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Set Theory is a new research area in Argentina, still with very few practitioners.
We present some of the first steps towards its development at the National Univer-
sity of Córdoba. Cantor’s continuum problem, that of the determining which place
does the cardinality of the reals occupy in the cardinal line, provides an appropriate
frame for this exposition (and for the whole of Set Theory indeed).

1. A fruitful strategy for the Continuum Problem

The Continuum Hypothesis (CH ) is the statement that |R| takes the smallest
possible value: “Every uncountable X ⊆ R is in bijective correspondence with R.”
Cantor proposed the following elegant strategy for showing CH :

(1) Consider X in increasing degree of “topological complexity.”
(2) Choose a combinatorially versatile set C such that R ↪

1-1−−−−→
onto

→ C ↪
1-1−−−→ X can

be proved for any X.
The simplest case of the above (apart from the trivial one for open X) is that of

nonempty perfect sets P of reals, those satisfying

(1.1) P = P ′ := {accumulation points of P}.
Every such P satisfies |P | = |R|, and the proof motivates the choice of C. Define
recursively, by using the fact that no point in P is isolated and the fact that P
is Hausdorff, nonempty open Ab, where b = b1b2 . . . bn is a binary sequence, such
that

• Ab0 ∩Ab1 = ∅;
• Ab0, Ab1 ⊆ Ab;
• diamAb < 1

2n .
This stipulation induces an injection ι from C := {0, 1}N to P given by

ι(b1b2 . . . ) := the unique element of
⋂
n

Ab1b2...bn

which actually is a continuous embedding, when C is topologized as the countable
product of discrete copies of {0, 1}.

The “Cantor scheme” {Ab}b is partially ordered by (reverse) inclusion as a tree:
the set of predecessors x↓ of any element x is a chain. It is convenient to consider
its skeleton to be the poset 2<ω of all finite binary sequences b under end-extension.
Trees of sequences, and more generally, trees in which x↓ is always a well-order are
a widespread tool in modern Set Theory.

In what might have been the earliest use of an operation involving an infinite
set as an argument [14, Sect 1.2] (and definitely the first transfinite process), Can-
tor iterated the “derivative” operation in (1.1) from an uncountable closed set X
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obtaining a well-ordered sequence:

(1.2) X 7−→ X ′ 7−→ X ′′ 7−→ X ′′′ 7−→ · · · 7−→ X(∞) 7−→
(
X(∞)

)′ 7−→ · · ·

where the “limit” step X(∞) is defined as the intersection
⋂

n∈N0
X(n). By using sec-

ond countability, it can be seen that after countably many steps the sequence (1.1)
stabilizes in a perfect set, thus reducing the general case of closed X to the previous
one.

Ordinals were defined to be indices of any such “longer-than-infinity” construc-
tion, and they can be construed as isomorphism types of well-orders. One fun-
damentally recurrent theme in Set Theory is the appearance of well-ordered and
well-founded hierarchies. As a sample of results, consider the relation ⪯ of embed-
dability between linear orders. We have:

Theorem 1.1 (Laver [16]). The class of σ-scattered linear orders (countable
unions of orders not embedding Q) is well-founded under ⪯.

All countable orders are σ-scattered, so this resolved Fraïssé’s Conjecture [4].
For uncountable orders, ⪯ is not well-founded but we have the following conditional
result:

Theorem 1.2 (Moore [18]). The Proper Forcing Axiom implies that the class of
uncountable orders have five ⪯-minimal elements (modulo bi-embeddability): the
first uncountable ordinal, its converse, any uncountable set of reals of minimum
cardinality, a Countryman line, and its converse.

The last linear order is a particular case of an Aronszajn line. Aronszajn lines
are uncountable linear orders that contain no increasing nor decreasing uncountable
well-ordered subsets, but are not order-isomorphic to R.

The standard construction of Aronszajn lines is based in turn in Aronszajn trees,
which is another example of tree of (ordinal-indexed) sequences. In Argentina,
Ricardo Ricabarra pioneered the study of such trees in the late 50s publishing
the monograph [22]. Today, Gervasio Figueroa is studying the classical results
on Aronszajn and Suslin trees during his BSc. (“Licenciatura”) in Mathematics at
Córdoba, and their recent applications to General Topology [17].

2. Classification problems

Bernstein, a student of Cantor, showed that the strategy from the previous
section could not be used for arbitrary X ⊆ R, by constructing a set B such that
neither B nor R∖B contains an nonempty perfect set.

Nevertheless, the first item of the strategy can be interpreted in a useful way
these days. Wadge reduction classifies sets under topological complexity: Let X,Y
be topological spaces, A ⊆ X, and B ⊆ Y . A is Wadge-reducible to B (“A ≤W B”)
if there exists a continuous f : X → Y such that A = f−1(B). An interesting
relation to the previous section emerges:

Theorem 2.1 (Wadge-Martin [15, Theorem 21.15]). The relation ≤W between
Borel subsets of second countable zero-dimensional spaces is well-founded.

Pequignot [21] obtained similar well-foundedness results for an adaptation of ≤W

for Borel subspaces of a Polish space (e.g., Euclidean n-space, {0, 1}N, RN).
Of particular recent relevance is the study of Borel reductions between relations.

Let now R ⊆ X ×X and S ⊆ Y × Y be binary relations; R is Borel reducible to S
(“R ≤B S”) if there is a Borel f : X → Y such that a R b ⇐⇒ f(a) S f(b), for any
a, b ∈ X. A prominent example of this kind of reduction is the case where the space
X consists of structures of some kind (for instance, countable graphs) and R is the
corresponding notion of isomorphism. If S is the equality on Y , then f is essentially
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the same as a complete assignment of invariants chosen from Y . Crucially, if one
shows that (∼=) ≰B (=Y ), then there is no possible “definable” complete assignment
of invariants from Y to structures from X.

Calibrating the complexity of the isomorphism relation on X by determining
which pairs Y, S are viable is called the classification problem for X. One of the
most important recent results on the topic is the following:

Theorem 2.2 (Paolini, Shelah [19]). The classification problem for countable torsion-
free abelian groups has maximum complexity.

This means, in particular, that this problem is as difficult as the classification
of all countable groups modulo isomorphism. This level of complexity is partially
witnessed by the fact that ∼= (as a subset of X2) is not a Borel subset.

At the other extreme of the classification spectrum, smooth relations are the ones
Borel-reducible to =R. A smooth classification problem admits a definable assign-
ment of real numbers (or, equivalently, sequences of reals) as complete invariants.
Related to this notion, the relation E0 of equality-modulo-finite of binary sequences
(or equivalently, of subsets of N) is the the least non smooth Borel relation [13].

It is not necessary to restrict oneself to classify structures modulo isomorphism.
In Computer Science, a much weaker relation is extremely important for the proper
understanding of systems, that of bisimilarity, or “equivalence of behavior” [20, 24].
It admits a neat characterization as a relation between transition systems: pointed,
directed multigraphs S, where edges are represented by binary relations RS

a ⊆ S×S
(with a ranging on a fixed set L). A bisimulation between S, s := ⟨S, s, {RS

a }a∈L⟩
and T, t is a relation B ⊆ S × T such that s B t and

• s1 RS
a s2 & s1 B t1 =⇒ there exists t2 such that t1 RT

a t2 & s2 B t2.
• t1 RT

a t2 & s1 B t1 =⇒ there exists s2 such that s1 RS
a s2 & s2 B t2.

We then say that S, s and T, t are bisimilar if there exists a bisimulation between
them.

We have the following result.

Theorem 2.3 (Sánchez Terraf [23]). Bisimilarity is not Borel on the space of
countable transition systems. Hence it is not smooth.

The second sentence follows since reductions preserve Borelness. Martín Mo-
roni explored this subject in his 2022 PhD thesis, and we obtained the same non-
smoothness result (by a reduction using E0) for a much restricted class of transition
systems, that of well-founded trees of rank ≤ ω + 2.

3. Formalization of independence of CH

The prospect of a proof of CH (or of its negation) were shattered by the ground-
breaking work by Kurt Gödel [5] and Paul Cohen [3]: If the current foundations of
mathematics are not contradictory, then CH cannot be proved nor refuted.

The consistency of the negation of CH was obtained by the method of forcing
devised by Cohen. Forcing soon took the role of the master tool of any set-theorist,
showing that many other results where independent from the accepted axioms of
Set Theory (in which all of mathematics can be based); these are known by the
names of Zermelo, Fraenkel, with a mention of the Axiom of Choice (ZFC ):

Pairing: For any x, y there exists {x, y}.
Union: For any x there exists

⋃
x.

Infinity: There exists ω = N0.
Power Set: For any x there exists P(x).
Separation: For any x and any definable Q there exists {z ∈ x | Q(z)}.
Replacement: For any x and any definable F there exists {F (z) | z ∈ x}.
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Choice: (AC ) There exists f : A →
⋃

A such that ∅ ̸= x ∈ A implies
f(x) ∈ x.

Foundation: ∈ is well-founded.

In a joint work involving Emmanuel Gunther (2019–2020 postdoc), M. Pagano,
and M. Steinberg, we devised a computer verification of Cohen’s result. To contex-
tualize this achievement, it is helpful to introduce the difference between computer-
assisted and computer-formalized proofs.

Two paradigmatic examples of the first case are the initial proofs of the Four-
Color Theorem [1] and Kepler’s Conjecture [11]. The first proof was in dispute for
several years, and while the second was accepted in the Annals of Mathematics, the
acceptance letter stated that the referees “[were un]able to certify the correctness
of the proof, and will not be able to certify it in the future, because they have run
out of energy to devote to the problem.” [12]. In both cases, the difficulty arose
because a substantial part of the justification depended on computer calculations.
Both the connection of these calculations to the rest of the proof and the correctness
of the code itself are highly susceptible to errors and difficult to evaluate. However,
the development of more sophisticated computational tools—proof assistants—has
allowed for the development of proofs that go from the very axioms to the desired
result, without omitting any steps whatsoever. There are no lemmas left “to the
reader.” Although this type of proof may seem impossible in practice, the two
quoted theorems have been formalized in this way, respectively by Gonthier [6] and
Hales et al. [10].

The formal verification of a result not only provides an extra degree of confidence
in it (in fact, there is no dispute regarding Cohen’s results) but the required depth
of analysis typically allows for obtaining more information from the proof. As
an example, during the formalization of Kepler’s Conjecture, two open problems
were solved, including the Fejes Tóth contact conjecture [10]. Our formalization
(involving the development of 34k lines of code, spanning 710+ PDF pages of
proofs), allowed us to identify 22 instances of the Replacement Axiom that are
sufficient to construct models of ZFC satisfying either CH or its negation.

The whole formal development is now part of the Archive of Formal Proofs of
Isabelle [9, 8] and it is presented in the forthcoming [7]. Mateo Marengo Cano is
expected to work on the expansion of this formalization during his BSc. in Mathe-
matics.

4. The unexpected appearance of set-theoretic issues

A hyperplane arrangement H is a finite collection of affine subspaces H of Rn

having codimension 1. Any such arrangement determines a partition of the ambient
space into (relatively open) faces: Each face is one of the possible intersections

F :=
⋂

H∈H
Hϵ,

where Hϵ is either H or one of the two open halves of Rn determined by H.
Faces are naturally order by inclusion of their closures: F ≤ G ⇐⇒ F ⊆ G.

There is also a natural face semigroup [2] structure defined on them: F ·G is defined
as the face neighboring the start of a “generic” open line segment from F to G. The
definition ensures the following equivalence:

(4.1) F ·G = G ⇐⇒ F ≤ G.

This product is obviously idempotent and associative (a band operation, in the
semigroup literature) and maximal elements form a two-sided ideal. Note that
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(4.1) can be compared to the relation between ∪ and ⊆:

F ∪G = G ⇐⇒ F ⊆ G.

Although face semigroups are not commutative, they satisfy the following equation
(they are left regular bands or “LRB”):

(4.2) F ·G · F = F ·G.

It is therefore of interest to characterize which posets ⟨F ,≤⟩ admit an idempotent
semigroup operation satisfying (4.1) and (4.2). We call them associative posets.

If one strengthens the requirements by asking for commutativity, the answer
is well-known: The class of such posets are exactly those in which there exists
sup{F,G} for any two F,G ∈ F , and in this circumstance the product is uniquely
determined. This is not the case for the general problem.

Indeed, the characterization of associative posets is not trivial, as the following
result shows.

Theorem 4.1 (Petrovich, Sánchez Terraf). The following are equivalent over ZF :
(1) Every tree with three levels is associative.
(2) The Axiom of Choice.

Joel Kuperman (current PhD student) extended this result to show that under
AC , every foliated tree (i.e. in which every element is below some maximal one)
is associative. He presented this result among others in the past BLAST 2021
conference, which gathers researchers in Boolean Algebra, Lattice Theory and Set
Theory.
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