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ng methods is driving 2 variety of new hardvare

deep lcaming application
platforms. In recent month, platforms like Google's
fensor peocessing wit (TPU) (21, NVIDLXs DGX-L
(3] and [BM's “Minsky” (4] have becn announced
ar released o mention just a few relevont cxamples.
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IBM S822LC, “Minsky"
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ML Workload

I:athom

Reference Workloads for
Modern Deep Learning

AlexNet

Autoenc

DeepQ

Memnet
Residual
Seq2Seq
Speech
VGG

DNN, IMAGENET,

variational autoencoder, feature extraction.

deep reinforcement learning, play Stella games -
end-to-end memory network, Q&A.

residual networks, IMAGENET,

recurrent neural network, language translation.

(1) -
recurrent neural network, Bai@Research speech recognition.
t | network, B

19 layers convolutional network, IMAGENET,

N



https://github.com/rdadolf/fathom
https://mitpress.mit.edu/books/racing-beam
https://www.tensorflow.org/
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Performance assessment
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Power capping, AlexNet power trace
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Power capping, power trace
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Time, power, energy
Energy-to-solution

T
ETS:/ P(t)dt
0

Energy-delay product

EDP =ETS x T

where instantaneous power is

P o V2f
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Frequency capping, AlexNet
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Frequency capping, power trace
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Total energy decreased

Energy to Solution, frequency capping
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Energy-Delay Product, frequency capping
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Full-throttle is not the answer.

Well known for crypto-currency miners, passwords crackers.
ML workload is not hashcat.

Improve --power-1imit NVIDIA driver algorithm?


https://mlperf.org/
https://www.nvidia.com/en-us/data-center/dgx-1/
http://timdettmers.com/2018/08/21/which-gpu-for-deep-learning/
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Conclusions
® Full-throttle is not the answer.
e Well known for crypto-currency miners, passwords crackers.
e ML workload is not hashcat.
[ ]

Improve --power-1imit NVIDIA driver algorithm?

Will you slow down your Teslas?


https://mlperf.org/
https://www.nvidia.com/en-us/data-center/dgx-1/
http://timdettmers.com/2018/08/21/which-gpu-for-deep-learning/
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Conclusions

® Full-throttle is not the answer.

e Well known for crypto-currency miners, passwords crackers.

e ML workload is not hashcat.

® Improve ——power-1imit NVIDIA driver algorithm?

Will you slow down your Teslas?
Currently

'4
MLPerf

Concentrate on RNN (memory-bound) and DNN (shaders-bound).


https://mlperf.org/
https://www.nvidia.com/en-us/data-center/dgx-1/
http://timdettmers.com/2018/08/21/which-gpu-for-deep-learning/
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Contributions to Fathom

9451f3ed967e1d19ad451d120£f9d807bce916cee
Merge pull request #35 from nahuelseiler/master, Porting seq2seq to
tensorflow versions later than 1.x

£9811bfdcdc620£28575edfb1993bb3b1bd22d27
Merge pull request #27 from Zzzoom/tf-1.0.x, Upgrade to tensorflow 1.0.x


https://github.com/rdadolf/fathom/pull/35
https://github.com/rdadolf/fathom/pull/27
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