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Abstract 

A well-known result of Ladner says that the satisfiability problem for K45, KD45, and S5 is 
NP-complete. This result implicitly assumes that there are infinitely many primitive propositions 

in the language; it is easy to see that the satisfiability problem for these logics becomes linear 
time if there are only finitely many primitive propositions in the language. By way of contrast, 
we show that the PSPACE-completeness results of Ladner and Halpem and Moses hold for the 
modal logics K,, Tn, S4,,, II > 1, and K45,, KD45,, S5,, n > 2, even if there is only one primitive 
proposition in the language. We go on to examine the effect on complexity of bounding the depth 
of nesting of modal operators. If we restrict to finite nesting, then the satisfiability problem is 
NP-complete for all the modal logics considered, but S4. If we then further restrict the language 
to having only finitely many primitive propositions, the complexity goes down to linear time in 
all cases. 

1. Introduction 

In [ 3,5], the complexity of the satisfiability problem for various modal logics is char- 
acterized. For the single-agent case, Ladner showed that for K, T, and S4, the problem 

is PSPACE-complete, while for K45, KD45, and S5, it is NP-complete. Halpern and 
Moses showed that if we allow two or more agents, the satisfiability problem for all 
these logics is PSPACE-complete. 1 All the lower bound results implicitly assume that 
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’ Halpem and Moses actually did not consider K45, but their proof for KD45 can be easily modified to deal 

with K45. 
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there are an unbounded number of primitive propositions in the language. This is a stan- 
dard assumption in such complexity results. Indeed, if we consider propositional logic, 
if the set of primitive propositions is finite and has size, say, K, then the satisfiability 

problem becomes linear time: To test the satisfiability of a formula 50, we simply test 
each of the 2K truth assignments, and see if any of them satisfies rp. 

While the assumption that there are infinitely many primitive propositions in the 
language is standard, it might not always be reasonable. One might well be interested in 
the complexity of reasoning about knowledge and belief in a particular application, where 
there are only, say, 10 primitive propositions. Do we get linear time algorithms in this 

case? It is easy to see that in the three cases where we had NP-completeness before- 
K45, KD45, and Z&--the complexity of satisfiability drops to linear time when there 

are only finitely many primitive propositions, just as it does with propositional logic. 
However, as we show in this paper, for all the cases where we had PSPACE-completeness 

before, we still get PSPACE-completeness even if there is only one primitive proposition 

in the language. The upper bound, of course, follows immediately from the upper bounds 

in [ 3,5] ; bounding the number of primitive propositions can only make things easier. 
The lower bounds apply a technique that may be of independent interest: We isolate 
some key properties of primitive propositions that are needed to prove the lower bound, 

and show that the existence of an infinite pp-like (primitive-proposition-like) family 

of formulas suffices for the proof. We then show how to construct such an infinite 
family for each of the logics in question, using formulas that involve only one primitive 

proposition. 
A closer look at the PSPACE lower bounds shows that, except in the case of S4, they 

make crucial use of formulas with deeply nested occurrences of modal operators. What 

happens if we restrict the depth of nesting of modal operators to some fixed k? First 

suppose we have an infinite number of primitive propositions in the language. In the 

case of S4,, little changes. As long as we allow formulas of depth k 2 2, the PSPACE 
lower bound still holds. On the other hand, for all the ether logics, the complexity 
goes down to NP-complete: the lower bound is immediate since all these logics contain 
propositional logic, while the upper bound follows easily from the algorithms given in 

[3,51. 
What happens if, in addition to having a bound on the depth of nesting, we also 

assume that the language has only finitely many primitive propositions? In that case, 
the complexity goes down to linear time for all the logics we are considering. The new 

and old results are summarized in Table 1, where the first row describes the results of 

[ 3,5], and the remaining rows describe the results of this paper; Q, is the set of primitive 

propositions. As these results show, both depth of nesting and the number of primitive 

propositions in the language play a critical role in complexity. 
The strengthened lower bounds show the expressive power of modal logic. They have 

already found application as a technique for proving other complexity results [ 21; we 
hope they will find further applications. 

The rest of this paper is organized as follows. In the next section, we briefly review 

the semantics of the various logics we are interested in, and discuss why the satisfiability 
problem for K45, KD45, and S5 is linear time if there is a bound on the number of 
primitive propositions. In Section 3, we prove the PSPACE lower bound in row 2 of the 
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Table 1 
The complexity of the satisfiability problem for logics of knowledge 

K45, KD45, S5 S4”, n > 1 Kn. Tn. n 2 1; K45,,, KD45,, S5,, n 2 2 

@ infinite, unbounded depth NP-complete PSPACE-complete PSPACE-complete 
@ finite, unbounded depth linear time PSPACE-complete PSPACE-complete 
@ infinite, depth < k, k 2 2 NP-complete PSPACE-complete NP-complete 
@ finite, bounded depth linear time linear time linear time 

table. In Section 4, we discuss the effects of bounding the nesting of modal operators. 

We conclude in Section 5. 

2. A brief review of modal logic 

We briefly review some standard notions of modal logic here. Further details can be 
found in, for example, [ 1,3,4]. 

In this paper we focus on six logics known as K,, T,, S4,, K45,, KD45,, and S5,. 

The subscript n in all these logics is meant to emphasize the fact that we are considering 
the n-agent version of the logic. We omit it when considering the single-agent case. 

The language we use for all these logics is propositional logic augmented by the 

modal operators Kt , . . . , K,, where Kirp can be read “agent i knows (or believes) q”. 

Formally, we start with a finite or infinite set @ of primitive propositions. The set of 
modal formulas, denoted L,(Q), is the least set containing p closed under conjunction, 

negation, and application of K1, . . . , K,,. Thus, if q and $ are formulas in L,(Q), then 
SO are cp A t+b, T(D, and KiqO. 

Consider the following collection of axioms: 

P. All instances of axioms of propositional logic. 

K (KiPAKi(P*$)) *Ki@. 

T. Kip =+ qo. 

4. Kiq + KiKip. 

5. TKip + KiTKip. 

D. 7 Kfalse. 

and rules of inference: 

Rl. From 50 and cp + I++ infer $. 

R2. From p infer Kip. 

The axioms 4 and 5 are called the positive introspection axiom and negative introspection 
axiom, respectively. They are appropriate for agents that are sufficiently introspective so 
that they know what they know and do not know. 

We get various systems by combining some subset of K, T, 4, 5, and D with P, Rl, 
and R2. In particular, we get K, by combining K with P, Rl, and R2, T, by adding 
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T to these axioms, S4, by adding 4, S5, by adding 5, K45, by deleting T from S5,, 
and KD45, by adding D to K45,. Numerous other modal logics can be constructed by 
considering other combinations of axioms. 

We give semantics to all these logics by using Kripke structures. A Kripke structure 

is a tuple (W,9i-,X*,. . . , K,), where W is a set of worlds, T associates with each world 
a truth assignment to the primitive propositions, so that rr( w) (p) E {true, false} for 
each world w and primitive proposition p E @, and X1,. . . , Ic,, are binary accessibility 

relations. 

Recall that a binary relation K: on W is reflexive if (w, w) E K for all w E W, 

transitive if (u, U) E Ic and (u, w) E K: implies (u, w) E K, Et&dean if (u, U) E K: 

and (u, w) E K: implies (u, w) E Ic, and serial if for all w E W, there is some w’ such 
that (w, w’) E ii. Let M,(Q) be the class of all Kripke structures for the language 
C,,(a). Thus, in every structure in M, (@), the interpretation n gives semantics to 

the primitive propositions in @, and there are accessibility relations ICI, . . . , K,. We 
restrict M,(Q) by using superscripts r, s, t, and e, to denote reflexive, serial, transitive, 

and Euclidean, structures, respectively. Thus, Mit(@) denotes the class of all structures 
where the Ici relations are reflexive and transitive knowledge, Me,“‘(@) denotes the class 
of all structures where the Ici relations are Euclidean, serial, and transitive, and so on. 

A situation is a pair (M, w) consisting of a Kripke structure and a world w in M. 
We give semantics to formulas with respect to situations. If p is a primitive proposition, 

then (M,w) k p ‘f 1 r”(w)(p) = true. Conjunctions and negations are dealt with in 

the standard way. Finally, 

(M,w) t= Kia iff (M, w’) + (Y for all w’ E Xy( w). 

As usual, we say that a formula 9 is valid in a structure M, written M k 9, if 

(M, w) + cp for all worlds w in M. We say that 4p is valid with respect to a class N 
of structure if M t= 50 for all structures M E N. Similarly, we say that 9 is satis$uble 

with respect to N if (M, w) k q for some M E N and some world w in M. 

It is well known that there is a close connection between conditions placed on K and 

the axioms. In particular, T corresponds to the Ki's being reflexive, 4 to the Ki’s being 
transitive, 5 to the Ici’s being Euclidean, and D to the Ki's being serial. Thus, we get 
the following result (see [ 1,3,4] for proofs) : 

Theorem 2.1. K, (respectively T,, S4,, KD45,, K45,, SS,) is u sound and complete 

uxiomatizution for the language C, (@) with respect to M,(Q) (respectively ML (@), 

M;(a), M”,“‘(Q), M;(Q), M’,“‘(Q)). * 

An S-situation (for S E {K,,T,, S4,,K45n,KD45,,, S5,)) is a situation (M, w) 

where M satisfies the appropriate restriction; thus, for example (M, w) is a S4,-situation 
if M E M’,t (0). We say that a formula is S-sutis$uble if it is true in some S-situation. 

’ The more common characterization of structures that characterize S5, is that the Xi’s in these structures 

are equivalence relations. As observed in [ 31, K is an equivalence relation iff K is reflexive, Euclidean, and 

transitive. so these characterizations coincide. 



J. E Halpern/Art$cial Intelligence 75 (1995) 361-372 365 

In the single-agent case of KD45,, K45,, and S5,, we can consider a simpler class 
of structures. We define a K4.5 situation to be a pair ( W, IV), where W is a set of truth 

assignments that, intuitively, characterize the worlds the agent considers possible, and w 

is a truth assignment that, intuitively, characterizes the “real world”. A KD4.5 situation 

is a K45 situation (w w) such that W # 8. An S5 situation (K w) is a K45 situation 

such that w E W. 

We again give semantics to formulas with respect to situations. If p is a primitive 
proposition, then (w w) b p if p is true under truth assignment w. Conjunctions and 

negations are dealt with in the standard way. Finally, 

(Ww) +Ka iff (u! w’) + cy for all w’ E W. 3 

It is well known (again, see any of [ 1,3,4] for a proof) that a formula is provable in 

K45 (respectively KD45, S5) if and only if it is true in all K45 (respectively KD45, 
S5) situations. 

Notice that if we start with a finite set @ of primitive propositions, there are 21’1 truth 

assignments to the propositions in @, and hence no more than 2*‘@‘21@1 K45 (respectively 
KD45, S5) situations. Checking whether a formula cp is satisfied in any one of these 

situations can be done in time linear in the length of 1~1 (see [3, Proposition 3.11). 

Thus, to see if (p is satisfiable, we can simply check each of these structures. Since the 
number of structures is independent of the size of cp, we get: 

Proposition 2.2. If @ is jinite, deciding if a formula is K45- (respectively, KD45-, SS-) 
satis$able can be done in linear time. 

Note that if @ is infinite, the number of structures we have to check is not independent 

of the formula (it depends on the number of primitive propositions in the formula), so 
this argument fails. 

3. The PSPACE lower bounds 

We begin by reviewing the lower bound proofs of [3,5], since we plan to follow 
the same strategy here. The proofs proceed by a reduction from the logic of quantijied 

Boolean formulas (QBF). For our purposes, we can take a QBF to be of the form 
QlplQ2p2. . . Q,,p,A’, where Qi E {V, 3) and A’ is a propositional formula whose only 
primitive propositions are among p1 , . . . , pm. Thus, a typical QBF is Vpl3p2 (PI + 

~2). We can determine whether a QBF is true or false by successively replacing each 
subformula of the form Vpi( B) by Bo A B1 and each subformula of the form 3pi( B) 

by Bo V B1, where Bo (respectively B1) is B with all occurrences of pi replaced by 

true (respectively false), and then using the standard rules of propositional logic. Note 
that this successive replacement results in a formula that may be much larger than the 

’ When dealing with logics like K45, where only one agent is involved, we typically do not subscript the K 

operator, writing, for example, Kcu rather than Kla. 
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original formula (in fact, exponential in the size of the original formula). It is known 
that the problem of determining which QBFs are true is PSPACE-complete [ 61. 

Following [ 31, we present the lower bound proof for S4, and then show how to modify 
it to deal with all the other logics. Suppose we are given a QBF A = Qlpl . . . Qmp,A’. 
We construct a formula +A s4 that is satisfiable in a structure in MT iff A is true. The 
idea is to use $2” to force the structure to look like a tree of truth assignments, Each of 
the leaves of the tree encodes a distinct truth assignment to the primitive propositions 

PI,..., pm that appear in A. If A is satisfiable, then we want this tree to contain all the 
truth assignments necessary to show that A is true. 

We proceed as follows. We take as primitive propositions ~1,. . . ,p,,,, do,. . . , &+I, 
where di denotes depth at least i in a “tree” of truth assignments. Notice that the number 

of propositions used depends on A. As the depth of A increases, we need more and 
more primitive propositions. This is precisely where the proof implicitly assumes that 

the set of primitive propositions is infinite (although, of course, for any fixed A, we use 

only finitely many of them). Let depth be the following formula, which clearly captures 

the intended relation between the di’s: 

t?1+1 
depth z&f A (di + di_ i ) . 

i=l 

Let determined be a formula that intuitively says that the truth value of pi is determined 
by depth i in the tree, in that if pi is true (respectively false) at a given node s of depth j 

with j > i, then it is true (respectively false) at all the K-successors of s of depth at 

least i. (If we restrict to structures that look like trees, then all the K-successors of 

s will have depth i + 1; however, there may be nonstandard structures satisfying this 
formula that do not look like trees, and we need to be able to deal with these as well.) 

determined =&f i(di * ((pi * K(di *pi)) A (-pi * K(di * -pi)))). 
i=l 

Let branchingA be a formula that intuitively says that if Qi+r , the (i + 1) st quantifier 
in A, is V, then each node s at depth i in the tree has two successors of depth i + 1, 

one at which pi+] is true, and one at which pi+1 is false, while if Qi+r is 3, then s has 

at least one successor of depth i + 1 (which intuitively gives pi+i the truth value which 

results in A being true). 

A ( (di A Tdi+t) + 
{i:Qi+l=V} 

(TKT( di+l A di+2 A pi+1 > A TKl(di+l A ldi+2 A lpi+]> )) A 

A ((di A ldi+l) * lKl(di+l A ldi+2)), 
{i:Qi+l=3} 

We take $2” to be 

do A Tdl A K(depth A determined A branching,, A (d, * A’) ) . 
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As shown in [3], +i4 is satisfiable in a structure in M: iff A is true. One direction is 
easy: we can use the truth assignments that make A true to guide the construction of a 

tree that satisfies @z4. Conversely, supp osethatM=(S,r,K) EMyand(M,s) I=$:“. 
Given a state t in M, let Al be the QBF that results by starting with Qj+lpj+l . . . Qmp,A’ 

and replacing all occurrences of pi, i < j, by true if r(t) (pi) = true, and by false 
otherwise. Note that Ah = A and that AL is the result of starting with A’ and replacing 
all the pi’s by true or false as appropriate. The fact that (M, s) k K( d, + A’) implies 

that if (s, t) E K and (M, t) + &, then AL is true. An easy induction on j now shows 
that if (s, t) E X: and (M, t) + d,_j A ldm_j+l, then the QBF AL,_j is true. Since 

(M, s) + do, in particular we have that Ai = A is true. Since $i4 is polynomial in the 

length of A, this gives us the desired polynomial reduction from QBF to S4. It follows 
that S4 satisfiability is PSPACE-hard. 

To deal with the other logics, we modify (cl;” as follows: We take $,’ to be 

do A Tdl A K”(depth A determined A branching, A (d, + A’)), 

where K”q is an abbreviation for K. . . Kq, with m K’s; we take $2 to be 

I?, 

do A -dl A A K’( depth A determined A branching, A (d,, + A’) ) ; 
i=O 

finally, we take $t4”, t,@D45, and $z’ all to be the result of replacing all occurrences of K 

in J,/J~ by K2Kl. It is shown in [ 31 that A is true iff $1 (respectively $t, I@‘~, +,“““, 
$i”) is satisfiable in a structure M; (@) (respectively, MI (@), M”:(G), My’(@), 

My’( @) ) . This proves all the other PSPACE-hardness results. 
As we observed above, this proof seems to make crucial use of the fact that we have 

an unbounded number of primitive propositions in @. In addition, the depth of nesting of 

the K operator in the formulas constructed is unbounded in the case of all logics other 

than S4. We defer the issue of depth to the next section, and focus here on the number 
of primitive propositions required, showing how the proof can be carried out with only 

one primitive proposition in the language. We first need to isolate what properties of 
primitive propositions we actually use. One property we obviously use is that primitive 
propositions are independent. To make this precise, given any formulas ~1, . . . , pPm, we 

define an atom over ~1,. . . , rp,, to be one of the 2”’ formulas of the form (pi A . . . A g&, 

where pi is either Cpi or Tpi. We say that ~1,. . , rp, are independent with respect to 

logic S if each of the atoms over ~1,. . . , pm is S-consistent. But independence alone 
does not suffice. For example, our proof implicitly uses the fact that both pi A 7K7pi+l 

and pi A lKpi+l are satisfiable. But suppose ~1 is p and ~2 is Kp. Then cp1 and 402 are 

easily seen to be independent with respect to K, yet we have that (~2 + Kspl is valid. 
We can construct similar examples for each of the other logics we are interested in. We 
need a notion that is stronger than independence. What we really want to be able to do 

is to construct an arbitrary tree of truth assignments to ~1,. . , po,,, as we did for the 
primitive propositions in our lower bound proof. 

To make this precise, we define a tree formula over 91,. . . , p,,, inductively to be 
either an atom over cp1 , . . . , pm or a conjunction of the form rC, A 7K-q A. . . A -K--q, 
where q is an atom over (~1,. . . , pn, and ~1,. . , U& are tree formulas over ~1, . . . , pnl. 
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We can think of a tree formula as describing a tree, each of whose nodes is labeled by a 

truth assignment to the propositions ~1,. . . , porn. We say that the formulas pl, . . . , p,, are 

completely independent with respect to a logic S if each tree formula over ~1,. . , , cpp,, is 
S-consistent. Finally, we say that an infinite family 4pi, (~2, . . . of formulas is pp-like for 

a logic S if each finite subset of these formulas is completely independent with respect 
to S. Clearly, any infinite set of distinct primitive propositions is indeed pp-like, no 

matter what the logic. Our goal is to construct pp-like families of formulas 91, rp2, . . . 
for each of the logics of interest to us that involve just one primitive proposition in such 

a way that the length of the formula pPn is polynomial in n. Once we do this, we can 

replace the primitive propositions that appear in formulas such as r,Qf by the pp-like 

formulas; it is easy to see that the lower bound proof then goes through unchanged. 

Thus, we can view the notion of a pp-like family as encapsulating what we really needed 
from primitive propositions in our lower bound proof. 

Constructing a pp-like family for the logic K is quite simple: Let qj, j > 1, be the 

formula ~KT( up A ~Kjlp). It is easy to see that qj is true at a state s precisely if 

there is a path of length j + I starting at s whose second state satisfies up and whose 
last state satisfies p. More precisely, (M, s) k ~Kjlp precisely if there is a sequence 

Jo,.... sj such that (a) SO = S, (b) (si,si+i) E Ici for i < j, (c) (M,s~) k up, 
and (d) (M, sj) /= p. It is easy to see that the family 41, q2,. , . is indeed pp-like for 

the logic K. We can thus replace of ~1,. . . ,p,,,, do,. . . , d,,+l in fi,,” by 41,. . . , qzn1+2 
respectively. The resulting formula is satisfiable in M iff A is true. This shows that 

deciding K-satisfiability for formulas in 131 ({p}) is PSPACE-hard. 
This argument no longer works for T. The problem is that in T, qj + qj’ is valid if 

j’ > j: if there is an appropriate path of length j + 1 to a state satisfying p, reflexivity 

guarantees that there will also be longer paths. We deal with this as follows. Let YI be 

41, and let rj be an abbreviation for qj A ‘qj-r for j > 1. Thus, rj says that there is an 
appropriate path of length j to p, but no shorter paths. It is easy to see that the ‘j’s are 

satisfiable and mutually exclusive. Moreover, the formulas -Klrj, j = 1,2,, . ., form a 
pp-like family for T. Thus, we can replace the occurrences of ~1,. . . ,p,,,, do,. . . , dm+l 
in$IbyTKTri,... , lKTr2nl+2, respectively, and still get the PSPACE lower bound in 

this case. 
This argument breaks down for S4. In transitive structures, it is easy to see that 

qj tj qj’ is valid for all j, j’, so rj is inconsistent! In fact, it can be shown that 

there is no infinite pp-like family for S4 if we have only a finite number of primitive 

propositions in the language. We can get an infinite family satisfying a slightly weaker 

property though, as we now explain. Consider the PSPACE lower bound proof again. 
We say that a formula (D is evident in structure M if the formula p 3 Kq is valid in 

M. Notice that if $i4 is satisfiable, then it is satisfiable in a structure where all the 

primitive propositions are evident. In the case of the primitive propositions do, . . , dn,+l 
that are meant to denote the depth, it is clear that we want them to be evident. AS for 

the propositions ~1,. . . , pnl, notice that we can make them all false at the root. In fact, 

we can make pi false at all nodes of depth less than i (i.e., at all nodes not satisfying 

di). TO satisfy the formula branching,, there may need to be nodes of depth i satisfying 

pi, but once pi is true at such a node, the formula determined guarantees that it remains 
true. Thus, in the structure constructed in this way, each primitive proposition pi is 
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evident. 
We define an evident tree formula over ~1,. . . , q,,, inductively to be either an atom 

over pi,..., (P,,, or a conjunction of the form $ A -JK-w~ A . . . A TK-w~, where + 

is an atom over ~1,. . . , pm and ~1,. . . , CTk are evident tree formulas over qq, . . . , (pm 
such that if q~pi appears as a conjunct of +, then lqpi does not appear as a conjunct of 

pi,.,., Uk. Thus, an evident tree formula describes a tree whose nodes are labeled with 
truth assignments to the propositions qq , . . . , cpPnr with the added property that if cpi is 

true at a node, it is true at all the successors of that node-i.e., , (Pi is evident-for 
i= l,... , m. We say that the formulas (~1, . . . , qPm are weakly independent with respect 

to a logic S if each evident tree formula over 91,. . . , pnt is S-consistent. Finally, we 

say that an infinite family qi,402, . . . of formulas is weakly pp-like for a logic S if each 

finite subset of these formulas is weakly independent with respect to S. Of course, a 
pp-like family is weakly pp-like, but the converse may not hold. By our observations 

above, to get a PSPACE lower bound for S4, it actually suffices to construct a weakly 
pp-like family for S4. We now show how to do this. 

We take qi to be 7K7Kp. Suppose we have defined qt,. . . , z. We define qzl to 

be -K-J(P A -K-(-p A G)). It is not hard to show that (M,s) k 6 iff there is a 
path SO. $1,. . , s2j_1 such that (a) SO = S, (b) (~i,si+i) E Ici for i < 2j - 1, (c) 

(h_f,sZk__I) + p for k = 1,. . . ,j - 1, (d) (M,sZk) /= up for k = 1,. . . ,j - 1, and 

(d) (M, S2j_1) k Kp. In transitive structures, & 3 6 is valid if k > j, so we still 

do not have independence, let alone a weakly pp-like family. Let 2 be an abbreviation 

for c; A -qTl. Note that 4 holds if there is a path such as the one above of length 

2j - 1 and no longer path. Thus, the formulas 4, j = 1,2,3, . . . are mutually exclusive. 

Let 6 be an abbreviation for 7K-s A K( 4 + ~KlKlp). It is not hard to show 
that 6;,6,... forms a weakly pp-like family for S4. Given a tree labeled with truth 

assignments to the pi’s, each of which is evident (so that if vi is true at a given node 
in the tree, then vi is also true at all nodes below it), we must construct an S4 structure 
corresponding to this tree. Roughly speaking, the idea is that we augment the tree in 

such a way that for each node where TT^k is true, we make sure that there is a successor 

that satisfies 2 A KTKTp. We leave details to the reader. 

We remark that <,G,... is not a pp-like family. For example, it is not hard to 
show that ‘p =def 6 A -K(y3 A ~KT<) is not Scsatisfiable. To see this, suppose that 
(M, s) /= p. Then there must be states t and u such that (s, t) E KC, (t, u) E K, and 

(M,s) +q, (M,t) k 15, and (M, u) + c. Since (M, s) t= 6, it follows that 

(M,s) t= K(2 + 1KlK~p). 

Since we are dealing with S4, it follows that 

(M, t) + K($ =+ 7KlK~p). (1) 

By assumption, (M, t) + -6. From ( 1) and the definition of 5, it follows that 

(M,t) k K-4. 

Since we are dealing with S4, we must also have 



370 J. E Halpern/Arr@cial Intelligence 75 (I 995) 361-372 

(M,u) t= K-g. (2) 

But (2) contradicts the assumption that (M, U) k <. If we now take p to be an atom 

that includes 6 as a conjunct and rl, to be an atom that includes 76 as a conjunct, it 
follows that the tree formula cp A lKl(@ A ~Klq) is not S6consistent. Thus, 6, i$, . . . 
is not pp-like.4 Fortunately, as we observed above, it suffices to have a weakly pp-like 

family to get the lower bound, so we still get the PSPACE lower bound in the case of 

s4. 
These techniques will not give us a weakly pp-like family in the case of K45, KD4.5, 

or S5. Indeed, we cannot find a weakly pp-like family if we have only a finite number 
of primitive propositions and one agent in these cases. But once we have two agents, 

it is easy to check that we obtain a pp-like family for each of K45,, KD45,, and S5,, 

IZ 2 2, by replacing each occurrence of K in the family 91, q2,. . . constructed for T by 
K2K1. We again leave details to the reader. 

We can summarize this discussion by the following theorem: 

Theorem 3.1. 
( 1) The satisjiability problem for the logics K, T, and S4 is PSPACE-hard with respect 

to the language L,( {p}). 
(2) The satisjiabilityproblem for K452, m452, and S52 is PSPACE-hard with respect 

to the language L2( {p}). 

4. Bounding the depth 

As we have seen, the PSPACE lower bound for K,, T,, II > 1, and K45,, KD45,, S5,, 
II 3 2, uses formulas with unbounded nesting of the modal operators. What happens if 
we bound the depth? 

To make this precise, we formally define the depth of nesting in a formula p, de- 
noted depth(p), as follows: We define depth(p) = 0 if p is a primitive proposition, 

depth(ly) =depth((o), depth(cp~+) =max(depth(p),depth(@)), and depth(Kip) = 

1 + depth(p) _ Thus, the formulas of depth 0 are precisely the propositional formulas, 
and a formula such as K1 (K2 A lK2K2q) has depth 3. Let L:(Q) consist of all formulas 
in the language &(Q) whose depth is at most k. 

Notice that the formula +A s4 has depth 2, independent of A. This shows that even if 

we restrict to C;(Q), the PSPACE lower bound holds for S4 as long as @ has infinitely 

many primitive propositions. On the other hand, the formulas (cl,” and @z have depth 
m + 2, where m is the number of primitive propositions in A. Is such unbounded depth 

really necessary? As the upper bound proofs given in [3,5] show, the answer is yes. 
Roughly speaking, for K,,, T,, K45,, KD45,, and S5,, II 3 1, if a formula of depth 
k is satisfiable at all, it is satisfiable in a structure which looks like a tree of depth at 
most k with outdegree at most the length of the formula. Thus, to check if a formula 
is satisfiable, it suffices to guess such a small treelike structure that satisfies it. Since 

4 We remark that this argument can be extended to show that there is no infinite pp-like family for S4 that 

uses only a finite number of primitive propositions. 
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a treelike structure of depth k and outdegree m has fewer than mk+’ nodes, it follows 
that checking satisfiability for formulas in C$D is in NP for these logics. Since all these 

logics contain propositional logic as a sublanguage, we immediately get that satisfiability 
is NP hard. Thus, we get: 

Theorem 4.1. For any jixed k, if @ is injinite, the satisjiability problem for K,, T,, 
K45,, KD45,, S5,,, n 3 1, with respect to the language L:(G) is NP-complete. 

By way of contrast, we have 

Theorem 4.2. Suppose @ is infinite. 

(a) If k > 2 the satisJiability problem for S4,, n 3 1, with respect to the language 

Lz (@) is PSPACE-complete. 

(b) The sati$ability problem for S4,, n 3 1, with respect to the language LA(@) is 

NP-complete. 

What happens if we further restrict to finite Cp? 

Theorem 4.3. For any$xed k, if@ isfinite, deciding ifaformula in L:(G) is satisjable 

with respect to any of the logics K,, T,, S4,, K45,, KD45,, S5,, n 3 1, can be done in 

linear time. 

Proof. A straightforward induction on k shows that for each of these logics, there are 
only finitely many inequivalent formulas in L%(a). Indeed, given n and k, we can 

easily construct formulas 91, . . . ,p~ such that every formula is equivalent to one of 

401,..., (PN in the logic K,, and hence in all the other logics. Fix a logic S, and consider 
the subset of 91,. . . ,p~ that is S-satisfiable. This means that there is a finite collection 

of structures MI, . . . , MK (where K < N) , such that every formula in Lk( @) that is 
S-satisfiable is satisfiable in one of these structures. Thus, to check if a formula cp is 
satisfiable, we simply check if it is satisfiable in each of these structures. This can be 

done in time linear in the size of cp. (Of course, the constant depends on K and the 
size of the structures Ml,. . . , MK. While this means it may be huge, it is nonetheless a 
constant.) 0 

We remark that since it is well known that, in the logics K45, KD45, and S5, every 

formula is equivalent to a depth-one formula [4, p. 551 for these logics,” we do not 

need to bound k to get the linear time result (as we observed in Proposition 2.2). 

5. Conclusions 

We have shown the effect of bounding the depth and bounding the number of primitive 
propositions on the complexity of reasoning about knowledge. Basically, we get linear 

5 The proof in [ 4 I is given only for S5, but the identical arguments work for KD45 and K45. 
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time algorithms only in the case that our language is restrictive enough so that there are 
only finitely many inequivalent formulas. These results show how little it takes to get 
up to NP or PSPACE complexity. 

Our results form an interesting contrast to those of Vardi [7]. By working in the 

framework of Montague structures, which are more general than the Kripke structures 

we consider here, he is able to do a fine-grained analysis of which axioms cause the 
complexity of knowledge to increase. He shows that, in a precise sense, it is the property 

of closure under conjunction-( Kq A KG) + K( (p A +)-that increases the complexity 
of satisfiability from NP to PSPACE if we have infinitely many propositions. It would be 

interesting to understand the effect of restricting the depth and the number of primitive 
propositions in this more general framework as well. It would also be of interest to see 

the effect of such limitations on other modal logics, such as temporal logic and dynamic 
logic. More generally, given a modal logic characterized by a collection 3 of frames 

[ 1 ] (as S4 is characterized, for example, by the transitive reflexive frames), it would 

be interesting to find conditions of .F that guarantee that the satisfiability problem is 
polynomial time (or NP or PSPACE) if we restrict the language to having only finitely 

many primitive propositions and/or finite depth of nesting. 
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