by at most 1 −
∏

x∈V (1 − e(x)/λ)m(x).
Finally, m(x) copies of σ1(x) and of σ2(x) disagree initially by at most λ(1−

∏

x∈V (1−
e(x)/λ)m(x)) = D(m, e).

Example 5.4. Consider the deterministic process term t = x ‖ x and the substitutions
σ1(x) = a.a.0 and σ2(x) = a.([0.9]a.0 ⊕ [0.1]0). In this and all following examples
we assume that σ1 and σ2 coincide on all other variables for which the substitution
is not explicitly defined, i.e. σ1(y) = σ2(y) if y 6= x in this example. It is clear that
d(σ1(x),σ2(x)) = 0.1λ, which is the likelihood that σ2(x) can perform the action a
only once, weighted by the discount λ. Then, d(σ1(t),σ2(t)) = 0.19λ, which is the
likelihood that either the first argument of the parallel composition σ2(x ‖ x), or the
second argument of the parallel composition σ2(x ‖ x), or both arguments of the parallel
composition σ2(x ‖ x) can perform the action a only once, weighted by the discount λ.
The denotation of t is ¹tºM (x) = 2, namely ¹tºM = 2x . Then, D(¹tºM ,d(σ1,σ2)) =
λ(1− (1− 0.1λ/λ)2) = 0.19λ= d(σ1(t),σ2(t)).

Example 5.5. Consider the deterministic process term t = a.x and the substitutions
σ1(x) = a.a.0 and σ2(x) = a.([0.9]a.0 ⊕ [0.1]0) already considered in Example 5.4
with d(σ1(x),σ2(x)) = 0.1λ. Then d(σ1(t),σ2(t)) = 0.1λ2. The multiplicity of t is
¹tºM (x) = λ, namely ¹tºM = (λ)x . Then, D((λ)x ,d(σ1,σ2)) = λ(1 − (1 − 0.1)λ) ≥
λ(1 − (1 − 0.1λ)) = 0.1λ2 = d(σ1(t),σ2(t)) (using Bernoulli’s inequality (1 − 0.1)λ ≤
1− 0.1λ).

Consider the deterministic process term t = a.(x ‖ x) and the same substitutions
σ1,σ2. Then d(σ1(t),σ2(t)) = λ2(1 − (1 − 0.1)2) = 0.19λ2. The multiplicity of t is
¹tºM (x) = 2λ, i.e. ¹tºM = (2λ)x . The deterministic approximation functional gives
D((2λ)x ,d(σ1,σ2)) = λ(1− (1− 0.1)2λ) = λ(1− (1− 0.1)min(2λ,1)(1− 0.1)max(2λ−1,0)) ≥
λ(1− (1−0.1min(2λ, 1))(1−0.1max(2λ−1,0)))≥ 0.2λ2−0.01λmin(2λ, 1)max(2λ−
1, 0). Since 0.01λmin(2λ, 1) · max(2λ − 1, 0) ≤ 0.01λ · 1 · λ = 0.01λ2, we conclude
d(σ1(t),σ2(t))≤ D((2λ)x ,d(σ1,σ2)).

The functional D defines an upper bound on the bisimulation distance between de-
terministic processes.

Proposition 5.6. Let t ∈ Tdet(ΣPA) be a deterministic process term and σ1,σ2 be closed
substitutions. Then d(σ1(t),σ2(t))≤ D(¹tºM ,d(σ1,σ2)).

Proof. It is easy to verify that the denotations defined for t ∈ Tdet(ΣPA) are exactly those
that are computed by the least fixed point of F in Section 5.3. The Proposition follows then
from Theorem 5.45 and the observation that D(¹tºM ,d(σ1,σ2)) = A(¹tº,d(σ1,σ2)).

ut

The distance d(σ1,σ2) abstracts from the concrete reactive behavior of terms σ1(x)
and σ2(x). It is not hard to see that for deterministic process terms without parallel com-
position and non-discounted bisimulation metric the approximation functional D gives

119

Chapter 5. A denotational model of metric compositionality

the exact bisimulation distance. However, the parallel composition of processes may lead
to an overapproximation if the bisimulation distance of process instances arises (at least
partially) from reactive behavior on which the processes cannot synchronize.

Example 5.7. Consider the deterministic process term t = x ‖ a.a.0 and the substitutions
σ1(x) = b.b.0 and σ2(x) = b.([0.9]b.0⊕ [0.1]0) with d(σ1(x),σ2(x)) = 0.1λ. We have
d(σ1(t),σ2(t)) = 0 since both σ1(t) and σ2(t) cannot proceed. Note that the bisimula-
tion distance between σ1(x) and σ2(x) arises from the difference on performing action b
which cannot synchronize with a. The denotation of t is ¹tºM (x) = 1 which gives in this
case an overapproximation of the distance d(σ1(t),σ2(t)) = 0 < D(¹tºM ,d(σ1,σ2)) =
λ(1− (1− 0.1)) = 0.1λ. However, for σ′1(x) = a.a.0 and σ′2(x) = a.([0.9]a.0⊕ [0.1]0)
with d(σ′1(x),σ

′
2(x)) = 0.1λ we get d(σ′1(t),σ

′
2(t)) = 0.1λ= D(¹tºM ,d(σ′1,σ′2)).

We remark that the abstraction of the closed substitutions to process distances is in-
tentional and very much in line with common compositionality criteria that relate the
distance of composed processes with the distance of the process components.

We conclude this section by introducing an order overM and E such that the determ-
inistic distance approximation functional D is monotone in both arguments.

Let 0 ∈ E be the process distance with 0(x) = 0 for all x ∈ V . It is clear that D(m, e) =
0 if m= 0 ∈M or e = 0 ∈ E .

Definition 5.8. We order the elements ofM by v ⊆M ×M defined as

m1 v m2 iff m1(x)≤ m2(x) for all x ∈ V

for all m1, m2 ∈M .

Proposition 5.9. (M ,v) is a complete lattice with least element 0.

Proof. It is not hard to see that (M ,v) is a partially ordered set with (inf M)(x) =
infm∈M m(x) and (sup M)(x) = supm∈M m(x) for all M ⊆ M (by the fact that (R∞≥0,≤)
is a complete lattice). Moreover, infm∈M m(x) = 0= 0(x). ut

Definition 5.10. We order the elements of E by v ⊆ E ×E defined as

e1 v e2 iff e1(x)≤ e2(x) for all x ∈ V

for all e1, e2 ∈ E .

Proposition 5.11. Let m, m′ ∈M and e, e′ ∈ E . Then

1. D(m, e)≤ D(m′, e) if mv m′;

2. D(m, e)≤ D(m, e′) if e v e′.

Proof. Consider first case 1. If e(x) = 1 for some x ∈ V , then we have D(m, e) = 1 =
D(m′, e). If e(x)< 1 for all x ∈ V , then we have e(x)≤ λ for all x ∈ V and, by exploiting
0≤ 1− e(x)/λ≤ 1, we get

D(m, e) = λ

�

1−
∏

x∈V
(1− e(x)/λ)m(x)

�

≤ λ

�

1−
∏

x∈V
(1− e(x)/λ)m

′(x)

�

= D(m′, e).

120

5.2. Denotational model

Consider now case 2. Observe first that D(m, e)≤ 1. Hence, if e′(x) = 1 for some x ∈ V ,
then we have D(m, e) ≤ 1 = D(m′, e). If e′(x) < 1 for all x ∈ V , and therefore e(x) < 1
for all x ∈ V , then we have

D(m, e) = λ

�

1−
∏

x∈V
(1− e(x)/λ)m(x)

�

≤ λ

�

1−
∏

x∈V
(1− e′(x)/λ)m(x)

�

= D(m, e′).

ut

5.2.2 Denotation of probabilistic process terms

Probabilistic multiplicities are distributions on the set of the multiplicitiesM .

Definition 5.12. A probabilistic multiplicity is a distribution onM . The set of all distri-
butions onM is denoted by P .

The denotation of a probabilistic process term t ∈ Tprob(ΣPA) is a distribution in P ,
denoted ¹tºP , that describes for each multiplicity m ∈ M the likelihood ¹tºP (m) that
for each process variable x ∈ Var(t) exactly m(x) copies of x or some derivative of x are
spawned while t evolves. The probabilistic multiplicity ¹tºP is defined inductively over
the structure of t by

¹tºP (m) =











































1 if t = 0 and m= 0

1 if t = x and m= 1x
∑

m1,m2∈M with
∀x∈V .m(x)=m1(x)+m2(x)

¹t1ºP (m1) · ¹t2ºP (m2) if t = t1 ‖ t2

n
∑

i=1

qi¹t iºP ((1/λ) ·m) if t = a.
n
⊕

i=1

[qi]t i

0 otherwise

for all m ∈M , with ((1/λ) ·m) being the multiplicity defined by ((1/λ) ·m)(x) = (1/λ) ·
m(x). Notice that ¹tºP = δ(¹tºM) for all deterministic process terms t ∈ Tdet(ΣPA).

For important probabilistic multiplicities we use the same symbols as for multiplicities
but it will be always clear from the context if we refer to probabilistic multiplicities or
multiplicities. By 0 ∈ P we mean the probabilistic multiplicity that gives probability 1
to the multiplicity 0 ∈ M . By nV ∈ P we mean the probabilistic multiplicity that gives
probability 1 to the multiplicity nV ∈M .

Definition 5.13. The probabilistic distance approximation from above P: (P ×E)→ [0,λ]∪
{1} is defined by

P(p, e) =
∑

m∈M
p(m) ·D(m, e)

for all p ∈ P and e ∈ E .

Example 5.14. Consider the probabilistic process term t = a.([0.5](x ‖ x)⊕ [0.5]0) and
the substitutionsσ1(x) = a.a.0 andσ2(x) = a.([0.9]a.0⊕[0.1]0)with d(σ1(x),σ2(x)) =
0.1λ. Then d(σ1(t),σ2(t)) = 0.5λ2(1 − (1 − 0.1)2). The probabilistic multiplicity of

121

Chapter 5. A denotational model of metric compositionality

t is ¹tºP ((2λ)x) = 0.5 and ¹tºP (0) = 0.5. Then, D((2λ)x ,d(σ1,σ2)) = λ(1 − (1 −
0.1)2λ) and D(0,d(σ1,σ2)) = 0. Hence, we get the probabilistic distance approximation
P(¹tºP ,d(σ1,σ2)) = 0.5λ(1− (1− 0.1)2λ)≥ 0.5λ2(1− (1− 0.1)2) = d(σ1(t),σ2(t)).

Remark 5.15. The functional P shows a very important interaction between probabilistic
choice and process replication. Consider the process term t = a.([q](x ‖ x)⊕ [1− q]0)
with q ∈ (0,1), and any closed substitutions σ1,σ2 with d(σ1(x),σ2(x)) = ε for any
ε ∈ [0,1). In the probabilistic distance approximation P(¹tºP ,d(σ1,σ2)) the determin-
istic distance approximation D((2λ)x ,d(σ1,σ2)) = λ(1−(1−ε/λ)2λ) of the synchronous
parallel execution x ‖ x of two instances of x is weighted by the likelihood q of its real-
ization. Hence, P(¹tºP ,d(σ1,σ2)) = qλ(1 − (1 − ε/λ)2λ). From Bernoulli’s inequality
1
mλ(1− (1−ε/λ)

n)≤ ε if m≥ n, we get qλ(1− (1−ε/λ)2λ)≤ 2qλε. Hence, the distance
between instances of two copies running synchronously in parallel with a probability of
q = 0.5/λ is at most the distance between those instances running (non-replicated) with
a probability of 1.0.

Notice that for all deterministic terms t ∈ Tdet(ΣPA), from ¹tºP = δ(¹tºM) it follows
P(¹tºP ,d(σ1,σ2)) = D(¹tºM ,d(σ1,σ2)).

The functional P defines an upper bound on the bisimulation distance of probabilistic
processes.

Proposition 5.16. Let t ∈ Tprob(ΣPA) be a probabilistic process term and σ1,σ2 be closed
substitutions. Then d(σ1(t),σ2(t))≤ P(¹tºP ,d(σ1,σ2)).

Proof. It is easy to verify that the denotations defined for t ∈ Tprob(ΣPA) are exactly those
that are computed by the least fixed point of F in Section 5.3. The Proposition follows then
from Theorem 5.45 and the observation that P(¹tºP ,d(σ1,σ2)) = A(¹tº,d(σ1,σ2)). ut

We conclude this section by introducing an ordering relation over P based on the
ordering overM (Definition 5.8) such that the probabilistic distance approximation P is
monotone in both arguments.

Definition 5.17. We order the elements of P by v ⊆P ×P defined as

p1 v p2 iff there is a ω ∈ Ω(p1, p2) with m1 v m2 if ω(m1, m2)> 0 for all m1, m2 ∈M

for all p1, p2 ∈ P .

It is clear that P(p, e) = 0 if p = 0 ∈ P or e = 0 ∈ E .

Proposition 5.18. (P ,v) is a cpo with least element 0.

Proof. Reflexivity is immediate since for each p ∈ P we get p v p by the matching
ω ∈ Ω(p, p) defined by ω(m, m) = p(m) for all m ∈M .

To show transitivity assume p1, p2, p3 ∈ P with p1 v p2 and p2 v p3, namely there
are matchings ω1 ∈ Ω(p1, p2) and ω2 ∈ Ω(p2, p3) such that m1 v m2 for all m1, m2 ∈M
with ω1(m1, m2) > 0, and m2 v m3 for all m2, m3 ∈M with ω2(m2, m3) > 0. Define the
distribution ω ∈∆(M ×M) as:

ω(m1, m3) =
∑

m2∈M
p2(m2)>0

ω1(m1, m2) ·ω2(m2, m3)
p2(m2)

122

5.2. Denotational model

First we show that ω is a matching ω ∈ Ω(p1, p3) for p1 and p3. We have

∑

m3∈M
ω(m1, m3)

=
∑

m3∈M

∑

m2∈M
p2(m2)>0

ω1(m1, m2) ·ω2(m2, m3)
p2(m2)

=
∑

m2∈M
p2(m2)>0

ω1(m1, m2) ·
1

p2(m2)

∑

m3∈M
ω2(m2, m3)

!

=
∑

m2∈M
p2(m2)>0

ω1(m1, m2)

=p1(m1)

and, analogously,
∑

m1∈M
ω(m1, m3) = p3(m3), thus confirming that ω ∈ Ω(p1, p3). It

remains to show thatω(m1, m3)> 0 implies m1 v m3. Ifω(m1, m3)> 0 then there exists
at least one m2 ∈M withω1(m1, m2),ω2(m2, m3)> 0, thus implying m1 v m2 v m3 and
m1 v m3 from the transitivity of the ordering v overM .

To show antisymmetry assume p1, p2 ∈ P with p1 v p2 and p2 v p1. Relation p1 = p2
follows from the observation that the composition of the respective transportation sched-
ules are the diagonal/identity transportation plans. In detail, it is not hard to see that
the only matching ω ∈ Ω(p1, p1) satisfying m v m′ for all m, m′ ∈M with ω(m, m′) > 0
is the matching with ω(m, m) = p1(m). From p1 v p2 and p2 v p1 there are match-
ings ω1 ∈ Ω(p1, p2) and ω2 ∈ Ω(p2, p1) such that m1 v m2 for all m1, m2 ∈ M with
ω1(m1, m2) > 0 and m2 v m1 for all m1, m2 ∈ M with ω2(m2, m1) > 0. Define the
distribution ω ∈∆(M ×M) as:

ω(m1, m′1) =
∑

m2∈M
p2(m2)>0

ω1(m1, m2) ·ω2(m2, m′1)

p2(m2)

By following the proof of transitivity (with p3 replaced by p1), we get thatω is a matching
ω ∈ Ω(p1, p1) such that m1 v m′1 for all m1, m′1 ∈M with ω(m1, m′1) > 0, thus implying
m1 v m2 v m′1 for all m1, m2, m′1 with ω1(m1, m2),ω2(m2, m′1) > 0. Since m1 v m′1 for
all m1, m′1 ∈M with ω(m1, m′1) > 0, we get ω(m, m) = p1(m) for all m ∈M . It follows
that for all m1, m2, m′1 with ω1(m1, m2),ω2(m2, m′1) > 0 we have m1 = m2 = m′1. Sum-
marizing, p1(m) = ω(m, m) = (ω1(m, m) ·ω2(m, m))/p2(m) = (p1(m) · p1(m))/p2(m),
thus implying p1 = p2.

Now we show that (P ,v) is a cpo. Assume a countable ascending chain of probabil-
istic multiplicities p1 v p2 v . . ., with, for each k ∈ N, ω(k,k+1) ∈ Ω(pk, pk+1) a matching
for pk and pk+1 witnessing pk v pk+1. For each k ∈ N, we will define a probabilistic
multiplicity p′k and a matching ωk ∈ Ω(pk, p′k) for pk and p′k witnessing pk v p′k. Then,
we prove that all p′k coincide, namely there exists a p ∈ P with p = p′1 = p′2 Hence
pk v p for all k ∈ N. Finally, we show that p v p′ for all p′ satisfying pk v p′ for all k ∈ N,
thus concluding that p = sup{p1, p2, . . .}.

123

Chapter 5. A denotational model of metric compositionality

We start by defining for all k < k′ ∈ N the function ω(k,k′) :M ×M → [0,1] by

ω(k,k′)(mk, mk′) =
∑

mh∈M
k+1≤h≤k′−1

ω(h,h+1)(mh ,mh+1)>0

∏k′−1
h=k ω(h,h+1)(mh, mh+1)
∏k′−1

h=k+1 ph(mh)

for mk, mk′ ∈M . By following the proof for transitivity property, we infer that ω(k,k′) is a
matching ω(k,k′) ∈ Ω(pk, pk′) for pk and pk′ witnessing pk v pk′ .

For each k ∈ N we first define the function ωk :M ×M → [0,1] by

ωk(mk, m) = lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

and, then, the function p′k :M → [0, 1] by

p′k(m) =
∑

mk∈M
ωk(mk, m).

Now we prove thatωk(mk, m) is well-defined, p′k is a distribution andωk is a matching
for pk and p′k. We start with showing thatωk(mk, m) is well-defined, namely the limit used
in the definition exists. It is enough to show that for each mk ∈M , the sequence

�

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

�

k′∈N>k

is descending. In fact, since this sequence is bounded (all elements are in [0,1]), if we
prove that it is descending then we infer that it converges. Descending property follows
from

∑

mk′+1∈M
∀k′+1≤h.∃mh∈M .

∀h≥k′+1.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′+1}

ω(k,k′+1)(mk, mk′+1)

=
∑

mk′+1∈M
∀k′+1≤h.∃mh∈M .

∀h≥k′+1.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′+1}

∑

mk′ ∈M
pk′ (mk′)>0

ω(k,k′)(mk, mk′) ·ω(k′,k′+1)(mk′ , mk′+1)

pk′(mk′)

=
∑

mk′+1∈M
∀k′+1≤h.∃mh∈M .

∀h≥k′+1.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′+1}

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′+1.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′) ·ω(k′,k′+1)(mk′ , mk′+1)

pk′(mk′)

≤
∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′) ·
∑

mk′+1∈M
∀k′+1≤h.∃mh∈M .

∀h≥k′+1.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′+1}

ω(k′,k′+1)(mk′ , mk′+1)

pk′(mk′)

124

5.2. Denotational model

≤
∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′) ·
∑

mk′+1∈M

ω(k′,k′+1)(mk′ , mk′+1)

pk′(mk′)

=
∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′) ·
pk′(mk′)
pk′(mk′)

=
∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

for all k′ ∈ N>k.
Then we prove that p′k is a distribution. Property p′k(m) ≥ 0 for all m ∈M is imme-

diate. It remains to prove
∑

m∈M p′k(m) = 1. We have

∑

m∈M
p′k(m)

=
∑

m,mk∈M
ωk(mk, m)

=
∑

m,mk∈M
lim

k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

m,mk∈M

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

mk∈M

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

mk∈M

∑

mk′∈M
ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

mk∈M
pk(mk)

= lim
k′→∞

1

=1.

Now we prove thatωk is a matchingωk ∈ Ω(pk, p′k) for pk and p′k witnessing pk v p′k.
The marginal distribution of ωk with respect to pk is such that for all mk ∈M we have

∑

m∈M
ωk(mk, m)

125

Chapter 5. A denotational model of metric compositionality

=
∑

m∈M
lim

k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

m∈M

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

mk′∈M
ω(k,k′)(mk, mk′)

= lim
k′→∞

pk(mk)

=pk(mk)

and the marginal distribution ofωk with respect to p′k is, by definition,
∑

mk∈M
ωk(mk, m) =

p′k(m), thus confirming that ωk ∈ Ω(pk, p′k).
Summarizing, each p′k is a probabilistic distribution p′k ∈ P with pk v p′k. Now, for

all k ∈ N we get

p′k(m)

=
∑

mk∈M
ωk(mk, m)

=
∑

mk∈M
lim

k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

mk∈M

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

∑

mk∈M
ω(k,k′)(mk, mk′)

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

pk′(mk′)

thus implying that p′k(m) does not depend on the index k, namely all p′k with k ∈ N are
the same distribution.

Let us name p the probabilistic multiplicity p = p′1, p′2, Since pk v p for each k ∈ N,
to prove that p = sup{p1, p2, . . .} we have to show that p v p′ for each p′ ∈ P satisfying

126

5.2. Denotational model

pk v p′ for each k ∈ N. Given such a p′, for each k ∈ N let ω′k ∈ Ω(pk, p′) be a matching
witnessing pk v p′. We have to provide a matching for p and p′. Define the function
ω:M ×M → [0, 1] by

ω(m, m′) = lim
k→∞

∑

mk∈M
∀k<h.∃mh∈M .

∀h≥k.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥1}

ω′k(mk, m′)

for all m, m′ ∈ M . We prove that ω is well-defined and, then, that it is a matching
ω ∈ Ω(p, p′) for p and p′. First we observe that the sequence

�

∑

mk∈M
∀k<h.∃mh∈M .

∀h≥k.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥1}

ω′k(mk, m′)

�

k∈N

is descending since for k < k′ ∈ N we have that for all mh ∈ M with k < h such that
ω(h,h+1)(mh, mh+1) > 0, whenever m = sup{mh | h ≥ k′} then it holds m = sup{mh | h ≥
k}. Then we observe that this sequence is bounded (all elements are in [0, 1]) and we
conclude that it converges. Therefore ω is well-defined. Now we have

∑

m∈M
ω(m, m′)

=
∑

m∈M
lim

k→∞

∑

mk∈M
∀k<h.∃mh∈M .

∀h≥k.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥1}

ω′k(mk, m′)

= lim
k→∞

∑

m∈M

∑

mk∈M
∀k<h.∃mh∈M .

∀h≥k.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥1}

ω′k(mk, m′)

= lim
k→∞

∑

mk∈M
ω′k(mk, m′)

= lim
k→∞

p′(m′)

=p′(m′)

and
∑

m′∈M

ω(m, m′)

=
∑

m′∈M

lim
k→∞

∑

mk∈M
∀k<h.∃mh∈M .

∀h≥k.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥1}

ω′k(mk, m′)

= lim
k→∞

∑

m′∈M

∑

mk∈M
∀k<h.∃mh∈M .

∀h≥k.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥1}

ω′k(mk, m′)

127

Chapter 5. A denotational model of metric compositionality

= lim
k→∞

∑

mk∈M
∀k<h.∃mh∈M .

∀h≥k.ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥1}

∑

m′∈M

ω′k(mk, m′)

= lim
k→∞

∑

mk∈M
∀k<h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥1}

pk(mk)

=p(m)

thus confirming that ω is a matching for p and p′ and

sup(pk)k∈N(m) = lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

pk′(mk′) (5.1)

for all m ∈M .
We conclude by observing that it is clear that 0 ∈ P is the least element of (P ,v). ut

Proposition 5.19. Let p, p′ ∈ P and e, e′ ∈ E . Then

1. P(p, e)≤ P(p′, e) if p v p′;

2. P(p, e)≤ P(p, e′) if e v e′.

Proof. To prove monotonicity of P we exploit monotonicity of D (Proposition 5.11). Con-
sider first case 1. Let ω ∈ Ω(p, p′) be a matching for p and p′ witnessing p v p′. We
have

P(p, e)

=
∑

m∈M
p(m)D(m, e)

=
∑

m∈M

∑

m′∈M

ω(m, m′)D(m, e)

≤
∑

m∈M

∑

m′∈M

ω(m, m′)D(m′, e) (by Proposition 5.11.1)

=
∑

m′∈M

∑

m∈M
ω(m, m′)D(m′, e)

=
∑

m′∈M

p′(m′)D(m′, e)

=P(p′, e).

Consider now case 2. We have

P(p, e)

=
∑

m∈M
p(m) ·D(m, e)

128

5.2. Denotational model

≤
∑

m∈M
p(m) ·D(m, e′) (by Proposition 5.11.2)

=P(p, e′).

ut

5.2.3 Denotation of nondeterministic probabilistic process terms

The denotation of a nondeterministic probabilistic process term t ∈ T(ΣPA) is a set of
probabilistic multiplicities P ⊆ P that describes by p ∈ P some resolution of the non-
deterministic choices in t such that the process evolves as a probabilistic process described
by p. We construct a Hoare powerdomain over the probabilistic multiplicities P and use
as canonical representation for any set of probabilistic multiplicities P ⊆ P the downward
closure defined as ↓P = {p ∈ P | p v p′ for some p′ ∈ P}. We use downward closed sets
such that D will form a cpo with the order defined below (Definition 5.24) (esp. satisfies
antisymmetry, cf. Proposition 5.25).

Definition 5.20. A nondeterministic probabilistic multiplicity is a downward closed sub-
set of the set probabilistic multiplicities P . The set of all nondetermnistic probabilistic
multiplicites is denoted by D.

The denotation of term t is the nondetermnistic probabilistic multiplicity ¹tº defined
inductively over the structure of t by

¹tº= ↓



















































{¹tºP } if t = 0 or t = x






p ∈ P

�

�

�

�

�

�

�

∃p1 ∈ ¹t1º.∃p2 ∈ ¹t2º.∀m ∈M .

(p(m) =
∑

m1,m2∈M with
∀x∈V .m(x)=m1(x)+m2(x)

p1(m1) · p2(m2))







if t = t1 ‖ t2

¨

p′ ∈ P | ∃p1 ∈ ¹t1º . . .∃pn ∈ ¹tnº.p′ =
n
∑

i=1

qi · (λ · pi)

«

if t = a.
⊕n

i=1[qi]t i

¹t1º∪ ¹t2º if t = t1 + t2

with (λ · pi) being the probabilistic multiplicity defined by (λ · pi)(λ ·m) = pi(m) for all
m ∈M .

Notice that ¹tº= ↓{¹tºP } for all probabilistic process terms t ∈ Tprob(ΣPA).
By 0 ∈ D we mean the singleton set containing the probabilistic multiplicity 0 ∈ P ,

and by nV ∈ D the downward closure of the singleton set with element nV ∈ P .

Definition 5.21. The nondeterministic probabilistic distance approximation from above
A: (D ×E)→ [0,λ]∪ {1} is defined by

A(P, e) = sup
p∈P

P(p, e)

for all P ∈ D and e ∈ E .

129

Chapter 5. A denotational model of metric compositionality

Example 5.22. Consider the nondeterministic probabilistic process term t = a.([0.5](x ‖
x) ⊕ [0.5]0) + y , and the substitutions σ1(x) = a.a.0, σ2(x) = a.([0.9]a.0 ⊕ [0.1]0),
σ1(y) = b.b.0 and σ2(y) = b.([0.8]b.0⊕ [0.2]0). It is clear that d(σ1(x),σ2(x)) = 0.1λ
and d(σ1(y),σ2(y)) = 0.2λ. Now, d(σ1(t),σ2(t)) = max{0.5λ2(1− (1− 0.1)2), 0.2λ}.
The nondeterministic probabilistic multiplicity of t is ¹tº = ↓{p1, p2}, with p1 and p2
defined by p1((2λ)x) = 0.5, p1(0) = 0.5 and p2(1y) = 1.0. Thus A(¹tº,d(σ1,σ2)) =
max(P(p1,d(σ1,σ2)),P(p2,d(σ1,σ2))) =max(0.5λ(1− (1−0.1)2λ), 0.2λ). We conclude
that A(¹tº,d(σ1,σ2))≥ d(σ1(t),σ2(t)).

Notice that for all probabilistic process terms t ∈ Tprob(ΣPA), from ¹tº = ↓{¹tºP }
and from A(P, e) = A(↓P, e) for any P ⊆ P and e ∈ E , we infer A(¹tº,d(σ1,σ2)) =
P(¹tºP ,d(σ1,σ2)).

The functional A defines an upper bound on the bisimulation distance of nondetermin-
istic probabilistic process terms.

Theorem 5.23. Let t ∈ T(ΣPA) be a nondeterministic probabilistic process term and σ1,σ2
be closed substitutions. Then d(σ1(t),σ2(t))≤ A(¹tº,d(σ1,σ2)).

Proof. It is easy to verify that the denotations defined for t ∈ T(ΣPA) are exactly those
that are computed by the least fixed point of F in Section 5.3. The Proposition follows
then from Theorem 5.45. ut

Theorem 5.23 shows that the denotation of a process term is adequate to define an up-
per bound to the distance between the closed instances of that process term. The converse
notion is full-abstraction in the sense that d(σ1(t),σ2(t)) = A(¹Pº,d(σ1,σ2)) (no over-
approximation). As demonstrated in Example 5.7, the approximation functionals would
require for process variables x ∈ Var(t) besides the bisimulation distance between σ1(x)
and σ2(x) also information about the reactive behavior and the branching. However, for
our objective to study the distance of composed processes in relation to the distance of its
components, the bisimulation distance is the right level of abstraction.

We conclude this section by introducing an ordering relation on D based on the or-
dering over P (Definition 5.17) that ensures monotonicity of both the approximation
functional A and the functional F introduced in the next section to compute the denota-
tion of arbitrary terms of a PGSOS PTSS.

Definition 5.24. We order the elements of D by v ⊆ D ×D defined as

P1 v P2 iff for all p1 ∈ P1 there is a p2 ∈ P2 such that p1 v p2

for all P1, P2 ∈ D.

It is clear that A(P, e) = 0 if P = 0 ∈ D or e = 0 ∈ E .

Proposition 5.25. (D,v) is a cpo with least element 0.

Proof. Reflexivity follows trivially from the fact that relationv onP is reflexive. In order
to show transitivity, assume P1, P2, P3 ∈ D with P1 v P2 and P2 v P3, i.e. for each p1 ∈ P1
there is a p2 ∈ P2 with p1 v p2, and for each p2 ∈ P2 there is a p3 ∈ P3 with p2 v p3. By
transitivity of v on P we have then that for each p1 ∈ P1 there is a p3 ∈ P3 with p1 v p3.

130

5.3. Distance between composed processes

Hence, P1 v P3. To show antisymmetry assume P1 v P2 and P2 v P1 for P1, P2 ∈ D. From
P1 v P2, given any p ∈ P1 there is some p′ ∈ P2 with p v p′. Since P2 = ↓P2 it follows
p ∈ P2. Hence P1 ⊆ P2. Analogously, P2 ⊆ P1. Hence P1 = P2. Finally, the supremum
of an ω-chain over D is trivially obtained by the union on its elements. We conclude by
observing that it is clear that 0 ∈ D is the least element of (D,v). ut

Proposition 5.26. Let P, P ′ ∈ D and e, e′ ∈ E . Then

1. A(P, e)≤ A(P ′, e) if P v P ′;

2. A(P, e)≤ A(P, e′) if e v e′.

Proof. To prove monotonicity of A we exploit monotonicity of P (Proposition 5.19). Con-
sider first case 1. By P v P ′ we have that for all p ∈ P there is a p′ ∈ P ′ such that p v p′.
By monotonicity of P on the first argument (Lemma 5.19.1) we get that P(p, e)≤ P(p′, e).
Hence, A(P, e) = supp∈P P(p, e)≤ supp′∈P ′ P(p

′, e) = A(P ′, e).
Consider now case 2. By monotonicity of P on the second argument (Lemma 5.19.2)

we have P(p, e)≤ P(p, e′) for all p ∈ P. Hence, A(P, e) = supp∈P P(p, e)≤ supp∈P P(p, e′) =
A(P, e′). ut

We will see in the following section that the denotations developed for terms of PPA
are sufficient for terms of any PGSOS PTSS.

5.3 Distance between composed processes

Now we generalize the method developed in the previous section to compute the denota-
tion of open terms specified by arbitrary PGSOS PTSS. In line with the former section
this gives an upper bound on the bisimulation distance between the closed instances of a
given term. In particular, the denotation for the term2 f (x1, . . . , xr(f)) gives an upper
bound on the distance between processes composed by the process combinator f . This
allows us in the next section to formulate a simple condition to decide if a process combin-
ator is uniformly continuous, and hence if we can reason compositionally over processes
combined by that process combinator.

5.3.1 Operations on process denotations

We start by defining some operations on process denotations that allow us to compute
the denotation of process terms by induction over the term structure. We define the
operations first onM and then lift them to P and D.

The composition of two processes t1 and t2 which both may proceed requires that
their multiplicities are summed up (cf. parallel composition in the prior section). We
define the summation of multiplicities ⊕:M ×M →M by

(m1 ⊕m2)(x) = m1(x) +m2(x) for all x ∈ V

2In this chapter we will denote the rank of a function explicitly by r(f) (in former sections usually denoted
by n) to not confuse with the step count n in up-to-n bisimulation metric.

131

Chapter 5. A denotational model of metric compositionality

for all m1, m2 ∈M .
In order to define by structural induction the multiplicity of a term f (t1, . . . , tr(f)),

we need an operation that composes the multiplicity denoting the operator f , namely the
multiplicity of term f (x1, . . . , xr(f)), with the multiplicities of terms t1, . . . , tr(f). We define
the pointed multiplication of multiplicities �y :M ×M → M with respect to variable
y ∈ V by

(m1 �y m2)(x) = m1(y) ·m2(x) for all x ∈ V

for all m1, m2 ∈M .
Then, the multiplicity of a deterministic state term f (t1, . . . , tr(f)) is obtained by com-

bining the multiplicity of term f (x1, . . . , xr(f)) and the multiplicities of terms t1, . . . , tr(f)
by operations ⊕ and � as follows:

¹ f (t1, . . . , tr(f))ºM =
r(f)
⊕

i=1

�

¹ f (x1, . . . , xr(f))ºM �x i
¹t iºM

�

Example 5.27. Consider the open term t = a.x ‖ y . From Section 5.2 we get ¹a.xºM =
(λ)x , ¹yºM = 1y and ¹x1 ‖ x2ºM = 1{x1,x2}. Then, we have ¹tºM = (¹x1 ‖ x2ºM �x1

¹a.xºM)⊕ (¹x1 ‖ x2ºM �x2
¹yºM) = (1{x1,x2} �x1

(λ)x)⊕ (1{x1,x2} �x2
1y) = (λ)x ⊕ 1y .

The multiplicity of term t needs to weight (by the discount factor) those instances of
variables in t that are spawned just when t has already evolved. The respective operation
is the scalar multiplication ·: R>0 ×M →M defined by

(λ ·m)(x) = λ ·m(x) for all x ∈ V

for all λ ∈ R and m ∈M .
Given an operator f defined by a PGSOS rules r, the three operations ⊕, � and · on

multiplicities allow us now to define the multiplicity of term f (x1, . . . , xr(f)) in terms of
the multiplicity of the target of r. In detail, the multiplicity of f (x1, . . . , xr(f)) is defined in
terms of the multiplicity of the rule r, which, in turn, is defined in terms of the multiplicity
of its target trgt(r). Let µ be a derivative of the source variable x in rule r. In order to
express the multiplicity ¹trgt(r)ºM (µ) of µ in the target of r as a multiplicity of x in r,
we use the property (¹trgt(r)ºM �µ 1x)(x) = ¹trgt(r)ºM (µ). Then, the multiplicity of
r is defined for any source variable x as the sum of the multiplicity of x , discounted by
discount factor λ, and all the derivatives of x in trgt(r):

¹rºM = (λ · ¹trgt(r)ºM)⊕
�

⊕

xi

ai,m−−→µi,m∈
pprem(r)

¹trgt(r)ºM �µi,m
1x i

�

.

Then, the multiplicity of f (x1, . . . , xr(f)) is obtained from the multiplicity of r by consid-
ering only the multiplicities of the variables x1, . . . , xr(f) by

¹ f (x1, . . . , xr(f))ºM =
r(f)
⊕

i=1

¹rºM �x i
1x i

.

132

5.3. Distance between composed processes

Example 5.28. Consider the open term t = f (x) and the following rule r:

x
a
−→ µ

f (x)
a
−→ θ

with θ ∈ DT(Σ) some distribution term. Consider now the closed substitutions σ1(x) =
a.a.a.0 and σ2(x) = a.([0.9]a.a.0⊕ [0.1]0) with d(σ1(x),σ2(x)) = 0.1λ. The process
distance induced by σ1 and σ2 is then d(σ1,σ2)(x) = 0.1λ and d(σ1,σ2)(µ) = 0.

Consider θ = µ ‖ µ. Similar to Example 5.4 we get d(σ1(t),σ2(t)) = λ(1 − (1 −
d(σ1(x),σ2(x))/λ)2) = λ(1−(1−0.1)2). The denotation of the target of r is ¹trgt(r)ºM =
2µ. Hence, the denotation of r is ¹rºM = λ · 2µ ⊕ (2µ �µ 1x) = (2λ)µ ⊕ 2x . Thus, the
denotation of term t is ¹tºM = ((2λ)µ⊕2x)�x 1x = 2x . Therefore, D(¹tºM ,d(σ1,σ2)) =
λ(1− (1− 0.1)2) = d(σ1(t),σ2(t)).

Consider θ = δ(x) ‖ µ. We get d(σ1(t),σ2(t)) = λ(1 − (1 − d(σ1(x),σ2(x)))(1 −
d(σ1(x),σ2(x))/λ)) = λ(1 − (1 − 0.1λ)(1 − 0.1)). The denotation of the target of r is
¹trgt(r)ºM = 1{x ,µ}. Hence, the denotation of r is ¹rºM = λ · 1{x ,µ} ⊕ (1{x ,µ} �µ 1x) =
(λ){x ,µ}+1x = (1+λ)x ⊕λµ. Thus, the denotation of term t is ¹tºM = ((1+λ)x ⊕λµ)�x

1x = (1 + λ)x . Therefore, D(¹tºM ,d(σ1,σ2)) = λ(1 − (1 − 0.1)1+λ) ≥ d(σ1(t),σ2(t))
(by Bernoulli’s inequality, cf. Remark 5.15).

Consider θ = δ(x) ‖ δ(x). We get d(σ1(t),σ2(t)) = λ2(1−(1−d(σ1(x),σ2(x))/λ)(1−
d(σ1(x),σ2(x))/λ)) = λ(1 − (1 − d(σ1(x),σ2(x)))(1 − d(σ1(x),σ2(x)))) − (1 − λ) ·
d(σ1(x),σ2(x)) ≤ λ(1 − (1 − d(σ1(x),σ2(x)))(1 − d(σ1(x),σ2(x)))). The denotation
of the target of r is ¹trgt(r)ºM = 2x . Hence, the denotation of r is ¹rºM = λ ·2x⊕(2x�µ
1x) = (2λ)x . Thus, the denotation of term t is ¹tºM = (2λ)x �x 1x = (2λ)x . Therefore,
D(¹tºM ,d(σ1,σ2)) = λ(1− (1− 0.1)2λ)≥ d(σ1(t),σ2(t)).

Finally, we need an operation on multiplicities to define for multiple nondeterministic
choices a multiplicity that covers the multiplicity of each choice. For this purpose we
define the supremum of multiplicities >:M ×M →M by:

m1 > m2 = sup{m1, m2}

for all m1, m2 ∈M .
The operations op ∈ {⊕,�y ,>}:M ×M →M lift to op: P ×P → P and op: D ×

D →D by
(p1 op p2)(m) =

∑

m1,m2∈M
m=m1 op m2

p1(m1) · p2(m2)

p ∈ (P1 op P2) iff ∃p1 ∈ P1.∃p2 ∈ P2. p v p1 op p2

(5.2)

for all p1, p2 ∈ P and P1, P2 ∈ D.
Analogously, ·: R>0 ×M →M lifts to ·: R>0 ×P →P and ·: R>0 ×D →D by

(r · p)(r ·m) = p(m)
r · p ∈ (r · P) iff p ∈ P

(5.3)

for all p ∈ P and P ∈ D. We remark that the lifting in Equation 5.3 has a simpler
formulation than the lifting in Equation 5.2 since the scalar multiplication with a non-
zero finite real is a bijective function.

133

Chapter 5. A denotational model of metric compositionality

In order to define the multiplicity of a rule having as target a convex combination
of distribution terms, we introduce the convex combinations of probabilistic multiplicities
+: R≥0 ×P ×P →P defined by

(q · p1 + (1− q) · p2)(m) = qp1(m) + (1− q)p2(m) for all m ∈M

for all q ∈ R and p1, p2 ∈ P . Convex combination operator is lifted to nondeterministic
probabilistic multiplicities by

p ∈ (q · P1 + (1− q) · P2) iff ∃p1 ∈ P1, p2 ∈ P2. p v q · p1 + (1− q) · p2

for all P1, P2 ∈ D.

5.3.2 Properties of operations on process denotations

Operators ⊕ and > overM are commutative, associative and have unit element 0. Op-
erator �y is associative but not commutative, and it distributes over ⊕ and >.

Lemma 5.29. Let m1, m2, m3 ∈M and y, y1, y2 ∈ V . Then:

m1 ⊕m2 = m2 ⊕m1

m1 ⊕ (m2 ⊕m3) = (m1 ⊕m2)⊕m3

0⊕m= m

0�y m= 0

m�y 0= 0

1y �y m= m

(m1 �y1
m2)�y2

m3 = m1 �y1
(m2 �y2

m3)

m1 �y (m2 ⊕m3) = (m1 �y m2)⊕ (m1 �y m3)

(m1 ⊕m2)�y m3 = (m1 �y m3)⊕ (m2 �y m3)

m1 > m2 = m2 > m1

m1 > (m2 > m3) = (m1 > m2)> m3

0 > m= m

m1 > (m2 ⊕m3)≤ (m1 > m2)⊕ (m1 > m3)
(m1 > m2)�y m3 = (m1 �y m3)> (m2 �y m3)

m1 �y (m2 > m3) = (m1 �y m2)> (m1 �y m3)

Proof. Straightforward. ut

Furthermore, the lifting to P and D in equation 5.2 preserves commutativity, associ-
ativity and idempotency of the operators. The nondeterministic probabilistic multiplicity
0 ∈ D is the left unit element for ⊕ and >, 1y ∈ D is the unit element of �y , and 1 ∈ R>0
is the left unit element of ·.

The following lemma shows how operators ⊕, � and > over M distribute over the
deterministic distance approximation functional D and how D applies to a multiplicity of
the form r ·m.

134

5.3. Distance between composed processes

Lemma 5.30. Let m1, m2 ∈M and e ∈ E with e(x)< 1 for all x ∈ V . Then

1. D(m1 ⊕m2, e) = λ ·
�

1−
�

1− D(m1,e)
λ

��

1− D(m2,e)
λ

��

.

2. D(m1 �y m2, e) = λ ·
�

1−
�

1− D(m2,e)
λ

�m1(y)
�

.

3. D(m1 > m2, e) = λ ·
�

1−
∏

x∈V

�

1− e(x)
λ

�sup(m1(x),m2(x))
�

.

4. D(r ·m1, e) = λ ·
�

1−
∏

x∈V

�

1− e(x)
λ

�rm1(x)
�

.

Proof. We have:

1.

D(m1 ⊕m2, e)

=λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�(m1⊕m2)(x)
�

=λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�m1(x)

·
∏

x∈V

�

1−
e(x)
λ

�m2(x)
�

=λ ·

�

1−

�

1−

�

1−
∏

x∈V

�

1−
e(x)
λ

�m1(x)
��

·

�

1−

�

1−
∏

x∈V

�

1−
e(x)
λ

�m2(x)
���

=λ ·
�

1−
�

1−
D(m1, e)
λ

��

1−
D(m2, e)
λ

��

.

2.

D(m1 �y m2, e)

=λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�(m1�y m2)(x)
�

=λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�m1(y)·m2(x)
�

=λ ·

1−
∏

x∈V

�

�

1−
e(x)
λ

�m2(x)
�m1(y)

!

=λ ·

1−

�

∏

x∈V

�

1−
e(x)
λ

�m2(x)
�m1(y)

!

=λ ·

1−

�

1−

�

1−
∏

x∈V

�

1−
e(x)
λ

�m2(x)
��m1(y)

!

135

Chapter 5. A denotational model of metric compositionality

=λ ·
�

1−
�

1−
D(m2, e)
λ

�m1(y)
�

.

3.

D(m1 > m2, e)

=λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�(m1>m2)(x)
�

=λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�sup(m1(x),m2(x))
�

.

4.

D(r ·m1, e)

=λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�(r·m1)(x)
�

=λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�rm1(x)
�

.

ut

The following lemma shows how operators ⊕, �, > over P distribute over the prob-
abilistic distance approximation functional P, and how P applies to probabilistic multipli-
cities of the form r · p and to convex combinations of probabilistic multiplicities.

Lemma 5.31. Let p1, p2 ∈ P , e ∈ E with e(x)< 1 for all x ∈ V , and w ∈ [0, 1]. Then

1. P(p1 ⊕ p2, e) =
∑

m1,m2∈M
p1(m1) · p2(m2) ·λ ·

�

1−
�

1− D(m1,e)
λ

��

1− D(m2,e)
λ

��

.

2. P(p1 �y p2, e) =
∑

m1,m2∈M
p1(m1) · p2(m2) ·λ ·

�

1−
�

1− D(m2,e)
λ

�m1(y)
�

.

3. P(p1 > p2, e) =
∑

m1,m2∈M
p1(m1) · p2(m2) ·λ ·

�

1−
∏

x∈V

�

1− e(x)
λ

�sup(m1(x),m2(x))
�

.

4. P(r · p1, e) =
∑

m∈M p(1
r ·m)D(m, e).

5. P(w · p1 + (1−w) · p2, e) = w · P(p1, e) + (1−w) · P(p2, e).

Proof. 1. By using Lemma 5.30.1 we get:

P(p1 ⊕ p2, e)

=
∑

m∈M
(p1 ⊕ p2)(m) ·D(m, e)

=
∑

m1,m2∈M
p1(m1) · p2(m2) ·D(m1 ⊕m2, e)

=
∑

m1,m2∈M
p1(m1) · p2(m2) ·λ ·

�

1−
�

1−
D(m1, e)
λ

��

1−
D(m2, e)
λ

��

.

136

5.3. Distance between composed processes

2. By using Lemma 5.30.2 we get:

P(p1 �y p2, e)

=
∑

m∈M
(p1 �y p2)(m) ·D(m, e)

=
∑

m1,m2∈M
p1(m1) · p2(m2) ·D(m1 �y m2, e)

=
∑

m1,m2

p1(m1) · p2(m2) ·λ
�

1−
�

1−
D(m2, e)
λ

�m1(y)
�

.

3. By using Lemma 5.30.3 we get:

P(p1 > p2, e)

=
∑

m∈M
(p1 > p2)(m) ·D(m, e)

=
∑

m1,m2∈M
p1(m1) · p2(m2) ·D(m1 > m2, e)

=
∑

m1,m2∈M
p1(m1) · p2(m2) ·λ ·

�

1−
∏

x∈V

�

1−
e(x)
λ

�sup(m1(x),m2(x))
�

.

4. We have

P(r · p1, e)

=
∑

m∈M
(r · p1)(m) ·D(m, e)

=
∑

m∈M
p1(

1
r
·m) ·D(m, e).

5. We have

P(w · p1 + (1−w) · p2, e)

=
∑

m∈M
(w · p1 + (1−w) · p2)(m) ·D(m, e)

=w
∑

m∈M
p1(m) ·D(m, e) + (1−w)

∑

m∈M
p2(m) ·D(m, e)

=w · P(p1, e) + (1−w) · P(p2, e).

ut

We show now that all operations ⊕,�y ,>, ·,+ defined above and the union are mono-
tone and continuous on D.

Proposition 5.32. The operators ⊕,�y ,>, ·,+,∪ on D are order preserving.

137

Chapter 5. A denotational model of metric compositionality

Proof. We have to prove that for arbitrary P1, P2, P ′1, P ′2 ∈ D with P1 v P ′1 and P2 v P ′2, and
q, q′ ∈ [0, 1] with q ≤ q′,

1. P1 ⊕ P2 v P ′1 ⊕ P ′2.

2. P1 �y P2 v P ′1 �y P ′2.

3. P1 > P2 v P ′1 > P ′2.

4. q · P1 v q′ · P ′1.

5. qP1 + (1− q)P2 v qP ′1 + (1− q)P ′2.

6. P1 ∪ P2 v P ′1 ∪ P ′2.

First we observe that monotonicity of operators ⊕,�y ,>, · onM is immediate.
Now we show monotonicity of operators⊕,�y ,>, ·,+ onP , from which monotonicity

of the same operators on D will be derived. Let q ≤ q′ ∈ R and p1, p2, p′1, p′2 ∈ P with
p1 v p′1 and p2 v p′2, i.e. there are two matchingsω1 ∈ Ω(p1, p′1) andω2 ∈ Ω(p2, p′2) such
that m1 v m′1 for all m1, m′1 ∈M with ω1(m1, m′1) > 0 and m2 v m′2 for all m2, m′2 ∈M
with ω2(m2, m′2)> 0.

Consider first operator ⊕. We need to show p1 ⊕ p2 v p′1 ⊕ p′2. By definition we have
(p1⊕ p2)(m) =

∑

m=m1⊕m2
p1(m1) · p2(m2) and (p′1⊕ p′2)(m) =

∑

m=m1⊕m2
p′1(m1) · p′2(m2).

Let ω ∈∆(M ×M) be the distribution defined by

ω(m, m′) =
∑

m1,m2,m′1,m′2∈M
m=m1⊕m2
m′=m′1⊕m′2

ω1(m1, m′1) ·ω2(m2, m′2) (5.4)

for all m, m′ ∈ M . We have to prove that ω is a matching ω ∈ Ω(p1 ⊕ p2, p′1 ⊕ p′2) for
p1 ⊕ p2 and p′1 ⊕ p′2 such that m v m′ for all m, m′ ∈M with ω(m, m′) > 0. Notice that
for m= m1 ⊕m2 we have

∑

m′∈M

∑

m′1,m′2∈M

m′=m′1⊕m′2

ω1(m1, m′1) ·ω2(m2, m′2) =
∑

m′1∈M

ω1(m1, m′1)
∑

m′2∈M

ω2(m2, m′2). (5.5)

Then:
∑

m′∈M

ω(m, m′)

=
∑

m′∈M

∑

m1,m2,m′1,m′2∈M
m=m1⊕m2
m′=m′1⊕m′2

ω1(m1, m′1) ·ω2(m2, m′2)

=
∑

m1,m2∈M
m=m1⊕m2

∑

m′∈M

∑

m′1,m′2∈M

m′=m′1⊕m′2

ω1(m1, m′1) ·ω2(m2, m′2)

=
∑

m1,m2∈M
m=m1⊕m2





∑

m′1∈M

ω1(m1, m′1)
∑

m′2∈M

ω2(m2, m′2)



 (by Equation. 5.5)

138

5.3. Distance between composed processes

=
∑

m1,m2∈M
m=m1⊕m2

p1(m1) · p2(m2)

=(p1 ⊕ p2)(m)

and, analogously,
∑

m∈M ω(m, m′) = (p′1 ⊕ p′2)(m
′), thus implying that ω is a matching

ω ∈ Ω(p1⊕p2, p′1⊕p′2) for p1⊕p2 and p′1⊕p′2. It remains to prove thatω(m, m′)> 0 implies
mv m′. Assume ω(m, m′)> 0. Then there exist m1, m2, m′1, m′2 ∈M with m= m1 ⊕m2,
m′ = m′1 ⊕ m′2 and ω1(m1, m′1),ω2(m2, m′2) > 0. From ω1(m1, m′1),ω2(m2, m′2) > 0 it
follows m1 v m′1 and m2 v m′2, thus implying mv m′ by the monotonicity of ⊕ overM .

Consider now operator �y . We need to show p1 �y p2 v p′1 �y p′2. By definition we
have (p1�y p2)(m) =

∑

m=m1�y m2
p1(m1)·p2(m2) and (p′1�y p′2)(m) =

∑

m=m1�y m2
p′1(m1)·

p′2(m2). Let ω ∈∆(M ×M) be the distribution defined by

ω(m, m′) =
∑

m1,m2,m′1,m′2∈M
m=m1�y m2
m′=m′1�y m′2

ω1(m1, m′1) ·ω2(m2, m′2) (5.6)

for all m, m′ ∈M . We have to prove that ω is a matching ω ∈ Ω(p1 �y p2, p′1 �y p′2) for
p1�y p2 and p′1�y p′2 such that mv m′ for all m, m′ ∈M withω(m, m′)> 0. This follows
just like in case ⊕.

Consider now operator >. We need to show p1 > p2 v p′1 > p′2. By definition we have
(p1>p2)(m) =

∑

m=m1>m2
p1(m1)·p2(m2) and (p′1>p′2)(m) =

∑

m=m1>m2
p′1(m1)·p′2(m2).

Let ω ∈∆(M ×M) be the distribution defined by

ω(m, m′) =
∑

m1,m2,m′1,m′2∈M
m=m1>m2
m′=m′1>m′2

ω1(m1, m′1) ·ω2(m2, m′2) (5.7)

for all m, m′ ∈ M . We have to prove that ω is a matching ω ∈ Ω(p1 > p2, p′1 > p′2) for
p1 > p2 and p′1 > p′2 such that mv m′ for all m, m′ ∈M with ω(m, m′)> 0. This follows
just like in case ⊕.

Consider now operator ·. We need to show q · p1 v q′ · p′1. By definition we have
(q · p1)(q · m) = p1(m) and (q′ · p′1)(q

′ · m′) = p′1(m
′). Let ω ∈ ∆(M ×M) be the

distribution defined by
ω(q ·m, q′ ·m′) =ω1(m, m′) (5.8)

for all m, m′ ∈M . We have to prove that ω is a matching ω ∈ Ω(q · p1, q′ · p′1) for q · p1
and q′ · p′1 such that mv m′ for all m, m′ ∈M with ω(m, m′)> 0. We have

∑

m′∈M

ω(q ·m, q′ ·m′)

=
∑

m′∈M

ω1(m, m′)

=p1(m)
=(q · p1)(q ·m)

139

Chapter 5. A denotational model of metric compositionality

and, analogously,
∑

m∈M ω(q ·m, q′ ·m′) = (q′ · p′1)(q
′ ·m′), thus confirming that ω is a

matchingω ∈ Ω(q·p1, q′·p′1) for q·p1 and q′·p′1. It remains to prove thatω(q·m, q′·m′)> 0
implies q ·mv q′ ·m′. If ω(q ·m, q′ ·m′)> 0 then ω1(m, m′)> 0, which implies mv m′.
Then, q ≤ q′ and mv m′ gives q ·mv q′ ·m′ by monotonicity of · onM .

We conclude with operator +. We need to show qp1+(1−q)p2 v qp′1+(1−q)p′2. By
definition we have (qp1+(1−q)p2)(m) = qp1(m)+(1−q)p2(m) and (qp′1+(1−q)p′2)(m) =
qp′1(m) + (1− q)p′2(m). Let ω ∈∆(M ×M) be the distribution defined by

ω(m, m′) = qω1(m, m′) + (1− q)ω2(m, m′) (5.9)

for all m, m′ ∈M . We have to prove that ω is a matching ω ∈ Ω(qp1 + (1− q)p2, qp′1 +
(1− q)p′2) for qp1 + (1− q)p2 and qp′1 + (1− q)p′2 such that m v m′ for all m, m′ ∈ M
with ω(m, m′)> 0. We have

∑

m′∈M

ω(m, m′)

=
∑

m′∈M

(qω1(m, m′) + (1− q)ω2(m, m′))

=qp1(m) + (1− q)p2(m)
=(qp1 + (1− q)p2)(m)

and, analogously,
∑

m∈M ω(m, m′) = (qp′1 + (1− q)p′2)(m
′), thus confirming that ω is a

matching ω ∈ Ω(qp1+(1− q)p2, qp′1+(1− q)p′2) for qp1+(1− q)p2 and qp′1+(1− q)p′2.
Then, ω(m, m′)> 0 implies ω1(m, m′)> 0 or ω2(m, m′)> 0, thus implying mv m′.

We proceed to show that operators ⊕,�y ,>, ·,+ on D are monotone. We start with
operators in {⊕,�y ,>,+}, namely we prove properties 1, 2, 3, 5. Let ./ ∈ {⊕,�y ,>,+}.
We need to show that for each p ∈ P1 ./ P2 there is a p′ ∈ P ′1 ./ P ′2 with p v p′. By
definition, p ∈ P1 ./ P2 implies that p v p1 ./ p2 for some p1 ∈ P1 and p2 ∈ P2. By
assumption P1 v P ′1 and P2 v P ′2 there exist p′1 ∈ P ′1 and p′2 ∈ P ′2 with p1 v p′1 and p2 v p′2.
By monotonicity of ./ on P (see above) it follows that p1 ./ p2 v p′1 ./ p′2. From p′1 ∈ P ′1
and p′2 ∈ P ′2 it follows p′1 ./ p′2 ∈ P ′1 ./ P ′2. Hence, p′ = p′1 ./ p′2 is the required probabilistic
multiplicity in P ′1 ./ P ′2 such that p v p′.

Now we consider operator ·, namely we prove property 4. We need to show that for
each p ∈ q · P1 there is a p′ ∈ q′ · P ′1 with p v p′. By definition, p ∈ q · P1 iff p v q · p1 for
some p1 ∈ P1. By assumption P1 v P ′1 there exists p′1 ∈ P ′1 with p1 v p′1. By monotonicity
of · on P (see above) we have q · p1 v q′ · p′1. From p′1 ∈ P ′1 it follows q′ · p′1 ∈ q′ · P ′1.
Hence p′ = q′ · p′1 is the required probabilistic multiplicity in q′ · P ′1 such that p v p′.

Finally, monotonicity of union on D, namely property 6, follows immediately from the
definition of order v on D. ut

Proposition 5.33. The operators ⊕,�y ,>, ·,+,∪ on D are upwardly ω-continuous.

Proof. We start with showing upward ω-continuity of ⊕,�y ,>, ·,+ on P , from which
upward ω-continuity of the same operators on D will be derived. Let (pk)k∈N with p1 v
p2 v . . . ∈ P and (p′k)k∈N with p′1 v p′2 v . . . ∈ P , i.e. there are matchings ω(k,k+1) ∈
Ω(pk, pk+1) and ω′(k,k+1) ∈ Ω(p

′
k, p′k+1) such that mk v mk+1 for all mk, mk+1 ∈ M with

140

5.3. Distance between composed processes

ω(k,k+1)(mk, mk+1)> 0 and m′k v m′k+1 for all m′k, m′k+1 ∈M withω′(k,k+1)(m
′
k, m′k+1)> 0.

Let p ∈ P . Let us recall that in the proof of Proposition 5.18 we get (Equation 5.1)

sup(pk)k∈N(m) = lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

pk′(mk′) (5.10)

for all m ∈M .
Consider first operator ⊕. We prove the upward ω-continuity in the first argument,

the upward ω-continuity in the second argument is analogous. Hence we have to prove
the existence of sup(pk⊕p)k∈N. First we note that a matching ω̂(k,k+1) ∈ Ω(pk⊕p, pk+1⊕p)
witnessing pk ⊕ p v pk+1 ⊕ p can be obtained by following the proof of monotonicity of
operator ⊕ on P (Proposition 5.32) and by using the matching ω ∈ Ω(p, p) defined by
ω(m, m) = p(m) by instantiating Equation 5.4 as

ω̂(k,k+1)(m
′
k, m′k+1) =

∑

m∈M
p(m)

∑

mk ,mk+1∈M
m′k=mk⊕m

m′k+1=mk+1⊕m

ω(k,k+1)(mk, mk+1)

for all m′k, m′k+1 ∈M . Now we have

(sup(pk)k∈N ⊕ p)(m)

=
∑

m′ ,m′′∈M
m=m′⊕m′′

sup(pk)k∈N(m
′) · p(m′′)

=
∑

m′ ,m′′∈M
m=m′⊕m′′















lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m′=sup{mh |h≥k′}

pk′(mk′)















· p(m′′) (by Equation 5.10)

= lim
k′→∞

∑

m′ ,m′′∈M
m=m′⊕m′′

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m′=sup{mh |h≥k′}

pk′(mk′) · p(m′′)

= lim
k′→∞

∑

mk′ ,m
′′∈M

∀k′≤h.∃mh∈M .
∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh⊕m′′ |h≥k′}∪{m′′}

pk′(mk′) · p(m′′)

= lim
k′→∞

∑

mk′ ,m
′′∈M

∀k′≤h.∃m̂h∈M .
m̂k′=mk′ ⊕m′′

∀h≥k′ .(∃mh ,mh+1∈M .m̂h=mh⊕m′′∧m̂h+1=mh+1⊕m′′∧ω(h,h+1)(mh ,mh+1)>0)
m=sup{m̂h |h≥k′}

pk′(mk′) · p(m′′)

141

Chapter 5. A denotational model of metric compositionality

= lim
k′→∞

∑

mk′ ,m
′′∈M

∀k′≤h.∃m̂h∈M .
m̂k′=mk′ ⊕m′′

∀h≥k′ .ω̂(h,h+1)(m̂h ,m̂h+1)>0

m=sup{m̂h |h≥k′}

pk′(mk′) · p(m′′)

= lim
k′→∞

∑

m̂k′ ∈M
∀k′≤h.∃m̂h∈M .

∀h≥k′ .ω̂(h,h+1)(m̂h ,m̂h+1)>0

m=sup{m̂h |h≥k′}

∑

mk′ ,m
′′∈M

m̂k′=mk′ ⊕m′′

pk′(mk′) · p(m′′)

= lim
k′→∞

∑

m̂k′ ∈M
∀k′≤h.∃m̂h∈M .

∀h≥k′ .ω̂(h,h+1)(m̂h ,m̂h+1)>0

m=sup{m̂h |h≥k′}

(pk′ ⊕ p)(m̂k′)

= sup(pk ⊕ p)k∈N(m) (by Equation 5.10)

thus confirming that sup(pk ⊕ p)k∈N exists.
Consider now operator �. We prove the upward ω-continuity in the first argument,

the upward ω-continuity in the second argument is analogous. Hence we have to prove
the existence of sup(pk �y p)k∈N. First we note that a matching ω̂(k,k+1) ∈ Ω(pk �y
p, pk+1 �y p) witnessing pk �y p v pk+1 �y p can be obtained by following the proof
of monotonicity of operator � on P (Proposition 5.32) and by using the matching ω ∈
Ω(p, p) defined by ω(m, m) = p(m) by instantiating Equation 5.6 as

ω̂(k,k+1)(m
′
k, m′k+1) =

∑

m∈M
p(m)

∑

mk ,mk+1∈M
m′k=mk�y m

m′k+1=mk+1�y m

ω(k,k+1)(mk, mk+1)

for all m′k, m′k+1 ∈M . The remaining reasoning is just like in case of operator ⊕.
Consider now operator >. We prove the upward ω-continuity in the first argument,

the upward ω-continuity in the second argument is analogous. Hence we have to prove
the existence of sup(pk >y p)k∈N. First we note that a matching ω̂(k,k+1) ∈ Ω(pk >p, pk+1>
p) witnessing pk > p v pk+1 > p can be obtained by following the proof of monotonicity
of operator > on P (Proposition 5.32) and by using the matching ω ∈ Ω(p, p) defined
by ω(m, m) = p(m) by instantiating Equation 5.7 as

ω̂(k,k+1)(m
′
k, m′k+1) =

∑

m∈M
p(m)

∑

mk ,mk+1∈M
m′k=sup(mk ,m)

m′k+1=sup(mk+1,m)

ω(k,k+1)(mk, mk+1)

for all m′k, m′k+1 ∈M . The remaining reasoning is just like in case of operator ⊕.
Consider now operator ·. We have to prove the existence of sup(q · pk)k∈N. First we

note that a matching ω̂(k,k+1) ∈ Ω(q · pk, q · pk+1) witnessing q · pk v q · pk+1 can be
obtained by following the proof of monotonicity of operator · on P (Proposition 5.32) by
instantiating Equation 5.8 as

ω̂(k,k+1)(mk, mk+1) =ω(k,k+1)(1/q ·mk, 1/q ·mk+1)

142

5.3. Distance between composed processes

for all mk, mk+1 ∈M . We have

(q · sup(pk)k∈N)(m)
= sup(pk)k∈N(1/q ·m) (by Equation 5.10)

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

1/q·m=sup{mh |h≥k′}

pk′(mk′)

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{q·mh |h≥k′}

pk′(mk′)

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(1/q·mh ,1/q·mh+1)>0

m=sup{mh |h≥k′}

pk′(1/q ·mk′)

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω̂(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

pk′(1/q ·mk′)

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω̂(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

(q · pk′)(mk′)

= sup(q · pk)k∈N(m) (by Equation 5.10)

thus confirming, by the arbitrarity of m, that sup(q · pk)k∈N exists.

Consider now operator +. We have to prove the existence of sup(qpk + (1 − q)p′k).
First we note that a matching ω̂(k,k+1) ∈ Ω(qpk+(1−q)p′k, qpk+1+(1−q)p′k+1) witnessing
qpk+(1−q)p′k v qpk+1+(1−q)p′k+1 can be obtained by following the proof of monotonicity
of operator · on P (Proposition 5.32) by instantiating Equation 5.9 as

ω̂(k,k+1)(mk, mk+1) = qω(k,k+1)(mk, mk+1) + (1− q)ω′(k,k+1)(mk, mk+1)

for all mm, mk+1 ∈M . We have

(q sup(pk)k∈N + (1− q) sup(p′k)k∈N)(m)
=q sup(pk)k∈N(m) + (1− q) sup(p′k)k∈N(m)

=q lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

pk′(mk′) + (1− q) lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω′(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

p′k′(mk′) (Eq. 5.10)

143

Chapter 5. A denotational model of metric compositionality

= lim
k′→∞

















q
∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

pk′(mk′) + (1− q)
∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω′(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

p′k′(mk′)

















≤ lim
k′→∞

















q
∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0∨+ω′(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

pk′(mk′)+

(1− q)
∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω(h,h+1)(mh ,mh+1)>0∨+ω′(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

p′k′(mk′)

















= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .qω(h,h+1)(mh ,mh+1)+(1−q)ω′(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

(qpk′(mk′) + (1− q)p′k′(mk′))

= lim
k′→∞

∑

mk′ ∈M
∀k′≤h.∃mh∈M .

∀h≥k′ .ω̂(h,h+1)(mh ,mh+1)>0

m=sup{mh |h≥k′}

(qpk′ + (1− q)p′k′)(mk′)

= sup(qpk + (1− q)p′k)(m) (by Equation 5.10)

thus confirming by the arbitrarity of m that sup(qpk + (1− q)p′k) exists.
We proceed to show that operators ⊕,�y ,>, ·,+ on D are upwardly ω-continuous.

We start by showing that ⊕,�y ,> are upwardlyω-continuous in their first argument. Let
./ ∈ {⊕,�y ,>}. We have to prove sup(Pk ./ P)k∈N = sup(Pk)k∈N ./ P. Relation sup(Pk ./
P)k∈N v sup(Pk)k∈N ./ P is immediate. We need to show sup(Pk)k∈N ./ P v sup(Pk ./
P)k∈N, namely for each p ∈ sup(Pk)k∈N ./ P there exists some p′ ∈ sup(Pk ./ P)k∈N with
p v p′. By definition, p ∈ sup(Pk)k∈N ./ P iff p v p̂ ./ p for some p̂ ∈ sup(Pk)k∈N and p ∈
P. By sup(Pk)k∈N =

⋃

k∈N Pk we infer that p̂ ∈ Pk for some k ∈ N. Hence p̂ ./ p ∈ Pk ./ P
and, from supk∈N(Pk ./ P) =

⋃

k∈N(Pk ./ P) we derive p̂ ./ p ∈ supk∈N(Pk ./ P). Hence
p̂ ./ p is the p′ we were looking for. The proof that ⊕,�y ,> are ω-upwardly continuous
in their second argument is analogous.

We prove now that · is upwardly ω-continuous. We have to prove sup(q · Pk)k∈N =
q · sup(Pk)k∈N. Relation sup(q · Pk)k∈N v q · sup(Pk)k∈N is immediate. We need to show
q · sup(Pk)k∈N v sup(q · Pk)k∈N, namely for each p ∈ q · sup(Pk)k∈N there exists some
p′ ∈ sup(q · Pk)k∈N with p v p′. By definition, p ∈ q · sup(Pk)k∈N iff p v q · p̂ for some
p̂ ∈ sup(Pk)k∈N. By sup(Pk)k∈N =

⋃

k∈N Pk we infer that p̂ ∈ Pk for some k ∈ N. Hence

144

5.3. Distance between composed processes

q · p̂ ∈ q · Pk and, from supk∈N(q · Pk) =
⋃

k∈N(q · Pk) we derive q · p̂ ∈ supk∈N(q · Pk). Hence
q · p̂ is the p′ we were looking for.

We prove now that + is upwardly ω-continuous. We need to show that sup(qPk +
(1 − p)P ′k)k∈N = q sup(Pk)k∈N + (1 − q) sup(P ′k)k∈N. Relation sup(qPk + (1 − q)P ′k)k∈N v
q sup(Pk)k∈N + (1 − q) sup(P ′k)k∈N is immediate. We need to show q · sup(Pk)k∈N + (1 −
q) sup(P ′k)k∈N v sup(qPk+(1−q)P ′k)k∈N, i.e. for each p ∈ q sup(Pk)k∈N+(1−q) sup(P ′k)k∈N
there is some p′ ∈ sup(q ·Pk+(1−q)P ′k)k∈N with p v p′. By definition, p ∈ q ·sup(Pk)k∈N+
(1− q) sup(P ′k)k∈N iff p v q · p̂ + (1− q)p̂′ for some p̂ ∈ sup(Pk)k∈N and p̂′ ∈ sup(P ′k)k∈N.
By sup(Pk)k∈N =

⋃

k∈N Pk and sup(P ′k)k∈N =
⋃

k∈N P ′k we infer that p̂ ∈ Pk and p̂′ ∈ P ′k′ for
some k, k′ ∈ N. Therefore for k, k′ ≤ k′′ there exist p1 ∈ Pk′′ and p′1 ∈ P ′k′′ with p̂ v p1

and p̂′ v p′1. Hence qp1 + (1− q)p2 ∈ qPk′′ + (1− q)P ′k′′ . From supk∈N(qPk + (1− q)P ′k) =⋃

k∈N(qPk + (1 − q)P ′k) we derive qp1 + (1 − q)p2 ∈ sup(q · Pk + (1 − q)P ′k)k∈N. Hence
qp1 + (1− q)p2 is the p′ we were looking for.

Upward ω-continuity of ∪ is immediate. ut

5.3.3 Approximating the distance of composed processes

Let (Σ, A, R) be any PGSOS PTSS. We compute in parallel the denotation of terms inT(Σ)∪
DT(Σ) and of rules in R as least fixed point of a monotone function. We consider pairs
of the form (τ,ρ), with τ: (T(Σ)∪DT(Σ))→D a mapping assigning to each open term
t ∈ T(Σ)∪DT(Σ) its denotation τ(t) ∈ D, and ρ a mapping assigning to each rule r ∈ R
its denotation ρ(r) ∈ D.

Definition 5.34. The denotational model for a PTSS (Σ, A, R) is the structure (S,v), where
S = ST × SR with

• ST = (T(Σ)∪DT(Σ))→D;

• SR = R→D,

for all τ,τ′ ∈ ST andρ,ρ′ ∈ SR the ordering (τ,ρ)v (τ′,ρ′) iff∀t ∈ T(Σ)∪DT(Σ).τ(t)v
τ′(t) and ∀r ∈ R.ρ(r)v ρ′(r).

We show first that (S,v) is a cpo with least element (⊥T ,⊥R) defined by ⊥T (t) =
⊥R(r) = 0 ∈ D for all terms t ∈ T(Σ)∪DT(Σ) and rules r ∈ R.

Proposition 5.35. (S,v) is a cpo with least element (⊥T ,⊥R).

Proof. First, we show reflexivity. For any (τ,ρ) ∈ S we have (τ,ρ) v (τ,ρ) because
τ(t) v τ(t) for all t ∈ T(Σ)∪DT(Σ) and ρ(r) v ρ(r) for all r ∈ R by reflexivity of v on
D (Proposition 5.25).

In the same line of reasoning, we show transitivity. For any (τ1,ρ1), (τ2,ρ2), (τ3,ρ3) ∈
S with (τ1,ρ1) v (τ2,ρ2) and (τ2,ρ2) v (τ3,ρ3) we have τ1(t) v τ2(t) v τ3(t) for all
t ∈ T(Σ)∪DT(Σ) and ρ1(r)v ρ2(r)v ρ3(r) for all r ∈ R. By transivity of v on D (Pro-
position 5.25) we get τ1(t)v τ3(t) and ρ1(r)v ρ3(r), thus implying (τ1,ρ1)v (τ3,ρ3).

We consider now antisymmetry. For any (τ1,ρ1), (τ2,ρ2) ∈ S with (τ1,ρ1)v (τ2,ρ2)
and (τ2,ρ2) v (τ1,ρ1) we have τ1(t) v τ2(t) v τ1(t) for all t ∈ T(Σ) ∪ DT(Σ) and
ρ1(r) v ρ2(r) v ρ1(r) for all r ∈ R. By antisymmetry of v on D (Proposition 5.25) we

145

Chapter 5. A denotational model of metric compositionality

get τ1(t) = τ2(t) for all t ∈ T(Σ)∪DT(Σ) and ρ1(r) = ρ2(r) for all r ∈ R, thus implying
(τ1,ρ1) = (τ2,ρ2).

We conclude with showing that any countable ascending chain has the supremum.
Given a chain (τk,ρk)k∈N with (τk,ρk)v (τk+1,ρk+1) for all k ∈ N, by definition we have
τk v τk+1 and ρk v ρk+1 for all k ∈ N. Since all countable ascending chains on D have
a supremum (Proposition 5.25), both chains (τk)k∈N and (ρk)k∈N have a supremum. It is
immediate to infer that (sup(τk)k∈N , sup(ρk)k∈N) is the supremum for (τk,ρk)k∈N. ut

Given a rule r ∈ R, let X r be the set of source variables x i for which r tests the reactive

behavior, i.e. x i ∈ X r iff r has either some positive premise x i

ai,m
−−→ µi,m or some negative

premise x i

bi,n
−−→6 .

The mapping F: S→ S defined in Figure 5.1 computes iteratively the nondeterministic
probabilistic multiplicities for all terms and rules. The denotation of a rule r is obtained
from the denotation of its target trgt(r) by discounting the multiplicity of the source vari-
ables, and by mapping the multiplicity of the derivatives to is respective source variables
(cf. Example 5.28). The denotation of a state term f (t1, . . . , tr(f)) is defined as the union
of the denotations of all rules in R f combined with the denotation of the arguments, where
the union over the denotations of the rules in R f reflects the nondeterminism arising from
the choice between those rules.

Example 5.36. Consider the open term t = f (x) and the following rules r1 and r2:

x
a
−→ µ

f (x)
a
−→ µ ‖ µ

x
a
−→ µ

f (x)
a
−→ δ(x) ‖ δ(x) ‖ δ(x)

As in Example 5.28, we consider now the closed substitutions σ1(x) = a.a.a.0 and
σ2(x) = a.([0.9]a.a.0 ⊕ [0.1]0) with d(σ1(x),σ2(x)) = 0.1λ. The process distance
induced by σ1 and σ2 is then d(σ1,σ2)(x) = 0.1λ and d(σ1,σ2)(µ) = 0. We get
d(σ1(t),σ2(t)) =max{λ(1− (1− 0.1)2),λ2(1− (1− 0.1)3)}.

By following Example 5.28 we get that the denotation of r1 is ¹r1º =↓ {(2λ)µ ⊕ 2x}
and the denotation of r2 is ¹r2º =↓ {(3λ)x}, thus giving that the denotation of term t is
¹tº = ↓ {¹r1º�x ¹xº,¹r2º�x ¹xº} = ↓ {((2λ)µ⊕2x)�x 1x , (3λ)x �x 1x} = ↓ {2x , (3λ)x}.
Therefore, A(¹tº,d(σ1,σ2)) = sup{λ(1 − (1 − 0.1)2),λ(1 − (1 − 0.1)3λ)} ≥ max{λ(1 −
(1− 0.1)2),λ2(1− (1− 0.1)3)}= d(σ1(t),σ2(t)).

However, for distribution terms the application of the operator needs to consider two
peculiarities, which are described by means of Examples 5.37 and 5.38 below.

First, in the distribution term f (θ1, . . . ,θr(f)) the operator f may discriminate states
in derivatives belonging to θi solely on the basis that in some rule r ∈ R f the argument
x i gets tested on the ability to perform or not perform some action.

Example 5.37. Consider the operators f and g defined by the following rules:

x
a
−→ µ

f (x)
a
−→ g(µ)

y
a
−→ ν

g(y)
a
−→ δ(0)

Let us name with r f and rg the rules for f and g above. Operator f mimics the first move
of its argument and then, by operator g, only tests the states in the derivative for their

146

5.3. Distance between composed processes

Function F: S→ S is defined by F(τ,ρ) = (τ′,ρ′) with

τ′(t) =















1x if t = x
r(f)
⊕

i=1

�

ρ f �x i
τ(t i)

�

if





t = f (t1, . . . , tr(f))
ρ f =

⋃

r∈R f

ρ(r)

τ′(θ) =































































1µ if θ = µ

τ(t) if θ = δ(t)
∑

i∈I

qi ·τ(θi) if θ =
∑

i∈I

qiθi

r(f)
⊕

i=1

�

ρ f �x i
τ(θi)

�

if













θ = f (θ1, . . . ,θr(f))

ρ f = ↓
�

>
r∈R f

ρr

�

ρr =

�

>
p∈ρ(r)

p

�

> 1X r

ρ′(r) =

�

(λ · p)⊕
� ⊕

xi

ai,m−−→µi,m∈
pprem(r)

p�µi,m
1x i

�

| p ∈ τ(trgt(r))

�

Figure 5.1: Computation of the denotation of arbitrary terms

ability to perform action a. Consider first operator g. We get d(σ1(g(y)),σ2(g(y))) = 0
for all closed substitutions σ1,σ2 such that d(σ1(y),σ2(y)) < 1. Clearly, ¹g(y)º = 0.
Consider now t = f (x) and substitutionsσ1(x) = a.a.0 andσ2(x) = a.([0.9]a.0⊕[0.1]0)
with d(σ1(x),σ2(x)) = 0.1λ. The distance between σ1(f (x)) and σ2(f (x)) depends
on the distance between distributions δ(g(a.0)) and 0.9δ(g(a.0)) + 0.1δ(g(0)): from
d(g(a.0), g(0)) = 1 we get d(f (σ1(x)), f (σ2(x))) = λK(d)(δ(g(a.0)), 0.9δ(g(a.0)) +
0.1δ(g(0))) = 0.1λ.

If we would ignore that g tests its argument on the reactive behavior, then the de-
notation of g(µ) would be ¹g(µ)º = ¹g(x)º�x 1µ = 0, the denotation of the rule for f
would be ¹r f º = λ¹g(µ)º⊕ (¹g(µ)º�µ 1x) = 0, and the denotation for f (x) would be
¹ f (x)º= ¹r f º�x 1x = 0. Note that this denotation does not approximate correctly from
above the distance between f (σ1(x)) and f (σ2(x)) since A(0,d(σ1,σ2)) = 0 < 0.1 =
d(f (σ1(x)), f (σ2(x))).

Because the operator g tests its argument on the ability to perform action a, it can
discriminate instances of the derivative µ the same way as if the process would pro-
gress (without replication). Thus, the denotation of operator g if applied in the rule
target is ρg = ↓{0 > 1X rg

} = 1x as X rg
= {x}. Hence, ¹g(µ)º = ρg �x 1µ = 1µ. Thus,

¹r f º= λ¹g(µ)º⊕ (¹g(µ)º�µ 1x) = 1x ⊕λµ, and ¹ f (x)º= ¹r f º�x 1x = 1x . Notice that
this denotation approximates correctly from above the distance between f (σ1(x)) and

147

Chapter 5. A denotational model of metric compositionality

f (σ2(x)) since d(f (σ1(x)), f (σ2(x))) = 0.1λ= A(¹ f (x)º,d(σ1,σ2)).

Second, different states in the support of a distribution term f (θ1, . . . ,θr(f)) may
evolve according to different rules of R f , which requires to combine the denotations of
the distribution terms θ1, . . . ,θr(f) with the supremum of the denotations of all rules in
R f instead of the union of the denotations of the rules in R f .

Example 5.38. Consider the operator f defined by the following rule r f :

x
a
−→ µ

f (x)
a
−→ µ+µ

Operator f replicates the derivative µ of x and evolves as alternative composition of both
process copies. Consider the closed substitutionsσ1(x) = a.a.0 andσ2(x) = a.([0.9]a.0⊕
[0.1]b.0)with d(σ1(x),σ2(x)) = 0.1λ. Then, d(σ1(f (x)),σ2(f (x))) = λ(1−(1−0.1)2).
The denotations for the two rules r1 and r2

r1 =
x1

a
−→ µ1

x1 + x2
a
−→ µ1

r2 =
x2

a
−→ µ2

x1 + x2
a
−→ µ2

defining the alternative composition are the downward closed sets with maximal elements
(λµ1

⊕ 1x1
) ∈ P and (λµ2

⊕ 1x2
) ∈ P . Then, ρr1

= (λµ1
⊕ 1x1

)> 1x1
= (λµ1

⊕ 1x1
) ∈ P

and ρr2
= (λµ2

⊕ 1x2
)> 1x2

= (λµ2
⊕ 1x2

) ∈ P . Hence, the denotation of the operator
alternative composition is ρ+ = ↓{ρr1

>ρr2
} = λ{µ1,µ2} ⊕ 1{x1,x2} ∈ D. It follows that the

denotation for the target of the f -defining rule is ¹µ+µº= (λ{µ1,µ2} ⊕ 1{x1,x2})�x1
1µ)⊕

(λ{µ1,µ2} ⊕ 1{x1,x2})�x2
1µ) = 2µ. Then, ¹r f º= λ · ¹µ+µº⊕ ¹µ+µº�µ 1x = (2λ)µ + 2x .

Thus, ¹ f (x)º = ¹r f º �x 1x = 2x . Then, d(σ1(f (x)),σ2(f (x))) ≤ A(2x ,d(σ1,σ2)) =
λ(1− (1− 0.1)2).

To summarize Examples 5.37 and 5.38: The nondeterministic probabilistic multipli-
city for operator f applied to some distribution term is given by ρ f = ↓{>r∈R f

ρr} with
ρr = (>p∈ρ(r) p)> 1X r

(Figure 5.1). We explain this expression stepwise. For any rule
r we define by >p∈ρ(r) p ∈ P the least probabilistic multiplicity which covers all non-
deterministic choices represented by the probabilistic multiplicities in ρ(r) ∈ D. By ρr =
(>p∈ρ(r) p)> 1X r

∈ P we capture the case that premises of r only test source variables
in X r on their ability to perform an action (cf. Example 5.37). Then, by >r∈R f

ρr ∈ P
we define the least probabilistic multiplicity which covers all choices of rules r ∈ R f (cf.
Example 5.38). Finally, by the downward closure ↓{>r∈R f

ρr} ∈ D we gain the non-
deterministic probabilistic multiplicity ρ f that can be applied to the distribution term
(Figure 5.1).

Proposition 5.39. F is order-preserving and upward ω-continuous.

Proof. We start with monotonicity. Assume (τ1,ρ1), (τ2,ρ2) ∈ S with (τ1,ρ1)v (τ2,ρ2).
Let F(τ1,ρ1) = (τ

′
1,ρ′1) and F(τ2,ρ2) = (τ

′
2,ρ′2). We need to show (τ′1,ρ′1) v (τ

′
2,ρ′2),

namely τ′1(t)v τ
′
2(t) for all t ∈ T(Σ) and ρ′1(r)v ρ

′
2(r) for all r ∈ R.

First we show that τ′1(t) v τ
′
2(t) for all t ∈ T(Σ). We reason by structural induction

over t. The base case t = x is immediate since τ′1(x) = 1x = τ′2(x). Consider the induct-

ive step t = f (t1, . . . , tr(f)). By definition τ′1(f (t1, . . . , tr(f))) =
⊕r(f)

i=1 (ρ
1
f �x i

τ1(t i)) with

148

5.3. Distance between composed processes

ρ1
f =

⋃

r∈R f
ρ1(r) and τ′2(f (t1, . . . , tr(f))) =

⊕r(f)
i=1 (ρ

2
f �x i

τ2(t i)) with ρ2
f =

⋃

r∈R f
ρ2(r).

By (τ1,ρ1)v (τ2,ρ2) we get τ1(t i)v τ2(t i) for i = 1, . . . , r(f), and ρ1(r)v ρ2(r) for all
r ∈ R f . By monotonicity of ∪ on D (Proposition 5.32) we get ρ1

f v ρ
2
f . By monotonicity

of ⊕ and �x i
on D (Proposition 5.32) it follows τ′1(f (t1, . . . , tr(f)))v τ′2(f (t1, . . . , tr(f))).

We proceed by showing that τ′1(θ)v τ
′
2(θ) for all θ ∈ DT(Σ). We reason by structural

induction over θ . The base case θ = µ is immediate since τ′1(µ) = 1µ = τ′2(µ). The base
case θ = δ(t) is given by τ′1(θ) = τ1(t)v τ2(t) = τ′2(θ). Consider the inductive step θ =
∑

i∈I qiθi . By definition τ′1(θ) =
∑

i∈I qi ·τ1(θi) and τ′2(θ) =
∑

i∈I qi ·τ2(θi). By (τ1,ρ1)v
(τ2,ρ2) we have τ1(θi)v τ2(θi) for all i ∈ I . Hence, by monotonicity of + on D (Propos-
ition 5.32) it follows τ′1(θ) =

∑

i∈I qi ·τ1(θi)v
∑

i∈I qi ·τ2(θi) = τ′2(θ). Finally, consider

the inductive step θ = f (θ1, . . . ,θr(f)). By definition τ′1(f (θ1, . . . ,θr(f))) =
⊕r(f)

i=1 (ρ
1
f �x i

τ1(θi)) with ρ1
f =↓ {>r∈R f

ρ1
r } and ρ1

r = (>p∈ρ1(r)p) > 1X r
, and τ′2(f (θ1, . . . ,θr(f))) =

⊕r(f)
i=1 (ρ

2
f �x i

τ2(θi)) with ρ2
f =↓ {>r∈R f

ρ2
r } and ρ2

r = (>p∈ρ2(r)p)> 1X r
. By (τ1,ρ1) v

(τ2,ρ2) we have τ1(θi) v τ2(θi) for i = 1, . . . , r(f), and ρ1(r) v ρ2(r) for each r ∈ R f .
By monotonicity of > on D (Proposition 5.32) we get ρ1

r v ρ
2
r and, then, ρ1

f v ρ
2
f . Then,

by monotonicity of ⊕ and �x i
on D (Proposition 5.32) it follows τ′1(f (θ1, . . . ,θr(f))) v

τ′2(f (θ1, . . . ,θr(f))).
To conclude the proof of monotonicity we have to show that ρ′1(r) v ρ

′
2(r) for all

r ∈ R. By definition for r ∈ R we have ρ′1(r) = {(λ · p)⊕ (
⊕

xi

ai,m−−→µi,m∈
pprem(r)

p�µi,m
1x i
) |

p ∈ τ1(trgt(r))} and ρ′2(r) = {(λ · p)⊕ (
⊕

xi

ai,m−−→µi,m∈
pprem(r)

p�µi,m
1x i
) | p ∈ τ2(trgt(r))}. By

(τ1,ρ1) v (τ2,ρ2) we get τ1(trgt(r)) v τ2(trgt(r)) for each r ∈ R. By monotonicity of
⊕, �x i

and · on D (Proposition 5.32) it follows ρ′1(r)v ρ
′
2(r).

To prove upward ω-continuity we show F(sup(τk,ρk)k∈N) = sup(F(τk,ρk))k∈N for all
ω-chains (τk,ρk)k∈N. Let (τ′1,ρ′1) = F(sup(τk,ρk)k∈N) and (τ′2,ρ′2) = sup(F(τk,ρk))k∈N.
To prove (τ′1,ρ′1) = (τ

′
2,ρ′2) we have to prove that τ′1(t) = τ

′
2(t) for all t ∈ T(Σ)∪DT(Σ)

and ρ′1(r) = ρ
′
2(r) for all r ∈ R.

First we show that τ′1(t) = τ
′
2(t) for all t ∈ T(Σ). We reason by structural induction

over t. The base case t = x is immediate since τ′1(x) = 1x = τ′2(x). Consider the induct-

ive step t = f (t1, . . . tr(f)). We get τ′1(f (t1, . . . , tr(f))) =
⊕r(f)

i=1 (
⋃

r∈R f
sup(ρk(r))k∈N �x i

sup(τk(t i))k∈N), τ′2(f (t1, . . . , tr(f))) = sup(
⊕r(f)

i=1 (
⋃

r∈R f
ρk(r) �x i

τk(t i))k∈N. Then, up-

ward ω-continuity of operations ∪,�x i
,⊕ (Proposition 5.33) gives τ′1(f (t1, . . . , tr(f))) =

τ′2(f (t1, . . . , tr(f))).
We proceed by showing that τ′1(θ) = τ

′
2(θ) for all θ ∈ DT(Σ). We reason by struc-

tural induction over θ . The base case θ = µ is immediate since τ′1(µ) = 1µ = τ′2(µ).
Consider the base case θ = δt . By definition we have τ′1(θ) = sup((τk(t))k∈N) = τ′2(θ)
and the thesis follows immediately. Consider the inductive step θ =

∑

i∈I qiθi . By defin-
ition we have τ′1(

∑

i∈I qiθi) =
∑

i∈I qi · sup(τk(θi))k∈N and τ′2(
∑

i∈I qiθi) = sup(
∑

i∈I qi ·
τk(θi))k∈N. By upwardω-continuity of + and · (Proposition 5.33) we get τ′1(

∑

i∈I qiθi) =
τ′2(

∑

i∈I qiθi). Finally, consider the inductive step θ = f (θ1, . . . ,θr(f)). Then we have

τ′1(f (θ1, . . . ,θr(f))) =
⊕r(f)

i=1 (↓ {>r∈R f
((>p∈sup(ρk)k∈N(r)p)> 1X r

)} �x i
sup(τk)k∈N(θi)) and

τ′2(f (θ1, . . . ,θr(f))) = sup(
⊕r(f)

i=1 (↓ {>r∈R f
((>p∈ρk)(r)p)>1X r

)}�x i
τk(θi)))k∈N. By upward

149

Chapter 5. A denotational model of metric compositionality

ω-continuity of ⊕, �x i
and > (Proposition 5.33) it follows that τ′1(f (θ1, . . . ,θr(f))) =

τ′2(f (θ1, . . . ,θr(f))).
To conclude we have to show that ρ′1(r) = ρ

′
2(r) for all r ∈ R. By definition for

r ∈ R we have ρ′1(r) = {(λ · p)⊕ (
⊕

xi

ai,m−−→µi,m∈
pprem(r)

p�µi,m
1x i
) | p ∈ sup(τk)k∈N(trgt(r))} and

ρ′2(r) = sup({(λ · p)⊕ (
⊕

xi

ai,m−−→µi,m∈
pprem(r)

p�µi,m
1x i
) | p ∈ τk(trgt(r))})k∈N. By upward ω-

continuity of ⊕, > and · (Proposition 5.33) it follows ρ′1(r) = ρ
′
2(r). ut

Since F is monotone and upwardly ω-continuous, F has a least fixed point.

Proposition 5.40. sup(Fn(⊥T ,⊥R))n∈N is the least fixed point of F.

Proof. Directly by Knaster-Tarski fixed point theorem, since (S,v) is a cpo (Proposition 5.35)
and F is monotone and upwardly ω-continuous (Proposition 5.39). ut

We denote by (ωT ,ωR) the least fixed point of F. We write ¹tº for ωT (t). We call
¹tº the canonical denotation of t. It is not hard to verify that all denotations presented in
Section 5.2 for PPA are canonical. For any τ ∈ ST , we will write ¹tºτ for τ(t).

Definition 5.41. A denotation of terms τ ∈ ST is consistent with a distance function
d ∈ [0,1]T(Σ)×T(Σ), notation d � ¹·ºτ, if d(σ1(t),σ2(t)) ≤ A(¹tºτ, d(σ1,σ2)) for all
terms t ∈ T(Σ) and all closed substitutions σ1,σ2.

Now we can show that the functional B to compute the bisimulation distance and
functional F to compute the denotations preserve consistency (Proposition 5.44). A simple
inductive argument allows then to show that the canonical denotation of terms ¹·º is
consistent with the bisimilarity metric d (Theorem 5.45).

First we need to show two auxiliary properties of K and P. The following Lemma
shows how the convex combination distributes over the Kantorovich functional K and the
probabilistic distance approximation functional P.

Lemma 5.42. Let d ∈ [0,1]T(Σ)×T(Σ), σ,σ′ be closed substitutions,
∑

i∈I qiθi ∈ DT(Σ) a
distribution term and

∑

i∈I qi pi ∈ P a probabilistic multiplicity. Then:

1. K(d)
�∑

i∈I qi ·σ(θi),
∑

i∈I qi ·σ′(θi)
�

≤
∑

i∈I qi ·K(d)(σ(θi),σ′(θi));

2. P(
∑

i∈I qi · pi , e) =
∑

i∈I qi · P(pi , e).

Proof. Lemma 5.42.1 follows directly from Proposition 2.32.3. Lemma 5.42.2 follows
directly from Lemma 5.31.5. ut

Given two closed instances of a composed distribution term, the independent product
of matchings of the subterms is a matching between the closed instances of the composed
distribution term.

Lemma 5.43. Let σ,σ′ be closed substitutions and θ = f (θ1, . . . ,θr(f)) ∈ DT(Σ). Then

K(d)(σ(θ),σ′(θ))≤
∑

t,t ′∈T(Σ)

d(t, t ′) ·ω(t, t ′)

withω(t, t ′) =
∏r(f)

i=1 ωi(t i , t ′i), if t = f (t1, . . . , tr(f)) and t ′ = f (t ′1, . . . , t ′r(f)), andω(t, t ′) =
0 otherwise, andωi is defined such that K(d)(σ(θi),σ′(θi)) =

∑

t i ,t
′
i∈T(Σ)

d(t i , t ′i)·ωi(t i , t ′i).

150

5.3. Distance between composed processes

Proof. It suffices to show that ω ∈ Ω(σ(θ),σ′(θ)). It is clear that ω ∈ ∆(T(Σ)×T(Σ))
because it is defined as joined density of distributionsωi ∈∆(T(Σ)×T(Σ)). The marginal
distribution of ω with respect to σ(θ) is:

∑

t ′∈T(Σ)

ω(f (t1, . . . , tr(f)), t ′)

=
∑

f (t ′1,...,t ′r(f))∈T(Σ)

ω(f (t1, . . . , tr(f)), f (t ′1, . . . , t ′r(f)))

=
∑

t′i∈T(Σ)
for i=1,...,r(f)

r(f)
∏

i=1

ωi(t i , t ′i)

=
r(f)
∏

i=1

∑

t ′i∈T(Σ)

ωi(t i , t ′i)

=
r(f)
∏

i=1

σ(θi)(t i) (by
∑

t ′i∈T(Σ)

ωi(t i , t ′i) = σ(θi)(t i))

=σ(θ)(f (t1, . . . , tr(f)))

and
∑

t ′∈T(Σ)ω(t, t ′) = 0 = σ(θ)(t) if t is not in the form t = f (t1, . . . , tr(f)). The
marginal distribution of ω with respect to σ′(θ) is calculated in an analogous manner.
We conclude, ω is a matching for σ(θ) and σ′(θ)). ut

Lemmas 5.29 and 5.30 allow us now to prove that the functional B to compute the
bisimulation distance and the functional F to compute the denotation of terms preserve
consistency.

Proposition 5.44. Let d ∈ [0,1]T(Σ)×T(Σ) with d v B(d) = d ′ and (τ,ρ) ∈ S with (τ,ρ)v
F(τ,ρ) = (τ′,ρ′). If d � ¹·ºτ then d ′ � ¹·ºτ′ .

Proof. Let σ1,σ2 be closed substitutions and f ∈ Σ. Define t = f (x1, . . . , xr(f)), t1 =
σ1(t) and t2 = σ2(t). Let e′ = d ′(σ1,σ2). We will show d ′(t1, t2) ≤ A(¹tºτ′ , e′) by
exploiting that d � ¹·ºτ is given, i.e. d(s, s′) ≤ A(¹g(x1, . . . , xr(g))º, e) for all closed sub-
stitutions σ,σ′, g ∈ Σ, s = σ(g(x1, . . . , xr(g))), s′ = σ′(g(x1, . . . , xr(g))), e = d(σ,σ′). If
e′(x i) = 1 for some argument variable x i with i = 1, . . . , r(f), then d ′(t1, t2)≤ A(¹tºτ′ , e′)
is immediate since A(¹tºτ′ , e′) = 1. We consider the case e′(x i)< 1 for all argument vari-
ables x i .

By definition of B it suffices to show that if t1
a
−→ π1 for some distribution π1 ∈

∆(T(Σ)) and action a ∈ A, then there exists a transition t2
a
−→ π2 for a distribution

π2 ∈ ∆(T(Σ)) such that λ · K(d)(π1,π2) ≤ A(¹tºτ′ , e′). We will show that the trans-
ition t2

a
−→ π2 is inferred by the same PGSOS rule used to infer the transition t1

a
−→ π1.

The transition t1
a
−→ π1 is derived from a PGSOS-rule r ∈ R f given by

{x i

ai,m
−−→ µi,m | i ∈ I , m ∈ Mi} {x i

bi,n
−−→6 | i ∈ I , n ∈ Ni}

f (x1, . . . , xr(f))
a
−→ θ

151

Chapter 5. A denotational model of metric compositionality

with the substitutionσ1 such thatσ1(x i) = σ1(x i) for i = 1, . . . , r(f). Notice thatσ1(θ) =
π1.

In the remainder we will first give suitable moves σ2(x i)
ai,m
−−→ π2

i,m for all i ∈ I and
m ∈ Mi . This allows us to define the substitution σ2 for all x i and µi,m as σ2(x i) = σ2(x i)

and σ2(µi,m) = π2
i,m. Subsequently we show that σ2(x i)

bi,n
−−→6 for all i ∈ I and n ∈ Ni , thus

inferring that the transition t2
a
−→ σ2(θ) can be derived from rule r with substitution σ2.

Finally we show
λ ·K(d)(σ1(θ),σ2(θ))≤ A(¹tºτ′ , e′) (5.11)

which confirms that σ2(θ) is the distribution π2 we were looking for. In detail, we show
the stricter statement

λ ·K(d)(σ1(θ),σ2(θ))≤ sup
p∈P

P(p, e′), with P =
r(f)
⊕

i=1

(ρ(r)�x i
τ(x i)). (5.12)

Notice that Equation 5.12 is stricter than Equation 5.11 from the definition A(¹tºτ′ , e′) =
supp∈¹tºτ′ P(p, e′) and the relation ¹tºτ′ =

⊕r(f)
i=1 ((

⋃

r ′∈R f
ρ(r ′))�x i

τ(x i)) ⊇ P.

Consider the positive premises x i

ai,m
−−→ µi,m ∈ pprem(r) of rule r. Because e′(x i) =

d ′(σ1(x i),σ2(x i))< 1 and d ′ = B(d), we get by Proposition 2.30 that σ2(x i) can perform

an ai,m move. Moreover, by definition of B there is a transition σ2(x i)
ai,m
−−→ π2

i,m for a
distribution π2

i,m satisfying λ ·K(d)(σ1(µi,m),π2
i,m)≤ e′(x i). Define σ2(µi,m) = π2

i,m.

Consider the negative premises x i

bi,n
−−→6 ∈ nprem(r). Since e′(x i) = d ′(σ1(x i),σ2(x i))<

1 and d ′ = B(d), we get by Proposition 2.30 that σ2(x i)
bi,n
−−→6 .

To summarize, all premises of σ2(r) are satisfied. Hence, by applying r the transition
t2

a
−→ σ2(θ) can be derived. It remains to show Equation 5.12. We proceed by structural

induction over the rule target θ .
Consider the base case θ = µ ∈ Vd . The PGSOS format ensures that µ= µ j,m for some

j ∈ I and m ∈ M j . Then τ(θ) = {1µ j,m
} and ρ(r) = {(λ · p)⊕ (

⊕

xi

ai,m−−→µi,m∈
pprem(r)

p�µi,m
1x i
) |

p ∈ τ(θ)} = {(λ · 1µ j,m
)⊕ (

⊕

xi

ai,m−−→µi,m∈
pprem(r)

1µ j,m
�µi,m

1x i
)} = {λµ j,m

⊕ 1x j
}. Hence, the set

P in equation 5.12 becomes P =
⊕r(f)

i=1 (ρ(r) �x i
1x i
) =

⊕r(f)
i=1 ((λµ j,m

⊕ 1x j
) �x i

1x i
) =

{1x j
}. This reduces the right-hand side of Equation 5.12 to supp∈P P(p, e′) = P(1x j

, e′) =
d ′(σ1(x j),σ2(x j)) = e′(x j). Hence Equation 5.12 becomes λ·K(d)(σ1(µ j,m),σ2(µ j,m))≤
e′(x j), which holds by construction of σ1 and σ2 (see positive premise case above).

Consider the base case θ = δt . Then we have τ(θ) = τ(δt) = τ(t). Now we get
ρ(r) = {(λ · p)⊕ (

⊕

xi

ai,m−−→µi,m∈
pprem(r)

p�µi,m
1x i
) | p ∈ τ(t)} = {λ · p | p ∈ τ(t)} because for

all p ∈ τ(t) we have p(m) = 0 for all multiplicities m ∈ M such that m(µi,m) > 0
for any distribution variable µi,m ∈ Vd . Hence, the set P in equation 5.12 becomes

P =
⊕r(f)

i=1 (ρ(r)�x i
1x i
) =

⊕r(f)
i=1 ({λ · p | p ∈ τ(t)} �x i

1x i
) = {λ · p | p ∈ τ(t)}. This re-

duces the right-hand side of Equation 5.12 to supp∈P P(p, e′) = supp∈{λ·p|p∈τ(t)} P(p, e′) =
λ supp∈¹tºτ P(p, e′) = λ · A(¹tºτ, e′). Then, the left-hand side of Equation 5.12 satisfies

152

5.3. Distance between composed processes

λ ·K(d)(σ1(θ),σ2(θ))≤ λ · d(σ1(t),σ2(t)) by Proposition 2.32.2. Hence Equation 5.12
follows from λ · d(σ1(t),σ2(t)) ≤ λ · A(¹tºτ, e′), namely d(σ1(t),σ2(t)) ≤ A(¹tºτ, e′).
By the hypothesis d � ¹·ºτ we have d(σ1(t),σ2(t)) ≤ A(¹tºτ, e). By e v e′ and mono-
tonicity of A (Proposition 5.26) we get A(¹tºτ, e) ≤ A(¹tºτ, e′). Hence, equation 5.12
holds.

For the inductive steps we introduce the operator src: D × R → D that maps non-
deterministic probabilistic multiplicities derived from the target of a rule r (and hence
defining nondeterministic probabilistic multiplicities of source and derivative variables of
r) to nondeterministic probabilistic multiplicities over only the source variables of r. The
positive premises of r specify the relation between the source variables and derivative
variables of r. The operator src is defined by:

src(P, r) =















r(f)
⊕

i=1

















(λ · p)⊕
⊕

xi

ai,m−−→µi,m∈
pprem(r)

p�µi,m
1x i









�x i
1x i









| p ∈ P















.

It is not hard to show that

src

�

∑

i∈I

qi · Pi , r

�

=
∑

i∈I

qi · src(Pi , r) (5.13)

src

�

⊕

i∈I

Pi , r

�

=
⊕

i∈I

src(Pi , r) (5.14)

src

�

⊕

i∈I

(P �x i
Pi), r

�

=
⊕

i∈I

�

P �x i
src (Pi , r)

�

(5.15)

by exploiting Lemma 5.29.
Moreover, by

r(f)
⊕

i=1

(ρ(r)�x i
τ(x i)) = src(τ(trgt(r)), r)

and by trgt(r) = θ the proof obligation in Equation 5.12 can reformulated to

λ ·K(d)(σ1(θ),σ2(θ))≤ sup
p∈P

P(p, e′), with P = src(τ(θ), r). (5.16)

Equation 5.16 can be replaced by the stricter statement

λ ·K(d)(σ1(θ),σ2(θ))≤ P(p̂, e′) for some p̂ ∈ src(τ(θ), r). (5.17)

For the following structural induction over θ , Equation 5.17 is both the induction hypo-
thesis for the subterms and the proof obligation for the structurally constructed term out
of the subterms.

Consider θ =
∑

i∈I qi · θi . By Lemma 5.42.1 we have λ · K(d)(σ1(θ),σ2(θ)) ≤ λ ·
∑

i∈I qi · K(d)(σ1(θi),σ2(θi)). By the induction hypothesis (Equation 5.17) we obtain
that λ ·

∑

i∈I qi ·K(d)(σ1(θi),σ2(θi))≤
∑

i∈I qi ·P(p̂i , e′) for some p̂i ∈ src(τ(θi), r). Since
operator + distributes over P (Lemma 5.31.5) we derive

∑

i∈I qi · P(p̂i , e′) = P(
∑

i∈I qi ·

153

Chapter 5. A denotational model of metric compositionality

p̂i , e′). Define p̂ =
∑

i∈I qi · p̂i . By Equation 5.13, p̂i ∈ src(τ(θi), r) allow us to infer that
p̂ ∈ src(τ(

∑

i∈I qi · θi), r) = src(τ(θ), r). Summarizing, λ · K(d)(σ1(θ),σ2(θ)) ≤ P(p̂, e′)
for some p̂ ∈ src(τ(θ), r), which confirms that the thesis holds.

Consider θ = g(θ1, . . . ,θr(g)). By Definition of K, for all i = 1, . . . , r(g) we have

K(d)(σ1(θi),σ2(θi)) =
∑

ui ,vi∈T(Σ)

ωi(ui , vi) · d(ui , vi)

for some matching ωi ∈ Ω(σ1(θi),σ2(θi)). By Lemma 5.43 we get that the distribution
ω ∈∆(T(Σ)×T(Σ)) defined by ω(g(u1, . . . , ur(g)), g(v1, . . . , vr(g))) =

∏r(g)
i=1 ωi(ui , vi) is a

matching ω ∈ Ω(σ1(θ),σ2(θ)) such that

K(d)(σ1(θ),σ2(θ))≤
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∈T(Σ)

r(g)
∏

i=1

ωi(ui , vi)

!

· d(u, v)

namely

λ ·K(d)(σ1(θ),σ2(θ))≤ λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∈T(Σ)

r(g)
∏

i=1

ωi(ui , vi)

!

· d(u, v). (5.18)

Remember that for each rule r ∈ Rg the indices of source variables for which r tests the
reactive behavior is denoted by X r . This lifts to operator g by X g =

⋃

r∈Rg
X r .

By the hypothesis d � ¹·ºτ the distance between terms u = g(u1, . . . , ur(g)) and v =
g(v1, . . . , vr(g)) expressed by d is approximated from above by

d(g(u1, . . . , ur(g)), g(v1, . . . , vr(g)))≤ A(¹g(x1, . . . , xr(g))ºτ, eu,v)

with eu,v ∈ E the process distance defined by eu,v(x i) = d(ui , vi).
Moreover, if d(ui , vi)< 1 for all 1≤ i ≤ r(g) then by the definition of τ(g(x1, , xr(g)))
we have

A(¹g(x1, . . . , xr(g))ºτ, eu,v)≤
∑

m∈M
m=

⊕r(g)
i=1 mr�xi 1xi

pr(mr) ·λ ·

1−
r(g)
∏

i=1

�

1−
d(ui , vi)
λ

�mr (x i)
!

(5.19)
with p =

⊕r(g)
i=1 (pr �x i

1x i
) for some r ∈ Rg and some pr ∈ ρ(r), by

A(¹g(x1, . . . , xr(g))ºτ, eu,v)

=P(p, eu,v)

=
∑

m∈M
p(m) ·D(m, eu,v)

=
∑

m∈M
m=

⊕r(g)
i=1 mr�xi 1xi

pr(mr) ·D(mr , eu,v)

154

5.3. Distance between composed processes

=
∑

m∈M
m=

⊕r(g)
i=1 mr�xi 1xi

pr(mr) ·λ ·

1−
r(g)
∏

i=1

�

1−
d(ui , vi)
λ

�mr (x i)
!

whereas if d(ui , vi) = 1 for some 1≤ i ≤ r(g), then we have

A(¹g(x1, . . . , xr(g))ºτ, eu,v)≤ 1 (5.20)

by

A(¹g(x1, . . . , xr(g))ºτ, eu,v)

=P(p, eu,v)

=
∑

m∈M
p(m) ·D(m, eu,v)

=
∑

m∈M
m=

⊕r(g)
i=1 mr�xi 1xi

pr(mr) ·D(mr , eu,v)

=
∑

m∈M
m=

⊕r(g)
i=1 mr�xi 1xi

pr(mr) · 1

=1.

Therefore, the upper bound for the distance between distributionsσ1(θ) andσ2(θ) given
in (the right side of) Equation 5.18 satisfies:

λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∈T(Σ)

ω(u, v) · d(u, v)

=λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∈T(Σ)

∀1≤i≤r(g).d(ui ,vi)<1

ω(u, v) · d(u, v) +λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∈T(Σ)

∃1≤i≤r(g).d(ui ,vi)=1

ω(u, v) · d(u, v)

≤λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∈T(Σ)

∀1≤i≤r(g).d(ui ,vi)<1

ω(u, v) ·
∑

m∈M
m=

⊕r(g)
i=1 mr�xi 1xi

pu,v(mr) ·λ ·

1−
r(g)
∏

i=1

�

1−
d(ui , vi)
λ

�mr (x i)
!

+λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v) · 1

≤λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

ω(u, v) ·
∑

m∈M
m=

⊕r(g)
i=1 mr�xi 1xi

pu,v(mr) ·λ ·

1−
r(g)
∏

i=1

�

1−
d(ui , vi)
λ

�(mr>1X g)(x i)
!

+λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

155

Chapter 5. A denotational model of metric compositionality

=λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

ω(u, v) · P(pu,v > 1X g
, eu,v) +λ ·

∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

≤λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

ω(u, v) · P((> u,v
ω(u,v)>0

pu,v)> 1X g
, eu,v) +λ ·

∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

≤λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

ω(u, v) · P((>p∈
⋃

r∈Rg
ρ(r)p)> 1X g

, eu,v) +λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

=λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

ω(u, v) · P(>r∈Rg
((>p∈ρ(r)p)> 1X r

), eu,v)

+λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

=λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

r(g)
∏

i=1

ωi(ui , vi) · P(>r∈Rg
((>p∈ρ(r)p)> 1X r

), eu,v)

+λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

=λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

r(g)
∏

i=1

ωi(ui , vi) ·
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·λ·

1−
r(g)
∏

i=1

�

1−
d(ui , vi)
λ

�m(x i)
!

+ λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

=λ ·
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·

∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

r(g)
∏

i=1

ωi(ui , vi) ·λ·

1−
r(g)
∏

i=1

�

1−
d(ui , vi)
λ

�m(x i)
!

+λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

156

5.3. Distance between composed processes

≤
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·

∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

r(g)
∏

i=1

ωi(ui , vi) ·λ2·

1−
r(g)
∏

i=1

�

1−
d(ui , vi)
λ

�m(x i)
!

+λ2 ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∃1≤i≤r(g).d(ui ,vi)=1

∈T(Σ)

ω(u, v)

=
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·λ2·











1−
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∀1≤i≤r(g).d(ui ,vi)<1

∈T(Σ)

r(g)
∏

i=1

ωi(ui , vi)
r(g)
∏

i=1

�

1−
d(ui , vi)
λ

�m(x i)











=
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·λ2·



1−
r(g)
∏

i=1

∑

ui ,vi∈T(Σ)
d(ui ,vi)<1

ωi(ui , vi) ·
�

1−
d(ui , vi)
λ

�m(x i)




≤
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·λ2·






1−

r(g)
∏

i=1



1−

∑

ui ,vi∈T(Σ)
d(ui ,vi)=1

ωi(ui , vi) · d(ui , vi)

λ





m(x i)






≤
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·λ2·






1−

r(g)
∏

i=1



1−
K(d)(σ1(θi),σ2(θi))−

∑

ui ,vi∈T(Σ)
d(ui ,vi)=1

ωi(ui , vi)

λ





m(x i)






≤
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·λ2·

1−
r(g)
∏

i=1

�

1−
K(d)(σ1(θi),σ2(θi))

λ

�m(x i)
!

≤
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·λ2·

157

Chapter 5. A denotational model of metric compositionality

1−
r(g)
∏

i=1

�

1−
P(p̂i , e′)
λ2

�m(x i)
!

=
∑

m∈M
(>r∈Rg

((>p∈ρ(r)p)> 1X r
))(m) ·λ2·

1−
r(g)
∏

i=1

�

1−

∑

mi∈M
p̂i(mi) ·D(mi , e′)

λ2

�m(x i)
!

≤
∑

m∈M
(>rg∈Rg

((>p∈ρ(rg)p)> 1X r
))(m) ·λ2·

1−
r(g)
∏

i=1

∑

mi∈M
p̂i(mi) ·

�

1−
D(mi , e′)
λ2

�m(x i)
!

≤
∑

m∈M
(>rg∈Rg

((>p∈ρ(rg)p)> 1X r
))(m) ·λ·

1−
r(g)
∏

i=1

∑

mi∈M
p̂i(mi) ·

�

1−
D(mi , e′)
λ

�m(x i)
!

where step 1 is immediate, step 2 follows from Equations 5.19 and 5.20, step 3 follows
from inequality (1− (d(ui , vi)/λ))< 1, step 4 follows immediately by the definition of P,
both steps 5 and 6 follow by monotonicity of P (Lemma 5.19), step 7 follows by associ-
ativity of > (Lemma 5.29), step 8 follows immediately by ω(u, v) =

∏r(g)
i=1 ωi(ui , vi), step

9 follows immediately by the definition of P, both steps 10 and 11 are immediate, step 12
follows immediately by ω(u, v) =

∏r(g)
i=1 ωi(ui , vi), step 13 is easily provable by induction

over r(g), step 14 follows by Jensen’s inequality (which can be applied since the function
h(x) = 1−(x/λ)m(x) with m(x)≥ 1 or m(x) = 0 is concave in [0,λ], and all multiplicities
m in the support of >r∈Rg

((>p∈ρ(r)p)>1X r
) are such that m(x i)≥ 1 or m(x i) = 0 because

of factor 1X r
), step 15 follows immediately by the definition of K, step 16 is immediate,

step 17 follows by the inductive hypothesis (Equation 5.17), step 18 follows immediately
by the definition of P, step 19 follows by Jensen’s inequality (which can be applied since
h(x) = 1−(x/λ)mi(x) with mi(x)> 1 is concave, D(mi , e′) is concave and, therefore, their
composition is convex)., step 20 is immediate. Summarizing:

λ ·
∑

u=g(u1,...,ur(g))
v=g(v1,...,vr(g))

∈T(Σ)

ω(u, v) · d(u, v)≤

∑

m∈M
(>rg∈Rg

((>p∈ρ(rg)p)> 1X r
))(m) ·λ ·

1−
r(g)
∏

i=1

∑

mi∈M
p̂i(mi) ·

�

1−
D(mi , e′)
λ

�m(x i)
!

(5.21)

Now we consider the right hand side P(p̂, e′) of the proof obligation in Equation 5.17.
By Lemma 5.29 and equations 5.13–5.15 the unique p̂ ∈ src(τ(θ), r) can be reformulated
to:

158

5.3. Distance between composed processes

p̂ = src

� r(g)
⊕

i=1

��

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X rg

��

�x i
pi

�

, r

�

=
r(g)
⊕

i=1

src
���

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X rg

��

�x i
pi

�

, r
�

=
r(g)
⊕

i=1

��

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X rg

��

�x i
src (pi , r)

�

=
r(g)
⊕

i=1

��

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X rg

��

�x i
p̂i

�

with pi ∈ τ(θi) such that p̂i = src(pi , r) for i = 1, . . . , r(g). Hence by exploiting the results
on distributions of operators over D and P in Lemma 5.30 and Lemma 5.31 we get

P(p̂, e′)

=P

� r(g)
⊕

i=1

��

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

��

�x i
p̂i

�

, e′
�

=
∑

mi∈M
i=1,...r(g)

r(g)
∏

i=1

��

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

��

�x i
p̂i

�

(mi) ·λ·

1−
r(g)
∏

i=1

�

1−
D(mi , e′)
λ

�

!

=
∑

m′i ,m′′i ∈M
i=1,...r(g)

r(g)
∏

i=1

�

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

�

(m′i) · p̂i(m
′′
i)
�

·λ·

1−
r(g)
∏

i=1

�

1−
D(m′i �x i

m′′i , e′)

λ

�

!

≥
∑

m′ ,m′′i ∈M
i=1,...r(g)

r(g)
∏

i=1

�

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

�

(m′) · p̂i(m
′′
i)
�

·λ·

1−
r(g)
∏

i=1

�

1−
D(m′ �x i

m′′i , e′)

λ

�

!

=
∑

m′ ,m′′i ∈M
i=1,...r(g)

r(g)
∏

i=1

�

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

�

(m′) · p̂i(m
′′
i)
�

·λ·

159

Chapter 5. A denotational model of metric compositionality






1−

r(g)
∏

i=1






1−

λ ·
�

1−
�

1− D(m′′i ,e′)
λ

�m′(x i)
�

λ













=
∑

m′ ,m′′i ∈M
i=1,...r(g)

r(g)
∏

i=1

�

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

��

(m′) · p̂i(m
′′
i) ·λ·

1−
r(g)
∏

i=1

�

1−
D(m′′i , e′)

λ

�m′(x i)
!

=
∑

m′∈M

�

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

��

(m′) ·
∑

m′′i ∈M
i=1,...r(g)

r(g)
∏

i=1

p̂i(m
′′
i) ·λ·

1−
r(g)
∏

i=1

�

1−
D(m′′i , e′)

λ

�m′(x i)
!

=
∑

m′∈M

�

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

��

(m′) ·λ·






1−

∑

m′′i ∈M
i=1,...r(g)

r(g)
∏

i=1

p̂i(m
′′
i) ·

r(g)
∏

i=1

�

1−
D(m′′i , e′)

λ

�m′(x i)







=
∑

m′∈M

�

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

��

(m′) ·λ·



1−
r(g)
∏

i=1

∑

m′′i ∈M

p̂i(m
′′
i) ·

�

1−
D(m′′i , e′)

λ

�m′(x i)




where step 1 follows by equality p̂ =
⊕r(g)

i=1

��

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X rg

��

�x i
p̂i

�

, step 2
follows by how ⊕ distributes over P (Lemma 5.31.1), step 3 follows by definition of �x i

on P , step 4 is immediate, step 5 follows by how � distributes over D (Lemma 5.30.2),
and steps 6–9 are immediate.

Summarizing

P(p̂, e′)≥

∑

m′∈M

�

>rg∈Rg

��

>p∈ρ(rg)p
�

> 1X r

��

(m′) ·λ ·



1−
r(g)
∏

i=1

∑

m′′i ∈M

p̂i(m
′′
i) ·

�

1−
D(m′′i , e′)

λ

�m′(x i)




(5.22)

We conclude by observing that the proof obligation Equation 5.17 follows from Equa-
tions 5.18, 5.21, 5.22. ut

Inductive consistency of F and B (Proposition 5.44) and monotonicity and continu-
ity of F and B (Proposition 5.39) allows to conclude now with the following adequacy

160

5.3. Distance between composed processes

theorem.

Theorem 5.45 (Adequacy of term denotations). Let P be any PGSOS PTSS with d the
bisimilarity metric on the associated PTS and ¹·º the canonical denotation of terms according
to P. Then d� ¹·º.

Proof. Recall that d is the least fixed point of B: [0, 1]T(Σ)×T(Σ)→ [0,1]T(Σ)×T(Σ) defined
by B(d)(t, t ′) = supa∈A {λ ·H(K(d))(der(t, a), der(t ′, a))}. Let dn = Bn(0) and (τn,ρn) =
Fn(⊥T ,⊥R) for all n ∈ N. Note that d= limn→∞ dn and (ωT ,ωR) = limn→∞(τn,ρn).

First, we show that dn � ¹·ºτn
for all n ∈ N. We proceed by induction over n. For n= 0

this is trivial because d0 = 0. For any finite n it follows by induction from Proposition 5.44
together with monotonicity of B [DD11] and monotonicity of F (Proposition 5.39).

Then, monotonicity and upwardω-continuity of F (Proposition 5.39) ensure that this
property is also preserved in the limit, namely d� ¹·º. In detail, let t ∈ T(Σ) be any term
andσ1,σ2 any closed substitutions. Consider the sequence over reals [dn(σ1(t),σ2(t))]n∈N.
By monotonicity of B [DD11] this sequence is a monotone increasing chain and by Propos-
ition 2.25 it has d(σ1(t),σ2(t)) as supremum. By dn v ¹·ºτn

we have dn(σ1(t),σ2(t))≤
A(¹tºτn

,d(σ1,σ2)). From τn v ωT and monotonicity of A (Proposition 5.26) it follows
dn(σ1(t),σ2(t)) ≤ A(¹tº,d(σ1,σ2)). Summarizing, we have that A(¹tº,d(σ1,σ2)) is
an upper bound to all elements in the chain [dn(σ1(t),σ2(t))]n∈N, whose supremum is
d(σ1(t),σ2(t)). Then d(σ1(t),σ2(t)) ≤ A(¹tº,d(σ1,σ2)) follows immediately. Hence,
we conclude d� ¹·º. ut

5.3.4 Discussion

We conclude this section by discussing the connection between the operational behavior
of processes and the operations and functional expressions to compute the process de-
notations. Table 5.1 shows how basic process behavior and process combinators relate
to basic denotations and operations on denotations. The functional F to compute the de-
notation of some term t applies then compositionally the operations on denotations to
subterms of t mimicking the compositional term structure of t.

The distance between replicated processes depends on the interaction between the
process instances. Nondeterministic choice between two instances of a process with de-
terministic initial state x + x can be understood as independence between the two in-
stances of x which results in ¹x + xº = ¹xº = 1x . However, nondeterministic choices
between two instances of a process with probabilistic initial state ¹µ + µº = (ρ+ �x1

µ) ⊕ (ρ+ �x2
µ) = 2µ (cf. Example 5.38). On the other hand, if processes copies (with

deterministic or probabilistic initial state) synchronize, then ¹x ‖ xº = 2¹xº = 2x and
¹µ ‖ µº = (ρ‖ �x1

µ)⊕ (ρ‖ �x2
µ) = 2µ. Since the denotational model stratifies determ-

inistic behavior, probabilistic choice and nondeterministic choice, the process algebra op-
erators for probabilistic and nondeterministic choice are expressed directly as operations
on the probabilistic multiplicity (probabilistic choice) and nondeterministic probabilistic
multiplicity (nondeterministic choice). Sequencing and evolution of processes are repres-
ented by scalar multiplication with the discount factor since these operations alter after
how many steps the behavioral difference is observable.

The denotations for process creation, process replication, probabilistic choice and non-
deterministic choice form a basis of the set of all finite denotations.

161

Chapter 5. A denotational model of metric compositionality

Process behavior BPA expression Operation on denotation
Process creation x 1x

Process evolution a.t λ · ¹tº
Process sequencing t1; t2 ¹t1º⊕λ · (

⊕

x∈V s
(¹t2º�x 1x))∪ ¹t2º

Process replication t ‖ t ¹tº⊕ ¹tº
Nondeterministic
process choice t1 + t2 ¹t1º∪ ¹t2º

Probabilistic
process choice a.([p1]t1 ⊕ [p2]t2) λ · p1¹t1º+λ · p2¹t2º

Table 5.1: Compositional process term structure and compositional process denotations

Theorem 5.46. Consider the constant denotations {0x , 1x |x ∈ V s}. The inductive applica-
tion of the unary operations {λ · _|λ ∈ (0,1]} and the binary operations {_⊕ _, _∪ _, _+ _ }
form the set of all finite denotations Dfin = {↓P|P ⊆ P ∧∀p ∈ P.p(x)<∞}.

Proof. Consider first an arbitrary multiplicity m ∈M with m(x) <∞ for all x ∈ V s. We
have

m=

�

⊕

{x |m(x)=0}
0x

�

⊕

�

⊕

{x |m(x)>0}
m(x) · 1x

�

which confirms that we can build m by using constants 0x and 1x and the operators · and
⊕. Consider now an arbitrary probabilistic multiplicity p ∈ P with p(x) <∞. From
p(x) <∞ we infer m(x) <∞ for all x ∈ V s and m ∈M with p(m) > 0, thus implying
that any m in the support of p can be built by 0x and 1x and the operators · and ⊕. Hence
p =

∑

{m∈M|p(m)>0} p(m)·m, thus implying that p can be built by using 0x , 1x and opertors
·, ⊕ and +. Finally, by using operator ∪ we can build all nondeterministic probabilistic
multiplicities in Dfin. ut

We conclude by remarking that the denotational model of PTSSs (Definition 5.34)
could be simplified (with the necessary adaptation of the functional F) to (ST ,v) since
τk(f (x1, . . . , xn)) =

⋃

r∈R f
ρk(r) for all k ∈ N . However, we prefer the presented clear

separation between the denotation of terms ST and the denotation of the rules defining
the operational semantics of operators SR.

5.4 Compositional reasoning

Uniformly continuous operators allow to reason in a compositional manner (cf. Chapter 3).
We explore now in Section 5.4.1 how to specify uniformly continuous operators of a given
modulus of continuity and how to derive from the specification rules of an operator its
modulus of continuity by using the denotation of the respective operators. Then we study
in Section 5.4.2 the composition of those results and derive from the denotation of any
term (syntactic composition of operators) its modulus of continuity by functional com-
position of the moduli of continuity of the operators.

162

5.4. Compositional reasoning

5.4.1 Compositional operators

Uniformly continuous operators are operators that admit a modulus of continuity (Defin-
itions 4.30 and 4.31).

The distance approximation A applied to the denotation ¹ f (x1, . . . , xr(f))º of the term
f (x1, . . . , xr(f)) gives an upper bound on the distance between f -composed terms. Moreover,
this upper bound is a candidate for the modulus of continuity of f .

Definition 5.47 (Denotation induced upper bound). For an operator f ∈ Σ, the up-
per bound induced by the canonical denotation of f is the mapping z f : [0,1]r(f) → [0,1]
defined by

z f (ε1, . . . ,εr(f)) = A(¹ f (x1, . . . , xr(f))º, e)

with e ∈ E defined by e(x i) = εi for i = 1, . . . , r(f) and e(y) = 0 otherwise.

Definition 5.41 and Theorem 5.45 gives d(σ1(f (x1, . . . , xr(f)),σ2(f (x1, . . . , xr(f))))≤
A(¹ f (x1, . . . , xr(f))º,d(σ1,σ2)) for all closed substitutions σ1,σ2. Hence z f is an upper
bound for the distance between f -composed terms. However, in general there is no guar-
antee that z f is a modulus of continuity for f , since z f may not be continuous at (0, . . . , 0).
As an example, we show that for the replication operator ! of π-calculus it holds that the
upper bound z! is a modulus of continuity if and only if λ < 1.

Example 5.48. The replication operator of π-calculus is specified by the rule

x
a
−→ µ

!x
a
−→ µ ‖ δ(!x)

Consider first λ= 1 (non-discounting bisimulation metric). We have ¹!xº=∞x , which,
intuitively, expresses that the argument x is infinitely often replicated. This denota-
tion leads to the upper bound z!(e(x)) = A(∞x , e), which is not continuous at 0 since
z!(e(x)) = 1 if e(x) > 0 and z!(e(x)) = 0 if e(x) = 0. In general, no modulus of continu-
ity for operator ! can be provided. From d(!s, !t) = 1 whenever d(s, t) > 0, any mapping
z : [0,1]→ [0,1] satisfying d(!s, !t)≤ z(d(s, t)) for all closed terms s, t ∈ T(Σ) is such that
z(ε) = 1 whenever ε > 0, which implies that there is no mapping z : [0,1]→ [0, 1] with
d(!s, !t) ≤ z(d(s, t)) for all closed terms s, t ∈ T(Σ) and z(0) = 0 that is also continuous
at 0. Hence, the replication operator is not uniformly continuous w.r.t. non-discounting
bisimulation metric semantics.

Consider λ < 1 (discounting bisimulation metric). Let (τn,ρn) = Fn(⊥T ,⊥R). Then
τn+1(!x) = 1x ⊕λ ·τn(!x) = (

∑n−1
i=0 λ

i)x . Hence, the least fixed point is ωT (!x) = ¹!xº=
⊕∞

i=0(λ
i)x = (1/(1− λ))x . Thus, A(¹!xº, e) = z!(e(x)) = λ(1− (1− e(x)/λ)1/(1−λ)) is a

modulus of continuity for the replication operator w.r.t. discounting bisimulation metric
semantics. The optimal modulus of continuity for the replication operator is z(ε) = ε/(1−
(λ− ε)) (Proposition 3.9.d)

On the other hand, probabilistic replication operator !q_ is continuous even for the
non-discounted bisimulation metric, witnessed by the modulus of continuity z!q_.

163

Chapter 5. A denotational model of metric compositionality

Example 5.49. We consider now the probabilistic recursion operator !q_ with q ∈ (0,1)∩
Q defined by the rule [MS13]:

x
a
−→ µ

!q x
a
−→ µ⊕q (µ ‖ δ(!q x))

Let (τn,ρn) = Fn(⊥T ,⊥R). Then τn+1(!q x) = {[q]1x + [1 − q](1x ⊕ λ · τn(!q x))}. The
probabilistic replication operator has the denotation ¹!q xº = {p} with p((

∑n−1
i=0 λ

i)x) =
q(1−q)n−1 for all n≥ 1. Intuitively, q(1−q)n−1 is the likelihood that for n−1 transitions the
probabilistic choice in the rule target resolves to the right summand µ ‖ δ(!q x) followed
by a transition where then the probabilistic choice resolves to the left summand µ. Note
that

∑n−1
i=0 λ

i = (1−λn)/(1−λ) if λ < 1 and
∑n−1

i=0 λ
i = n if λ= 1.

Considerλ= 1 (non-discounting bisimulation metric). Now ¹!q xº= {p}with p(nx) =
q(1 − q)n−1 for all n ≥ 1. Then, we get A(¹!q xº,d(σ1,σ2)) =

∑∞
n=1 q(1 − q)n−1λ(1 −

(1 − d(σ1(x),σ2(x))/λ)n) ≤ d(σ1(x),σ2(x))q
∑∞

n=1(1 − q)n−1n = d(σ1(x),σ2(x)) · q ·
limm→∞(1 − (1 − q)m+1)/q2 − ((m + 1)(1 − q)m)/q = d(σ1(x),σ2(x)) · q(1/q2 − 0) =
(1/q) · d(σ1(x),σ2(x)). Hence, for q > 0 the probabilistic replication operator is uni-
formly continuous. Theorem 5.55 confirms this also by ¹!q xº(x) v rx with r =

∑∞
n=1 n ·

q(1− q)n−1 = 1/q.
Consider λ < 1 (discounting bisimulation metric). Let p1, p2 ∈ P be defined by

p1(nx) = q(1−q)n−1 (probabilistic multiplicity w.r.t. non-discounting bisimulation metric)
and p2((

∑n−1
i=0 λ

i)x) = q(1− q)n−1 (probabilistic multiplicity w.r.t. discounting bisimula-
tion metric) for any n≥ 1. Then, we have p2 v p1 by the matchingω ∈ Ω(p1, p2) defined
by ω((

∑n−1
i=0 λ

i)x , nx) = q(1− q)n−1. Then, by monotonicity of A (Proposition 5.26) we
get A({p2}, e) ≤ A({p1}, e) for all e ∈ E . Hence, the probabilistic replication operator
is uniformly continuous w.r.t. discounting bisimulation metric. The optimal modulus of
continuity for the probabilistic replication operator is z(ε) = ε/(1− (1− q)(λ− ε)) (Pro-
position 3.9.g).

We aim to derive a sufficient condition that the denotation induced upper bound z f is
also continuous at (0, . . . , 0), thus implying that z f is a modulus of continuity for f and f
is a uniformly continuous operator.

We start with analyzing which multiplicities m ∈ M induce a deterministic upper
bound distance approximation D(m, ·) that is continuous at the process distance 0 ∈ E .
To this purpose, we need a notion of distance between process distances. We define the
distance dE : E × E → [0,1] by dE (e1, e2) = supx∈V |e1(x)− e2(x)| for all e1, e2 ∈ E .

Definition 5.50 (Finite multiplicity). A multiplicity m ∈M is finite iff the set Vm = {x ∈
V | m(x)> 0} is finite and m(x)<∞ for all x ∈ Vm.

The deterministic distance approximation D(m, ·) of finite multiplicities m ∈ M is
continuous at 0 ∈ E .

Proposition 5.51. If a multiplicity m ∈M is finite, then the function z : E → [0,1] defined
by z(e) = D(m, e) is continuous at 0 ∈ E .

Proof. There exists a natural l ∈ N such that m v lVm
with Vm = {x ∈ V | m(x) > 0}.

We have to show that for each ε > 0 there exists a neighborhood of 0 ∈ E such that for

164

5.4. Compositional reasoning

all e ∈ E in this neighborhood we have z(e) < ε. Formally, we have to prove that for
each ε > 0 there exists a δ > 0 such that for all e ∈ E , if dE (e, 0) < δ then z(e) < ε.
Assume an arbitrary ε > 0. Let δ = ε/(l · |Vm|). For any e ∈ E with dE (e, 0) < δ, i.e.
supx∈V e(x)< ε/(l · |Vm|), we get

z(e)
=D(m, e)

=λ

�

1−
∏

x∈V

�

1−
e(x)
λ

�m(x)
�

=λ



1−
∏

x∈V
m(x)≥1

�

1−
e(x)
λ

�m(x)

·
∏

x∈V
0≤m(x)<1

�

1−
e(x)
λ

�m(x)





≤λ



1−
∏

x∈V
m(x)≥1

�

1−
e(x)
λ

�m(x)

·
∏

x∈V
0≤m(x)<1

�

1−
e(x)
λ

�





≤
∑

x∈V
m(x)≥1

m(x) · e(x) +
∑

x∈V
0≤m(x)<1

e(x)

≤
∑

x∈V
l · e(x)

≤l · |Vm| · sup
x∈V

e(x)

<l · |Vm| · (ε/(l · |Vm|))
= ε.

This confirms that z is continuous at 0 ∈ E . ut

Next, we derive from a probabilistic multiplicity p ∈ P a multiplicity p ∈ M that
induces a deterministic distance approximation that is above the probabilistic distance
approximation induced by p, namely P(p, e)≤ D(p, e) for all e ∈ E .

Definition 5.52 (Weighting of a probabilistic multiplicity). The weighting of a probabilistic
multiplicity p ∈ P is the multiplicity p ∈M defined by

p(x) =
∑

m∈M
p(m) ·m(x)

for all x ∈ V .

Intuitively, the number of process copies m(x) are weighted by the probability p(m)
of realization of multiplicity m.

Proposition 5.53. For all probabilistic multiplicities p ∈ P and process distances e ∈ E

P(p, e)≤ D(p, e).

165

Chapter 5. A denotational model of metric compositionality

Proof.

P(p, e)

=
∑

m∈M
p(m)λ

1−
∏

x∈V s

�

1−
e(x)
λ

�m(x)
!

≤λ

�

1−
∏

x∈V

�

1−
e(x)
λ

�

∑

m∈M p(m)m(x)
�

(Jensen’s inequality)

=λ

�

1−
∏

x∈V

�

1−
e(x)
λ

�p
�

=D(p, e)

and Jensen’s inequality is applicable since the function m 7→ λ
�

1−
∏

x∈V

�

1− e(x)
λ

�m(x)
�

with typingM → [0,1] is concave for all λ ∈ (0, 1]. ut

Definition 5.54 (Canonical deterministic denotation of operators). For any operator f ∈
Σ we define the canonical deterministic denotation of operator f as

m f = sup¹ f (x1, . . . , xr(f))º

We may call the canonical deterministic denotation of f also the derived multiplicity
of f .

An operator f is uniformly continuous if the canonical deterministic denotation m f is
finite.

Theorem 5.55 (Uniformly continuous operator). Let f ∈ Σ be any operator. If the canon-
ical deterministic denotation m f of f is finite, then f is uniformly continuous.

Proof. This is a special case of Theorem 5.63 below. In detail, m f = m f (x1,...,xr(f)) for
m f (x1,...,xr(f)) is the canonical deterministic multiplicity of term f (x1, . . . , xr(f)) (Defini-
tion 5.62). Theorem 5.63 shows that if m f (x1,...,xr(f)) is finite then context f (x1, . . . , xr(f))
is uniformly continuos (Definition 5.58) and Proposition 5.59 shows that operator f is
uniformly continuous iff context f (x1, . . . , xr(f)) is uniformly continuos. ut

In reverse, for a given modulus of continuity z (understood as the semantical specifica-
tion of some operator f), we can derive the maximal replication of f -composed processes
(understood as the syntactical specification) s.t. any operational specification of f that has
a denotation below that maximal replication admits z as modulus of continuity.

Definition 5.56 (Distance bound induced multiplicities). Let z : [0, 1]n → [0, 1] be a
mapping with z(0, . . . , 0) = 0 and z continuous at (0, . . . , 0). Let Mz ⊆M be defined by

Mz = {m ∈M | ∀e ∈ E .D(m, e)≤ z(e(x1), . . . , e(xn))}

We call Mz the derived set of multiplicities of z.

166

5.4. Compositional reasoning

Theorem 5.57. Let z : [0,1]n→ [0, 1] be a mapping with z(0, . . . , 0) = 0 and z continuous
at (0, . . . , 0). Then, an operator f ∈ Σ with r(f) = n has z as modulus of continuity if

m f ∈ Mz

with m f the canonical deterministic denotation of f (Definition 5.54), and Mz the set of
derived multiplicities of z (Definition 5.56).

Proof. This is a special case of Theorem 5.65 below. In detail, define z′ : E → [0, 1]
by z′(e) = z(e(x1), . . . , e(xn)). In the proof of Proposition 5.59 below it is shown that
z is a modulus of continuity for operator f iff z′ is a modulus of continuity for term
f (x1, . . . , xr(f)) (Definition 5.58). Theorem 5.65 shows that term f (x1, . . . , xr(f)) has z′

as modulus of continuity if the multiplicity m f (x1,...,xr(f)) induced by f (x1, . . . , xr(f)) (Defini-
tion 5.62) is such that m f (x1,...,xr(f)) ∈ Mz′ , where Mz′ = {m ∈M | ∀e ∈ E .D(m, e)≤ z′(e)}.
Finally, m f = m f (x1,...,xr(f)) and Mz = Mz′ . ut

5.4.2 Compositional contexts

We proceed by analyzing when a context, i.e. an open term, is continuous. This gener-
alizes the results of the former section whereby the analyzed operator f of the former
section corresponds to the context f (x1 . . . , xr(f)) in this section.

Definition 5.58 (Uniformly continuous term). Let t ∈ T(Σ) be any open term. A mapping
z : E → [0,1] is an upper bound on the distance between closed instances of t (for short an
upper bound for t) if

d(σ1(t),σ2(t))≤ z(d(σ1,σ2))

for all closed substitutions σ1,σ2 : V → T(Σ). An upper bound z for t is a modulus of
continuity of t if

• z is continuous at 0 ∈ E , i.e. for each ε > 0 there exists some δ > 0 s.t. for all e ∈ E
we get dE (e, 0)< δ implies |z(e)− z(0)|< ε, and

• z(0) = 0.

A term t is uniformly continuous if t admits some modulus of continuity.

The following proposition relates uniform continuity of operators as discussed in the
former section to uniform continuity of terms.

Proposition 5.59. An operator f is uniformly continuous iff the term f (x1, . . . , xr(f)) is
uniformly continuous.

Proof. First, assume that the operator f is uniformly continuous (Definition 4.31). Let
z : [0,1]r(f)→ [0,1] be any modulus of continuity for f . We define the mapping z′ : E →
[0,1] by z′(e) = z(e(x1), . . . , e(xr(f))) for all e ∈ E . Now we will show that z′ is a modulus
of continuity for f (x1, . . . , xr(f)), from which the thesis follows. Property z′(0) = 0 follows
by z′(0) = z(0(x1), . . . , 0(xr(f))) = z(0, . . . , 0) = 0. It remains to prove continuity at
0 ∈ E . For an arbitrary ε > 0, we have to provide a δ > 0 such that dE (e, 0) < δ implies
z′(e)< ε for all e ∈ E . By the continuity of z at (0, . . . , 0), there exist δ1, . . . ,δr(f) such that

167

Chapter 5. A denotational model of metric compositionality

z(v1, . . . , vr(f)) < ε whenever vi < δi for i = 1, . . . , r(f). Let δ′ = minr(f)
i=1 δi . Assume any

process distance e ∈ E with dE (0, e)< δ′, i.e. e(x i)< δ′ ≤ δi for all i = 1, . . . , r(f). Then
z′(e) = z(e(x1), . . . , e(xr(f))) < ε by continuity of z at (0, . . . , 0). Hence z′ is continuous
at 0 ∈ E .

Now, assume that the term f (x1, . . . , xr(f)) is uniformly continuous. Let z′ : E → [0,1]
be a modulus of continuity for f (x1, . . . , xr(f)). Define the mapping z : [0, 1]r(f) → [0,1]
by z(v1, . . . , vr(f)) = inf e∈E

vi=e(xi) for i=1,...,r(f)
z′(e). We show that z is a modulus of continuity for f ,

from which the thesis follows. Property z(0, . . . , 0) = 0 follows by z(0, . . . , 0) = z′(0) = 0.
It remains to prove continuity at (0, . . . , 0). For an arbitrary ε > 0, we must provide
values δ1, . . . ,δr(f) such that z(v1, . . . , vr(f)) < ε whenever vi < δi for i = 1, . . . , r(f). By
the continuity of z′ at 0 ∈ E there exists a δ > 0 such that dE (e, 0) < δ implies z′(e) < ε
for all e ∈ E . Let δi = δ for i = 1, . . . , r(f). Assume arbitrary value vi < δi = δ, for
i = 1, . . . , r(f). We get z(v1, . . . , vr(f)) = inf e∈E

e(xi)=vi for i=1,...,r(f)
z′(e)≤ inf e∈E

e(xi)<δ for i=1,...,r(f)
z′(e)< ε.

Hence z is continuous at (0, . . . , 0). ut

Definition 5.60 (Denotation induced upper bound). For an open term t ∈ T(Σ), the upper
bound induced by the canonical denotation of t is the mapping zt : E → [0, 1] defined by

zt(e) = A(¹tº, e)

for all e ∈ E .

Notice that the denotation induced upper bound for operator f (Definition 5.47) and
the denotation induced upper bound for term f (x1, . . . , xr(f)) (Definition 5.60) are related
by z f (e(x1), . . . , e(xr(f))) = z f (x1,...,xr(f))(e) for all e ∈ E . Property d � ¹·º (Theorem 5.45)
gives directly that zt is an upper bound for t.

It is well-known from analysis that continuous functions are closed under composition.
For a given term f (t1, . . . , tr(f)), the composition of the modulus of continuity of f with
the moduli of continuity of t i is a modulus of continuity of f (t1, . . . , tr(f)).

Theorem 5.61 (Compositionality of moduli of continuity). Let t ∈ T(Σ) be any open term.
We define z t : E → [0, 1] by

z t(e) =

¨

e(x) if t = x
z f (z t1

(e), . . . , z tr(f)(e)) if t = f (t1, . . . , tr(f)).

Then it holds that:

1. z t(0) = 0;

2. if z f is continuous at (0, . . . , 0) for all f occurring in t, then z t is continuous at 0 ∈ E ;

3. z t is an upper bound for t.

Proof. We prove the three properties by structural induction over t.

1. The base case t = x is immediate since z t(0) = 0(x) = 0. Consider the induc-
tion step t = f (t1, . . . , tr(f)). By definition we have z t(0) = z f (z t1

(0), . . . , z tr(f)(0)).
Then, by the inductive hypothesis we have z t i

(0) = 0 for i = 1, . . . , r(f), which
gives z f (z t1

(0), . . . , z tr(f)(0)) = z f (0, . . . , 0). Finally, we get z f (0, . . . , 0) = 0 from
z f (0, . . . , 0) = A(¹ f (x1, . . . , xr(f)), 0) and A(¹ f (x1, . . . , xr(f)), 0) = 0.

168

5.4. Compositional reasoning

2. The base case t = x is immediate. Consider the inductive step t = f (t1, . . . , tr(f)).
By definition we have z t(e) = z f (z t1

(e), . . . , z tr(f)(e)). Continuity of z t follows since
all z t i

(e) are continuous at 0 ∈ E by the inductive hypothesis, z f is continuous at
(0, . . . , 0) by the hypothesis, and the composition of continuous functions is con-
tinuous.

3. We need to show that d(σ1(t),σ2(t)) ≤ z t(d(σ1,σ2)) for all closed substitutions
σ1,σ2 : V → T(Σ). Consider the base case t = x . By definition d(σ1,σ2)(x) =
d(σ1(x),σ2(x)). Then we get d(σ1(t),σ2(t)) = d(σ1(x),σ2(x)) = d(σ1,σ2)(x) =
z t(d(σ1,σ2)). Consider the induction step t = f (t1, . . . , tr(f)). Then we have
d(σ1(t),σ2(t))≤ z f (d(σ1(t1),σ2(t1)), . . . ,d(σ1(tr(f)),σ2(tr(f))) since z f is an up-
per bound for f -composed terms. By the induction hypothesis d(σ1(t i),σ2(t i)) ≤
z t i
(d(σ1,σ2)) and monotonicity of z f (Proposition 5.26), we derive now the fi-

nal thesis that z f (d(σ1(t1),σ2(t1)), . . . ,d(σ1(tr(f)),σ2(tr(f)))) is less than or equal
to the expression z f (z t1

(d(σ1,σ2)), . . . , z tr(f)(d(σ1,σ2))) which is in fact equal to
z t(d(σ1,σ2)).

ut

In fact, Theorem 5.61 allows us to use the moduli of continuity of operators (Sec-
tion 5.4.1) to compute a modulus of continuity of any open term. Now we can show that
an term is uniformly continuous if its canonical denotation is definite.

Definition 5.62 (Canonical deterministic denotation of terms). For a term t ∈ T(Σ) we
define the canonical deterministic denotation of term t as

mt = sup¹tº.

Notice that we have m f = m f (x1,...,xr(f)) for m f the canonical deterministic denotation
of operator f (Definition 5.54). A term t is uniformly continuous if mt is finite.

Theorem 5.63 (Uniformly continuous term). Let t ∈ T(Σ) be an open term. If the canon-
ical deterministic denotation mt of t is finite then t is uniformly continuous.

Proof. We will show that z(e) = D(mt , e) is a modulus of continuity of t. First, observe
that z(0) = 0. Moreover, z is continuous at 0 ∈ E by Proposition 5.51. It remains to show
that zt(e) ≤ z(e). We reason by zt(e) = A(¹tº, e) = supP∈¹tº P(P, e) ≤ P(supP∈¹t)º, e) ≤
D(sup¹tº, e) = D(mt , e) = z(e) with step 3 by monotonicity of P (Proposition 5.19) and
step 4 by Proposition 5.53. ut

Definition 5.64 (Distance bound induced multiplicities). Let z : E → [0, 1] be a mapping
with z(0) = 0 and z continuous at 0 ∈ E . Let Mz ⊆M be the set defined by

Mz = {m ∈M | ∀e ∈ E .D(m, e)≤ z(e)}

We call Mz the multiplicities induced by distance bound z.

Notice that for all mappings z′ : E → [0,1] and z : [0,1]r(f) → [0, 1] such that for all
e ∈ E it holds z′(e) = z(e(x1), . . . , e(xr(f))), we have that the derived set of multiplicites
Mz′ of z′ (Definition 5.64) and the derived set of multiplicites Mz of z (Definition 5.56)
coincide.

169

Chapter 5. A denotational model of metric compositionality

Theorem 5.65. Let z : E → [0,1] be a mapping with z(0) = 0 and z continuous at 0 ∈ E .
Then, an open term t ∈ T(Σ) has z as modulus of continuity if

mt ∈ Mz

with mt the canonical deterministic denotation of t (Definition 5.62), and and Mz the mul-
tiplicities induced by z (Definition 5.64).

Proof. Let mt ∈ Mz . First we show that the term t has z as an upper bound. Then, we
conclude that z is a modulus of continuity of t.

Let σ1,σ2 be any closed substitutions. Then:

d(σ1(t),σ2(t))
≤A(¹tº,d(σ1,σ2)) (Theorem 5.45)

≤P(sup¹tº,d(σ1,σ2)) (Proposition 5.26)

≤D(sup¹tº,d(σ1,σ2)) (Proposition 5.53)

=D(mt ,d(σ1,σ2)) (Definition of mt)

≤z(d(σ1,σ2)) (mt ∈ Mz)

Hence, z is an upper bound on the distance between instances of t.
Since z(0) = 0 and z is continuous at 0, the function z is not only an upper bound on

t but a modulus of continuity on t. ut

To conclude, the methods provided in Sections 5.2 and 5.3 to compute an upper
bound on the distance between closed instances of the term f (x1, . . . , xr(f)) can be used
to derive the individual compositionality property of the operator f given by its modulus
of continuity z f . Note that z f depends not only on the rules specifying operator f but
also on all those rules which define operators of those processes to which an instance of
f (x1, . . . , xr(f)) may evolve to. Traditional rule formats define syntactic criteria on single
rules in order to guarantee a desired compositionality property of the specified operator.
In contrast, our approach derives the compositionality property of an operator from the
syntactic properties of those rules which define the operational behavior of processes
composed by that operator.

5.5 Closing remarks

We developed a denotational model of open nondeterministic probabilistic processes that
captures the basic ingredients that determine the distance between processes: Replica-
tion of processes (captured by multiplicities, Definition 5.1), probabilistic choice (cap-
tured by probabilistic multiplicities, Definition 5.12), and nondeterministic choice (cap-
tured by nondeterministic probabilistic multiplicities, Definition 5.20). Given any open
term denoting an open nondeterministic probabilistic process the denotation allows us
to compute now an upper bound on the distance between closed instances of that term
(Theorems 5.23 and 5.45).

170

5.5. Closing remarks

These results together allow us to decide for any given PTSS which operators allow
for compositional metric reasoning, i.e. which operators are uniformly continuous (The-
orem 5.55). In line with the results of the former chapters uniformly continuous operators
are operators that may replicate their composed processes only finitely many times. This
translates in the denotational model as sufficient condition that operators with finite ca-
nonical deterministic denotations are uniformly continuous.

Our method allows also to compute for any given PTSS a modulus of continuity of each
uniformly continuous operator (Definitions 5.47 and 5.54, Theorems 5.45 and 5.55). In
reverse, for any given modulus of continuity (semantical specification of the composition-
ality property of an operator) we provide a method to decide if an operator satisfies this
modulus of continuity (Theorem 5.57). In essence, the modulus of continuity induces
a maximal denotation (syntactical specification of the compositionality property of that
operator) which captures how many times processes combined by that operator may be
replicated during their evolution. Any operator with a denotation that does not exceed
the induce maximal denotation admits the given modulus of continuity.

The composition of those results allows us then to derive a modulus of continuity of
terms by mimicking the syntactic composition of operators (Theorems 5.61 and 5.63). In
line with the compositionality results for operators we can derive also for any given mod-
ulus of continuity a maximal multiplicity s.t. any term with a lower canonical multiplicity
admits that modulus of continuity (Theorem 5.64).

The distance between f -composed processes derived from the canonical denotation
of operator f (Definition 5.47) is an upper bound (soundness of the induced distance).
However, the distance may not be optimal in the following sense. We call the upper
bound z f induced by the canonical denotation of operator f optimal if for each distances
(ε1, . . . ,εr(f)) ∈ [0, 1]r(f) there are for all i = 1, . . . , r(f) terms si , t i ∈ T(Σ)with d(si , t i) =
εi such that d(f (s1, . . . , sr(f)), f (t1, . . . , tr(f))) = z f (ε1, . . . ,εr(f)). Initial research suggest
that the specification of f needs to meet at least the following requirements: no junk
rules [AFV01b, Section 5.4.2], f is only finitely recursing (i.e. creates only finitely many
copies of its arguments), and only finitely many actions A. The detailed analysis and
verification of those requirements will be left as future work.

Another interesting direction is to investigate how the compositional computation of
bisimulation distances on Markov Decision Processes [Bac+13] relates to our framework.
Asides the obvious difference that [Bac+13] does not consider nondeterministic choice
and each process can execute each action, the composition operators defined in [Bac+13,

Definition 4] are in our context SOS rules with premises x i
ai−→ µi and the composition

semantics is defined by the rule target (e.g. [Bac+13, Examples 5 & 6]). The composition-
ality property of 1-safe operators ([Bac+13, Definition 10]) is in fact non-expansiveness
and translates to our framework as denotation

⊕r(f)
i=1 1x i

, while ∞-safe operators are

non-extensive operators with denotation
⋃r(f)

i=1 1x i
.

Similar to the former chapters also the results in this chapter should be reinvestigated
for other behavioral metrics, such as convex bisimulation metric [Alf+07; Alf+08; Ram10;
Mio14], generalized bisimulation metric [Cha+14], trace metrics [AFS04; Bac+15] and
metrics based on testing semantics. Finally, we suggest to investigate how the denota-
tional approach to derive specification requirements (developed in this chapter) relates to
the logical approach to derive rule formats (developed in [BFG04; GF10]). For this com-

171

Chapter 5. A denotational model of metric compositionality

parision the bialgebraic framework seems suitable. Initial ideas can be found at [Kli05;
Kli09; Kli10; KS13].

172

Chapter 6

Axiomatizing bisimulation
equivalences and metrics

6.1 Introduction

In the former section we studied the compositionality of probabilistic programming lan-
guages both from the operational and from the denotational semantics point of view. We
derived general properties on operators by inspecting the specification rules that define
the semantics of the operators. However, there are properties that are better understood
from an axiomatic point of view, by regarding the language as a signature equipped with
an equational theory (see e.g. [Mil89; BBR10]). This is a different way to understand
the language that brings new insights on the behavior of its operators and processes.
General properties, such as associativity, distributivity, or reduction to basic operators, or
specific ones, can be easily derived with equational reasoning, which is also used for the
verification of systems.

In [ABV94], Aceto, Bloom & Vaandrager link the operational and the axiomatic ap-
proach by providing an algorithm to derive an equational theory for any language whose
semantics is defined in terms of SOS rules that meet the GSOS format [BIM95]. This
equational theory is sound and ground-complete for bisimulation equivalence [Mil89].
For recent work in that area we refer the interested reader to [Ace+13; GF13] and refer-
ences therein.

The above mentioned results are developed in the setting of traditional nondetermin-
istic semantics. Using the recently developed equational theory for probabilistic lan-
guages [BS01; Hen12] we will lift in this chapter the result of [ABV94] to languages with
probabilistic operations. The input of our algorithm is a PGSOS system (cf. Section 2.4)
and the output is a sound and ground-complete equational theory for bisimilarity equival-
ence (cf. Section 2.3.1). The novelty in our approach is to employ many-sorted algebras to
axiomatize separately non-deterministic choice, probabilistic choice and their interaction.
The main contributions of this chapter are:

1. We generalize the PGSOS format to two-sorted signatures in order to syntactic-
ally denote states and distributions (Section 6.2). By doing so, operators can now

173

Chapter 6. Axiomatizing bisimulation equivalences and metrics

be parameterized also on distributions, and moreover, we can neatly express open
terms in the rules of the PTSS. While the syntax somehow resembles the alternat-
ing model of probabilistic processes [Han94; HJ94], we continue the research line
of the former chapters and let PTSS have probabilistic nondeterministic transition
systems (Definition 2.10) as models. We show that bisimilarity equivalence is a
congruence for any operator whose semantics is defined by rules in the generalized
PGSOS format (Theorem 6.8).

2. We provide an algorithm that takes a PGSOS system, and produces an equational
theory that is sound and ground-complete for bisimilarity equivalence (Figure 6.1).
We show ground-completeness for semantically well-founded PGSOS systems (The-
orem 6.24), and we indicate how this result can be extended to arbitrary PGSOS.

3. As a by-product we needed to define a two-sorted calculus for finite probabilistic
processes equipped with a sound and ground-complete equational theory for bisim-
ilarity equivalence (Table 6.1). This calculus is adapted from [BS01].

4. We provide an equational theory for the basic calculus that captures exactly the
notion of bisimilarity metric (Table 6.4). The equational theory is sound (The-
orem 6.25) in the sense that, whenever the equality between the distance of two
processes and the distance of two other processes (or a particular value) can be cal-
culated with the calculus, it can also be calculated semantically in the probabilistic
transition system. We show that it is also ground-complete (Theorem 6.28), i.e. the
inverse implication holds for closed terms.

5. Finally, we provide an algorithm to derive a sound and ground-complete equational
theory for bisimilarity metric from a given PGSOS system (Theorem 6.29).

The main results of this chapter have been published in [DGL14]. We generalize the
earlier publication by allowing now also strictly discounting bisimulation metrics.

6.2 Preliminaries

We will first introduce two-sorted signatures and their respective term algebras, then gen-
eralize the PGSOS rule format to the two-sorted setting and show that also the generalized
rule format satisfies the important congruence property.

6.2.1 Many-sorted signatures and term algebras

Let S = {s, d} be a set denoting two sorts. Elements of sort s ∈ S will represent states in
the transition system, and elements of sort d ∈ S will represent distributions over states.
We let σ range over the sorts in S. We write S-sorted families X as pairs (Xs, Xd) with the
first element Xs denoting the member of sort s and the second element Xd denoting the
member of sort d.

An S-sorted signature is a structure (F,ar), where (i) F is a set of function names, and
(ii) ar : F → (S∗ × S) is the arity function. The rank of f ∈ F is the number of arguments
of f , defined by r(f) = n if ar(f) = σ1 . . .σn → σ. (We write “σ1 . . .σn → σ” instead of

174

6.2. Preliminaries

“(σ1 . . .σn,σ)” to highlight that function f maps to sort σ.) Function f is a constant if
r(f) = 0. To simplify the presentation we will write an S-sorted signature (F,ar) as a pair
of disjoint signatures (Σs,Σd) where Σs is the set of operators that map to s and Σd is the
set of operators that map to d.

Let Vs and Vd be two infinite sets of S-sorted variables where Vs,Vd , F are all mutually
disjoint. We use x , y, z (with possible sub- or super-scripts) to range over Vs, µ,ν to range
over Vd and ζ to range over Vs ∪Vd .

Definition 6.1. Let Σs and Σd be two signatures as before and let Vs ⊆ Vs and Vd ⊆
Vd . We simultaneously define the sets of state terms T (Σs, Vs, Vd) and distribution terms
T (Σd , Vs, Vd) as the smallest sets satisfying:

(i) Vs ⊆ T (Σs, Vs, Vd);

(ii) Vd ⊆ T (Σd , Vs, Vd);

(iii) f (ξ1, · · · ,ξr(f)) ∈ T (Σσ, Vs, Vd), if ar(f) = σ1 . . .σn→ σ and ξi ∈ T (Σσi
, Vs, Vd).

Let T(Σ) = T (Σs,Vs,Vd) denote the set of open state terms, DT(Σ) = T (Σd ,Vs,Vd)
the set of open distribution terms, and T(Σ) ∪DT(Σ) = T (Σs,Vs,Vd) ∪ T (Σd ,Vs,Vd) the
set of all open terms. Similarly, we let T(Σ) = T (Σs,;,;), DT(Σ) = T (Σd ,;,;), T(Σ) =
T (Σs,;,;)∪T (Σd ,;,;) denote the set of all closed state terms, closed distribution terms, and
closed terms, respectively. We let t, t ′, t1,. . . range over state terms, θ , θ ′, θ1,. . . range
over distribution terms, and ξ, ξ′, ξ1,. . . range over any kind of terms. With V (ξ) ⊆
Vs ∪Vd we denote the set of variables occurring in term ξ.

Let∆(T(Σ)) denote the set of all (discrete) probability distributions on T(Σ). We letπ
range over ∆(T(Σ)). For each t ∈ T(Σ), let1 δt ∈∆(T(Σ)) denote the Dirac distribution,
i.e., δt(t) = 1 and δt(t ′) = 0 if t and t ′ are not syntactically equal. For X ⊆ T(Σ)
we define π(X) =

∑

t∈X π(t). The convex combination
∑

i∈I piπi of a family {πi}i∈I of
probability distributions with pi ∈ (0, 1] and

∑

i∈I pi = 1 is defined by (
∑

i∈I piπi)(t) =
∑

i∈I (piπi(t)).
The type of signatures we consider has a particular construction. We start from a

signature Σs of functions mapping into sort s and construct the signature Σd of functions
mapping into sort d as follows. For each f ∈ Fs we include a function symbol f ∈ Fd
with ar(f) = d . . . d → d and r(f) = r(f). We call f the probabilistic lifting of f . (We
use boldface fonts to indicate that a function in Σd is the probabilistic lifting of another
in Σs.) Moreover Σd includes the following additional operators:

• δ with arity ar(δ) = s→ d and

• ⊕p with p ∈Q∩ (0,1) and ar(⊕p) = dd → d.

We call S-sorted signatures Σ = (Σs,Σd) that follow this construction as probabilistically
lifted signatures.

Operators δ and ⊕p are used to construct discrete probability functions of countable
support: δ(t) is interpreted as a distribution that assigns probability 1 to the state term

1In the former chapters we denoted the Dirac distribution with all probability mass at term t by δ(t). How-
ever, in this chapter δ(t) will denote a special function in the lifted signature Σd . To avoid confusion we will
use the alternative notation δt for the Dirac distribution.

175

Chapter 6. Axiomatizing bisimulation equivalences and metrics

t and probability 0 to any other term t ′ (syntactically) different from t, and θ1 ⊕p θ2
represents a distribution that weights with p the distribution represented by the term θ1
and with 1 − p the distribution represented by θ2. Moreover, a probabilistically lifted
operator f is interpreted by lifting the probabilities of the operands to terms composed
with the operator f .

Formally, the algebra associated with a probabilistically lifted signature Σ = (Σs,Σd)
is defined as follows. For sort s, it is the freely generated algebraic structure T(Σ). For
sort d, it is defined by the carrier ∆(T(Σ)) and the following interpretation:

• ¹δ(t)º = δt for all t ∈ T(Σ).

• ¹θ1 ⊕p θ2º = p¹θ1º + (1− p)¹θ2º for θ1,θ2 ∈DT(Σ).

• ¹ f (θ1, . . . ,θr(f))º(f (ξ1, . . . ,ξr(f))) =

¨∏

σi=s¹θiº(ξi) if for all σ j = d,θ j = ξ j

0 otherwise

with
∏

; = 1. Notice that in the semantics of a lifted function f , the product considers
only the distributions related to the s-sorted positions in f , while the distribution terms
corresponding to the d-sorted positions in f should be matched exactly to the parameters
of f .

A substitution2 ρ is a mapping Vs ∪ Vd → T(Σ) ∪ DT(Σ) such that ρ(x) ∈ T(Σ),
for all x ∈ Vs, and ρ(µ) ∈ DT(Σ), for all µ ∈ Vd . A substitution is closed if it maps
each variable to a closed term. The interpretation of open terms with respect to a sub-
stitution ρ is defined for state terms as usual by ¹xºρ = ρ(x), ¹ f (t1, . . . , tr(f)ºρ =
f (¹t1ºρ, . . . ,¹tr(f)ºρ), and for distribution terms by

• ¹µºρ = ρ(µ),

• ¹δ(t)ºρ = δ¹tºρ for all t ∈ T(Σ),

• ¹θ1 ⊕p θ2ºρ = p¹θ1ºρ + (1− p)¹θ2ºρ for θ1,θ2 ∈DT(Σ), and

• ¹ f (θ1, . . . ,θr(f))ºρ(f (ξ1, . . . ,ξr(f))) =

¨∏

σi=s¹θiºρ(ξi) if for all σ j = d,θ j = ξ j

0 otherwise

We may write ρ(t) for ¹tºρ, and ρ(θ) for ¹θºρ.
We remark that lifted operators in distribution terms are distributive w.r.t. ⊕p at all

s-sorted positions, i.e. if f ∈ Σs has arity ar(f) = σ1 . . .σn → s with σ j = s, then
f ∈ Σd is distributive w.r.t. ⊕p at position j, i.e. ¹ρ(f (. . . ,ξ j−1,θ1 ⊕p θ2,ξ j+1, . . .))º =
¹ρ(f (. . . ,ξ j−1,θ1,ξ j+1, . . .)⊕p f (. . . ,ξ j−1,θ2,ξ j+1, . . .))º for any closed substitution ρ.
The proof follows directly from the definition of ¹º. However, notice that f does not
distribute w.r.t. ⊕p at a position k with σk = d.

Example 6.2. We define now the signature of probabilistic CSS. Let Σ = (Σs,Σd) be a
probabilistically lifted signature such that Σs is the signature containing:

• the constant 0 (stop process) of sort s, i.e., ar(0) = s;

2We denote substitutions in this chapter by ρ since the symbol σ denotes in this chapter sorts of S.

176

6.2. Preliminaries

• a family of unary probabilistic prefix operators a. with a ∈ A and ar(a) = d → s,

• and the binary operator + (alternative composition or sum) with ar(+) = ss→ s.

Moreover, Σd contains δ, all binary operators ⊕p with p ∈Q∩ (0, 1), and the lifted oper-
ators:

• the constant 0 with ar(0) = d;

• the family of unary operators a., with a ∈ A and ar(a) = d → d,

• and the binary operator + with ar(+) = dd → d.

The intended meaning of the probabilistic prefix operator a.θ is that this term can perform
action a and moves to term t with probability ¹θº(t). The + operator has the usual
meaning.

Notice that the same Dirac distribution of a closed state term can be written in sev-
eral ways using the operator δ or the probabilistically lifted signature. Thus we have
that the terms δ(a.(a.0+ b.0)), a.(δ(a.0+ b.0)), and a.(a.0+ b.0)) represent the same
distribution. Indeed, it is not difficult to show that δa.(a.0+b.0) = ¹δ(a.(a.0+ b.0))º =
¹a.(δ(a.0+ b.0))º = ¹a.(a.0+ b.0))º. However, the Dirac operator δ is necessary to
construct open distribution terms. The term δ(x) cannot be written in any other form,
since the instance of the state term variable x is not yet known.

6.2.2 Probabilistic transition system specifications

Now we generalize the probabilistic GSOS format as introduced in Section 2.4 by allowing
operators of sort s with arguments of sort either sort s or d.

Definition 6.3 (Generalized PGSOS rule). A generalized PGSOS rule has the form:

{x i

ai,m
−−→ µi,m | i ∈ I , m ∈ Mi} {x i

bi,n
−−→6 | i ∈ I , n ∈ Ni}

f (ζ1, . . . ,ζr(f))
a
−→ θ

with f ∈ Σs a function symbol, I , Mi , Ni are finite index sets, ai,m, bi,n, a ∈ A are actions,
x i ∈ Vs, ζi ∈ Vs∪Vd , µi,m ∈ Vd are variables, θ ∈ DT(Σ) a distribution term, and satisfying
the following constraints:

1. all µi,m and ζ j for i ∈ I , m ∈ Mi , j ∈ {1, . . . , r(f)} are pairwise different;

2. {x i | i ∈ I} ⊆ {ζi | i = 1, . . . , r(f)};

3. V (θ) ⊆ {µi,m | i ∈ I , m ∈ Mi} ∪ {ζi | i ∈ I}.

A probabilistic transition system specification in generalized PGSOS format is a struc-
ture P = (Σ, A, R) where Σ is a probabilistically lifted signature, A is a finite set of labels
and R is a finite set of generalized PGSOS rules. For any rule r ∈ R, literals above the
line are called premises, notation prem(r); the literal below the line is called conclusion,
notation conc(r). Given a positive literal t

a
−→ θ and a closed substitution ρ, ¹t

a
−→ θºρ

177

Chapter 6. Axiomatizing bisimulation equivalences and metrics

denotes the transition ρ(t)
a
−→ ¹ρ(θ)º. For negative literals, ¹t

a
−→6 ºρ denotes ρ(t)

a
−→6 . A

supported model of P is a PTS (T(Σ), A,−→) satisfying that t
a
−→ π ∈ −→ iff there is a rule

r ∈ R and a substitution ρ such that all premises of r hold, i.e. −→ |= ¹prem(r)ºρ, and the

conclusion instantiates to t
a
−→ π, i.e. ¹conc(r)ºρ = t

a
−→ π. Each PTSS has a supported

model which is, moreover, unique.
A crucial property of process description languages to ensure compositional modeling

is the compatibility of process operators with the behavioral relation. In algebraic terms
the compatibility of a behavioral equivalence R with an operator f is expressed by the
congruence property which is defined as f (ξ1, . . . ,ξr(f)) R f (ξ′1, . . . ,ξ′r(f)) whenever ξi R

ξ′i with ξi ,ξ
′
i ∈ T(Σ) if σi = s and ¹ξiº R ¹ξ′iº with ξi ,ξ

′
i ∈DT(Σ) if σi = d.

Before we can show that bisimilarity equivalence is a congruence for all operators
specified by generalized PGSOS rules (Theorem 6.8) we first need define the congruence
closure and lifting of relations, and show their respective properties.

Definition 6.4. Let P = (Σ, A, R) be a PTSS with Σ a probabilistically lifted signature.
The congruence closure of a relation R ⊆ (T(Σ)∪DT(Σ))× (T(Σ)∪DT(Σ)) is defined
as the smallest relation P(R) ⊆ (T(Σ)∪DT(Σ))× (T(Σ)∪DT(Σ)) such that:

(i) R ⊆ P(R), and

(ii) f (ξ1, · · · ,ξr(f)) P(R) f (ξ′1, · · · ,ξ′r(f)) whenever ξi P(R)ξ′i for all i = 1, . . . , r(f)

Lemma 6.5. Let ρ,ρ′ : (Vs ∪ Vd) → (T(Σ) ∪ DT(Σ)) be two closed substitutions with
ρ(ζ) R ρ′(ζ) for all ζ ∈ Vs ∪Vd . Then ρ(τ) P(R)ρ′(τ) for all terms τ ∈ T(Σ)∪DT(Σ).

Proof. Straightforward by structural induction. ut

Definition 6.6. Let P = (Σ, A, R) be a PTSS with Σ a probabilistically lifted signature. The
lifting of R ⊆ (T(Σ)∪DT(Σ))× (T(Σ)∪DT(Σ)) is defined as the relation R ⊆∆(T(Σ))×
∆(T(Σ)) such that πRπ′ iff π(X) = π′(X) for all X ⊆ T(Σ) that are R-closed(X).

The congruence closure on distribution terms coincides with the lifting of the con-
gruence closure on state terms. This is a fundamental property guaranteeing that earlier
results on congruence, non-expansiveness and continuity of [DL12; LGD12; GT13; GT14]
carry over to the generalized PGSOS format.

Lemma 6.7. Let R ⊆ (T(Σ)∪DT(Σ))× (T(Σ)∪DT(Σ)) with ¹θºR¹θ ′º whenever θ R
θ ′ for all θ ,θ ′ ∈ DT(Σ). Then, for any closed distribution terms θ ,θ ′ ∈ DT(Σ) with
θ P(R)θ ′ we have ¹θº P(R)¹θ ′º.

Proof. First, observe that there is an open distribution term ϑ ∈ DT(Σ) and closed sub-
stitutions ρ,ρ′ with ρ(x) P(R)ρ′(x) for x ∈ Vs and ρ(µ) R ρ′(µ) for µ ∈ Vd such that
ρ(ϑ) = θ and ρ′(ϑ) = θ ′. We proceed by induction over ϑ.

Let ϑ = δ(t) for t ∈ T(Σ). Lemma 6.5 gives ρ(t) P(R)ρ′(t). Hence, δρ(t) P(R)δρ′(t).
We conclude this case by observing that ¹ρ(δ(t))º = δρ(t) and ¹ρ′(δ(t))º = δρ′(t).

Let ϑ = µ for µ ∈ Vd . From ρ(µ) R ρ′(µ) and the assumptions on R we derive
¹ρ(µ)ºR¹ρ′(µ)º. Hence, ¹ρ(µ)º P(R)¹ρ′(µ)º.

178

6.2. Preliminaries

Let ϑ = ϑ1⊕p ϑ2 with ρ(ϑi) P(R)ρ′(ϑi) for i = 1, 2. By induction hypothesis we have

for i = 1, 2 that ¹ρ(ϑi)º P(R)¹ρ′(ϑi)º, i.e. ¹ρ(ϑi)º(X) = ¹ρ′(ϑi)º(X) for all X ⊆ T(Σ)
that are R-closed(X). Hence, ¹ρ(ϑ1 ⊕p ϑ2)º(X) = p¹ρ(ϑ1º(X) + (1 − p)¹ρ(ϑ2)º(X) =
p¹ρ′(ϑ1º(X) + (1 − p)¹ρ′(ϑ2)º(X) = ¹ρ′(ϑ1 ⊕p ϑ2)º(X). In other words we get now

¹ρ(ϑ1 ⊕p ϑ2)º P(R)¹ρ′(ϑ1 ⊕p ϑ2)º.
Let ϑ = f (ϑ1, . . . ,ϑr(f))withρ(ϑi) P(R)ρ′(ϑi) for i = 1, . . . , r(f)with arity of operator

f given by ar(f) = σ1 . . .σn→ σ. The interpretation of the closed distribution term ρ(ϑ)
is ¹ρ(f (ϑ1, . . . ,ϑr(f)))º(f (ξ1, . . . ,ξr(f))) =

∏

σi=s¹ϑiº(ξi) if for allσ j = d we have ϑ j and
ξ j are syntactically equal, otherwise 0; and in the same matter also the interpretation

of ρ′(f (ϑ1, . . . ,ϑr(f))). Let X be P(R)-closed(X). Then, f −1(X) =
∏r(f)

i=1 X i for some
X i ⊆ T(Σ) if σi = s and X i ⊆ DT(Σ) if σi = d. It is clear that P(R)-closed(X i). By the
induction hypothesis we get ¹ρ(ϑi)º P(R)¹ρ′(ϑi)º, i.e. ¹ρ(ϑi)º(X i) = ¹ρ′(ϑi)º(X i) if
σi = s; and ρ(ϑi) P(R)ρ′(ϑi) if σi = d. By Lemma 6.5 we get ¹ρ(f (ϑ1, . . . ,ϑr(f)))º(X) =
¹ρ′(f (ϑ1, . . . ,ϑr(f)))º(X). ut

Lemmas 6.5 and 6.7 allow us to prove that bisimilarity equivalence is a congruence
for all operators defined in the generalized PGSOS format.

Theorem 6.8. Let P = (Σ, A, R) be a PTSS in generalized PGSOS format. Then, bisimilarity
equivalence is a congruence for all operators defined by P.

Proof. We will show that the congruence closure P(∼) of the bisimilarity equivalence
relation ∼ is also a bisimulation. This implies that ∼ is a congruence for all operators
defined by P.

Let t1, t2 ∈ T(Σ) with t1 P(∼) t2. From t1 P(∼) t2 we derive that there is a t ∈ T(Σ)
and substitutions ρ1,ρ2 with ρ1(t) = t1, ρ2(t) = t2 and ρ1(x)∼ ρ2(x) for all x ∈ Vs. We
proceed by induction over t and verify that the transfer property is given, i.e. whenever
ρ1(t)

a
−→ π1 then there is a ρ2(t)

a
−→ π2 with π1 P(∼)π2.

The base case t = x is trivial by the fact that ρ1(x) ∼ ρ2(x). Let t = f (ξ1, . . . ,ξr(f))
with ξi ∈ T(Σ) if σi = s and ξi ∈ DT(Σ) if σi = d. By the induction hypothesis we have
ρ1(ξi) P(∼)ρ2(ξi). Assume P |= ρ1(t)

a
−→ π1, i.e. there is a rule r ∈ R defining operator

f such that the transition ρ1(t)
a
−→ π1 can be derived by a substitution ρ′1 extending ρ1.

Note that ¹ρ′1(trgt(r))º = π1. Because ρ1(ξi) P(∼)ρ2(ξi)we get thatρ2 can be extended

to a substitution ρ′2 such that P |= ρ′2(prem(r)) and the transition ρ2(t)
a
−→ π2 with

¹ρ′2(trgt(r))º = π2 can be derived. By Lemma 6.5 we getρ′1(trgt(r)) P(∼)ρ′2(trgt(r)) and
by Lemma 6.7 we conclude ¹ρ′1(trgt(r))º = π1 P(∼)π2 = ¹ρ′2(trgt(r))º. We conclude
that the transfer property is given for the congruence closure P(∼).

We remark that the (common) requirement that the number of rules in a PGSOS TSS
is finite is not required for the congruence property. However, if the number of rules is
infinite, then the induced PTS may have also infinite branching. ut

Example 6.9. Let ΣCCS be the signature defined on the Example 6.2. The PTSS in gener-
alized PGSOS format PCCS = (ΣCCS, A, R) is given by the following rules R:

a.µ
a
−→ µ

x
a
−→ µ

x + y
a
−→ µ

y
a
−→ µ

x + y
a
−→ µ

(6.1)

179

Chapter 6. Axiomatizing bisimulation equivalences and metrics

6.3 Axiomatization of bisimilarity equivalence

The technique to derive an axiomatization for PGSOS operators follows the same strategy
as in [ABV94]. It starts with a given axiomatization of a basic calculus which is a prob-
abilistic extension of CCS similar to [BS01]. Then, according to the rules, axioms are
provided for any other operator so that these operators can be eliminated in the sense
that every closed term can be equated to another closed term in the basic calculus. To
introduce these new axioms, operators are split in three classes: distinctive, smooth, and
non-smooth. Distinctive operators are well-behaved operators that distribute with sum-
mation and the probabilistic operators ⊕p and δ. Moreover, each of its defining rules can
be directly mapped into axioms. Smooth operators are a generalization of distinctive op-
erators in the sense that the set of rules defining the semantics of a smooth operator can
be split in disjoint sets, each one of them satisfying the conditions of distinctive operators.
Thus a smooth operator can be represented as a non-deterministic sum of distinctive op-
erators. For each non-smooth operator, a new smooth operator is introduced that, when
properly instantiated, shows the same behavior as the original term with the non-smooth
operator. Precisely the equality between these terms is introduce as a new axiom.

This section introduces these results and provides an algorithm that, given a PTSS P
in generalized PGSOS format, generates an equational theory for all operators in P that
is sound and ground-complete for bisimilarity equivalence.

6.3.1 Axiomatizing finite probabilistic trees

We will use
⊕

i∈{1..n} piθi as a shorthand for θ1⊕ p1
∑n

j=1 p j
(θ2⊕ p2

∑n
j=2 p j
(···(θn−1⊕ pn−1

∑n
j=n−1 p j

θn)···)),

and
∑

i∈{1..n} t i as a shorthand for t1 + ···+ tn.

Definition 6.10. A closed term t ∈ T(Σ) is in normal form if either t = 0 or t =
∑

i∈I ai .θi
with θi ∈ DT(Σ) in normal form. A closed term θ ∈ DT(Σ) is in normal form if θ =
⊕

i∈I piδ(t i), with t i ∈ T(Σ) in normal form.

Let ECCS be the set of equations of Table 6.1. The axioms N1–N4 are standard for
nondeterministic choice of reactive systems [Mil89]. The axioms P1–P3 are standard for
probabilistic choice [BS01]. Moreover, axioms NP1–NP5 allow to normalize distribution
terms similar to the normalization of state terms by axioms N1–N4. The axiomatization
of [BS01] did not require those axioms because distribution terms were assumed to be
already in normal form.

Equational reasoning over multi-sorted algebras [GM82] requires non-empty carrier
sets. For ECCS and all its following extensions this holds since 0 ∈ T(Σ) and δ(0) ∈
DT(Σ). A set of S-sorted equations E over signature Σ is a sound and ground-complete
axiomatization of bisimilarity equivalence of P if for all t, t ′ ∈ T(Σ), E ` t = t ′ iff t ∼ t ′.

In order to show ground-completeness of ECCS we require that the axiomatization is
normalizing for both sort s and d, i.e. that for each closed term ξ ∈ T(Σ) there is a
closed term ξ′ ∈ T(Σ) in normal form such that ECCS ` ξ = ξ′. The proof of the next
lemma follows as usual by transforming the axiom system into a term rewriting system,
showing that it is strongly normalizing modulo commutativity and associativity, and that
the normal form is indeed in the expected format.

180

6.3. Axiomatization of bisimilarity equivalence

x + y = y + x (N1)

(x + y) + z = x + (y + z) (N2)

x + 0= x (N3)

x + x = x (N4)

µ⊕p µ= µ (P1)

µ1 ⊕p µ2 = µ2 ⊕1−p µ1 (P2)

(µ1 ⊕p µ2)+µ3 = (µ1 +µ3)⊕p (µ2 +µ3) (NP1)

µ1 + (µ2 ⊕p µ3) = (µ1 +µ2)⊕p (µ1 +µ3) (NP2)

δ(x)+δ(y) = δ(x + y) (NP3)

a.µ= δ(a.µ) (NP4)

0= δ(0) (NP5)

µ1 ⊕p1
(µ2 ⊕ p2

1−p1
µ3) = (µ1 ⊕ p1

p1+p2
µ2)⊕p1+p2

µ3 (P3)

Table 6.1: Axiomatization of bisimilarity equivalence of CCS.

Lemma 6.11. The axiom system ECCS is normalizing.

Proof. To prove this result we use an appropriate term rewriting systems. We will define
rewriting rules based on the axioms set and a weight function over terms. In addition,
because nondeterministic choice and probabilistic choice satisfies commutativity and as-
sociativity, we work with terms modulo axioms (N1), (N2), (P2) and (P3). A term τ
represents the set of terms that can be equated to τ by these axioms.

The rewriting rules are obtained from axioms (N3), (N4), (P1), (NP1), (NP2), (NP3)
(NP4) and (NP5) by directing them from left to right. For example, (N3) generates the
rewriting rule x + 0 x . The weight function w : T(Σ)→ N is defined by:

w(0) = 1

w(a.θ) = w(θ)
w(t + t ′) = 3 ·w(t) ·w(t ′) + 1

w(δ(t)) = w(t) + 1

w(0) = 3

w(a.θ) = w(θ) + 2

w(θ + θ ′) = 3 ·w(θ) ·w(θ ′) + 1

w(θ ⊕p θ
′) = w(θ) +w(θ ′) + 1

Each application of a rewrite rule strictly decreases the weight of a term. Hence the
rewriting process terminates. When no rewrite rule can be applied, the term can be shown
to be in head normal form. ut

Example 6.12. We normalize the closed term a.(a.((b.0⊕p c.0)+δ(c.0)))

a.(a.((b.0⊕p c.0)+δ(c.0)))

 a.((δ(a.(b.0⊕p c.0)+δ(c.0))))

 a.((δ(a.(δ(b.0)⊕p δ(c.0))+δ(c.0))))

 a.(δ(a.((δ(b.0)+δ(c.0))⊕p (δ(c.0)+δ(c.0))))

 a.(δ(a.((δ(b.0)+δ(c.0))⊕p δ(c.0))))

 a.(δ(a.(δ(b.0+ c.0)⊕p δ(c.0))))

 a.(δ(a.(δ(b.δ(0) + c.δ(0))⊕p δ(c.δ(0)))))

181

Chapter 6. Axiomatizing bisimulation equivalences and metrics

The proof of soundness for axioms involving state terms follows as usual: for each
axiom we find a bisimulation relation that shows that its instances are bisimilar. For
axioms on distribution terms we prove that both sides of the equation represent exactly the
same distribution. Ground-completeness is proven by first reducing to normal form and
then showing that, for two bisimilar state terms in normal form, the transfer properties
induce a proof using the axioms. Similarly, two distribution terms in normal form that
represent the same distribution up to bisimulation, can be reduce to the same term using
the axioms.

Theorem 6.13. ECCS is sound and ground-complete for bisimilarity equivalence.

Proof. We start by showing that ECCS is sound for CCS. The proof for axioms (N1-N4) pro-
ceeds in the same way as in the non-probabilistic context. Axioms (P1-P3) are straight-
forward by calculation.

The soundness of axiom (NP1) is given by the by the following reasoning steps:
Let ρ a closed substitution and t ∈ T(Σ); if t does not have the form t1 + t2, then
¹(µ0 ⊕p µ1)+µ2ºρ(t) = 0 = ¹(µ0 +µ2)⊕p (µ1 +µ2)ºρ(t). On the other hand, if t has
form t1 + t2,

¹(µ0 ⊕p µ1)+µ2ºρ(t1 + t2)

= ¹(µ0 ⊕p µ1)ºρ(t1).¹µ2ºρ(t2)

= (p.¹µ0ºρ(t1) + (1− p)¹µ1ºρ(t1)).¹µ2ºρ(t2)

= p.¹µ0ºρ(t1).¹µ2ºρ(t2) + (1− p)¹µ1ºρ(t1).¹µ2ºρ(t2)

= p.¹µ0 +µ2ºρ(t1 + t2) + (1− p).¹µ1 +µ2ºρ(t1 + t2)

= ¹(µ0 +µ2)⊕p (µ1 +µ2)ºρ(t1 + t2)

The proofs for axioms (NP2) and (NP3) proceed in a similar way. The proofs for
axioms (NP4) and (NP5) are straightforward.

To show completeness, let ξ0,ξ1 ∈ T(Σ) with ξ0 ∼ ξ1. By Lemma 6.11 we can
assume that ξ0 and ξ1 are in normal form. We proceed by induction on n= depth(ξ0) +
depth(ξ1). If ξ0,ξ1 ∈ T(Σ), the proof proceeds like the non-probabilistic case [Mil89,
Proposition 15]. If ξ0,ξ1 ∈ DT(Σ), then ξ0 =

⊕

i∈I piδ(t i) and ξ1 =
⊕

j∈J p jδ(t j). Let
C = ({t i | i ∈ I} ∪ {t j | j ∈ J})/ ∼ and define C =

⋃

c∈C{tc} with tc a term in c. By
inductive hypothesis, for all t i with i ∈ I there is t i,c ∈ C s.t. ECCS ` t i = t i,c . Similarly, for
all t j , j ∈ J , there is t j,c ∈ C s.t. ECCS ` t j = t j,c . Let ξ′0 (resp. ξ′1) obtained from ξ0 (resp.
ξ1) by replacing each t i by t i,c (resp. t j by t j,c). Using axioms (P1–P3), we can reorder
and simplify both terms until they equate. ut

In order to derive axioms for systems with rules including negative premises, we in-
troduce the family of one-step restriction operators ∂ 1

H , where H ⊆ A, ar(∂ 1
H) = s→ s. The

semantics of ∂ 1
H is given by

x
a
−→ µ

∂ 1
H (x)

a
−→ µ

a 6∈ H (6.2)

182

6.3. Axiomatization of bisimilarity equivalence

∂ 1
H (x + y) = ∂ 1

H (x) + ∂
1
H (y) (H1)

∂ 1
H (a.µ) = a.µ if a 6∈ H (H2)

∂ 1
H (a.µ) = 0 if a ∈ H (H3)

∂ 1
H (0) = 0 (H4)

∂ 1
H(µ1 ⊕p µ2) = ∂

1
H(µ1)⊕p ∂

1
H(µ2) (H5)

∂ 1
H(δ(x)) = δ(∂

1
H (x)) (H6)

Table 6.2: Axioms for ∂ 1
H .

The term ∂ 1
H (t) cannot perform any action a ∈ H in the next step, otherwise behaves as

t. The signature ΣCCS∂ extends ΣCCS with operators ∂ 1
H for all H ⊆ A. The specification

PCCS∂ = (ΣCCS∂ , A, RCCS∂) is the PTSS whose set of rules RCCS∂ extends RCCS with the family
of rules given in Equation 6.2.

Let ECCS∂ be the set of equations ECCS extended with the equations in Table 6.2.
The equations H1–H4 are standard for the one-step restriction operator [ABV94]. Equa-
tions H5 and H6 propagate the one-step restriction operator to each single term in the
support of a distribution. Hence, restriction distributes over probabilistic choices and
Dirac embedding.

Theorem 6.14. ECCS∂ is sound and ground-complete for bisimilarity equivalence.

Proof. Soundness of H1–H4 is proven just like in the non-probabilistic setting [ABV94].
Soundness of H5 and H6 is proven by showing that both sides of each axiom represent
exactly the same distribution. ∂ 1

H can be eliminated in the sense that for each closed term
ξ ∈ T (ΣCCS∂) there is a closed term ξ′ ∈ T (ΣCCS) such that ECCS∂ ` ξ = ξ′. This can be
proven by induction on the height of a term. (Notice that, when reading from left to right,
axioms H1, H5, and H6 “push” operator ∂ 1

H inside the term, while axioms H2–H4, remove
it.) Using elimination and Theorem 6.13, ground-completeness follows immediately. ut

6.3.2 Probabilistically lifted operators

The semantics of all probabilistically lifted operators is defined following the same scheme.
Thus, the axioms for these operators are defined similarly regardless if the original op-
erator is distinctive, smooth or non-smooth. There are actually two types of axioms that
explain how a lifted operator interacts with the probabilistic operations ⊕p and δ.

Definition 6.15. Let f be an operator with arity ar(f) = σ1 . . .σr(f) → s. We associate
with f the axiom system E f consisting of the following equations:

1. Probabilistic distributivity laws: For each position i of f , s.t. σi = s, and for each
p ∈Q∩ (0,1) we have the equations

f (µ1, ..,µ′i ⊕p µ
′′
i , ..,µr(f)) = f (µ1, ..,µ′i , ..,µr(f))⊕p f (µ1, ..,µ′′i , ..,µr(f))

2. Dirac distributivity laws: We have the equation

f (θ1, . . . ,θr(f)) = δ(f (ζ1, . . . ,ζr(f)))

with θi = δ(ζi),ζi ∈ Vs if σi = s and θi = ζi ,ζi ∈ Vd if σi = d.

183

Chapter 6. Axiomatizing bisimulation equivalences and metrics

The soundness of these laws follows immediately from the semantics of ⊕p, δ and
the lifted operator, and using rational arithmetic. (Rational arithmetic be completely
axiomatized for ground terms, which are the only ones we use, see e.g. [CMR97]).

6.3.3 Axiomatizing distinctive and smooth operators

A smooth rule is a rule that, whenever a variable is tested in a positive literal, then it is the
only literal that tests that variable and it does not occur in the target of the conclusion. A
smooth operator is an operator defined only by smooth rules. A distinctive operator is a
smooth operator in which the hypothesis of the rules are mutually disjoint.

Definition 6.16. A generalized PGSOS rule is smooth if it has the form

{x i
ai−→ µi | i ∈ I} {x j

b j,n
−−→6 | j ∈ J , n ∈ N j}

f (ζ1, . . . ,ζr(f))
a
−→ θ

where I and J are disjoint sets s.t. I ∪ J = {i ∈ {1, .., r(f)} | ζi ∈ Vs}, and x i 6∈ V (θ) if
i ∈ I . An operator f is smooth if all its defining rules are smooth.

A smooth operator f is distinctive if (i) each f -defining rule tests the same set of
arguments I positively, and (ii) for every two different f -defining rules there is some
argument ζi ∈ Vs tested positively by both rules, but with a different action.

Notice that + is smooth, but it is not distinctive since, e.g., x is tested positively in the
first rule (actually, a set of rules), but not in the second one. Instead, ∂ 1

H is distinctive.
We introduce a new operator that we will use in our examples. Consider that each

action a may fail with probability pa ∈ [0,1). In case of failure, the occurrence of a is
ignored and the system remains in the same state, otherwise, it proceeds normally. The
new operator sc(t) is a safe controller that minimizes the probability of failure of process
t. Its semantics is given by the rules

x
a
−→ µ {x

b
−→6 | pb < pa}

sc(x)
a
−→ δ(x)⊕pa

sc(µ)

x
a
−→ µ pa = 0

sc(x)
a
−→ sc(µ)

sc is a variant of the ACP-style priority operator and it is not smooth since the rule on the
left tests x in the positive literal but also in the negative literal, and, moreover, x appears
in the target of the conclusion.

Let pos(r) = I (resp. neg(r) = J) be those positions which are positively (resp. neg-
atively) tested by rule r. Let pact(r, i) = {ai | i ∈ I} (resp. nact(r, i) = {bi,n | n ∈ Ni})
be those actions for which x i is positively (resp. negatively) tested by rule r. Note that if
Ni = ; then nact(r, i) = ;. A position i of operator f is positive if i ∈ pos(r) for all rules r
defining f .

Definition 6.17. Let f be a distinctive operator with arity ar(f) = σ1 . . .σr(f) → s. Let
ζi ∈ Vs if σi = s and ζi ∈ Vd if σi = d for 1 ≤ i ≤ r(f). We associate with f the axiom
system E f consisting of the following equations:

1. Nondeterministic distributivity laws: For each positive position i of f , we have

f (ζ1, ..,ζ′i + ζ
′′
i , ..,ζr(f)) = f (ζ1, ..,ζ′i , ..,ζr(f)) + f (ζ1, ..,ζ′′i , ..,ζr(f))

184

6.3. Axiomatization of bisimilarity equivalence

2. Action laws: For each f -defining rule r, we have the equation

ρ(f (ζ1, . . . ,ζr(f))) = a.ρ(θ)

with conc(r) = f (ζ1, . . . ,ζr(f))
a
−→ θ and substitution ρ defined by

ρ(ζ) =







ai .µi if ζ= x i with i ∈ pos(r)
∂ 1

H (x i) if ζ= x i with i ∈ neg(r) and H = nact(r, i) 6= ;
ζ otherwise.

3. Inaction laws: We have the equations

ρ(f (ζ1, . . . ,ζr(f))) = 0

for all substitutions ρ mapping properly into terms of the form 0, x , a.µ, b.µ+ x ,
or µ, such that for every f -defining rule r there is some position i with sort σi = s
satisfying one of the following conditions:

• if i ∈ pos(r), then either ρ(ζi) = 0 or ρ(ζi) = a.µi with a 6∈ pact(r, i), or

• if i ∈ neg(r), then ρ(ζi) = b.µi + x with b ∈ nact(r, i).

The fact that all rules of a distinctive operator f test positively in the same positions
guarantees the soundness of the nondeterministic distributivity law. There is one action
law for each rule of f . The action law describe the execution of an action by pushing
the executing action to the “head” of the term. The conditions of its associated rule are
properly encode in each operand of f . Notice that the action laws can only be applied
after f has been distributed over every sum. Contrarily to the action law, an inaction
law traverse every f -defining rule ensuring through the operands that at least one of the
conditions of each rule does not hold.

Soundness of axioms in E f can be proven regardless of the PTSS containing operator
f as long as the set of rules defining the semantics of f is the same for any PTSS. That is,
if f is defined in a PTSS P, E f is sound for any disjoint extension (Definition 2.41) of P.
Then, we have the following theorem.

Theorem 6.18. Let P = (Σ, A, R) be a PTSS in generalized PGSOS format with PCCS∂ v P
and Σsd = Σ − ΣCCS∂ is a collection of distinctive operators. Let EP be the axiom system
consisting of ECCS∂ and E f ∪ E f , for each f ∈ Σsd. Then, for every disjoint extension P ′ w P
in generalized PGSOS format, the axiom system EP is sound for bisimilarity equivalence on
P ′.

Proof. The soundness of the probabilistic distributivity laws and the Dirac distributivity
laws (Definition 6.15) is straightforward following the reasoning used to prove that axiom
(NP1) is sound (cf. proof of Theorem 6.13).

The soundness of the nondeterministic distributivity law and inaction law is straight-
forward by definition of distinctive operators and, for the latter, the conditions over ρ.

The soundness of action laws follows the reasoning used for the non-probabilistic case.
Let ρ(f (ζ1, . . . ,ζr(f))) = a.ρ(θ) the axiom introduced by this law. Let ρ′ be a closed

185

Chapter 6. Axiomatizing bisimulation equivalences and metrics

substitution. Given that all rules are distinctive, the term ρ′(ρ(f (ζ1, . . . ,ζr(f)))) can only
execute the action a and then select the next state using distribution ¹θºρ′ (recall that
definition of distinctive rule ensures that terms ρ(ζ1), . . . ,ρ(ζr(f)) only can satisfy the
premises of one rule of f). On the other hand, the term ρ′(ρ(a.θ)) executes an action
a and selects the next state using distribution ¹ρ(θ)ºρ′ . Because no variable ζi with
i ∈ I appears in θ , we have ¹θºρ′ = ¹ρ(θ)ºρ′ . Then both terms have exactly the same
behavior, i.e. they are bisimilar. ut

Notice that the set of rules R defining a smooth operator f in a PTSS P can always
be partitioned into sets R1, . . . , Rm, such that f is distinctive when considering only the
rules in Ri . Let fi be fresh operators with arity ar(fi) = ar(f) and let R′i be the same set of
rules as Ri only that the operator in the source of each rule is renamed to fi . Consider the
disjoint extension P ′ w P with all fresh operators fi and rules in R′1∪ . . .∪R′m added to the
signature and set of rules of P, respectively. Then, it should be clear that the distinctive
law

f (ζ1, . . . ,ζr(f)) = f1(ζ1, . . . ,ζr(f)) + · · ·+ fm(ζ1, . . . ,ζr(f)) (6.3)

is sound for bisimulation. Thus, a smooth operator f is axiomatized by the nondetermin-
istic choice over the distinctive variants of f .

Theorem 6.19. Let P = (Σ, A, R) be a PTSS in PGSOS format with PCCS∂ v P and let f ∈ Σ
be a smooth operator. There is a disjoint extension P ′ = (Σ′, A, R′) of P with m distinctive
smooth operators f1, . . . , fm s.t. ar(fi) = ar(f) for 1 ≤ i ≤ m and Equation 6.3 is sound for
bisimilarity equivalence in any disjoint extension of P ′.

Proof. Let P ′ w P be a PTSS in PGSOS format with distinctive operators f1, . . . , fm s.t.
ar(fi) = ar(f) with i ∈ {1, . . . , m} and the transition rules for each fi , after renaming fi by
f , form a partitioning of all the rules of f in P. Intuitively, the operators f1, . . . , fr(f) are the

distinctive version of f . Now the transition f (ξ1, . . . ,ξr(f))
a
−→ π iff fr(ξ1, . . . ,ξr(f))

a
−→ π

for some r ∈ {1, . . . , m} and all ξ1, . . . ,ξr(f) ∈ T(Σ). Therefore we get that f (ξ1, . . . ,ξr(f))
and f1(ξ1, . . . ,ξr(f)) + . . .+ fn f

(ξ1, . . . ,ξr(f)) are bisimilar for all all ξ1, . . . ,ξr(f) ∈ T(Σ).
ut

6.3.4 Axiomatizing non-smooth operators

An operator that is not smooth has a rule in which a variable that is tested in a positive
literal either is tested in a second literal or it appears in the target of a conclusion. In this
case we proceed by constructing a smooth version of the operator with one argument for
each kind of use of the variable that breaks smoothness (actually, one argument for each
positive test plus an additional one if the variable is tested negatively or it appears on the
target of the conclusion of a rule). Thus, for the unary operator sc, we introduce a binary
operator sc, the first argument related to the positive literal and the other related to the
negative test and the occurrence in the target of the rule. So sc is defined by the rules

x
a
−→ µ {y

b
−→6 | pb < pa}

sc(x , y)
a
−→ δ(y)⊕pa

sc(µ)
, if pa > 0

x
a
−→ µ

sc(x , y)
a
−→ sc(µ)

, if pa = 0

186

6.3. Axiomatization of bisimilarity equivalence

sc(x1 + x2, y) = sc(x1, y) + sc(x2, y)

sc(a.µ,∂ 1
H (x)) = a.(δ(∂ 1

H (x))⊕pa
sc(µ))

with H = {b | pb < pa}

sc(µ1 ⊕p µ2,ν) = sc(µ1,ν)⊕p sc(µ2,ν)

sc(µ,ν1 ⊕p ν2) = sc(µ,ν1)⊕p sc(µ,ν2)

sc(a.µ, y) = a.sc(µ) if pa = 0

sc(0, y) = 0

sc(a.µ, b.ν+ y) = 0 if pb < pa

sc(δ(x),δ(y)) = δ(sc(x , y))

Table 6.3: Axiomatization of sc (redundant laws, such as sc(0, a.µ) = 0, are omitted)

It should be clear that sc(x) = sc(x , x). Moreover, notice that sc is smooth. (In fact, it
is also distinctive.) The premise on the second rule could have alternatively tested on y
rather than x , in which case, sc would have also been smooth but not distinctive.

In general, given a non-smooth operator f , we define a new smooth operator f ′ by
extending its arity as explained above, and proceeding as following: for each rule r of f
we introduce a new rule r ′ for f ′ such that, if we intend to equate f (~ζ) = f ′(~ζ′), and
f (~ς) and f ′(~ς′) are the sources of r and r ′, respectively, r[~ζ/~ς] and r ′[~ζ′/~ς′] have to be
identical with the exception of their sources. (Here, [~ζ/~ς] denotes the usual substitution
of variables.) Notice that this results in a one to one correspondence between the rules
of f and those of f ′. Then, we have the following theorem.

Theorem 6.20. Let P = (Σ, A, R) be a PTSS in generalized PGSOS format with PCCS∂ v P.
Let f ∈ ΣP be a non-smooth operator. Then there is a disjoint extension P ′ w P with a
smooth operator f ′ s.t. the equation f (ζ1, . . . ,ζr(f)) = f ′(ζ′1, . . . ,ζ′r(f ′)), where ζi , 1 ≤ i ≤
r(f) are all different variables and {ζ′1, . . . ,ζ′r(f ′)} ⊆ {ζ1, . . . ,ζr(f)}, is sound for bisimilarity
equivalence in every disjoint extension of P ′.

Proof. This theorem can be shown by applying the same argumentation as in the proof
of Lemma 4.13 of [ABV94]: The barb-factor is used to determine the number of copies
needed by the operator f ′. Then, adapting Lemma 4.12 of [ABV94] allows to show that
for all closed substitution ρ, ρ(f (ζ1, . . . ,ζr(f)))

a
−→ π iff ρ(f ′(ζ′1, . . . ,ζ′r(f ′)))

a
−→ π. ut

As an example, we complete the axiomatization of sc with the axioms for sc which
can be derived using Definitions 6.15 and 6.16. They are given in Table 6.3.

As a result of the previous theorems we obtain the algorithm of Figure 6.1. Given a
PTSS Pi = (Σi , A, Ri) in generalized PGSOS format, the algorithm generates an equational
theory Eo that captures the behavior of all operators in Pi and is sound for bisimilarity
equivalence.

The fact that the set of rules of Pi (and hence also Po) is finite guarantees that the
equational theory Eo is head-normalizing for all operators of Po = (Σo, A, Ro), that is, every
closed term of Po can be proven equal to a term of the form 0,

∑

i∈I ai .θi or
⊕

j∈J p jδ(t j),
with θi ∈ T (Σo

d) and t j ∈ T (Σo
s), within the equational theory Eo. The construction of

head-normal forms is the key towards proving ground-completeness. In fact, notice that
if the semantics of a term t ∈ T (Σo

s) is a finite tree, then all operators can be eliminated
in Eo (i.e., there is a term t ′ ∈ T (ΣCCS), s.t., Eo ` t = t ′). However this is not the case

187

Chapter 6. Axiomatizing bisimulation equivalences and metrics

Input: a PTSS Pi in generalized PGSOS format

Output: a PTSS Po in generalized PGSOS format, with Po w Pi , and an equational theory
Eo that is sound for bisimilarity equivalence in all disjoint extensions of Po.

1. If necessary, complete Pi so that it disjointly extends PCCS∂ .

2. For each non-smooth operator of Pi , extend the system with a smooth version ac-
cording to Theorem 6.20 and add all the corresponding equations.

3. For each smooth non-distinctive operator f /∈ ΣCCS∂ in the resulting PTSS, apply the
construction of Theorem 6.19 and extend the PTSS with the distinctive operators
f1, . . . , fm and the respective rules. Add also the resulting instances of axiom (6.3).

4. Add all equations associated to the distinctive operators in the resulting system (but
not in ΣCCS∂) according to Definition 6.17.

5. Finally, for every operator not in ΣCCS∂ add the equation for their respective lifted
version according to Definition 6.15.

Figure 6.1: Algorithm to generate an axiomatization for Pi

in general. Consider the constant operator nwf whose semantics is defined by the rule
nwf

a
−→ δ(nwf)⊕ 1

2
δ(0). Using the action law, axiom nwf= a.(δ(nwf)⊕ 1

2
δ(0)) is derived,

in which the elimination process will never terminate.
In order to guarantee ground-completeness, we adapt the notion of semantically well-

founded of [ABV94] to our setting. Given a PTSS P = (Σ, A, R), a term t ∈ T(Σ) is
semantically well-founded in P if there is no infinite sequence t0 a0 θ0 t1 a1 θ1. . . of terms

t i ∈ T(Σ) and θi ∈ DT(Σ) and actions ai ∈ A, such that t i
ai−→ θi is derivable in P and

¹θiº(t i+1) > 0, for all i ≥ 0. P is semantically well-founded if all its terms are. Now, if
Po is semantically well-founded (which is the case if Pi is semantically well-founded and
PCCS v Pi), Eo has an elimination theorem. Before we can show that the equational theory
Eo is ground complete for bisimilarity equivalence (Theorem 6.24), we need to prove that
Eo is head normalizing (Lemma 6.23). First we need to show that ECCS∂ allows to derive
equality between terms when restricting on actions that the terms cannot perform.

Lemma 6.21 ([ABV94]). Let t =
∑

i∈I ai .θi ∈ T(Σ) be a closed state term and B ⊆ A any
set of actions with ai 6∈ B for all i ∈ I . Then ECCS∂ ` t = ∂ 1

B (t).

Next we need to show that Eo allows to normalize terms that are constructed by ap-
plying operators to terms in normal form.

Lemma 6.22. Let f ∈ Σ be a function and ξ1, . . . ,ξr(f) ∈ T(Σ), θ1, . . . ,θr(f) ∈ DT(Σ) be
terms in head normal form. Then there are t ∈ T(Σ) and θ ∈ DT(Σ) s.t. t and θ are in
normal form, and Eo ` f (ξ1, . . . ,ξr(f)) = t and Eo ` f (θ1, . . . ,θr(f)) = θ .

Proof. By induction over the term structure. A trigger of a rule defines which actions the
argument processes need to be able to perform or should not be able to perform s.t. the

188

6.3. Axiomatization of bisimilarity equivalence

rule is applicable. Formally, a trigger of a smooth rule r is a tuple 〈e1, . . . , er(f)〉 with

ei =







ai if i ∈ I
{bi,n | n ∈ Ni} if i ∈ J
; otherwise (i.e. σi = d)

Let ar(f) = σ1 . . .σr(f)→ s. We start by the state operator f ∈ Σs.
Case 1. There is an argument i that is tested positively by f and for which ξi has the

form t ′i + t ′′i with t ′i , t ′′i are in head normal form. Applying one of the axioms introduced
by the nondeterministic distributivity laws we get

Eo ` f (ξ1, . . . , t ′i + t ′′i , . . . ,ξr(f)) = f (ξ1, . . . , t ′i , . . .ξr(f)) + f (ξ1, . . . , t ′′i , . . .ξr(f))

By the induction hypothesis, there are t ′, t ′′ ∈ T(Σ) in head normal form such that Eo `
f (ξ1, . . . , t ′i , . . .ξr(f)) = t ′ and Eo ` f (ξ1, . . . , t ′′i , . . .ξr(f)) = t ′′. Then Eo ` f (ξ1, . . . , t ′i +
t ′′i , . . . ,ξr(f)) = t ′ + t ′′. and t ′ + t ′′ is in head normal form.

Case 2. There is an argument i that is tested positively by f and for which ξi =
0. Since f is distinctive, all rules for f test i positively. Thus Eo contains a dead-
lock law f (ζ1, . . . ,ζi−1, 0,ζi+1, . . . ,ζr(f)) = 0. Instantiation of this axiom gives Eo `
f (t1, . . . , tr(f)) = 0 and 0 is in head normal form.

Case 3. For all arguments k that are tested positively by f , ξk has the form ak.πk. Two
sub-cases arise.

Case 3.1. For each rule for f with trigger 〈e1, . . . , er(f)〉, there is an i that is tested
positively s.t. ei 6= ai . Then Eo contains a deadlock law f (ξ̂1, . . . , ξ̂r(k)) = 0 where ξ̂k =
ak.µk if k is tested positively, and t̂k = xk otherwise. Instantiation of this law gives
Eo ` f (ξ1, . . . ,ξr(f)) = 0.

Case 3.2. There exists a rule r for f with trigger 〈e1, . . . , er(f)〉 s.t. ek = ak for all k that
are tested positively. Since f is distinctive, r is the unique rule with this property. Here,
two new sub-cases arise.

Case 3.2.1. There is an index j that is not tested positively, and there is an action
b ∈ e j s.t. Eo ` ξ j = b.t ′j + t ′′j . Notice Eo contains a deadlock law f (ξ̂1, . . . , ξ̂r(k)) = 0 s.t.

ξ̂k = ak.µk if k is tested positively, ξ̂k = b.θ ′k + t ′′k if k = j and ξ̂k = xk otherwise. Then
Eo ` f (ξ1, . . . , b.t ′k + t ′′k , . . . ,ξr(f)) = 0.

Case 3.2.2. For each index n that is not tested positively and σn = s, ξn has the form
∑

ai, j Pi, j with ai, j 6∈ en for all j. Applying Lemma 6.21, for all n, s.t. en 6= ; and en ⊂ A,
term ξn can be replaced by ∂ 1

en
(ξn). Applying the action law corresponding to r is enough

to get the required normal form.
We proceed by the distribution operator f ∈ Σd .
Case 4. Suppose that all arguments of f have the form θi = δ(τi) for σi = s and

some τi ∈ T(Σ), otherwise θi = τi ∈ DT(Σ). Applying the Dirac distributivity law,
Eo ` f (θi , . . . ,θr(f)) = δ(f (τ1, . . . ,τr(f))) and the right side is a term in head normal
form.

Case 5. Let θ j be an argument of f s.t. σ j = s and θ j does not have the form δ(t j).
Then, θ j = θ ′j⊕pθ

′′
j with θ ′j ,θ

′′
j in head normal form. Applying the corresponding probab-

ilistic distributivity laws gives Eo ` f (θ1, . . . ,θ ′j⊕pθ
′′
j , . . . ,θr(f)) = f (θ1, . . . ,θ ′j , . . . ,θr(f))⊕p

f (θ1, . . . ,θ ′′j , . . . ,θr(f)). By the induction hypothesis, there are θ ′,θ ′′ ∈ DT(Σ) in head

189

Chapter 6. Axiomatizing bisimulation equivalences and metrics

normal form s.t. Eo ` f (θ1, . . . ,θ ′j , . . . ,θr(f)) = θ ′ and Eo ` f (θ1, . . . ,θ ′′j , . . . ,θr(f)) = θ ′′.
Then E0 ` f (θ1, . . . ,θ ′j ⊕p θ

′′
j , . . . ,θr(f)) = θ ′ ⊕p θ

′′ and θ ′ ⊕p θ
′′ is in head normal form.

ut

Lemma 6.23. Let Po = (Σ, A, R) be the PTSS in generalized PGSOS format and Eo the
equational theory of Figure 6.1. Then Eo is head normalizing for all operators of Po.

Proof. The proof follows closely the argumentation of the non-probabilistic setting [ABV94].
Notice that the axioms added in the steps 2 and 3 of the algorithm (see Figure 6.1) al-
lows us to focus only on the case where the operator is distinctive. The thesis follows via
structural induction using Lemma 6.22. ut

Now we can show that the algorithm of Figure 6.1 generates an equational theory Eo
that is ground-complete for bisimilarity equivalence in Po.

Theorem 6.24. Let Pi be the input and Po and Eo be the outputs of the algorithm in Fig-
ure 6.1. If Po is a semantically well-founded PTSS, then the equational theory Eo is ground-
complete for bisimilarity equivalence in Po.

Proof. The argumentation follows closely the proof of Theorem 5.2 in [ABV94]. Since Po
is finitely branching, we can define the function maxt(t) that gives for each well-founded
term t the maximal number of consecutive transitions that t can execute.

Let t and u be two semantically well-founded state terms with t ∼ u. By induction
on maxt(t), we show that t is provably equal to a term in T (ΣCCS). Since Eo is head
normalizing for Po, there is a term t ′ with form

∑

ai t i s.t. Eo ` t = t ′. It is easy to
show that ∼ preserves the maximum number of consecutive transitions, then maxt(t) =
maxt(t ′). In addition, if t

ai−→ t i then maxt(t i) < maxt(t) for all i. By the induction
hypothesis, for each i, there exists t ′i ∈ T (ΣCCS) s.t. Eo ` t i = t ′i . The induction step
follows because Eo ` t = t ′′ with t ′′ =

∑

ai t
′
i .

In the same way we can prove that there is u′′ ∈ T (ΣCCS) s.t. Eo ` u = u′′. Finally,
completeness follows by Theorem 6.13. ut

Ground completeness can be extended to semantically non well-founded PTSS in gen-
eralized PGSOS format by using the approximation induction principle (AIP) [BBK87].
We omit it here. The proof follows closely the lines of [ABV94].

6.4 Axiomatization of the bisimilarity metric

In the previous section we developed an equational theory for bisimilarity equivalence.
Now we shift our focus to bisimilarity pseudometrics and develop an equational theory
that characterizes the bisimulation distance.

6.4.1 Axiomatizing finite probabilistic trees

Let Em
CCS be the system of equations in Table 6.4. The equations consider two kind of sym-

bols for metrics: one on state terms (d) and the other on distribution terms (d). Axioms
D1–D4 correspond to conditions (i) and (ii) of the definition of a pseudometric. Axioms

190

6.4. Axiomatization of the bisimilarity metric

d(x , x) = 0 (D1)

d(x , y) = d(y, x) (D2)

d(µ,µ) = 0 (D3)

d(µ,ν) = d(ν,µ) (D4)

d(t, x) = d(t ′, x) where t = t ′ is one of axioms N1–N4 (MN)

d(θ ,µ) = d(θ ′,µ) where θ = θ ′ is one of axioms NP1–NP5 or P1–P3
(MP)

d(0, a.µ+ x) = 1 (H1)

d
�

∑

i∈I ai .µi ,
∑

j∈J b j .ν j

�

=max
¦

max
i∈I

min
j∈J ,ai=b j

λ · d(µi ,ν j),

max
j∈J

min
i∈I ,ai=b j

λ · d(µi ,ν j)
©

(H2)

d
�
⊕

i∈I piδ(x i),
⊕

j∈J q jδ(y j)
�

= min
ω∈Ω(I ,J)

∑

i∈I , j∈J d(x i , y j) ·ω(i, j) (K)

where Ω(I , J) = {ω : I × J → [0,1] | ∀i ∈ I :ω(i, J) = pi ,∀ j ∈ J :ω(I , j) = q j}

Table 6.4: Axiomatization of bisimilarity metric of CCS. (We assume min∅= 1.)

MN and MP lift the axioms for bisimulation equivalence to bisimulation metrics. In a
way, they state that two bisimilar terms should have the same distance to a third term.
Axioms H1 and H2 correspond to the definition of the Hausdorff pseudometric (Defini-
tion 2.19). Finally, axiom K corresponds to the definition of the Kantorovich pseudometric
(Definition 2.17). We also need the following general rules that should be consider to-
gether with the usual rules for reasoning on equational logic. For all f : σ1 . . .σr(f) → s
and g : σ1 . . .σr(g)→ d, we have

{d(ζi ,ζ
′
i) = 0,d(ζ j ,ζ

′
j) = 0 | 1≤ i, j ≤ r(f),σi = s,σ j = d}

d(f (ζ1, ..,ζr(f)), z) = d(f (ζ′1, ..,ζ′r(f)), z)
(S1)

{d(ζi ,ζ
′
i) = 0,d(ζ j ,ζ

′
j) = 0 | 1≤ i, j ≤ r(f),σi = s,σ j = d}

d(g(ζ1, ..,ζr(g)), z) = d(g(ζ′1, ..,ζ′r(g)), z)
(S2)

These rules ensure that Em
CCS ` d(t, t ′′) = d(t ′, t ′′) whenever ECCS ` t = t ′ and similarly

for distribution terms.
Let d be the bisimilarity metric and K(d) its Kantorovich lifting. Let ρ be a closed sub-

stitution. We define ¹d(t, t ′)ºρ = d(ρ(t),ρ(t ′)) and ¹d(θ ,θ ′)ºρ = K(d)(¹ρ(θ)º,¹ρ(θ ′)º)
for t, t ′ ∈ T(Σ) and θ ,θ ′ ∈ DT(Σ). We lift ¹_ºρ to arithmetic terms containing expres-
sions of the form d(t, t ′) or d(θ ,θ ′) in the obvious way, for instance ¹mini∈I expriºρ =
mini∈I¹expriºρ. Em

CCS is sound for d in the sense that, whenever Em
CCS ` expr= expr′

(meaning that expr = expr′ can be proved using axioms in Em
CCS and arithmetic), then

¹exprºρ = ¹expr′ºρ for every closed substitution ρ. Soundness should be clear for all the
axioms except maybe for H2. By definition of bisimulation metric, the right-hand side is

191

Chapter 6. Axiomatizing bisimulation equivalences and metrics

smaller than or equal to the left-hand side interpreting them on any closed substitution.
Equality follows from the fact that d is the smallest bisimulation metric.

Besides, Em
CCS is also ground-complete for d, in the sense that, for any (closed) arith-

metic expressions expr and expr′ possibly containing closed terms of the form d(t, t ′) or
d(θ ,θ ′) with t, t ′ ∈ T(Σ) and θ ,θ ′ ∈ DT(Σ), ¹exprº = ¹expr′º implies Em

CCS ` expr =
expr′. Notice that by arithmetic, this is a direct consequence of the following claims:
(i) for all closed state terms t, t ′ ∈ T(Σ) and p ∈ [0, 1], if d(t, t ′) = p then Em

CCS `
d(t, t ′) = p, and (ii) for all closed distribution terms θ ,θ ′ ∈DT(Σ), if K(d)(¹θº,¹θ ′º) =
p, Em

CCS ` d(θ ,θ ′) = p. The proof of these claims follows by reducing closed terms in-
volved in d(t, t ′) and d(θ ,θ ′) to normal form using axioms D1–D4, MN, and MP (and
rules S1 and S2), and then inductively applying H1, H2, K and arithmetic calculations to
reach the expected value. The following Theorems 6.25 and 6.28 are the metric variant
of Theorem 6.13.

Theorem 6.25. Em
CCS is sound for the bisimilarity metric d.

Proof. Let ρ be any closed substitution. Because ¹d(·, ·)ºρ is by definition a pseudometric
on T(Σ) and ¹d(·, ·)ºρ is by definition a pseudometric on ∆(T(Σ)) the axioms D1,D2
and resp. axioms D3,D4 clearly hold. Axioms MN follows directly from the fact that
bisimilarity equivalence is the kernel of d i.e. soundness of axioms N1–N4 w.r.t. bisimilarity
equivalence (Theorem 6.13) gives soundness of MN w.r.t. the bisimilarity metric d. As
an example, take axiom N1. By soundness of ECCS, ρ(x) + ρ(y) ∼ ρ(y) + ρ(x) for any
closed substitution ρ, and hence d(ρ(x) +ρ(y),ρ(y) +ρ(x)) = 0. Then

d(ρ(x) +ρ(y),ρ(z))
≤ d(ρ(x) +ρ(y),ρ(y) +ρ(x)) + d(ρ(y) +ρ(x),ρ(z))
= d(ρ(y) +ρ(x),ρ(z))
≤ d(ρ(y) +ρ(x),ρ(x) +ρ(y)) + d(ρ(x) +ρ(y),ρ(z))
= d(ρ(x) +ρ(y),ρ(z))

which proves soundness of MN for this case. Similar calculations yield soundness of MP
using K(d) instead of d. Axiom H1 follows directly from the definition of bisimulation
metric. In detail, if d(0,ρ(a.µ + x)) would be strictly less than 1, then the transition
ρ(a.µ+ x)

a
−→ ρ(µ) would need to be matched by some a-labeled transition of 0. As the

the inactive process 0 cannot perform any action, we necessarily have d(0,ρ(a.µ+x)) = 1.
For axiom H2, we calculate

d(
∑

i∈I ai .ρ(µi),
∑

j∈J b j .ρ(ν j))

= max
a∈A

H(λ ·K(d))({ρ(µi) | i ∈ I , a = ai}, {ρ(ν j) | j ∈ J , a = b j})

= max
a∈A

max{ max
i∈I ,a=ai

min
j∈J ,a=b j

λ ·K(d)(ρ(µi),ρ(ν j)), max
j∈J ,a=b j

min
i∈I ,a=ai

λ ·K(d)(ρ(µi),ρ(ν j))}

= max{max
i∈I

min
j∈J ,ai=b j

λ ·K(d)(ρ(µi),ρ(ν j)), max
j∈J

min
i∈I ,ai=b j

λ ·K(d)(ρ(µi),ρ(ν j))}

The first equality is a consequence that d is the smallest bisimulation metric. (Because d
is a bisimulation metric we have that the first term has a value larger than or equal to the

192

6.4. Axiomatization of the bisimilarity metric

second one; because it is the smallest one, equality follows.) The second equality is the
definition of Hausdorff pseudometric, and the last equality is just arithmetic manipula-
tion. Finally, soundness of axiom K follows immediately by the definition of Kantorovich
pseudometric. ut

To prove ground-completeness, we first need to reduce closed terms in expressions
of the form d(t, t ′) and d(θ ,θ ′) to their normal form. We actually prove a more general
property from which existence of normal form follows.

Lemma 6.26. The following two statements hold:

(a) ECCS ` t = t ′ implies Em
CCS ` d(t, z) = d(t ′, z) for all t, t ′ ∈ T(Σ) and z ∈ Vs.

(b) ECCS ` θ = θ ′ implies Em
CCS ` d(θ ,µ) = d(θ ′,µ) for all θ ,θ ′ ∈ DT(Σ) and µ ∈ Vd .

Proof. We first recall that a proof of an equality e in a theory E is a list of equalities P such
that P[#P] = e and for all i ∈ {1 . . .#P}, either (i) P[i] is an axiom, or (ii) P[i] is the
conclusion of a rule r and for every premise p of r there is a j < i s.t. P[j] = p. An axiom
can be any included on the theory E or the reflexivity axiom of equational reasoning and
a rule could be any rule included in E or the rules for equational reasoning. (Actually an
axiom is a rule with no premises, but we prefer to make the distinction here.)

By induction on the length of the proof P of ECCS ` ξ = ξ′, we construct a proof P ′

in Em
CCS such that P ′[#P ′] =

�

d(ξ, z) = d(ξ′, z)
�

with a fresh z ∈ Vs, if ξ,ξ′ ∈ T(Σ), or

P ′[#P ′] =
�

d(ξ,µ) = d(ξ′,µ)
�

with a fresh µ ∈ Vd , if ξ,ξ′ ∈ DT(Σ).
The base case can only result by applying axioms. This is already considered in the

inductive case so we only focus on it. By induction we assume that all positions j < i of P
have already been encoded in a proof P ′ of length ki−1 and that for each P[j] = (ξ= ξ′)
there is a position k j ≤ ki−1 such that P ′[k j] =

�

d(ξ, z) = d(ξ′, z)
�

with fresh z ∈ Vs (or

P ′[k j] =
�

d(ξ,µ) = d(ξ′,µ)
�

with fresh µ ∈ Vd , depending of the sort of ξ and ξ′) has
been proven with the k j prefix of P ′.

We now proceed by case analysis. We will focus only on state terms. The cases of
distribution terms follow in the same way.

Suppose P[i] = (t = t ′) ∈ ECCS with t, t ′ ∈ T(Σ). Since it is an axiom in ECCS, we use
MN and let P ′[ki] =

�

d(t, z) = d(t ′, z)
�

, with fresh z, defining ki = ki−1 + 1.
The case in which P[i] = (t = t) was calculated using reflexivity proceeds in the same

way.
Suppose P[i] = (t = t ′) was proven using transitivity. Then there are j, j′ < i and

t ′′ ∈ T(Σ) such that P[j] = (t = t ′′) and P[j′] = (t ′′ = t ′). By induction P ′[k j] =
�

d(t, z) = d(t ′′, z)
�

and P ′[k j′] =
�

d(t ′′, z′) = d(t ′, z′)
�

. By using the substitution rule we

can find a z′′ that do not appear in any of t, t ′, and t ′′ and calculate
�

d(t, z′′) = d(t ′′, z′′)
�

and
�

d(t ′′, z′′) = d(t ′, z′′)
�

. We accommodate this new calculations after P ′[ki−1], define

ki as the next position, and calculate P ′[ki] =
�

d(t, z′′) = d(t ′, z′′)
�

using transitivity.

If P[i] = (t = t ′) was proven using symmetry, the proofs is more direct.

193

Chapter 6. Axiomatizing bisimulation equivalences and metrics

Suppose P[i] =
�

f (ξ1, ..,ξr(f)), f (ξ′1, ..,ξ′r(f))
�

, with f : σ1 . . .σr(f) → s, was cal-
culated using replacement. Then there are j1, . . . , jr f < i such that P[jl] = (ξl = ξ′l),

for all l ∈ { j1, . . . , jr f }. By induction, P ′[k jl] =
�

d(ξl , zl) = d(ξ′l , zl)
�

, if σl = s and

P ′[k jm] =
�

d(ξm, zm) = d(ξ′m, zm)
�

, if σm = d with l, m ∈ { j1, . . . , jr f }. By using the sub-

stitution rule we calculate
�

d(ξl , x i′l) = d(ξ′l ,ξ
′
l)
�

and
�

d(ξm,ξ′m) = d(ξ′m,ξ′m)
�

, and by

axioms D1 and D3, and the transitivity rule, we have
�

d(ξl , x i′l) = 0
�

and
�

d(ξm,ξ′m) = 0
�

.
We accommodate this new calculations after P ′[ki−1], define ki as the next position, and
calculate P ′[ki] =

�

d(f (ξ1, ..,ξr(f)), z) = d(f (ξ′1, ..,ξ′r(f)), z)
�

using rule S1.

Suppose P[i] = (ρ(t) = ρ(t ′)) was calculated using substitutivity. Then, there exists
a j < i such that P[j] = (t = t ′). By induction P ′[k j] =

�

d(t, z) = d(t ′, z)
�

with fresh
z. Define the substitution ρ′ by ρ′(z) = y where y do not appear in ρ(t) and ρ(t ′) and
ρ′(x) = ρ(x) for any x 6= z. Use the substitutivity rule to calculate P ′[ki] =

�

ρ′(d(t, z)) =

ρ′(d(t ′, z))
�

=
�

d(ρ′(t), y)) = d(ρ′(t ′), y))
�

.
The cases of terms in sort d follows in the same manner. ut

Corollary 6.27. The following two statements hold:

(a) For any state term t ∈ T(Σ) there exists t ′ ∈ T(Σ) in normal form such that Em
CCS `

d(t, z) = d(t ′, z).

(b) For any distribution term θ ∈DT(Σ) there exists θ ′ ∈DT(Σ) in normal form such that
Em

CCS ` d(θ , z) = d(θ ′, z).

Proof. By Lemma 6.11 the equational theory ECCS is normalizing and by using that terms
are equal with its normal form the thesis follows then from Lemma 6.26. ut

Now we can show that the equational theory Em
CCS is also ground-complete for the

bisimilarity metric d.

Theorem 6.28. Em
CCS is ground-complete for the bisimilarity metric d.

Proof. We have to show that for any arithmetic expressions expr and expr′ possibly con-
taining closed terms of the form d(t, t ′) or d(θ ,θ ′) with t, t ′ ∈ T(Σ) and θ ,θ ′ ∈ DT(Σ),
we have ¹exprº = ¹expr′º implies Em

CCS ` expr = expr′, i.e. expr = expr′ can be proved
using axioms in Em

CCS and arithmetic.
Therefore, we only need to show that d(t, t ′) = p implies Em

CCS ` d(t, t ′) = p for
all closed state terms t, t ′ ∈ T(Σ) and p ∈ [0, 1], and that K(d)(¹θº,¹θ ′º) = p im-
plies Em

CCS ` d(θ ,θ ′) = p for all closed distribution terms θ ,θ ′ ∈ DT(Σ). Since d(t, t ′)
and K(d)(¹θº,¹θ ′º) are actual numbers in [0,1], then we simply prove that Em

CCS `
d(t, t ′) = d(t, t ′) and Em

CCS ` d(θ ,θ ′) = K(d)(¹θº,¹θ ′º)
By Corollary 6.27 and soundness of Em

CCS for the bisimilarity metric d (Theorem 6.25),
we can assume that t, t ′, θ , and θ ′ are in normal form. We proceed by induction in the
height of the left term in the expressions d(t, t ′) and d(θ ,θ ′) supposing, by axioms D2
and D4, that it is less than or equal to the height of the corresponding right term.

194

6.4. Axiomatization of the bisimilarity metric

We first calculate on state terms. For the base case t = 0. If t ′ = 0 then, by D1,
d(0,0) = 0= d(0, 0). If t ′ =

∑

i∈I ai .θi , then, by H1, d(0,
∑

i∈I ai .θi) = 1= d(0,
∑

i∈I ai .θi).
For the inductive case, we calculate as follows:

d
�

∑

i∈I ai .θi ,
∑

j∈J b j .θ
′
j

�

= max
¦

max
i∈I

min
j∈J ,ai=b j

λ · d(θi ,θ
′
j), max

j∈J
min

i∈I ,ai=b j

λ · d(θi ,θ
′
j)
©

(by axiom H2)

= max
¦

max
i∈I

min
j∈J ,ai=b j

λ ·K(d)(θi ,θ
′
j), max

j∈J
min

i∈I ,ai=b j

λ ·K(d)(θi ,θ
′
j)
©

(by induction hypothesis)

= d
�

∑

i∈I ai .θi ,
∑

j∈J b j .θ
′
j

�

Finally, the case of distribution terms is as follows

d
�

⊕

i∈I piδ(t i),
⊕

j∈J q jδ(t ′j)
�

= min
ω∈Ω(I ,J)

∑

i∈I , j∈J d(t i , t ′j) ·ω(i, j) (by axiom K)

= min
ω∈Ω(I ,J)

∑

i∈I , j∈J d(t i , t ′j) ·ω(i, j) (by induction hypothesis)

= min
ω∈Ω(¹

⊕

i∈I piδ(t i)º,¹
⊕

j∈J q jδ(t ′j)º)

∑

t,t ′∈T(Σ) d(t, t ′) ·ω(t, t ′)

= K(d)(¹
⊕

i∈I piδ(t i)º,¹
⊕

j∈J q jδ(t ′j)º) (by Definition 2.17)

ut

6.4.2 Axiomatization of bisimilarity metric of PGSOS

The algorithm of Figure 6.1 can be modified to provide axioms for bisimilarity metric for
any operator defined in a generalized PGSOS specification as follows. Instead of adding
the axioms in ECCS, add the axioms in Em

CCS, and for each equation t1 = t2 (resp. θ = θ ′)
added by the algorithm in Figure 6.1, add instead d(t1, x) = d(t2, x) (resp. d(θ ,µ) =
d(θ ′,µ)).

Soundness of the axioms introduced by the algorithm is straightforward: we know
that t1 ∼ t2 implies d(t1, t2) = 0 and hence d(t1, t) = d(t2, t) can be calculated from
properties (ii) and (iii) in the definition of pseudometric (similarly for distribution terms).

We already observed that Em
CCS is normalizing. Besides, it can be shown that any

equational theory of the new algorithm is head-normalizing. Then, for every semantically
well-founded closed term t there is a term t ′ in normal form such that d(t, t ′′) = d(t ′, t ′′)
for any t ′′. Using this elimination result ground-completeness follows.

Theorem 6.29 is the metric variant of the earlier Theorems 6.18–6.24 for bisimilarity
equivalence.

Theorem 6.29. Let Pi be a PTSS in generalized PGSOS format and let the PTSS Po and the
equational theory Eo be the outputs of the algorithm in Figure 6.1 modified as before. Then,

(a) Eo is sound for the bisimilarity metric d in any disjoint extension of Po, and

195

Chapter 6. Axiomatizing bisimulation equivalences and metrics

(b) Eo is ground-complete for the bisimilarity metric d in Po, provided Po is semantically
well-founded.

Proof. We start by showing soundness for d. The axioms added to Em
CCS are all of the

form d(t1, x) = d(t2, x) (for each bisimilarity equivalence axiom t1 = t2), and d(θ1,µ) =
d(θ2,µ) (for each bisimilarity equivalence axiom θ1 = θ2). Soundness of these axioms
is easy by the following argumentation. Let ρ be any closed substitution. First, ob-
serve that any equation t1 = t2 (resp. θ1 = θ2) implies bisimilarity ρ(t1) ∼ ρ(t2) (resp.
¹ρ(θ1)º∼¹ρ(θ2)º) (Theorems 6.18–6.20 and the soundness part of Theorem 6.24). Then,
because bisimilarity equivalence is the kernel of the bisimilarity metric d (Proposition 2.29),
we get d(ρ(t1),ρ(t2)) = 0 and K(d)(¹ρ(θ1)º,¹ρ(θ2)º) = 0. Finally, by triangle in-
equality of the bisimulation metric d we get for the equation of state terms t1 = t2 that
d(ρ(t1),ρ(x)) ≤ d(ρ(t1),ρ(t2)) + d(ρ(t2),ρ(x)) = d(ρ(t2),ρ(x)) ≤ d(ρ(t2),ρ(t1)) +
d(ρ(t1),ρ(x)) = d(ρ(t1),ρ(x)). Hence, d(ρ(t1),ρ(x)) = d(ρ(t2),ρ(x)). The same
reasoning applies also to the equations of distribution terms θ1 = θ2.

We proceed by showing ground-completeness. In detail, following the same argu-
mentation as in the case of bisimulation equivalence (cf. proof of Theorem 6.24), we
can show that the equational theory developed in Section 6.4 is head normalizing. This
gives directly that for every semantically well-founded closed term t there is a term t ′

in normal form such that d(t, t ′′) = d(t ′, t ′′) for any t ′′. Using this elimination result
ground-completeness follows. ut

6.5 Closing remarks

In this chapter we generalized the PGSOS format by defining a two-sorted signature that
leads to a rigorous and clear definition of the distribution term in the target of positive
literals. Moreover, this also fits nicely with the introduction of the equational theory. This
carefully thought-out setting allows us to borrow the strategies of [ABV94] to obtain the
algorithm of Figure 6.1 and prove its correctness (Theorem 6.24). This is particularly
facilitated by the introduction of the operators mapping into sort d, and by the fact that
all probabilistically lifted operators distribute with respect to ⊕p and δ.

We remark that the axiomatization Em
CCS of bisimilarity metric is new in this paper.

Axiom scheme H2 can be translated into a set of axioms that only include binary sum by
introducing an auxiliary operator (Table 6.5). However we could not find so far a set of
axioms that only use binary ⊕p operators in order to replace the axiom scheme K.

The presented algorithm can be generalized to behavioral equivalences weaker than
bisimilarity equivalence (and resp. to behavioral metrics weaker than bisimilarity met-
ric) if their respective equational theories contain ECCS (resp. Em

CCS), by following the ap-
proach of [GF13]. For instance, axiomatizing convex bisimilarity equivalence (introduced
in [Seg95] under the name of probabilistic bisimilarity) is axiomatized by the equational
theory ECCS ∪ {a.µ1 + a.µ2 = a.µ1 + a.µ2 + a.(µ1 ⊕p µ2) | p ∈ Q ∩ (0, 1)}. Moreover, the
generalized PGSOS rule format needs a mild restriction developed in [DLG15b].

We used for the representation of probabilistic choices the (countably) infinite set
of operators {⊕p|p ∈ Q ∩ (0,1)} that are axiomatized by the equations P1–P3 given in
Table 6.1. An alternative approach would be to use only a single operator ⊕ represent-
ing the probabilistic choice ⊕0.5. Mean-value algebras developed by Heckmann [Hec94]

196

6.5. Closing remarks

d(0,0) = 0

d(0, a.µ+ x) = 1

d(x , y) =max{ld(x , y), ld(y, x)}
ld(x + y, z) =max{ld(x , z), ld(y, z)}
ld(a.µ, x + y) =min{ld(a.µ, x), ld(a.µ, y)}
ld(a.µ, b.ν) = 1 if a 6= b

ld(a.µ, a.ν) = λ · d(µ,ν)

d(x , y) =max(mxd(x , y)∪mxd(y, x))
mxd(x + y, z) =mxd(x , z)∪mxd(y, z)
mxd(0, x) = ;
mxd(a.µ, x) =min(mnd(a.µ, x))
mnd(a.µ, x + y) =mnd(a.µ, x)∪mnd(a.µ, y)
mnd(a.µ, 0) = {1}
mnd(a.µ, b.ν) = {1} if a 6= b

mnd(a.µ, a.ν) = {λ · d(µ,ν)}

Table 6.5: Two axiomatizations of the Hausdorff-lifting using only binary summation.

provide an elegant equational axiomatization of this single probabilistic choice oper-
ator. This axiomatization has been recently lifted to metric spaces in [Bre+05]. Since
some probabilistic choices such as ⊕1/3 cannot be expressed as finite combination of ⊕0.5
choices, the equational theory may need to be extended by adequate inequalities that ap-
proximate (arbitrarily close) those probabilistic choices. Along similar lines we suggest
to investigate also if metric mean-value algebras and metric semilattices [Bre+05] allow
for a primitive formulation of the equations H2 and K in Table 6.4 (Hausdorff and Kan-
torovich lifting operators). We leave the further development of the technical details as
future work.

Another interesting research direction is to investigate if the axiomatizations provided
in this chapter give rise to a term rewriting system with “good” properties such as normal-
isation and confluence. This question has been investigated for the nondeterministic set-
ting in [Bos94] and [GF13, Section 4]. The axiomatization of a behavioral equivalence or
behavioral metric gives rise to a term rewriting system with rewrite rules that are directed
versions of the equations. Moreover, we need to exclude associativity and commutativity
to obtain termination, and add some auxiliary rules to obtain confluence [Bos94]. Pre-
liminary results suggest that this approach gives also in the probabilistic setting a head
normalising and confluent term rewriting systems (but not strongly normalising since
already Bosscher’s original rulified axiomatisation is not strongly normalizing). Finally,
the properties of the term rewriting system arising from the axiomatization of behavioral
equivalences and behavioral metrics of specifications that combine both SOS rules and
non-structural assignment rules [MR05; RB14] are of interest. The interesting question
is which properties the non-structural assignment rules guarantee that the resulting term
rewriting system is still normalizing and/or confluent.

197

Chapter 7

Conclusions

Modern information and computing systems are distributed and concurrent. There are
three important aspects that determine the specification and verification of those systems:
a model of the system, a language to describe the system, and a behavioral semantics that
assigns a meaning to the system. For distributed and concurrent systems not only func-
tional correctness but also quantitative properties such as reliability, performance and
resources play a central role for both modeling of the system and also analysis and veri-
fication of the system properties. Probability is a well-understood quantitative property
that allows us to model and measure reliability, availability, serviceability, security and
trust.

Labeled transition systems are the common model to describe the operational se-
mantics of a system in terms of single-step executions. Transition labels denote the dif-
ferent actions a system can execute and provide a natural means to formalize various
notions of synchronous and asynchronous composition. Structural operational semantics
is a widely used and accepted formal approach to specify the operational semantics of
programming languages and process algebras in terms of deduction rules that describe
the single-step execution of the system. The deduction rules describe in a structural com-
positional manner the operational behavior of the system. Rule and specification formats
specify classes of rules and specifications where the structural composition of states and
the respective operational behavior preserves important properties of the behavioral se-
mantics.

Labelled transition systems have been extended to Probabilistic labelled transition
systems to model probabilistic choices that may occur in the single-step execution of the
underlying system [Seg95]. Similarly, also the structural operational semantics approach
has been extended to allow for the specification of languages that include probabilistic
choices [DGL15]. The careful design of the probabilistic specification theory, especially
the separation between probabilistic and nondeterministic choice as initiated in [Bar04]
and [DL12], allowed us to develop smoothly further the specification meta-theory of prob-
abilistic languages.

The research in this thesis is motivated by the observation that the well-understood
bisimulation equivalence semantics is not sufficient for probabilistic nondeterministic
transition systems. The recently developed bisimulation metric semantics is a robust

199

Chapter 7. Conclusions

semantic notion to define the behavioral distance between systems. The bisimulation
distance between two states of a system (or two systems when considering the distance
between their initial states) quantifies the proximity of their respective behavioral prop-
erties. However, considering bisimulation metric semantics there have been neither suf-
ficient notions of compositionality of probabilistic systems nor satisfying operational, de-
notational and axiomatic specification approaches have been developed so far.

Centered around the main research question how to specify probabilistic languages
and reason over probabilistic systems w.r.t. bisimulation metric semantics we defined ap-
propriate concepts and notions of compositionality, formalized specification approaches
of compositional languages, formalized in terms of a denotational model the primitive
process behavior determining the compositionality of operators, and axiomatized the al-
gebraic properties of operators. These results together provide a well-rounded contribu-
tion to the theory of formal languages, automata theory and semantics.

We started in chapter 3 by examining the first research question Q1 (page 7) and
developed the concept of uniformly continuous operators that captures the essence of
compositional reasoning. The modulus of continuity formalizes the intuitive notion that
replacing components by similar components the composed system is still (quantifiably)
similar (with similarity quantified by the bisimulation distance). We analyzed the com-
positionality properties of many process algebra operators and observed that the compos-
itionality property of non-expansiveness advocated in earlier research is not sufficient for
recursive operators.

We proceeded then in chapter 4 by examining the second research question Q2 (page 8)
and proposed appropriate SOS rule and specification formats that allow us to formally
define operators for any given modulus of continuity. Our main insight is that the replica-
tion of processes and the probabilistic choices of operators determines their composition-
ality property. Moreover, these structural properties compose in a natural way and allow
us to determine the modulus of continuity (understood as its semantical compositionality
property) in a compositional way from the syntactical specification of that operator.

As a next step we developed in chapter 5 a denotational model that characterizes
the primitive process behavior (replication, probabilistic choice, nondeterministic choice)
that determines its compositionality property. This chapter answers the third research
question Q3 (page 9) and refines numerous results of the former chapters by defining
a fixed-point calculus that computes compositionally denotation of operators and open
terms by mimicking both their syntactic structure and the operational behavior. The de-
notational model makes also explicit how the primitive process behavior of operators
(replication, probabilistic choice, nondeterministic choice) interact. Hence, the denota-
tional approach gives system and language designers a tool to define languages with the
best trade-off (w.r.t. the application context) between the different primitive process be-
havior.

In the last chapter 6 we studied the axiomatization of language expressions to answer
the last research question Q4 (page 10). We provided an algorithm that produces for both
bisimilarity equivalence and bisimilarity metric and equational theory that is sound and
ground-complete. We generalized the PGSOS format by formalizing states and distribu-
tions as separate sorts and that also allows operators to take distributions as arguments.
This makes the action prefix operator (well-known from process algebra) a single oper-
ator with a single rule (and does not require the countably infinite set of operators and

200

rules with the former PGSOS format).
The technical chapters 3–6 answer thoroughly the research questions Q1–Q4 raised

in the introduction. The theoretical concepts, practical tools and conceptual methods de-
veloped on those chapters form collectively a well-elaborated theory to formally specify
and reason over probabilistic processes and programs. Practically, language designers
may use the theory to specify language operators that will be used by engineers to code
and applied by operators to describe programs and systems that behave smoothly also
in cases of external or internal disturbance. Scientifically, the concepts, approaches and
results in this thesis open the door to generalize the specification theories, modeling ap-
proaches, proof-theory and model-checking of quantitative formalisms (e.g. continuous
time systems, weighted automata, quantitative games) to a robust semantic notion based
on behavioral metrics and metric compositionality.

Future work Each chapter provided multiple directions for future work which we will
just summarize here. In this thesis we focused on behavioral metric semantics. A natural
continuation is to explore the research questions and analyze the developed approaches
in the context of other behavioral metrics, such as trace, testing and weak semantics.
Trace and testing semantics are important notions of behavioral semantics that are less
strict than bisimulation semantics and measure the distance between states in term of
execution traces and probing tests of external observers. Those semantic notions become
relevant if the system designer is for instance only interested in linear properties of the
system. Moreover, notions of weak semantics are essential to effectively reason over the
refinement of systems, esp. for action refinement and for abstracting from and hiding of
internal behavior. Additionally, in order to specify and analyze quantitative properties
such as time and resources the research questions and results should be reconsidered
by changing the underlying model of probabilistic nondeterministic transition systems to
Markov automata and weighted automata.

We focussed in this thesis mainly on the specification of languages and systems. This
research should be follow-up by investigating also system verification and model-checking
when considering behavioral metric semantics. Important research questions that arise
are which quantitative logics characterize trace, test and weak notions of behavioral met-
ric semantics. Moreover, the interpretation of the behavioral distances, their relation to
natural system properties and the application in performance validation (understood as
the metric extension of binary correctness validation) are pressing questions that should
be investigated. Finally, we propose to investigate how our results focussing on the spe-
cification of operational semantics in terms of deductive reasoning may be applied to
languages of probabilistic programming that provide a probabilistic abductive reasoning
and follow the Bayesian inference principle.

201

Bibliography

[ABV94] Luca Aceto, Bard Bloom and Frits Vaandrager. ‘Turning SOS rules into equa-
tions’. In: I&C 111.1 (1994), pp. 1–52.

[AFV01a] Luca Aceto, Wan Fokkink and Chris Verhoef. ‘Conservative Extension in
Structural Operational Semantics’. In: Current Trends in Theoretical Com-
puter Science. 2001, pp. 504–524.

[AFV01b] Luca Aceto, Wan Fokkink and Chris Verhoef. ‘Structural operational se-
mantics’. In: Handbook of Process Algebra. Elsevier, 2001, pp. 197–292.

[Ace+13] Luca Aceto et al. ‘Exploiting Algebraic Laws to Improve Mechanized Axio-
matizations’. In: Proc. CALCO’13. Vol. 8089. LNCS. Springer, 2013, pp. 36–
50.

[Alf97] Luca de Alfaro. ‘Formal verification of probabilistic systems’. PhD thesis.
Stanford University, 1997.

[AFS04] Luca de Alfaro, Marco Faella and Mariëlle Stoelinga. ‘Linear and Branching
Metrics for Quantitative Transition Systems’. In: Proc. ICALP’04. Vol. 3142.
LNCS. Springer, 2004, pp. 97–109.

[AHM03] Luca de Alfaro, Thomas A. Henzinger and Rupak Majumdar. ‘Discounting
the Future in Systems Theory’. In: Proc. ICALP’03. Springer, 2003, pp. 1022–
1037.

[Alf+07] Luca de Alfaro et al. ‘Game relations and metrics’. In: Proc. LICS’07. IEEE.
2007, pp. 99–108.

[Alf+08] Luca de Alfaro et al. ‘Game Refinement Relations and Metrics’. In: LMCS 4.3
(2008).

[And99] Suzana Andova. ‘Process algebra with probabilistic choice’. In: Proc. ARTS’99.
Vol. 1601. LNCS. Springer, 1999, pp. 111–129.

[And02] Suzana Andova. ‘Probabilistic process algebra’. PhD thesis. Eindhoven Uni-
versity of Technology, 2002.

[Arn94] André Arnold. Finite Transition Systems - Semantics of Communicating Sys-
tems. Prentice Hall, 1994.

[Arn+14] Florian Arnold et al. ‘A Tutorial on Interactive Markov Chains’. In: Stochastic
Model Checking. Rigorous Dependability Analysis Using Model Checking Tech-
niques for Stochastic Systems. Vol. 8453. LNCS. Springer, 2014, pp. 26–66.

203

BIBLIOGRAPHY

[Bac+13] Giorgio Bacci et al. ‘Computing Behavioral Distances, Compositionally’. In:
Proc. MFCS’13. Vol. 8087. LNCS. Springer, 2013, pp. 74–85.

[Bac+15] Giorgio Bacci et al. ‘Converging from Branching to Linear Metrics on Markov
Chains’. In: Proc. ICTAC’15. Vol. 9399. LNCS. Springer, 2015, pp. 1–19.

[BBR10] Jos C. M. Baeten, Twan Basten and M. A. Reniers. Process algebra: equa-
tional theories of communicating processes. Vol. 50. Cambridge University
Press, 2010.

[BBK87] Jos C. M. Baeten, Jan A. Bergstra and Jan Willem Klop. ‘On the consistency
of Koomen’s Fair Abstraction Rule’. In: TCS 51 (1987), pp. 129–176.

[Bai+04] Christel Baier et al. Validation of stochastic systems: A guide to Current Re-
search. Vol. 2925. LNCS. Springer, 2004.

[BS01] E. Bandini and R. Segala. ‘Axiomatizations for Probabilistic Bisimulation’.
In: Proc. ICALP’01. Vol. 2076. LNCS. Springer, 2001, pp. 370–381.

[Bar02] Falk Bartels. ‘GSOS for probabilistic transition systems’. In: Proc. CMCS’02.
Vol. 65. ENTCS. Elsevier, 2002, pp. 29–53.

[Bar04] Falk Bartels. ‘On Generalised Coinduction and Probabilistic Specification
Formats’. PhD thesis. VU University Amsterdam, 2004.

[BDL13] Marco Bernardo, Rocco De Nicola and Michele Loreti. ‘The Spectrum of
Strong Behavioral Equivalences for Nondeterministic and Probabilistic Pro-
cesses’. In: Proc. QAPL’13. Vol. 117. EPTCS. 2013, pp. 81–96.

[BFG04] Bard Bloom, Wan Fokkink and Rob J. van Glabbeek. ‘Precongruence formats
for decorated trace semantics’. In: ACM TOCL 5 (1 2004), pp. 26–78.

[BIM95] Bard Bloom, Sorin Istrail and Albert R. Meyer. ‘Bisimulation can’t be traced’.
In: J. ACM 42.1 (1995), pp. 232–268.

[BG96] Roland Bol and Jan Friso Groote. ‘The meaning of negative premises in trans-
ition system specifications’. In: J. ACM 43 (5 1996), pp. 863–914.

[Bos94] Doeko J. B. Bosscher. ‘Term rewriting properties of SOS axiomatisations’. In:
Proc. TACS’94. Springer. 1994, pp. 425–439.

[Bre12] Franck van Breugel. ‘On behavioural pseudometrics and closure ordinals’.
In: Information Processing Letters 112.19 (2012), pp. 715–718.

[BW01] Franck van Breugel and James Worrell. ‘Towards Quantitative Verification
of Probabilistic Transition Systems’. In: Proc. ICALP’01. Vol. 2076. LNCS.
Springer, 2001, pp. 421–432.

[BW05] Franck van Breugel and James Worrell. ‘A Behavioural Pseudometric for
Probabilistic Transition Systems’. In: TCS 331.1 (2005), pp. 115–142.

[Bre+05] Franck van Breugel et al. ‘An Accessible Approach to Behavioural Pseudo-
metrics’. In: Proc. ICALP’05. Vol. 3580. LNCS. Springer, 2005, pp. 1018–
1030.

[BHR84] Stephen D. Brookes, Charles A. R. Hoare and Andrew W. Roscoe. ‘A theory of
communicating sequential processes’. In: JACM 31.3 (1984), pp. 560–599.

204

BIBLIOGRAPHY

[Cha+14] Konstantinos Chatzikokolakis et al. ‘Generalized bisimulation metrics’. In:
Proc. CONCUR’14. Vol. 8704. LNCS. Springer, 2014, pp. 32–46.

[CMR97] Evelyne Contejean, Claude Marché and Landy Rabehasaina. ‘Rewrite Sys-
tems for Natural, Integral, and Rational Arithmetic’. In: Proc. RTA’97. Vol.
1232. LNCS. Springer, 1997, pp. 98–112.

[CR11] Silvia Crafa and Francesco Ranzato. ‘A spectrum of behavioral relations over
LTSs on probability distributions’. In: Proc. CONCUR’11. Vol. 6901. LNCS.
Springer, 2011, pp. 124–139.

[DGL14] Pedro R. D’Argenio, Daniel Gebler and Matias D. Lee. ‘Axiomatizing
Bisimulation Equivalences and Metrics from Probabilistic SOS Rules’. In:
Proc. FoSSaCS’14. Vol. 8412. LNCS. Springer, 2014, pp. 289–303.

[DGL15] Pedro R. D’Argenio, Daniel Gebler and Matias D. Lee. ‘A general SOS theory
for the specification of probabilistic transition systems’. Accepted for I&C.
Also available at http://www.few.vu.nl/~gebler/paper/sos- theory.pdf.
2015.

[DL12] Pedro R. D’Argenio and Matias D. Lee. ‘Probabilistic Transition Sys-
tem Specification: Congruence and Full Abstraction of Bisimulation’. In:
Proc. FoSSaCS’12. Vol. 7213. LNCS. Springer, 2012, pp. 452–466.

[DLG15a] Pedro R. D’Argenio, Matias D. Lee and Daniel Gebler. ‘SOS rule formats for
convex and abstract probabilistic bisimulations’. In: Proc. EXPRESS/SOS’15.
Vol. 190. EPTCS. 2015, pp. 31–45.

[DLG15b] Pedro R. D’Argenio, Matias David Lee and Daniel Gebler. ‘SOS rule
formats for convex and abstract probabilistic bisimulations’. In: Proc. EX-
PRESS/SOS’15. Vol. 190. EPTCS. 2015, pp. 31–45.

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to lattices and order.
Cambridge University Press, 2002.

[Deh+14] Christian Dehnert et al. ‘On Abstraction of Probabilistic Systems’. In:
Stochastic Model Checking. Rigorous Dependability Analysis Using Model
Checking Techniques for Stochastic Systems. Vol. 8453. LNCS. Springer,
2014, pp. 87–116.

[Den15] Yuxin Deng. Semantics of Probabilistic Processes: An Operational Approach.
Springer, 2015.

[DD07] Yuxin Deng and Wenjie Du. ‘Probabilistic Barbed Congruence’. In: Proc. QAPL’07.
Vol. 190. ENTCS 3. 2007, pp. 185–203.

[DD09] Yuxin Deng and Wenjie Du. ‘The Kantorovich Metric in Computer Science:
A Brief Survey’. In: Proc. QAPL’09. Vol. 253. ENTCS 3. 2009, pp. 73–82.

[DD11] Yuxin Deng and Wenjie Du. Logical, Metric, and Algorithmic Characterisations
of Probabilistic Bisimulation. Tech. rep. CMU-CS-11-110. CMU, Mar. 2011.

[Den+05] Yuxin Deng et al. ‘Metrics for Action-labelled Quantitative Transition Sys-
tems’. In: Proc. QAPL’05. Vol. 153. EPTCS 2. 2005, pp. 79–96.

205

http://www.few.vu.nl/~gebler/paper/sos-theory.pdf

BIBLIOGRAPHY

[Den+07] Yuxin Deng et al. ‘Remarks on testing probabilistic processes’. In: ENTCS
172 (2007). Computation, Meaning, and Logic: Articles dedicated to Gordon
Plotkin, pp. 359–397.

[DLT08] Josée Desharnais, Francois Laviolette and Mathieu Tracol. ‘Approxim-
ate Analysis of Probabilistic Processes: Logic, Simulation and Games’. In:
Proc. QEST’08. IEEE. 2008, pp. 264–273.

[Des+02a] Josée Desharnais et al. ‘The Metric Analogue of Weak Bisimulation for Prob-
abilistic Processes’. In: Proc. LICS’02. IEEE. 2002, pp. 413–422.

[Des+02b] Josée Desharnais et al. ‘Weak Bisimulation is Sound and Complete for
PCTL*’. In: Proc. CONCUR’02. Vol. 2421. LNCS. Springer, 2002, pp. 355–
370.

[Des+04] Josée Desharnais et al. ‘Metrics for Labelled Markov Processes’. In: TCS
318.3 (2004), pp. 323–354.

[FL14] Uli Fahrenberg and Axel Legay. ‘The quantitative linear-time-branching-time
spectrum’. In: TCS 538 (2014), pp. 54–69.

[Fel08] Willliam Feller. An Introduction to Probability Theory and Its Applications.
Vol. 2. John Wiley & Sons, 2008.

[Fok07] Wan Fokkink. Modelling Distributed Systems. Springer, 2007.

[Fok13] Wan Fokkink. Introduction to Process Algebra. Springer, 2013.

[FGW06a] Wan Fokkink, Rob J. van Glabbeek and Paulien de Wind. ‘Compositionality
of Hennessy-Milner logic by structural operational semantics’. In: TCS 354
(3 2006), pp. 421–440.

[FGW06b] Wan Fokkink, Rob J. van Glabbeek and Paulien de Wind. ‘Divide and Congru-
ence Applied to η-Bisimulation’. In: Proc. SOS’05. Vol. 156. ENTCS. Elsevier,
2006, pp. 97–113.

[FGW06c] Wan Fokkink, Rob J. van Glabbeek and Paulien de Wind. ‘Divide and Con-
gruence: From Decomposition of Modalities to Preservation of Branching
Bisimulation’. In: Proc. FMCO’05. Vol. 4111. LNCS. Springer, 2006, pp. 195–
218.

[FGW12] Wan Fokkink, Rob J. van Glabbeek and Paulien de Wind. ‘Divide and congru-
ence: From decomposition of modal formulas to preservation of branching
and η-bisimilarity’. In: I&C 214 (2012), pp. 59–85.

[GF10] Maciej Gazda and Wan Fokkink. ‘Congruence from the Operator’s Point of
View: Compositionality Requirements on Process Semantics’. In: Proc. SOS’10.
Vol. 32. EPTCS. 2010, pp. 15–25.

[GF13] Maciej Gazda and Wan Fokkink. ‘Turning GSOS Rules into Equations for Lin-
ear Time-Branching Time Semantics’. In: The Computer Journal 56.1 (2013),
pp. 34–44.

[GF12] Daniel Gebler and Wan Fokkink. ‘Compositionality of Probabilistic Hennessy-
Milner Logic through Structural Operational Semantics’. In: Proc. CON-
CUR’12. Vol. 7454. LNCS. Springer, 2012, pp. 395–409.

206

BIBLIOGRAPHY

[GGM13] Daniel Gebler, Eugen-Ioan Goriac and Mohammad Reza Mousavi. ‘Algebraic
Meta-Theory of Processes with Data’. In: Proc. EXPRESS/SOS’13. Vol. 120.
EPTCS. 2013, pp. 63–77.

[GHT14] Daniel Gebler, Vahid Hashemi and Andrea Turrini. ‘Computing Behavioral
Relations for Probabilistic Concurrent Systems’. In: Stochastic Model Check-
ing. Rigorous Dependability Analysis Using Model Checking Techniques for
Stochastic Systems. Vol. 8453. LNCS. Springer, 2014, pp. 117–155.

[GLT15] Daniel Gebler, Kim G. Larsen and Simone Tini. ‘Compositional metric reas-
oning with Probabilistic Process Calculi’. In: Proc. FoSSaCS’15. Vol. 9034.
LNCS. Springer, 2015, pp. 230–245.

[GT13] Daniel Gebler and Simone Tini. ‘Compositionality of Approximate Bisimula-
tion for Probabilistic Systems’. In: Proc. EXPRESS/SOS’13. Vol. 120. EPTCS.
2013, pp. 32–46.

[GT14] Daniel Gebler and Simone Tini. ‘Fixed-point Characterization of Compos-
itionality Properties of Probabilistic Processes Combinators’. In: Proc. EX-
PRESS/SOS’14. Vol. 160. EPTCS. 2014, pp. 63–78.

[GT15] Daniel Gebler and Simone Tini. ‘SOS Specifications of Probabilistic Systems
by uniformly continuous operators’. In: Proc. CONCUR’15. Vol. 42. LIPIcs,
2015, pp. 155–168.

[GJS90] Alessandro Giacalone, Chi-Chang Jou and Scott A. Smolka. ‘Algebraic Reas-
oning for Probabilistic Concurrent Systems’. In: Proc. IFIP TC2 Working Conf.
on Prog. Concepts and Methods. 1990, pp. 443–458.

[Gla90] Rob J. van Glabbeek. ‘The Linear Time - Branching Time Spectrum I’. In:
CONCUR’90. Vol. 458. LNCS. Springer, 1990, pp. 278–297.

[Gla93] Rob J. van Glabbeek. ‘The Linear Time - Branching Time Spectrum II’. In:
CONCUR’93. Vol. 715. LNCS. Springer, 1993, pp. 66–81.

[GSS95] Rob J. van Glabbeek, Scott A. Smolka and Bernhard Steffen. ‘Reactive,
Generative, and Stratified Models of Probabilistic Processes’. In: I&C 121.1
(1995), pp. 59–80.

[GM82] Joseph A. Goguen and José Meseguer. ‘Completeness of many-sorted equa-
tional logic’. In: SIGPLAN Notices 17.1 (Jan. 1982), pp. 9–17.

[Gor+14] Andrew D. Gordon et al. ‘Probabilistic programming’. In: Proc. ICSE’14.
ACM. 2014, pp. 167–181.

[Gro93] Jan Friso Groote. ‘Transition System Specifications with Negative Premises’.
In: TCS 118.2 (1993), pp. 263–299.

[GV92] Jan Friso Groote and Frits Vaandrager. ‘Structured Operational Semantics
and Bisimulation as a Congruence’. In: I&C 100.2 (1992), pp. 202–260.

[Hal60] Paul R. Halmos. Naive set theory. Springer, 1960.

[Han94] Hans A. Hansson. Time and Probability in Formal Design of Distributed Sys-
tems. Ed. by Lars-Ake Fredlund. New York, NY, USA: Elsevier, 1994.

207

BIBLIOGRAPHY

[HJ94] Hans Hansson and Bengt Jonsson. ‘A logic for reasoning about time and
reliability’. In: FAC 6.5 (1994), pp. 512–535.

[Hav01] Boudewijn R. Haverkort. ‘Markovian models for performance and depend-
ability evaluation’. In: LNCS 2090 (2001), pp. 38–83.

[Hec94] Reinhold Heckmann. ‘Probabilistic domains’. In: Proc. CAAP’94. Vol. 787.
LNCS. Springer, 1994, pp. 142–156.

[Hen88] Matthew Hennessy. Algebraic theory of processes. MIT press, 1988.

[Hen12] Matthew Hennessy. ‘Exploring probabilistic bisimulations, part I’. In: FAC
24.4-6 (2012), pp. 749–768.

[Hen13] Thomas A. Henzinger. ‘Quantitative reactive modeling and verification’. In:
Computer Science - R&D 28.4 (2013), pp. 331–344.

[HS06] Thomas A. Henzinger and Joseph Sifakis. ‘The embedded systems design
challenge’. In: Proc. FM’06. Vol. 4085. LNCS. Springer, 2006, pp. 1–15.

[Her+11] Holger Hermanns et al. ‘Probabilistic Logical Characterization’. In: I&C
209.2 (2011), pp. 154–172.

[Hoa85] C. Antony R. Hoare. Communicating Sequential Processes. Prentice Hall,
1985.

[HLW08] Bernhard Hoffman-Wellenhof, Herbert Lichtenegger and Elmar Wasle.
GNSS-Global Navigation Satellite Systems: GPS, GLONASS, Galileo and more.
Springer, 2008.

[JL91] Bengt Jonsson and Kim G. Larsen. ‘Specification and refinement of probab-
ilistic processes’. In: Proc. LICS’91. IEEE. 1991, pp. 266–277.

[JLY01] Bengt Jonsson, Kim G. Larsen and Wang Yi. ‘Probabilistic Extensions of Pro-
cess Algebras’. In: Handbook of Process Algebra. Elsevier, 2001, pp. 685–710.

[Kal06] Olav Kallenberg. Foundations of modern probability. Springer, 2006.

[KBL01] Joost-Pieter Katoen, Christel Baier and Diego Latella. ‘Metric semantics for
true concurrent real time’. In: TCS 254.1–2 (2001), pp. 501–542.

[Kel76] Robert M. Keller. ‘Formal Verification of Parallel Programs’. In: Commun.
ACM 19.7 (1976), pp. 371–384.

[KS60] John G. Kemeny and James Laurie Snell. Finite Markov Chains. Van Nos-
trand, Princeton, N.J., 1960.

[Kli05] Bartek Klin. ‘From bialgebraic semantics to congruence formats’. In:
Proc. SOS’04. Vol. 128. ENTCS 1. Elsevier, 2005, pp. 3–37.

[Kli09] Bartek Klin. ‘Bialgebraic methods and modal logic in structural operational
semantics’. In: I&C 207 (2 2009), pp. 237–257.

[Kli10] Bartek Klin. ‘Structural Operational Semantics and Modal Logic, Revisited’.
In: Proc. CMCS’10. Vol. 264. ENTCS 2. Elsevier, 2010, pp. 155–175.

[KS13] Bartek Klin and Vladimiro Sassone. ‘Structural operational semantics for
stochastic and weighted transition systems’. In: I&C 227 (2013), pp. 58–
83.

208

BIBLIOGRAPHY

[LT05] Ruggero Lanotte and Simone Tini. ‘Probabilistic Congruence for Semis-
tochastic Generative Processes’. In: Proc. FoSSaCS’05. Vol. 3441. LNCS.
Springer, 2005, pp. 63–78.

[LT09] Ruggero Lanotte and Simone Tini. ‘Probabilistic Bisimulation as a Congru-
ence’. In: ACM TOCL 10 (2 2009), pp. 1–48.

[LS91] Kim G. Larsen and Arne Skou. ‘Bisimulation Through Probabilistic Testing’.
In: I&C 94 (1 1991), pp. 1–28.

[LX91] Kim G. Larsen and Liu Xinxin. ‘Compositionality through an Operational
Semantics of Contexts’. In: J. Log. Comput. 1.6 (1991), pp. 761–795.

[LGD12] Matias D. Lee, Daniel Gebler and Pedro R. D’Argenio. ‘Tree Rules in Prob-
abilistic Transition System Specifications with Negative and Quantitative
Premises’. In: Proc. EXPRESS/SOS’12. Vol. 89. EPTCS. 2012, pp. 115–130.

[LV15] Matias D. Lee and Erik P. de Vink. ‘Rooted branching bisimulation as a con-
gruence for probabilistic transition systems’. In: Proc. QAPL’15. Vol. 194.
EPTCS. 2015, pp. 79–94.

[Mar+14] Radu Mardare et al. ‘Continuity Properties of Distances for Markov Pro-
cesses’. In: Proc. QEST’14. IEEE. 2014, pp. 297–312.

[Mil80] Robin Milner. A calculus of communicating systems. Springer, 1980.

[Mil89] Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

[Mio14] Matteo Mio. ‘Upper-Expectation Bisimilarity and Łukasiewicz µ-Calculus’.
In: Proc. FoSSaCS’14. Vol. 8412. LNCS. Springer, 2014, pp. 335–350.

[MS13] Matteo Mio and Alex Simpson. ‘A Proof System for Compositional Verifica-
tion of Probabilistic Concurrent Processes’. In: Proc. FoSSaCS’13. Vol. 7794.
LNCS. Springer, 2013, pp. 161–176.

[MR05] Mohammad Reza Mousavi and Michel A. Reniers. ‘Congruence for Struc-
tural Congruences’. In: Proc. FoSSaCS’05. Vol. 3441. LNCS. Springer, 2005,
pp. 47–62.

[MRG07] Mohammad Reza Mousavi, Michel A. Reniers and Jan Friso Groote. ‘SOS
formats and meta-theory: 20 years after’. In: TCS 373.3 (2007), pp. 238–
272.

[Pan09] Prakash Panangaden. Labelled Markov Processes. Imperial College Press,
2009.

[Par81] David Park. ‘Concurrency and Automata on Infinite Sequences’. In: Proc. 5th
GI-Conference on TCS. Vol. 104. LNCS. Springer, 1981, pp. 167–183.

[PS07] Augusto Parma and Roberto Segala. ‘Logical Characterizations of Bisimu-
lations for Discrete Probabilistic Systems’. In: Proc. FoSSaCS’07. Vol. 4423.
LNCS. Springer, 2007, pp. 287–301.

[Plo81] Gordon Plotkin. A Structural Approach to Operational Semantics. Report
DAIMI FN-19. Reprinted in JLAP, 60-61:17-139, 2004. Aarhus University,
1981.

209

BIBLIOGRAPHY

[Ram10] Vishwanath Raman. ‘Game Relations, Metrics and Refinements’. PhD thesis.
University of California at Santa Cruz, 2010.

[RS14] Anne Remke and Mariëlle Stoelinga. Stochastic Model Checking. Rigorous De-
pendability Analysis Using Model Checking Techniques for Stochastic Systems.
Vol. 8453. Springer, 2014.

[RB14] Jurriaan Rot and Marcello Bonsangue. ‘Combining Bialgebraic Semantics
and Equations’. In: Proc. FoSSaCS’14. Vol. 8412. LNCS. Springer. 2014,
pp. 381–395.

[Seg95] Roberto Segala. ‘Modeling and Verification of Randomized Distributed Real-
Time Systems’. PhD thesis. MIT, 1995.

[SL95] Roberto Segala and Nancy Lynch. ‘Probabilistic simulations for probabilistic
processes’. In: Nordic J. of Computing 2 (2 1995), pp. 250–273.

[Sim84] Robert de Simone. ‘Calculabilité et expressivité dans l’algèbre de processus
parallèles Meije’. PhD thesis. Univ. Paris 7, 1984.

[Sim85] Robert de Simone. ‘Higher-Level Synchronising Devices in Meije-SCCS’. In:
TCS 37 (1985), pp. 245–267.

[SDC07] Lin Song, Yuxin Deng and Xiaojuan Cai. ‘Towards Automatic Measurement
of Probabilistic Processes’. In: Proc. QSIC’07. IEEE. 2007, pp. 50–59.

[SC05] Daniel H. Steinberg and Stuart Cheshire. Zero Configuration Networking: The
Definitive Guide: The Definitive Guide. O’Reilly Media, Inc., 2005.

[Ste94] William J. Stewart. Introduction to the Numerical Solution of Markov Chains.
Princeton University Press, 1994.

[Sto02] Mariëlle Stoelinga. ‘An Introduction to Probabilistic Automata’. In: Bulletin
of the EATCS 78 (2002), pp. 176–198.

[Tin08] Simone Tini. ‘Non Expansive ε-bisimulations’. In: Proc. AMAST’08. Vol.
5140. LNCS. Springer, 2008, pp. 362–376.

[Tin10] Simone Tini. ‘Non-expansive ε-bisimulations for Probabilistic Processes’. In:
TCS 411 (22-24 2010), pp. 2202–2222.

[TDZ11] Mathieu Tracol, Josée Desharnais and Abir Zhioua. ‘Computing Distances
between Probabilistic Automata’. In: Proc. QAPL’11. Vol. 57. EPTCS. 2011,
pp. 148–162.

[Vil08] Cédric Villani. Optimal transport: old and new. Vol. 338. Springer, 2008.

[Yin02a] Mingsheng Ying. ‘Additive models of probabilistic processes’. In: TCS 275.1
(2002), pp. 481–519.

[Yin02b] Mingsheng Ying. ‘Bisimulation indexes and their applications’. In: TCS 275.1
(2002), pp. 1–68.

[Yux15] Daniel Gebler Yuxin Deng Wenjie Du. ‘Modal Characterisations of Behavi-
oural Pseudometrics’. Under submission. 2015.

[ZZ08] Jinjin Zhang and Zhaohui Zhu. ‘A Behavioural Pseudometric based on λ–
Bisimilarity’. In: ENTCS 220.3 (2008), pp. 115–127.

210

Summary

Robust SOS Specifications of Probabilistic Processes

We develop a language specification theory for probabilistic nondeterministic systems
in the context of metric bisimulation semantics. This theory generalizes and extends
ordinary Plotkin-style Structural Operational Semantics language specification theory of
nondeterministic systems. The main contributions are:

• unification and generalization of existing metric compositionality concepts

• language specification formats for all metric compositionality concepts

• language meta-theoretical results for metric compositional language specifications

• denotational model of metric compositionality of language operators and programs

• axiomatization of the bisimulation distance of language operators and programs

We introduce the notion of uniformly continuous language operators as canonical metric
compositionality concept that generalizes earlier proposals like non-extensive and non-
expansive operators and allows us now to reason also about recursive programs. Then we
develop a spectrum of language specification formats for the spectrum of compositionality
properties formed by uniform continuity, Lipschitz continuity, non-expansiveness and non-
extensiveness that allows us to specify simultaneously unbounded recursive, bounded
recursive, non-recursive and choice operators. We derive for each language specification
format compositionality results that allow us to determine the distance between programs
and provide methods to verify if a program specification satisfies some compositionality
property. Complementary to the structural specification results we develop a denota-
tional model that formalizes in a stratified manner the primitive program behavior that
determines the compositionality property of language operators. Finally, an equational
axiomatization of the behavioral distance of language operators derived from their re-
spective specifications provides an algorithmic approach to deduce algebraic properties
such as the distance between programs.

211

Samenvatting

Robuuste SOS Specificaties van Probabilistische Processen

In dit proefschrift wordt een theorie ontwikkeld voor specificatie-talen van nietdeterminis-
tische systemen in de context van metrische bisimulatie-semantiek. Deze theorie genera-
liseert en is een uitbreiding van de door Plotkin geïntroduceerde structurele operationele
semantiek. De belangrijkste bijdragen zijn:

• generalisatie van bestaande concepten voor metrische compositionaliteit

• formaten voor taal-specificatie met betrekking tot al deze concepten

• meta-theoretische resultaten voor metrische compositionele taal-specificaties

• een denotationeel model van metrische compositionaliteit voor taal-operatoren en
programma’s

• axiomatisatie van bisimulatie-afstand voor taal-operatoren en programma’s

We introduceren de notie van uniform continue taal-operatoren als een canoniek con-
cept voor metrische compositionaliteit dat eerdere voorstellen zoals niet-extensieve en
niet-expansieve operatoren generaliseert en het mogelijk maakt om te redeneren over re-
cursieve programma’s. Vervolgens ontwikkelen we een spectrum van formaten voor taal-
specificatie voor het spectrum van compositionaliteitseigenschappen gevormd door uni-
forme continuïteit, niet-expansiviteit en niet-extensiviteit dat het mogelijk maakt om si-
multaan onbegrensd recursieve, begrensd recursieve, niet-recursieve en keuze-operatoren
te specificeren. We bewijzen voor ieder van deze formaten compositionaliteitsresultaten
waarmee de afstand tussen programma’s kan worden vastgesteld en kan worden geve-
rifieerd of een programma-specificatie aan een bepaalde compositionaliteitseigenschap
voldoet. Complementair aan de resultaten over structurele specificatie ontwikkelen we
een denotationeel model dat op een gestratifieerde manier het primitieve gedrag van
programma’s formaliseert en de compositionaliteitseigenschap van taal-operatoren be-
paalt. Tenslotte levert een equationele axiomatisatie van de gedrags-afstand voor taal-
operatoren een algoritmische aanpak om algebraïsche eigenschappen af te leiden zoals
de afstand tussen programma’s.

213

Titles in the IPA Dissertation Series since 2009

M.H.G. Verhoef. Modeling and Valida-
ting Distributed Embedded Real-Time Con-
trol Systems. Faculty of Science, Mathema-
tics and Computer Science, RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Enginee-
ring, Mathematics, and Computer Science,
TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Soft-
ware Systems. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2009-05

M.J. van Weerdenburg. Efficient Rewri-
ting Techniques. Faculty of Mathematics
and Computer Science, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Ap-
plications in Automata Theory and Mo-
dal Logic. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-
based Single-page Web Applications. Fa-
culty of Electrical Engineering, Mathema-
tics, and Computer Science, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Get-
ting Generic Programming Ready for Prime
Time. Faculty of Science, UU. 2009-9

K.R. Olmos Joffré. Strategies for Context
Sensitive Program Transformation. Faculty
of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about
Java programs in PVS using JML. Faculty of

Science, Mathematics and Computer Sci-
ence, RU. 2009-11

M.G. Khatib. MEMS-Based Storage Devi-
ces. Integration in Energy-Constrained Mo-
bile Systems. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2009-12

S.G.M. Cornelissen. Evaluating Dynamic
Analysis Techniques for Program Compre-
hension. Faculty of Electrical Enginee-
ring, Mathematics, and Computer Science,
TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Net-
work Intrusion Detection Systems. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2009-14

H.L. Jonker. Security Matters: Privacy in
Voting and Fairness in Digital Exchange. Fa-
culty of Mathematics and Computer Sci-
ence, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust Ma-
nagement. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2009-16

T. Chen. Clocks, Dice and Processes. Fa-
culty of Sciences, Division of Mathematics
and Computer Science, VUA. 2009-17

C. Kaliszyk. Correctness and Availabi-
lity: Building Computer Algebra on top of
Proof Assistants and making Proof Assis-
tants available over the Web. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2009-18

R.S.S. O’Connor. Incompleteness & Com-
pleteness: Formalizing Logic and Analysis in
Type Theory. Faculty of Science, Mathema-
tics and Computer Science, RU. 2009-19

B. Ploeger. Improved Verification Me-
thods for Concurrent Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis
of Probabilistic Models. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
plications to Medical Image Analysis. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fa-
culty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty
of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Control for
Dynamic Collaborative Environments. Fa-
culty of Electrical Engineering, Mathema-
tics & Computer Science, UT. 2009-26

J.F.J. Laros. Metrics and Visualisation
for Crime Analysis and Genomics. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Enginee-
ring, Mathematics, and Computer Science,
TUD. 2010-01

M.R. Neuhäußer. Model Checking Nond-
eterministic and Randomly Timed Systems.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2010-02

J. Endrullis. Termination and Productivity.
Faculty of Sciences, Division of Mathema-
tics and Computer Science, VUA. 2010-03

T. Staijen. Graph-Based Specification and
Verification for Aspect-Oriented Languages.
Faculty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Mo-
deling on the Quality of Software. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2010-08

J.S. de Bruin. Service-Oriented Discovery
of Knowledge - Foundations, Implementati-
ons and Applications. Faculty of Mathema-
tics and Natural Sciences, UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-10

M.M. Jaghoori. Time at Your Service:
Schedulability Analysis of Real-Time and
Distributed Services. Faculty of Mathema-
tics and Natural Sciences, UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty of
Sciences, Department of Computer Sci-
ence, VUA. 2011-01

B.J. Arnoldus. An Illumination of the Tem-
plate Enigma: Software Code Generation
with Templates. Faculty of Mathematics
and Computer Science, TU/e. 2011-02

E. Zambon. Towards Optimal IT Availabi-
lity Planning: Methods and Tools. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2011-03

L. Astefanoaei. An Executable Theory
of Multi-Agent Systems Refinement. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2011-04

J. Proença. Synchronous coordination of
distributed components. Faculty of Mathe-
matics and Natural Sciences, UL. 2011-05

A. Moralı. IT Architecture-Based Confiden-
tiality Risk Assessment in Networks of Or-
ganizations. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Computer
Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fa-
culty of Mathematics and Computer Sci-
ence, TU/e. 2011-10

P.J.A. van Tilburg. From Computability to
Executability – A process-theoretic view on
automata theory. Faculty of Mathematics
and Computer Science, TU/e. 2011-11

Z. Protic. Configuration management for
models: Generic methods for model com-
parison and model co-evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hiding in
Concurrent Processes. Faculty of Mathema-
tics and Computer Science, TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime Enfor-
cement. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2011-14

M. Raffelsieper. Cell Libraries and Verifi-
cation. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and Vi-
sibility on Triangulated Terrains. Faculty
of Mathematics and Computer Science,
TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality
of Service of Component Connectors. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2011-17

R. Middelkoop. Capturing and Exploiting
Abstract Views of States in OO Verification.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2011-18

M.F. van Amstel. Assessing and Improving
the Quality of Model Transformations. Fa-
culty of Mathematics and Computer Sci-
ence, TU/e. 2011-19

A.N. Tamalet. Towards Correct Programs
in Practice. Faculty of Science, Mathema-
tics and Computer Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fa-
culty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Language
Workbenches. Faculty of Electrical Engi-
neering, Mathematics, and Computer Sci-
ence, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Faculty
of Mathematics and Natural Sciences,
UL. 2011-24

J. Wang. Spiking Neural P Systems. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program Pro-
perties with Attribute Grammars, Revisited.
Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques for
the Design and Implementation of Domain-
Specific Languages. Faculty of Electrical
Engineering, Mathematics, and Computer
Science, TUD. 2012-03

T. Dimkov. Alignment of Organizational
Security Policies: Theory and Practice. Fa-
culty of Electrical Engineering, Mathema-
tics & Computer Science, UT. 2012-04

S. Sedghi. Towards Provably Secure Ef-
ficiently Searchable Encryption. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on Verifi-
cation of Wireless Sensor Networks and Ab-
straction Learning for System Inference. Fa-
culty of Science, Mathematics and Compu-
ter Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic
Visualization. Faculty of Mathematics and
Computer Science, TU/e. 2012-07

D.E. Nadales Agut. A Compositional Inter-
change Format for Hybrid Systems: Design
and Implementation. Faculty of Mechani-
cal Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein
Interaction Networks by Means of Anno-
tated Graph Mining Algorithms. Faculty
of Mathematics and Natural Sciences,
UL. 2012-09

S.D. Vermolen. Software Language Evo-
lution. Faculty of Electrical Enginee-
ring, Mathematics, and Computer Science,
TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches to
Reliable Software. Faculty of Mathematics
and Computer Science, TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mo-
dels – An Engineering Perspective. Faculty

of Mathematics and Computer Science,
TU/e. 2012-12

W. Heijstek. Software Architecture Design
in Global and Model-Centric Software De-
velopment. Faculty of Mathematics and
Natural Sciences, UL. 2012-13

C. Kop. Higher Order Termination. Faculty
of Sciences, Department of Computer Sci-
ence, VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems Do-
main. Faculty of Mathematics and Compu-
ter Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of Sa-
fety Controllers. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2012-16

H. Beohar. Refinement of Communication
and States in Models of Embedded Systems.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2013-01

G. Igna. Performance Analysis of Real-Time
Task Systems using Timed Automata. Fa-
culty of Science, Mathematics and Compu-
ter Science, RU. 2013-02

E. Zambon. Abstract Graph Transforma-
tion – Theory and Practice. Faculty of Elec-
trical Engineering, Mathematics & Compu-
ter Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Res-
ponse Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmarting Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2013-05

M.S. Greiler. Test Suite Comprehension for
Modular and Dynamic Systems. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2013-06

L.E. Mamane. Interactive mathematical
documents: creation and presentation. Fa-
culty of Science, Mathematics and Compu-
ter Science, RU. 2013-07

M.M.H.P. van den Heuvel. Composi-
tion and synchronization of real-time com-
ponents upon one processor. Faculty
of Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse Fra-
mework and its Third-party Plug-ins. Fa-
culty of Mathematics and Computer Sci-
ence, TU/e. 2013-09

S. van der Burg. A Reference Architecture
for Distributed Software Deployment. Fa-
culty of Electrical Engineering, Mathema-
tics, and Computer Science, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction Tech-
niques for Model Checking. Faculty
of Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling: Com-
puting push plans for disk-shaped robots,
and dynamic labelings for moving points.
Faculty of Mathematics and Computer Sci-
ence, TU/e. 2013-12

M. Timmer. Efficient Modelling, Genera-
tion and Analysis of Markov Automata. Fa-
culty of Electrical Engineering, Mathema-
tics & Computer Science, UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology
meets Proof Assistants. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2013-16

C. de Gouw. Combining Monitoring
with Run-time Assertion Checking. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2013-17

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in Au-
tomated Digital Forensics. Faculty of Sci-
ence, UvA. 2014-01

D. Hadziosmanovic. The Process Mat-
ters: Cyber Security in Industrial Control
Systems. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2014-02

A.J.P. Jeckmans. Cryptographically-
Enhanced Privacy for Recommender Sys-
tems. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2014-03

C.-P. Bezemer. Performance Optimiza-
tion of Multi-Tenant Software Systems. Fa-
culty of Electrical Engineering, Mathema-
tics, and Computer Science, TUD. 2014-04

T.M. Ngo. Qualitative and Quantitative In-
formation Flow Analysis for Multi-threaded
Programs. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2014-05

A.W. Laarman. Scalable Multi-Core Mo-
del Checking. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2014-06

J. Winter. Coalgebraic Characterizations of
Automata-Theoretic Classes. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2014-07

W. Meulemans. Similarity Measures and
Algorithms for Cartographic Schematiza-
tion. Faculty of Mathematics and Compu-
ter Science, TU/e. 2014-08

A.F.E. Belinfante. JTorX: Exploring Model-
Based Testing. Faculty of Electrical En-
gineering, Mathematics & Computer Sci-
ence, UT. 2014-09

A.P. van der Meer. Domain Specific Lan-
guages and their Type Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2014-10

B.N. Vasilescu. Social Aspects of Collabora-
tion in Online Software Communities. Fa-
culty of Mathematics and Computer Sci-
ence, TU/e. 2014-11

F.D. Aarts. Tomte: Bridging the Gap bet-
ween Active Learning and Real-World Sys-
tems. Faculty of Science, Mathematics and
Computer Science, RU. 2014-12

N. Noroozi. Improving Input-Output
Conformance Testing Theories. Faculty
of Mathematics and Computer Science,
TU/e. 2014-13

M. Helvensteijn. Abstract Delta Modeling:
Software Product Lines and Beyond. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2014-14

P. Vullers. Efficient Implementations
of Attribute-based Credentials on Smart
Cards. Faculty of Science, Mathematics
and Computer Science, RU. 2014-15

F.W. Takes. Algorithms for Analyzing
and Mining Real-World Graphs. Faculty
of Mathematics and Natural Sciences,
UL. 2014-16

M.P. Schraagen. Aspects of Record Linkage.
Faculty of Mathematics and Natural Scien-
ces, UL. 2014-17

G. Alpár. Attribute-Based Identity Mana-
gement: Bridging the Cryptographic Design
of ABCs with the Real World. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-01

A.J. van der Ploeg. Efficient Abstractions
for Visualization and Interaction. Faculty
of Science, UvA. 2015-02

R.J.M. Theunissen. Supervisory Control in
Health Care Systems. Faculty of Mechani-
cal Engineering, TU/e. 2015-03

T.V. Bui. A Software Architecture for
Body Area Sensor Networks: Flexibility and
Trustworthiness. Faculty of Mathematics
and Computer Science, TU/e. 2015-04

A. Guzzi. Supporting Developers’ Team-
work from within the IDE. Faculty of
Electrical Engineering, Mathematics, and
Computer Science, TUD. 2015-05

T. Espinha. Web Service Growing
Pains: Understanding Services and Their
Clients. Faculty of Electrical Enginee-
ring, Mathematics, and Computer Science,
TUD. 2015-06

S. Dietzel. Resilient In-network Aggre-
gation for Vehicular Networks. Faculty
of Electrical Engineering, Mathematics &
Computer Science, UT. 2015-07

E. Costante. Privacy throughout the Data
Cycle. Faculty of Mathematics and Compu-
ter Science, TU/e. 2015-08

S. Cranen. Getting the point — Obtaining
and understanding fixpoints in model chec-
king. Faculty of Mathematics and Compu-
ter Science, TU/e. 2015-09

R. Verdult. The (in)security of prop-
rietary cryptography. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-10

J.E.J. de Ruiter. Lessons learned in the
analysis of the EMV and TLS security proto-
cols. Faculty of Science, Mathematics and
Computer Science, RU. 2015-11

Y. Dajsuren. On the Design of an Ar-
chitecture Framework and Quality Evalua-
tion for Automotive Software Systems. Fa-
culty of Mathematics and Computer Sci-
ence, TU/e. 2015-12

J. Bransen. On the Incremental Evaluation
of Higher-Order Attribute Grammars. Fa-
culty of Science, UU. 2015-13

S. Picek. Applications of Evolutionary
Computation to Cryptology. Faculty of Sci-
ence, Mathematics and Computer Science,
RU. 2015-14

C. Chen. Automated Fault Localization
for Service-Oriented Software Systems. Fa-
culty of Electrical Engineering, Mathema-
tics, and Computer Science, TUD. 2015-15

S. te Brinke. Developing Energy-Aware
Software. Faculty of Electrical Enginee-
ring, Mathematics & Computer Science,
UT. 2015-16

R.W.J. Kersten. Software Analysis Methods

for Resource-Sensitive Systems. Faculty of
Science, Mathematics and Computer Sci-
ence, RU. 2015-17

J.C. Rot. Enhanced coinduction. Fa-
culty of Mathematics and Natural Scien-
ces, UL. 2015-18

M. Stolikj. Building Blocks for the Inter-
net of Things. Faculty of Mathematics and
Computer Science, TU/e. 2015-19

D. Gebler. Robust SOS Specifications of
Probabilistic Processes. Faculty of Sci-
ences, Department of Computer Science,
VUA. 2015-20

	 Preface
	1 Introduction
	1.1 Research context
	1.2 Research questions
	1.3 Organization of the thesis

	2 Preliminaries
	2.1 Algebraic languages
	2.2 Probabilistic transition systems
	2.3 Bisimulation semantics
	2.3.1 Bisimulation equivalence
	2.3.2 Bisimulation metric

	2.4 PGSOS specifications

	3 Compositional metric reasoning
	3.1 Introduction
	3.2 Non-recursive processes
	3.2.1 Non-recursive process combinators
	3.2.2 Distance between non-recursive processes
	3.2.3 Compositional reasoning over non-recursive processes

	3.3 Recursive processes
	3.3.1 Recursive process combinator
	3.3.2 Distance between recursive processes
	3.3.3 Compositional reasoning over recursive processes

	3.4 Application
	3.5 Closing remarks

	4 Specification of compositional operators
	4.1 Introduction
	4.2 Non-extensive operators
	4.2.1 Analysis of non-extensive operators
	4.2.2 Specification of non-extensive operators
	4.2.3 Non-extensive process algebra operators
	4.2.4 Distance between non-extensive terms

	4.3 Lipschitz continuous operators
	4.3.1 Analysis of Lipschitz continuous operators
	4.3.2 Specification of Lipschitz continuous operators
	4.3.3 Lipschitz continuous process algebra operators
	4.3.4 Distance between Lipschitz continuous terms

	4.4 q-non-extensive operators
	4.5 Uniformly continuous operators
	4.5.1 Analysis of uniformly continuous operators
	4.5.2 Specification of uniformly continuous operators
	4.5.3 Uniformly continuous process algebra operators
	4.5.4 Distance between uniformly continuous terms

	4.6 Coinductive rule format characterization
	4.6.1 Finite projection Lipschitz continuous operators
	4.6.2 Uniformly continuous operators
	4.6.3 From modulus of continuity to operator specifications
	4.6.4 Syntactic and semantic compositionality

	4.7 Deciding the compositionality property
	4.8 Compositionality w.r.t. any behavioral metric
	4.8.1 Lifting functional induced bisimulation metric
	4.8.2 Lipschitz continuity and q-non-extensiveness
	4.8.3 Uniform continuity

	4.9 Closing remarks

	5 A denotational model of metric compositionality
	5.1 Introduction
	5.2 Denotational model
	5.2.1 Denotation of deterministic process terms
	5.2.2 Denotation of probabilistic process terms
	5.2.3 Denotation of nondeterministic probabilistic process terms

	5.3 Distance between composed processes
	5.3.1 Operations on process denotations
	5.3.2 Properties of operations on process denotations
	5.3.3 Approximating the distance of composed processes
	5.3.4 Discussion

	5.4 Compositional reasoning
	5.4.1 Compositional operators
	5.4.2 Compositional contexts

	5.5 Closing remarks

	6 Axiomatizing bisimulation equivalences and metrics
	6.1 Introduction
	6.2 Preliminaries
	6.2.1 Many-sorted signatures and term algebras
	6.2.2 Probabilistic transition system specifications

	6.3 Axiomatization of bisimilarity equivalence
	6.3.1 Axiomatizing finite probabilistic trees
	6.3.2 Probabilistically lifted operators
	6.3.3 Axiomatizing distinctive and smooth operators
	6.3.4 Axiomatizing non-smooth operators

	6.4 Axiomatization of the bisimilarity metric
	6.4.1 Axiomatizing finite probabilistic trees
	6.4.2 Axiomatization of bisimilarity metric of PGSOS

	6.5 Closing remarks

	7 Conclusions
	 Bibliography
	 Summary
	 Samenvatting

