
ELSEVIER Artificial Intelligence 75 (1995) 361-372

Artificial
Intelligence

Research Note

The effect of bounding the number of primitive
propositions and the depth of nesting on the

complexity of modal logic

Joseph Y. Halpern
IBM Research Division, Almaden Research Center; Department K53/802, San Jose, CA 95120, USA *

Received October 1994; revised February 1995

Abstract

A well-known result of Ladner says that the satisfiability problem for K45, KD45, and S5 is
NP-complete. This result implicitly assumes that there are infinitely many primitive propositions

in the language; it is easy to see that the satisfiability problem for these logics becomes linear
time if there are only finitely many primitive propositions in the language. By way of contrast,
we show that the PSPACE-completeness results of Ladner and Halpem and Moses hold for the
modal logics K,, Tn, S4,,, II > 1, and K45,, KD45,, S5,, n > 2, even if there is only one primitive
proposition in the language. We go on to examine the effect on complexity of bounding the depth
of nesting of modal operators. If we restrict to finite nesting, then the satisfiability problem is
NP-complete for all the modal logics considered, but S4. If we then further restrict the language
to having only finitely many primitive propositions, the complexity goes down to linear time in
all cases.

1. Introduction

In [3,5], the complexity of the satisfiability problem for various modal logics is char-
acterized. For the single-agent case, Ladner showed that for K, T, and S4, the problem

is PSPACE-complete, while for K45, KD45, and S5, it is NP-complete. Halpern and
Moses showed that if we allow two or more agents, the satisfiability problem for all
these logics is PSPACE-complete. 1 All the lower bound results implicitly assume that

* Email: halpem@aImaden.ibm.com.
’ Halpem and Moses actually did not consider K45, but their proof for KD45 can be easily modified to deal

with K45.

0004-3702/95/$09.50 @ 1995 Elsevier Science B.V. All rights reserved
SSDlOOO4-3702(95)00018-6

362 J.Z Halpern/Art$?cial Intelligence 75 (1995) 361-372

there are an unbounded number of primitive propositions in the language. This is a stan-
dard assumption in such complexity results. Indeed, if we consider propositional logic,
if the set of primitive propositions is finite and has size, say, K, then the satisfiability

problem becomes linear time: To test the satisfiability of a formula 50, we simply test
each of the 2K truth assignments, and see if any of them satisfies rp.

While the assumption that there are infinitely many primitive propositions in the
language is standard, it might not always be reasonable. One might well be interested in
the complexity of reasoning about knowledge and belief in a particular application, where
there are only, say, 10 primitive propositions. Do we get linear time algorithms in this

case? It is easy to see that in the three cases where we had NP-completeness before-
K45, KD45, and Z&--the complexity of satisfiability drops to linear time when there

are only finitely many primitive propositions, just as it does with propositional logic.
However, as we show in this paper, for all the cases where we had PSPACE-completeness

before, we still get PSPACE-completeness even if there is only one primitive proposition

in the language. The upper bound, of course, follows immediately from the upper bounds

in [3,5] ; bounding the number of primitive propositions can only make things easier.
The lower bounds apply a technique that may be of independent interest: We isolate
some key properties of primitive propositions that are needed to prove the lower bound,

and show that the existence of an infinite pp-like (primitive-proposition-like) family

of formulas suffices for the proof. We then show how to construct such an infinite
family for each of the logics in question, using formulas that involve only one primitive

proposition.
A closer look at the PSPACE lower bounds shows that, except in the case of S4, they

make crucial use of formulas with deeply nested occurrences of modal operators. What

happens if we restrict the depth of nesting of modal operators to some fixed k? First

suppose we have an infinite number of primitive propositions in the language. In the

case of S4,, little changes. As long as we allow formulas of depth k 2 2, the PSPACE
lower bound still holds. On the other hand, for all the ether logics, the complexity
goes down to NP-complete: the lower bound is immediate since all these logics contain
propositional logic, while the upper bound follows easily from the algorithms given in

[3,51.
What happens if, in addition to having a bound on the depth of nesting, we also

assume that the language has only finitely many primitive propositions? In that case,
the complexity goes down to linear time for all the logics we are considering. The new

and old results are summarized in Table 1, where the first row describes the results of

[3,5], and the remaining rows describe the results of this paper; Q, is the set of primitive

propositions. As these results show, both depth of nesting and the number of primitive

propositions in the language play a critical role in complexity.
The strengthened lower bounds show the expressive power of modal logic. They have

already found application as a technique for proving other complexity results [21; we
hope they will find further applications.

The rest of this paper is organized as follows. In the next section, we briefly review

the semantics of the various logics we are interested in, and discuss why the satisfiability
problem for K45, KD45, and S5 is linear time if there is a bound on the number of
primitive propositions. In Section 3, we prove the PSPACE lower bound in row 2 of the

J.Z HalpedArtifcial Intelligence 75 (1995) 361-372 363

Table 1
The complexity of the satisfiability problem for logics of knowledge

K45, KD45, S5 S4”, n > 1 Kn. Tn. n 2 1; K45,,, KD45,, S5,, n 2 2

@ infinite, unbounded depth NP-complete PSPACE-complete PSPACE-complete
@ finite, unbounded depth linear time PSPACE-complete PSPACE-complete
@ infinite, depth < k, k 2 2 NP-complete PSPACE-complete NP-complete
@ finite, bounded depth linear time linear time linear time

table. In Section 4, we discuss the effects of bounding the nesting of modal operators.

We conclude in Section 5.

2. A brief review of modal logic

We briefly review some standard notions of modal logic here. Further details can be
found in, for example, [1,3,4].

In this paper we focus on six logics known as K,, T,, S4,, K45,, KD45,, and S5,.

The subscript n in all these logics is meant to emphasize the fact that we are considering
the n-agent version of the logic. We omit it when considering the single-agent case.

The language we use for all these logics is propositional logic augmented by the

modal operators Kt , . . . , K,, where Kirp can be read “agent i knows (or believes) q”.

Formally, we start with a finite or infinite set @ of primitive propositions. The set of
modal formulas, denoted L,(Q), is the least set containing p closed under conjunction,

negation, and application of K1, . . . , K,,. Thus, if q and $ are formulas in L,(Q), then
SO are cp A t+b, T(D, and KiqO.

Consider the following collection of axioms:

P. All instances of axioms of propositional logic.

K (KiPAKi(P*$)) *Ki@.

T. Kip =+ qo.

4. Kiq + KiKip.

5. TKip + KiTKip.

D. 7 Kfalse.

and rules of inference:

Rl. From 50 and cp + I++ infer $.

R2. From p infer Kip.

The axioms 4 and 5 are called the positive introspection axiom and negative introspection
axiom, respectively. They are appropriate for agents that are sufficiently introspective so
that they know what they know and do not know.

We get various systems by combining some subset of K, T, 4, 5, and D with P, Rl,
and R2. In particular, we get K, by combining K with P, Rl, and R2, T, by adding

364 J. Z Hulpern/ArlQicial Intelligence 75 (I 995) 361-372

T to these axioms, S4, by adding 4, S5, by adding 5, K45, by deleting T from S5,,
and KD45, by adding D to K45,. Numerous other modal logics can be constructed by
considering other combinations of axioms.

We give semantics to all these logics by using Kripke structures. A Kripke structure

is a tuple (W,9i-,X*,. . . , K,), where W is a set of worlds, T associates with each world
a truth assignment to the primitive propositions, so that rr(w) (p) E {true, false} for
each world w and primitive proposition p E @, and X1,. . . , Ic,, are binary accessibility

relations.

Recall that a binary relation K: on W is reflexive if (w, w) E K for all w E W,

transitive if (u, U) E Ic and (u, w) E K: implies (u, w) E K, Et&dean if (u, U) E K:

and (u, w) E K: implies (u, w) E Ic, and serial if for all w E W, there is some w’ such
that (w, w’) E ii. Let M,(Q) be the class of all Kripke structures for the language
C,,(a). Thus, in every structure in M, (@), the interpretation n gives semantics to

the primitive propositions in @, and there are accessibility relations ICI, . . . , K,. We
restrict M,(Q) by using superscripts r, s, t, and e, to denote reflexive, serial, transitive,

and Euclidean, structures, respectively. Thus, Mit(@) denotes the class of all structures
where the Ici relations are reflexive and transitive knowledge, Me,“‘(@) denotes the class
of all structures where the Ici relations are Euclidean, serial, and transitive, and so on.

A situation is a pair (M, w) consisting of a Kripke structure and a world w in M.
We give semantics to formulas with respect to situations. If p is a primitive proposition,

then (M,w) k p ‘f 1 r”(w)(p) = true. Conjunctions and negations are dealt with in

the standard way. Finally,

(M,w) t= Kia iff (M, w’) + (Y for all w’ E Xy(w).

As usual, we say that a formula 9 is valid in a structure M, written M k 9, if

(M, w) + cp for all worlds w in M. We say that 4p is valid with respect to a class N
of structure if M t= 50 for all structures M E N. Similarly, we say that 9 is satis$uble

with respect to N if (M, w) k q for some M E N and some world w in M.

It is well known that there is a close connection between conditions placed on K and

the axioms. In particular, T corresponds to the Ki's being reflexive, 4 to the Ki’s being
transitive, 5 to the Ici’s being Euclidean, and D to the Ki's being serial. Thus, we get
the following result (see [1,3,4] for proofs) :

Theorem 2.1. K, (respectively T,, S4,, KD45,, K45,, SS,) is u sound and complete

uxiomatizution for the language C, (@) with respect to M,(Q) (respectively ML (@),

M;(a), M”,“‘(Q), M;(Q), M’,“‘(Q)). *

An S-situation (for S E {K,,T,, S4,,K45n,KD45,,, S5,)) is a situation (M, w)

where M satisfies the appropriate restriction; thus, for example (M, w) is a S4,-situation
if M E M’,t (0). We say that a formula is S-sutis$uble if it is true in some S-situation.

’ The more common characterization of structures that characterize S5, is that the Xi’s in these structures

are equivalence relations. As observed in [31, K is an equivalence relation iff K is reflexive, Euclidean, and

transitive. so these characterizations coincide.

J. E Halpern/Art$cial Intelligence 75 (1995) 361-372 365

In the single-agent case of KD45,, K45,, and S5,, we can consider a simpler class
of structures. We define a K4.5 situation to be a pair (W, IV), where W is a set of truth

assignments that, intuitively, characterize the worlds the agent considers possible, and w

is a truth assignment that, intuitively, characterizes the “real world”. A KD4.5 situation

is a K45 situation (w w) such that W # 8. An S5 situation (K w) is a K45 situation

such that w E W.

We again give semantics to formulas with respect to situations. If p is a primitive
proposition, then (w w) b p if p is true under truth assignment w. Conjunctions and

negations are dealt with in the standard way. Finally,

(Ww) +Ka iff (u! w’) + cy for all w’ E W. 3

It is well known (again, see any of [1,3,4] for a proof) that a formula is provable in

K45 (respectively KD45, S5) if and only if it is true in all K45 (respectively KD45,
S5) situations.

Notice that if we start with a finite set @ of primitive propositions, there are 21’1 truth

assignments to the propositions in @, and hence no more than 2*‘@‘21@1 K45 (respectively
KD45, S5) situations. Checking whether a formula cp is satisfied in any one of these

situations can be done in time linear in the length of 1~1 (see [3, Proposition 3.11).

Thus, to see if (p is satisfiable, we can simply check each of these structures. Since the
number of structures is independent of the size of cp, we get:

Proposition 2.2. If @ is jinite, deciding if a formula is K45- (respectively, KD45-, SS-)
satis$able can be done in linear time.

Note that if @ is infinite, the number of structures we have to check is not independent

of the formula (it depends on the number of primitive propositions in the formula), so
this argument fails.

3. The PSPACE lower bounds

We begin by reviewing the lower bound proofs of [3,5], since we plan to follow
the same strategy here. The proofs proceed by a reduction from the logic of quantijied

Boolean formulas (QBF). For our purposes, we can take a QBF to be of the form
QlplQ2p2. . . Q,,p,A’, where Qi E {V, 3) and A’ is a propositional formula whose only
primitive propositions are among p1 , . . . , pm. Thus, a typical QBF is Vpl3p2 (PI +

~2). We can determine whether a QBF is true or false by successively replacing each
subformula of the form Vpi(B) by Bo A B1 and each subformula of the form 3pi(B)

by Bo V B1, where Bo (respectively B1) is B with all occurrences of pi replaced by

true (respectively false), and then using the standard rules of propositional logic. Note
that this successive replacement results in a formula that may be much larger than the

’ When dealing with logics like K45, where only one agent is involved, we typically do not subscript the K

operator, writing, for example, Kcu rather than Kla.

366 J.E Halpern/Art$cial Intelligence 75 (I995) 361-372

original formula (in fact, exponential in the size of the original formula). It is known
that the problem of determining which QBFs are true is PSPACE-complete [61.

Following [31, we present the lower bound proof for S4, and then show how to modify
it to deal with all the other logics. Suppose we are given a QBF A = Qlpl . . . Qmp,A’.
We construct a formula +A s4 that is satisfiable in a structure in MT iff A is true. The
idea is to use $2” to force the structure to look like a tree of truth assignments, Each of
the leaves of the tree encodes a distinct truth assignment to the primitive propositions

PI,..., pm that appear in A. If A is satisfiable, then we want this tree to contain all the
truth assignments necessary to show that A is true.

We proceed as follows. We take as primitive propositions ~1,. . . ,p,,,, do,. . . , &+I,
where di denotes depth at least i in a “tree” of truth assignments. Notice that the number

of propositions used depends on A. As the depth of A increases, we need more and
more primitive propositions. This is precisely where the proof implicitly assumes that

the set of primitive propositions is infinite (although, of course, for any fixed A, we use

only finitely many of them). Let depth be the following formula, which clearly captures

the intended relation between the di’s:

t?1+1
depth z&f A (di + di_ i) .

i=l

Let determined be a formula that intuitively says that the truth value of pi is determined
by depth i in the tree, in that if pi is true (respectively false) at a given node s of depth j

with j > i, then it is true (respectively false) at all the K-successors of s of depth at

least i. (If we restrict to structures that look like trees, then all the K-successors of

s will have depth i + 1; however, there may be nonstandard structures satisfying this
formula that do not look like trees, and we need to be able to deal with these as well.)

determined =&f i(di * ((pi * K(di *pi)) A (-pi * K(di * -pi)))).
i=l

Let branchingA be a formula that intuitively says that if Qi+r , the (i + 1) st quantifier
in A, is V, then each node s at depth i in the tree has two successors of depth i + 1,

one at which pi+] is true, and one at which pi+1 is false, while if Qi+r is 3, then s has

at least one successor of depth i + 1 (which intuitively gives pi+i the truth value which

results in A being true).

A ((di A Tdi+t) +
{i:Qi+l=V}

(TKT(di+l A di+2 A pi+1 > A TKl(di+l A ldi+2 A lpi+]>)) A

A ((di A ldi+l) * lKl(di+l A ldi+2)),
{i:Qi+l=3}

We take $2” to be

do A Tdl A K(depth A determined A branching,, A (d, * A’)) .

.I. E HalperdArtificial Intelligence 75 (I 995) 361-372 361

As shown in [3], +i4 is satisfiable in a structure in M: iff A is true. One direction is
easy: we can use the truth assignments that make A true to guide the construction of a

tree that satisfies @z4. Conversely, supp osethatM=(S,r,K) EMyand(M,s) I=$:“.
Given a state t in M, let Al be the QBF that results by starting with Qj+lpj+l . . . Qmp,A’

and replacing all occurrences of pi, i < j, by true if r(t) (pi) = true, and by false
otherwise. Note that Ah = A and that AL is the result of starting with A’ and replacing
all the pi’s by true or false as appropriate. The fact that (M, s) k K(d, + A’) implies

that if (s, t) E K and (M, t) + &, then AL is true. An easy induction on j now shows
that if (s, t) E X: and (M, t) + d,_j A ldm_j+l, then the QBF AL,_j is true. Since

(M, s) + do, in particular we have that Ai = A is true. Since $i4 is polynomial in the

length of A, this gives us the desired polynomial reduction from QBF to S4. It follows
that S4 satisfiability is PSPACE-hard.

To deal with the other logics, we modify (cl;” as follows: We take $,’ to be

do A Tdl A K”(depth A determined A branching, A (d, + A’)),

where K”q is an abbreviation for K. . . Kq, with m K’s; we take $2 to be

I?,

do A -dl A A K’(depth A determined A branching, A (d,, + A’)) ;
i=O

finally, we take $t4”, t,@D45, and $z’ all to be the result of replacing all occurrences of K

in J,/J~ by K2Kl. It is shown in [31 that A is true iff $1 (respectively $t, I@‘~, +,“““,
$i”) is satisfiable in a structure M; (@) (respectively, MI (@), M”:(G), My’(@),

My’(@)) . This proves all the other PSPACE-hardness results.
As we observed above, this proof seems to make crucial use of the fact that we have

an unbounded number of primitive propositions in @. In addition, the depth of nesting of

the K operator in the formulas constructed is unbounded in the case of all logics other

than S4. We defer the issue of depth to the next section, and focus here on the number
of primitive propositions required, showing how the proof can be carried out with only

one primitive proposition in the language. We first need to isolate what properties of
primitive propositions we actually use. One property we obviously use is that primitive
propositions are independent. To make this precise, given any formulas ~1, . . . , pPm, we

define an atom over ~1,. . . , rp,, to be one of the 2”’ formulas of the form (pi A . . . A g&,

where pi is either Cpi or Tpi. We say that ~1,. . , rp, are independent with respect to

logic S if each of the atoms over ~1,. . . , pm is S-consistent. But independence alone
does not suffice. For example, our proof implicitly uses the fact that both pi A 7K7pi+l

and pi A lKpi+l are satisfiable. But suppose ~1 is p and ~2 is Kp. Then cp1 and 402 are

easily seen to be independent with respect to K, yet we have that (~2 + Kspl is valid.
We can construct similar examples for each of the other logics we are interested in. We
need a notion that is stronger than independence. What we really want to be able to do

is to construct an arbitrary tree of truth assignments to ~1,. . , po,,, as we did for the
primitive propositions in our lower bound proof.

To make this precise, we define a tree formula over 91,. . . , p,,, inductively to be
either an atom over cp1 , . . . , pm or a conjunction of the form rC, A 7K-q A. . . A -K--q,
where q is an atom over (~1,. . . , pn, and ~1,. . , U& are tree formulas over ~1, . . . , pnl.

368 J.E Halpern/Ar@cial Intelligence 75 (1995) 361-372

We can think of a tree formula as describing a tree, each of whose nodes is labeled by a

truth assignment to the propositions ~1,. . . , porn. We say that the formulas pl, . . . , p,, are

completely independent with respect to a logic S if each tree formula over ~1,. . , , cpp,, is
S-consistent. Finally, we say that an infinite family 4pi, (~2, . . . of formulas is pp-like for

a logic S if each finite subset of these formulas is completely independent with respect
to S. Clearly, any infinite set of distinct primitive propositions is indeed pp-like, no

matter what the logic. Our goal is to construct pp-like families of formulas 91, rp2, . . .
for each of the logics of interest to us that involve just one primitive proposition in such

a way that the length of the formula pPn is polynomial in n. Once we do this, we can

replace the primitive propositions that appear in formulas such as r,Qf by the pp-like

formulas; it is easy to see that the lower bound proof then goes through unchanged.

Thus, we can view the notion of a pp-like family as encapsulating what we really needed
from primitive propositions in our lower bound proof.

Constructing a pp-like family for the logic K is quite simple: Let qj, j > 1, be the

formula ~KT(up A ~Kjlp). It is easy to see that qj is true at a state s precisely if

there is a path of length j + I starting at s whose second state satisfies up and whose
last state satisfies p. More precisely, (M, s) k ~Kjlp precisely if there is a sequence

Jo,.... sj such that (a) SO = S, (b) (si,si+i) E Ici for i < j, (c) (M,s~) k up,
and (d) (M, sj) /= p. It is easy to see that the family 41, q2,. , . is indeed pp-like for

the logic K. We can thus replace of ~1,. . . ,p,,,, do,. . . , d,,+l in fi,,” by 41,. . . , qzn1+2
respectively. The resulting formula is satisfiable in M iff A is true. This shows that

deciding K-satisfiability for formulas in 131 ({p}) is PSPACE-hard.
This argument no longer works for T. The problem is that in T, qj + qj’ is valid if

j’ > j: if there is an appropriate path of length j + 1 to a state satisfying p, reflexivity

guarantees that there will also be longer paths. We deal with this as follows. Let YI be

41, and let rj be an abbreviation for qj A ‘qj-r for j > 1. Thus, rj says that there is an
appropriate path of length j to p, but no shorter paths. It is easy to see that the ‘j’s are

satisfiable and mutually exclusive. Moreover, the formulas -Klrj, j = 1,2,, . ., form a
pp-like family for T. Thus, we can replace the occurrences of ~1,. . . ,p,,,, do,. . . , dm+l
in$IbyTKTri,... , lKTr2nl+2, respectively, and still get the PSPACE lower bound in

this case.
This argument breaks down for S4. In transitive structures, it is easy to see that

qj tj qj’ is valid for all j, j’, so rj is inconsistent! In fact, it can be shown that

there is no infinite pp-like family for S4 if we have only a finite number of primitive

propositions in the language. We can get an infinite family satisfying a slightly weaker

property though, as we now explain. Consider the PSPACE lower bound proof again.
We say that a formula (D is evident in structure M if the formula p 3 Kq is valid in

M. Notice that if $i4 is satisfiable, then it is satisfiable in a structure where all the

primitive propositions are evident. In the case of the primitive propositions do, . . , dn,+l
that are meant to denote the depth, it is clear that we want them to be evident. AS for

the propositions ~1,. . . , pnl, notice that we can make them all false at the root. In fact,

we can make pi false at all nodes of depth less than i (i.e., at all nodes not satisfying

di). TO satisfy the formula branching,, there may need to be nodes of depth i satisfying

pi, but once pi is true at such a node, the formula determined guarantees that it remains
true. Thus, in the structure constructed in this way, each primitive proposition pi is

J.I: Halpem/Arttj?cial Intelligence 75 (1995) 361-372 369

evident.
We define an evident tree formula over ~1,. . . , q,,, inductively to be either an atom

over pi,..., (P,,, or a conjunction of the form $ A -JK-w~ A . . . A TK-w~, where +

is an atom over ~1,. . . , pm and ~1,. . . , CTk are evident tree formulas over qq, . . . , (pm
such that if q~pi appears as a conjunct of +, then lqpi does not appear as a conjunct of

pi,.,., Uk. Thus, an evident tree formula describes a tree whose nodes are labeled with
truth assignments to the propositions qq , . . . , cpPnr with the added property that if cpi is

true at a node, it is true at all the successors of that node-i.e., , (Pi is evident-for
i= l,... , m. We say that the formulas (~1, . . . , qPm are weakly independent with respect

to a logic S if each evident tree formula over 91,. . . , pnt is S-consistent. Finally, we

say that an infinite family qi,402, . . . of formulas is weakly pp-like for a logic S if each

finite subset of these formulas is weakly independent with respect to S. Of course, a
pp-like family is weakly pp-like, but the converse may not hold. By our observations

above, to get a PSPACE lower bound for S4, it actually suffices to construct a weakly
pp-like family for S4. We now show how to do this.

We take qi to be 7K7Kp. Suppose we have defined qt,. . . , z. We define qzl to

be -K-J(P A -K-(-p A G)). It is not hard to show that (M,s) k 6 iff there is a
path SO. $1,. . , s2j_1 such that (a) SO = S, (b) (~i,si+i) E Ici for i < 2j - 1, (c)

(h_f,sZk__I) + p for k = 1,. . . ,j - 1, (d) (M,sZk) /= up for k = 1,. . . ,j - 1, and

(d) (M, S2j_1) k Kp. In transitive structures, & 3 6 is valid if k > j, so we still

do not have independence, let alone a weakly pp-like family. Let 2 be an abbreviation

for c; A -qTl. Note that 4 holds if there is a path such as the one above of length

2j - 1 and no longer path. Thus, the formulas 4, j = 1,2,3, . . . are mutually exclusive.

Let 6 be an abbreviation for 7K-s A K(4 + ~KlKlp). It is not hard to show
that 6;,6,... forms a weakly pp-like family for S4. Given a tree labeled with truth

assignments to the pi’s, each of which is evident (so that if vi is true at a given node
in the tree, then vi is also true at all nodes below it), we must construct an S4 structure
corresponding to this tree. Roughly speaking, the idea is that we augment the tree in

such a way that for each node where TT^k is true, we make sure that there is a successor

that satisfies 2 A KTKTp. We leave details to the reader.

We remark that <,G,... is not a pp-like family. For example, it is not hard to
show that ‘p =def 6 A -K(y3 A ~KT<) is not Scsatisfiable. To see this, suppose that
(M, s) /= p. Then there must be states t and u such that (s, t) E KC, (t, u) E K, and

(M,s) +q, (M,t) k 15, and (M, u) + c. Since (M, s) t= 6, it follows that

(M,s) t= K(2 + 1KlK~p).

Since we are dealing with S4, it follows that

(M, t) + K($ =+ 7KlK~p). (1)

By assumption, (M, t) + -6. From (1) and the definition of 5, it follows that

(M,t) k K-4.

Since we are dealing with S4, we must also have

370 J. E Halpern/Arr@cial Intelligence 75 (I 995) 361-372

(M,u) t= K-g. (2)

But (2) contradicts the assumption that (M, U) k <. If we now take p to be an atom

that includes 6 as a conjunct and rl, to be an atom that includes 76 as a conjunct, it
follows that the tree formula cp A lKl(@ A ~Klq) is not S6consistent. Thus, 6, i$, . . .
is not pp-like.4 Fortunately, as we observed above, it suffices to have a weakly pp-like

family to get the lower bound, so we still get the PSPACE lower bound in the case of

s4.
These techniques will not give us a weakly pp-like family in the case of K45, KD4.5,

or S5. Indeed, we cannot find a weakly pp-like family if we have only a finite number
of primitive propositions and one agent in these cases. But once we have two agents,

it is easy to check that we obtain a pp-like family for each of K45,, KD45,, and S5,,

IZ 2 2, by replacing each occurrence of K in the family 91, q2,. . . constructed for T by
K2K1. We again leave details to the reader.

We can summarize this discussion by the following theorem:

Theorem 3.1.
(1) The satisjiability problem for the logics K, T, and S4 is PSPACE-hard with respect

to the language L,({p}).
(2) The satisjiabilityproblem for K452, m452, and S52 is PSPACE-hard with respect

to the language L2({p}).

4. Bounding the depth

As we have seen, the PSPACE lower bound for K,, T,, II > 1, and K45,, KD45,, S5,,
II 3 2, uses formulas with unbounded nesting of the modal operators. What happens if
we bound the depth?

To make this precise, we formally define the depth of nesting in a formula p, de-
noted depth(p), as follows: We define depth(p) = 0 if p is a primitive proposition,

depth(ly) =depth((o), depth(cp~+) =max(depth(p),depth(@)), and depth(Kip) =

1 + depth(p) _ Thus, the formulas of depth 0 are precisely the propositional formulas,
and a formula such as K1 (K2 A lK2K2q) has depth 3. Let L:(Q) consist of all formulas
in the language &(Q) whose depth is at most k.

Notice that the formula +A s4 has depth 2, independent of A. This shows that even if

we restrict to C;(Q), the PSPACE lower bound holds for S4 as long as @ has infinitely

many primitive propositions. On the other hand, the formulas (cl,” and @z have depth
m + 2, where m is the number of primitive propositions in A. Is such unbounded depth

really necessary? As the upper bound proofs given in [3,5] show, the answer is yes.
Roughly speaking, for K,,, T,, K45,, KD45,, and S5,, II 3 1, if a formula of depth
k is satisfiable at all, it is satisfiable in a structure which looks like a tree of depth at
most k with outdegree at most the length of the formula. Thus, to check if a formula
is satisfiable, it suffices to guess such a small treelike structure that satisfies it. Since

4 We remark that this argument can be extended to show that there is no infinite pp-like family for S4 that

uses only a finite number of primitive propositions.

J.Y. Halpern/Artijicial Intelligence 75 (1995) 361-372 371

a treelike structure of depth k and outdegree m has fewer than mk+’ nodes, it follows
that checking satisfiability for formulas in C$D is in NP for these logics. Since all these

logics contain propositional logic as a sublanguage, we immediately get that satisfiability
is NP hard. Thus, we get:

Theorem 4.1. For any jixed k, if @ is injinite, the satisjiability problem for K,, T,,
K45,, KD45,, S5,,, n 3 1, with respect to the language L:(G) is NP-complete.

By way of contrast, we have

Theorem 4.2. Suppose @ is infinite.

(a) If k > 2 the satisJiability problem for S4,, n 3 1, with respect to the language

Lz (@) is PSPACE-complete.

(b) The sati$ability problem for S4,, n 3 1, with respect to the language LA(@) is

NP-complete.

What happens if we further restrict to finite Cp?

Theorem 4.3. For any$xed k, if@ isfinite, deciding ifaformula in L:(G) is satisjable

with respect to any of the logics K,, T,, S4,, K45,, KD45,, S5,, n 3 1, can be done in

linear time.

Proof. A straightforward induction on k shows that for each of these logics, there are
only finitely many inequivalent formulas in L%(a). Indeed, given n and k, we can

easily construct formulas 91, . . . ,p~ such that every formula is equivalent to one of

401,..., (PN in the logic K,, and hence in all the other logics. Fix a logic S, and consider
the subset of 91,. . . ,p~ that is S-satisfiable. This means that there is a finite collection

of structures MI, . . . , MK (where K < N) , such that every formula in Lk(@) that is
S-satisfiable is satisfiable in one of these structures. Thus, to check if a formula cp is
satisfiable, we simply check if it is satisfiable in each of these structures. This can be

done in time linear in the size of cp. (Of course, the constant depends on K and the
size of the structures Ml,. . . , MK. While this means it may be huge, it is nonetheless a
constant.) 0

We remark that since it is well known that, in the logics K45, KD45, and S5, every

formula is equivalent to a depth-one formula [4, p. 551 for these logics,” we do not

need to bound k to get the linear time result (as we observed in Proposition 2.2).

5. Conclusions

We have shown the effect of bounding the depth and bounding the number of primitive
propositions on the complexity of reasoning about knowledge. Basically, we get linear

5 The proof in [4 I is given only for S5, but the identical arguments work for KD45 and K45.

312 J. E Halpern/Art$cial Intelligence 75 (1995) 361-372

time algorithms only in the case that our language is restrictive enough so that there are
only finitely many inequivalent formulas. These results show how little it takes to get
up to NP or PSPACE complexity.

Our results form an interesting contrast to those of Vardi [7]. By working in the

framework of Montague structures, which are more general than the Kripke structures

we consider here, he is able to do a fine-grained analysis of which axioms cause the
complexity of knowledge to increase. He shows that, in a precise sense, it is the property

of closure under conjunction-(Kq A KG) + K((p A +)-that increases the complexity
of satisfiability from NP to PSPACE if we have infinitely many propositions. It would be

interesting to understand the effect of restricting the depth and the number of primitive
propositions in this more general framework as well. It would also be of interest to see

the effect of such limitations on other modal logics, such as temporal logic and dynamic
logic. More generally, given a modal logic characterized by a collection 3 of frames

[1] (as S4 is characterized, for example, by the transitive reflexive frames), it would

be interesting to find conditions of .F that guarantee that the satisfiability problem is
polynomial time (or NP or PSPACE) if we restrict the language to having only finitely

many primitive propositions and/or finite depth of nesting.

Acknowledgments

I wish to thank the two referees of their paper for their very useful comments and

suggestions.

References

[I] BE Chellas, Modal Logic (Cambridge University Press, Cambridge, England, 1980).

[2] J.Y. Halpem, A theory of knowledge and ignorance for many agents, Research Report RJ 9894, IBM

Research Division, Almaden Research Center, San Jose, CA (1994).

13] J.Y. Halpem and Y. Moses, A guide to completeness and complexity for modal logics of knowledge and

belief, Artif: Intell. 54 (1992) 319-379.
[41 G.E. Hughes and M.J. Cresswell, An Introduction to Modal Logic (Methuen, London, 1968).

[S] R.E. Ladner, The computational complexity of provability in systems of modal propositional logic, SIAM
J. COmQUt. 6 (3) (1977) 467-480.

[6] L.J. Stockmeyer and A.R. Meyer, Word problems requiring exponential time: preliminary report, in:

Proceedings Fijth ACM Symposium on Theory of Computing, (1973) l-9.

[7] M.Y. Vardi, On epistemic logic and logical omniscience, in: J.Y. Halpem, ed., Theoretical Aspects of
Reasoning about Knowledge: Proceedings of the I986 Conference, San Francisco, CA (1986) 293-305.

