
Probabilistic Hoare-like Logics in Comparison
Miguel D. Vásquez1 , Nicolás Wolovick1 , Pedro R. D’Argenio1∗

1Fac. de Matemática, Astronomı́a y Fı́sica, Universidad Nacional de Córdoba,
Ciudad Universitaria, 5000, Córdoba, Argentina

{dargenio,nicolasw}@famaf.unc.edu.ar, mvasquez@hal.famaf.unc.edu.ar

Abstract. Probabilistic algorithms are recognized for their simplicity and speed.
A canonical example is the Miller-Rabin primality test algorithm. It is simple
and achieves high accuracy with a small amount of computation. In this pa-
per, we present two verification exercises of this algorithm using two different
approaches: one being a probabilistic extension of the weakest precondition
calculus [17, 15]. and the other, a probabilistic extension of Hoare logic [6, 7]
We define verification strategies/patterns and establish comparisons between the
logics, stressing their strengths and weaknesses.
Keywords: probabilistic program verification, Hoare logic, Miller-Rabin pri-
mality test, weakest pre-expectations, pGCL, probabilistic logic, pH.

1. Introduction
Probabilistic algorithms are widely recognized for their simplicity, elegance and perfor-
mance. They even provide solutions to problems unsolvable in a non-probabilistic setting
[5]. Probabilistic sequential programs usually add to standard programming languages ei-
ther a probabilistic choice or a probabilistic assignment [18]. In the 70’s, Rabin introduced
two sequential randomized algorithms showing a good accuracy-efficiency trade-off [20].
One of these examples was the Miller-Rabin primality test. This test allows to decide
primality, getting a false positive with a probability that decreases exponentially to zero
with the number of repetitions of a basic test. The importance of this algorithm is widely
recognized in cryptography and number theory applications, because primes of hundreds
of digits could be effectively found. (Although this problem has recently been shown to
be polynomial [1], Miller-Rabin is by far the de-facto standard for primality test.) For-
mal verification of this kind of algorithms (so-called one-sided Monte Carlo) is important
since an incorrect answer does not necessarily imply an incorrect algorithm and any kind
of testing must be statistical [6, 10].

Assertional reasoning allows the verification of programs directly in a state-less
manner, abstracting away from actual execution steps. As a consequence generic and
parametric algorithms like the one under study, can be verified at no extra cost, outper-
forming any kind of automatic state-exploration model-checking technique. Probabilistic
programs are probabilistic state transformers, changing the “distribution cloud” as execu-
tion goes on [13], therefore traditional assertional verification is no longer valid because in
general a predicate in a probabilistic state cannot be evaluated to a truth value. The logic
have to be lifted in some way to cope with state distributions in order to verify, for exam-
ple, that a given algorithm end up satisfying “0 < x with a probability greater than 1/2”.

There are two Hoare-like logics suitable to verify postconditions like the former.
In [17, 15, 16], Morgan et al. defined a weakest pre-expectation calculus (named pGCL)

∗CONICET Researcher. Supported by the ANPCyT project PICT 11-11738 and the EC Project IST-
2001-35304, AMETIST

2 THE ALGORITHM 2

generalizing Dijkstra’s weakest precondition calculus [3]. Den Hartog [6, 7] proposed a
probabilistic logic and a sound and complete pre/postcondition calculus (called pH) that
extends Hoare logic [8]. Both assertional-based methods deal with some minor variations
of Dijkstra’s Guarded Command Language GCL that includes the probabilistic choice
construction S0 ⊕p S1 that selects S0 with probability p and S1 with probability 1− p.

In this paper we use both logics on the verification of the Miller-Rabin primality
test with the intention of learning their strengths and weaknesses while comparing them.
This process has two derived aims. On the one hand, the exercises of verification help
to develop new theorems and techniques that ease proving and facilitates reading. On
the other hand, we expect to learn from this two theories in order to further develop
verification techniques that applies to more general types of algorithms (such as those
including concurrency).

Previous work. Hurd [10] reported a full verification of the same algorithm presented
here using his framework early defined in [9]. He presented a functional version of a
concrete imperative algorithm appearing in [2]. The verification is based on the functional
representation and completely achieved using a theorem prover, including all number
theory aspects of the problem. To our knowledge, no other formal verification of this
algorithm exists, however there are many assertional-based verifications of sequential and
concurrent probabilistic algorithms. The majority of them are based on pGCL and carried
out by the same developers of the method (e.g. [16, 4, 11]). To our knowledge, this is the
first time that den Hartog’s logic is used outside the verification of toy algorithms.

Organization of the paper. Section 2 introduces the Miller-Rabin algorithm. Section 3
presents pGCL and its calculus and reports the verification of the algorithm. Section 4
follows the same structure but for pH . Section 5 concludes the paper with a discussion
and comparison of both verification techniques.

2. The Algorithm
The input is taken from variable n, containing the number to test for primality, and t,
that bounds the number of times the basic test is performed. The algorithm includes
initialization phase FactorTwos that decomposes n−1 into r, s such that n−1 = 2rs for
an odd s. They are needed through all iterations of the main loop that follows. The basic
test Uniform; Witness is repeated t times, setting witness if number a, randomly chosen
from a uniform distribution in the integer interval [1, n−1], is witness of the compositeness
of n. We later formalize this fact, meanwhile it is only important to understand that if a
is a witness of n, then n is composite. Non-compositeness is accumulated in prime. If
the loop finishes, then no witness of compositeness was found and two things may have
happened: either n is prime or, even when n is composite, no appropriate witnesses was
(randomly) chosen. The abundance of witnesses for non-prime numbers ensures that the
probability of getting a false positive decreases exponentially on t by 1/2t. We later
formalize this specification and prove that the algorithm satisfies it.

3. pGCL Calculus
3.1. Background
In [17] Morgan et al. extended the wp-calculus integrating probabilistic and non-deterministic
choice. Instead of predicates, pGCL wp-calculus transforms expectations, real expres-
sions from state variables to [0, 1]. Usual boolean operators are lifted in the expectation
calculus in order to operate the interval of [0, 1]. Conjunction becomes minimum, dis-
junction the maximum and negation is the probability of the complementary event. In

3 PGCL CALCULUS 3

r := 0;
s := n−1;
do s mod 2 = 0→

s := s div 2;
r := r + 1

od;


FactorTwos

prime := true;
do t 6= 0→

a := n;
do ¬(0 < a < n)→

k := n;
a := 0;
do k 6= 0→

a := 2a⊕1/2 a := 2a+ 1;
k := k div 2

od


Uniform ′

od;


Uniform

a′ := as mod n;
y := 0;
witness := false;
do y 6= r ∧ ¬witness→

if a′ 6= 1 ∧ a′ 6= n−1 then
a′ := a′2 mod n;
witness := (a′ = 1)

else a′ := a′2 mod n
fi ;
y := y + 1;

od;
witness := witness ∨ (a′ 6= 1);



Witness

prime := prime ∧ ¬witness;
t := t− 1

od

Figure 1: MillerRabin.n.t

order to ease its interpretation the symbols u,t, ·̄ are used instead. Regular predicates,
also called deterministic, lift to expectations with the operator [·], giving 1 if the predi-
cate is true, otherwise 0. Expectations giving values in {0, 1} are called standard. The
following table summarizes wp-calculus of pre-expectations. In the probabilistic choice
p can be an expression involving variables, so conditional choice is a special case of the
earlier.

wp.(skip).R ≡ R

wp.(x := E).R ≡ R[x := E]
wp.(S;T).R ≡ wp.S.(wp.T.R)

wp.(S ⊕p T).R ≡ p ∗ wp.S.R+ (1− p) ∗ wp.T.R
wp.(if B then S else T fi).R ≡ [B] ∗ wp.S.R+ [¬B] ∗ wp.T.R

[G] ∗ I V wp.S.I I V wp.(do G → S od).1
I V wp.(do G → S od).([¬G] ∗ I)

The first constraint in the antecedent of the rule for loop construction states the invariance
of predicate I . The second one, states that the invariant must imply termination of the
loop where predicate wp.(do G → S od).1 is the expectation that the loop finishes. We
will in general use T to denote this last predicate.

3 PGCL CALCULUS 4

For example, we calculate wp.(x := 0 ⊕1/2 x := 1).([x = 0]) ≡ 1/2 which
means that the minimum probability of ending in a state validating x = 0 is greater
or equal than 1/2. Calculations may also reduce to a non-standard expectation as in:
wp.(x := 0⊕1/3 x := 1).([x = y]) ≡ 1/3 ∗ [0 = y] + 2/3 ∗ [1 = y]. This predicate should
be read as “the minimum probability of reaching a state satisfying x = y is a function of
y, giving 1/3 if y = 0, 2/3 if y = 1 and 0 otherwise”.

The equivalence symbol (≡) used above is lifted to functions as point to point
equality. Implication and consequence for expectations (respectively denoted by V, and
W) are defined pointwise from ≤ and ≥ respectively. Below we summarize some impor-
tant properties that hold in the wp-calculus [16].

wp.S.(a ∗R+ b ∗R′ 	 c) W a ∗ (wp.S.R) + b ∗ (wp.S.R′)	 c sublinearity
wp.S.R V wp.S.R′ if R V R′ monotonicity

wp.S.(a ∗R) ≡ a ∗ (wp.S.R) scaling
wp.S.(R & R′) W wp.S.R & wp.S.R′ subconjunctivity

where a	 b .= (a− b) max 0 is the bounded subtraction and R & R′
.
= a+ b	 1 is one

possible lifting for boolean conjunction1.

The following theorems will be handy to check loop correctness.

Theorem 1 (Probabilistic Variant Rule) [15, 16] Let V be an integer expression over
program variables, such that: 1) it is bounded from above and from below, 2) there is a
fixed probability p 6= 0 such that V is decreased in each iteration. Then the probability of
loop termination is 1.

Lemma 1 (0-1 Termination Law) [15] Let I be an invariant of the loop, if 0 < ρ and
ρ ∗ I V T then I V T .

Theorem 2 (Deterministic Loop Theorem) [21]

wp.(do G → S od).Q ≡
∑∞

j=0 h
j.([¬G] ∗Q) where h.γ

.
= [G] ∗ wp.S.γ

3.2. Correctness Proof

We split the verification focusing in the three blocks of figure 1: FactorTwos , Uniform
and Witness . Next we join all the pieces considering the cases of n being prime and not
prime. We use predicate PRIME.n to indicate that n is prime.

FactorTwos . The first part is devoted to calculate r and s, such that n−1 = 2rs and s
is odd. This section of the code is non-probabilistic, also called standard, and under this
condition pGCL agrees with GCL. As a consequence, we omit calculations of this part
of the program and state the following without proof:

1 V wp.FactorTwos .[n−1 = 2rs ∧ odd.s]

Uniform. This code section generates a uniformly distributed random number in the
interval [1, n−1] by means of a fair coin. Following [9] we pick a random number in
[0, 2lg2.n) until one is chosen in the desired interval [1, n−1]. Note that this procedure may
loop an unbounded number of times, however the expected time is polynomial. (In [10]
a true polynomial time technique, hence in co−RP , is presented.) The function lg2.n

.
=

dlog2(n+ 1)e counts the number of bits needed to encode n.

1For example a u b and ba ∗ bc are also valid.

3 PGCL CALCULUS 5

The inner loop Uniform ′ is the responsible for throwing a fair coin and accumulat-
ing in a the decimal representation of the toss sequence. This is the invariant that captures
the core of this loop.

I : [a2lg2.k ≤ i < (a+ 1)2lg2.k] ∗ 2−lg2.k

The predicate between square brackets can also be written as i
2lg2.k − 1 < a ≤ i

2lg2.k and
agrees with a = i div (2lg2.k) under integer division. Therefore, the intuition behind I is
that “the probability that a represents the lg2.k most significant bits of i is 2−lg2.k”. In the
initialization we easily obtain the required pre-expectation using substitution2.

wp.(k, a := n, 0).I ≡ [0 ≤ i < 2lg2.n] ∗ 2−lg2.n

As k is a valid probabilistic variant, establishing termination with probability 1, we focus
on showing that the loop body maintains I .

wp.((a := 2a⊕1/2 a := 2a+ 1); k := k div 2).I

≡ { sequential composition, assignment, log properties }

wp.(a := 2a⊕1/2 a := 2a+ 1).
“h
a2(lg2.k)−1 ≤ i < (a+ 1)2(lg2.k)−1

i
∗ 2−(lg2.k)−1

”
≡ { probabilistic choice, assignment, arithmetic }

1/2 ∗
“h
a2lg2.k ≤ i < (2a+1)2(lg2.k)−1

i
∗ 2−(lg2.k)−1

”
+ 1/2 ∗

“h
(2a+1)2(lg2.k)−1 ≤ i < (a+1)2lg2.k

i
∗ 2−(lg2.k)−1

”
≡ { arithmetic }“h

a2lg2.k ≤ i < (2a+ 1)2(lg2.k)−1
i

+
h
(2a+ 1)2(lg2.k)−1 ≤ i < (a+ 1)2lg2.k

i”
∗ 2−lg2.k

≡ { expectation calculus }h
a2lg2.k ≤ i < (a+ 1)2lg2.k

i
∗ 2−lg2.k

Finally, by the rules for probabilistic loops and sequential composition:

[0 ≤ i < 2lg2.n] ∗ 2−lg2.n ≡ wp.Uniform ′.([k = 0] ∗ I)

It is straightforward to prove that [¬(k 6= 0)] ∗ I V [a = i]. By monotonicity, we obtain:

[0 ≤ i < 2lg2.n] ∗ 2−lg2.n V wp.Uniform ′.[a = i]

i.e., if i is in [0, 2lg2.n), the expectation of Uniform ′ to set a to i is 2−lg2.n, and 0 otherwise.
The outer loop picks random numbers in [0, 2lg2.n) until there is one in [1, n−1],

discarding those out of range. We calculate the weakest pre-expectation of the loop body
under termination condition ¬G:

wp.Uniform ′.[0 < a < n]
W { range to disjoint union, expectation calculus, sublinearity }∑n−1

i=1wp.Uniform ′.[a = i]
W { previous inner body result }

(n−1)2−lg2.n ∗ 1

Setting ρ : (n−1)2−lg2.n and I : 1, we calculate3.

ρ ∗ I
V { previous result }

wp.Uniform ′.[¬G]
V { [¬G] V T , monotonicity }

wp.Uniform ′.T
V { inner loop is terminating }

T

By 0-1 Termination Law, I V T . Therefore T ≡ 1 and Uniform is always terminating.
2In general, we use multiassignments. Decoupled assignments can be proved in a similar way [22].
3This proof rests on a pair of small proofs, namely [¬G] V T and wp.body.T V T easily provable

from the semantic fact wp.loop.Q ≡ [G] ∗ wp.body.(wp.loop.Q) + [¬G].

3 PGCL CALCULUS 6

For partial correctness, we use the Deterministic Loop Theorem to calculate the
greatest pre-expectation of Uniform for a particular value of a. Therefore, we calculate
each term of the summation given in the theorem. The first term is [0 < a < n] ∗ [a = i].
For the second one, we calculate

h.([0 < a < n] ∗ [a = i])
≡ { definition }

[¬(0 < a < n)] ∗ wp.Uniform ′.([0 < a < n] ∗ [a = i])
≡ { expectation and predicate calculus }

[¬(0 < a < n)] ∗ wp.Uniform ′.([0 < i < n] & [a = i])
W { subconjunctivity }

[¬(0 < a < n)] ∗ (wp.Uniform ′.[0 < i < n] & wp.Uniform ′.[a = i])
W { orthogonality4, previous result }

[¬(0 < a < n)] ∗
(
[0 < i < n] & 2−lg2.n

)
≡ { expectation calculus }

[¬(0 < a < n)] ∗ [0 < i < n] ∗ 2−lg2.n

Using the result (1 − ρ) V wp.Uniform ′.[¬(0 < a < n)], and previous calculation as a
base case we prove by induction (for full proofs refer to [22]) :

hj .([0 < a < n] ∗ [a = i]) ≡ [¬(0 < a < n)] ∗ [0 < i < n] ∗ ρ/(n−1) ∗ (1− ρ)j−1, 1 ≤ j

The weakest pre-expectation can be readily calculated using deterministic loop theorem.

wp.(do ¬(0 < a < n)→ Uniform ′ od).[a = i]
≡ { deterministic loop theorem }∑∞

j=0 h
j .([0 < a < n] ∗ [a = i])

≡ { previous results, calculus }
[0 < a < n] ∗ [a = i] + [¬(0 < a < n)] ∗ [0 < i < n] ∗ ρ/(n−1) ∗

∑∞
j=0(1− ρ)j

≡ { mathematical fact ρ ∈ (0, 1)⇒
∑∞

j=0(1− ρ)j = 1/ρ }
[0 < a < n] ∗ [a = i] + [¬(0 < a < n)] ∗ [0 < i < n] ∗ 1/(n−1)

Applying sequential composition and assignment in the above result, in order to add loop
initialization a := n, we get the required pre-expectation for Uniform:

[0 < i < n] ∗ 1/(n−1) V wp.Uniform.[a = i] (1)

Invariant given by Morgan for Uniform:
Let be $n := 2lg2.n , and the probabilistic invariant:

I := [¬(0 < a < n)] ∗ [0 ≤ i < n]/(n−1) + [0 < a < n] ∗ [a = i]

so the initalization will be: wp.(a := n).I ≡ [0 < i < n]/(n−1)
and the exit of the loop will be: [0 < a < n] ∗ I V [a = i]
Remember that [0 ≤ i < $n]/$n V wp.Uniform ′.[a = i]

4wp.S.R ≡ R if var(S) and var(R) are disjoint.

3 PGCL CALCULUS 7

Now we show that I es loop-invariant.

wp.Uniform ′.I
W { sublinearity; predicate calculus }

[0 < i < n]/(n−1) ∗ wp.Uniform ′.[¬(0 < a < n)] + wp.Uniform ′.([0 < a < n]&[a = i])
W { subconjunctivity }

[0 < i < n]/(n−1) ∗ wp.Uniform ′.[¬(0 < a < n)] + wp.Uniform ′.[0 < a < n] & wp.Uniform ′.[a = i]
W { calculate wp }

[0 < i < n]/(n−1) ∗ ($n− n+ 1) ∗ [0 ≤ i < $n]/$n + (n−1) ∗ [0 < i < $n]/$n & [0 < i < $n]/$n
W { expectation calculus }

[0 < i < n]/(n−1)
W { expectation calculus }

[¬(0 < a < n)] ∗ I

Finally we have: [0 < i < n]/(n−1) V wp.Uniform.[a = i]

Witness . The second part is the core of the Miller-Rabin algorithm. The verification
condition is the following:

1 V wp.Witness .[witness⇔ WITNESS.n.a] (2)

where predicate WITNESS is defined by:

WITNESS.n.a
.= an−1mod n 6= 1 ∨WITNESS′.n.a.y

WITNESS′.n.a.y
.=
(
∃j : 0 ≤ j < y : a2j+1smod n=1 ∧ a2jsmod n 6=1 ∧ a2jsmod n 6=n−1

)
where s is such that n−1 = 2rs, for some r, and odd.s. WITNESS left disjunct is Fermat’s
little theorem. The right disjunct is to cope with Carmichael numbers and ensure that at
least (n−1)/2 values of a are witnesses of n being composite (see [2, 5, 18, 10] and
property (4)).

The invariant specifies the incremental computation of this existential quantifica-
tion and the value of auxiliary variable a′.

I :
[
a′ = a2ys mod n ∧ witness = WITNESS′.n.a.y

]
The correctness proof for this loop is more involved than the others, but as it is non-
probabilistic, we use standard techniques from [3]. The proof contains, however, “expec-
tation calculus” that make use of simple lemmas relating minimum, maximum, plus and
the lift operator [·]. Details of this proof are reported in [22].

One iteration. Since MillerRabin is t repetitions of Uniform; Witness , we first deal
with only one iteration. The following proofs rest on the next two number theory theo-
rems:

(∀n, a : 0 < a < n : PRIME.n⇒ ¬WITNESS.n.a) (3)

2 < n ∧ odd.n ∧ ¬PRIME.n⇒ (n−1)/2 ≤ | {A : 0 < A < n : WITNESS.n.A} | (4)

We divide this proof in two cases, depending on whether n is prime or not. If PRIME.n
then by (3) we would like to establish ¬witness with probability one. If ¬PRIME.n, by
(4), we show that the minimum probability of establishing witness is strictly greater than
one half, and for ¬witness we have an expectation less than a half. The last two results
will be very important for the verification of the main loop. We calculate the greatest

3 PGCL CALCULUS 8

pre-expectation for [witness] if ¬PRIME.n as follows.

wp.(Uniform;Witness).[witness]
≡ { predicate calculus, expectation calculus, sequential composition }

wp.Uniform.wp.Witness.([witness⇔WITNESS.n.a] & [WITNESS.n.a])
W { subconjunctivity, monotonicity }

wp.Uniform.(wp.Witness.[witness⇔WITNESS.n.a] & wp.Witness.[WITNESS.n.a])
≡ { orthogonality, equation (2), expectation calculus }

wp.Uniform.[WITNESS.n.a]
≡ { let {Ai}Ki=1 be all witnesses of n in 0 < i < n, by (4), (n−1)/2 ≤ K }

wp.Uniform.[
∨K
i=1 a = Ai]

≡ { expectation calculus }
wp.Uniform.

∑K
i=1[a = Ai]

W { sublinearity }∑K
i=1wp.Uniform.[a = Ai]

W { equation (1) }∑K
i=1[0 < Ai < n] ∗ 1/(n−1)

≡ { calculus, ε .= K/(n−1)− 1/2, where 0 < ε < 1/2 }
1/2 + ε

The other bound can be proved in a similar way, so we have

1/2 + ε V wp.(Uniform; Witness).[witness] (5)
1/2− ε V wp.(Uniform; Witness).[¬witness] (6)

For PRIME.n, we use the same proof pattern, getting

wp.(Uniform; Witness).[¬witness] ≡ 1 (7)

Outer loop. Again we split the proof in two according to n’s primality. For composite
n, we look for a loop invariant I whose pre-expectation respects 1−2−t V wp.(prime :=
true).I , right before entering the loop, and that agrees with the postcondition in the loop
exit [¬(t 6= 0)]∗I V [¬prime]. The invariant I : [¬prime]+[prime]∗(1−2−t), captures
the idea of finishing in the postcondition, or (note terms disjointness) the probability of
ending up with a wrong answer. It agrees with loop initialization and exit conditions and

4 PH CALCULUS 9

is maintained in the loop body.

wp.(Uniform;Witness; prime := prime ∧ ¬witness; t := t− 1).I
≡ { sequential composition, assignment }

wp.(Uniform;Witness).([¬prime ∨ witness] + [prime ∧ ¬witness] ∗ (1− 2−t+1))
≡ { lifted logical connectives }

wp.(Uniform;Witness).(([¬prime] t [witness]) + ([prime] u [¬witness]) ∗ (1− 2−t+1))
W { sublinearity, scaling }

wp.(Uniform;Witness).([¬prime] t [witness])
+(1− 2−t+1) ∗ wp.(Uniform;Witness).([prime] u [¬witness])

W { submaximality, subminimality5}
wp.(Uniform;Witness).[¬prime] t wp.(Uniform;Witness).[witness]
+(1− 2−t+1) ∗ (wp.(Uniform;Witness).[prime] u wp.(Uniform;Witness).[¬witness])

≡ { orthogonality }
[¬prime] t wp.(Uniform;Witness).[witness]
+(1− 2−t+1) ∗ ([prime] u wp.(Uniform;Witness).[¬witness])

W { facts (5,6) }
([¬prime] t (1/2 + ε)) + (1− 2−t+1) ∗ ([prime] u (1/2− ε))

W { case analysis in prime }

≡ { [¬prime] = 1, [prime] = 0 }
1 t (1/2 + ε)

≡ { 1/2 + ε < 1, t properties }
1

≡ { [¬prime] = 1, [prime] = 0 }
[¬prime] + (1− 2−t) ∗ [prime]

≡ { [¬prime] = 0, [prime] = 1 }
(1/2 + ε) + (1− 2−t+1)(1/2− ε)

≡ { algebra }
1− 2−t + ε2−t+1

W { 0 < ε }
1− 2−t

≡ { [¬prime] = 0, [prime] = 1 }
[¬prime] + (1− 2−t) ∗ [prime]

[¬prime] + (1− 2−t) ∗ [prime]
W { [·] ≤ 1 }

[t 6= 0] ∗ I

Once again termination condition is certain, thanks to Probabilistic Variant Rule with
variant t and lower bound 0. (Upper bound is not needed because t cannot be increased.)

For PRIME.nwe propose invariant I : [prime]. Initialization gives 1 V wp.(prime :=
true).[prime] and loop exit meets postcondition [¬(t 6= 0)] ∗ [prime] V [prime]. From
(7) it can be deduced that loop body maintains I . Since Probabilistic Variant Rule guar-
antees termination, we therefore apply the loop rule and get

1 V wp.MillerRabin.[prime]

4. pH Calculus
4.1. Background
Predicates in pGCL are usual logic predicates reinterpreted as functions from states to the
interval [0, 1]. An alternative approach to probabilistic predicates is to extend predicate
logic to allow explicit manipulation of probabilities in such a manner that a predicate
is still interpreted as a function from states into the boolean lattice. Thus, for instance,
one could write P(prime) ≤ 2−T+i meaning that “the probability that program variable

5Subminimality stands for wp.S.([p] u [q]) W wp.S.[p] u wp.S.[q], submaximality is similar.

4 PH CALCULUS 10

prime is true is greater than or equal to 2−T+i for some constant T and variable i”. A
more complex example is predicate (∃i : P(prime) ≤ 2−T+i ∧ P(t = i ∧ ¬PRIME.n) =
1) where prime, t, and n are program variables, T is a constant and i is a predicate
variables (later we will see this is the invariant of the main loop in MillerRabin). Notice
the two levels of logic formulas: one within predicate P and the other outside it, where
P expressions are part of the basic predicates. An important restriction is imposed to
these probabilistic predicates: program variables can only occur within P expressions,
that is why the need of variable i in the formula above (the seemingly equivalent formula
P(prime) ≤ 2−T+t ∧ P(¬PRIME.n) = 1 is not a well formed formula).

Probability predicates are interpreted on probabilistic states. A probabilistic state
θ is a (sub)probability distribution on so called deterministic states, which are usual states,
i.e. functions that assign values to variables. (By subprobability we mean that the total
probability mass of θ may not sum up to 1. In such a case the predicate P(true) < 1
would be valid.) Probabilistic predicates may also have the following form: p0 +p1 that is
valid in probabilistic state θ if it can be split in two parts satisfying p0 and p1 respectively;
ρ·p that is valid in θ if there exists θ′ where p is valid and is a ρ-scaling of θ (i.e. θ = ρ·θ′);
p0 ⊕ρ p1 that is a shorthand for ρ · p0 + (1 − ρ) · p1; and the cut c?p that is valid in θ, if
there exists θ′ satisfying p and equal to θ if “cut” to deterministic states satisfying c (i.e.
θ(σ) = if (c is valid in σ) then θ′(σ) else 0, for all deterministic state σ).

Den Hartog [6, 7] introduced these probabilistic predicates and proposed a Hoare-
like logic where p and q in triple {p}s{q} are predicates of this kind. A triple {p}s{q}
is valid if and only if it can be proven using the proof system pH given in Fig. 2. Note

{p} skip {p} (Skip) {p[x/e]} x := e {p} (Assign)

{p} s {p′} {p′} s′ {q}
{p} s; s′ {q} (Seq) p′ ⇒ p {p} s {q} q ⇒ q′

{p′} s {q′} (Cons)

{p} s {q} {p′} s {q}
{p ∨ p′} s {q} (Or) {p} s {q} j /∈ FV (q)

{∃j : p} s {q} (Exists)

{p} s {q} {p} s {q′}
{p} s {q ∧ q′} (And) {p} s {q} j /∈ FV (p)

{p} s {∀j : q} (Forall)

{p} s {q}
{ρ · p} s {ρ · q} (Lin·) {p} s {q} {p′} s {q′}

{p+ p′} s {q + q′} (Lin+)

{c?p} s {q} {¬c?p} s′ {q′}
{p} if c then s else s′ fi {q + q′} (If) {p} s {q} {p} s′ {q′}

{p} s⊕ρ s′ {q ⊕ρ q′}
(Prob)

{p} if c then s else skip fi {p} p is 〈c, s〉-closed
{p} do c→ s od{p ∧ P(c) = 0} (While)

Figure 2: Proof system pH (FV (p) denotes the set of free variables in p)

that the rules (Skip), (Assign), (Seq) y (Cons) are the same as Hoare logic, but (If) and
(While) have been changed. The new rules (Or), (And), (Exists) and (Forall) are needed
for completeness reasons (otherwise, valid triples with respect to denotational semantics
like {p ∨ q} skip ⊕1/2 skip {p ∨ q} could not be proven), while (Prob), (Lin +) and
(Lin ·) captures the probabilistic choice constructor properties. The requirement of 〈c, s〉-
closedness in (While) is in order to achieve total correctness. A predicate p is 〈c, s〉-closed
if every sequence of probabilistic states satisfying p and obtained after an increasing num-

4 PH CALCULUS 11

ber of iterations of the conditional if c then s else skip fi converge in the limit to a state
also satisfying p. The verification of this condition is automatic for terminating loops.
The only unbounded loop is in Uniform. We ommit the proof here but it can be found in
[22].

4.2. Correctness Proof

As before, we divide the proof in FactorTwos , Uniform and Witness . We then combine
them in two different cases depending on n being prime or not. One minor difference
is the introduction of constants N and T that contain the input values of variables n and
t. They are required because of their use outside P-predicates (see the example above).
Since in particular, n = N remains invariant along the program, we work under the
assumption that P(n 6= N) = 0 holds along the program and we include it as a tautology
according to our convenience. (This is in order to avoid the assumption as a precondition
and carry the statement along all proof outlines.)

FactorTwos . Contrarily to previous section, we report the proof of this section of the
algorithm since its connection to Hoare logic is not immediate. Besides, it provides a
smoother introduction to the manipulation of the pH logic. Define the loop invariant
Inv : P(n−1 = 2rs) = 1. Notice that it is equivalent to (∃r1, r2 : q), where

q : r1 + r2 = 1 ∧ P(n−1 = 2rs ∧ s mod 2 = 0) ≥ r1 ∧ P(n−1 = 2rs ∧ s mod 2 6= 0) ≥ r2

In order to carry out the verification, we use proof outlines as it is usually done in Hoare
logic. A particular difference arises while proving loops since Inv needs to be prove
invariant in a conditional construction rather than in the loop body. We remark that there
is no real calculus reasoning behind probabilistic predicates, except for the usual predicate
logic and arithmetics. We then have to resort to semantic definitions in order to prove
implications. The proof outline for FactorTwos is as follows.

{ P(true) = 1 }
r := 0; s := n−1;
{ Inv }
{ q } /* existential is removed using rule (Exists) */
do smod 2 = 0→

{ (smod 2 = 0)?q }
⇒ { r1 + r2 = 1 ∧ P(n−1 = 2r+1(s div 2)) ≥ r1 }

s := s div 2; r := r + 1
{ r1 + r2 = 1 ∧ P(n−1 = 2rs) ≥ r1 }

{ (smod 2 6= 0)?q } skip { (smod 2 6= 0)?q } ⇒ { P(n−1 = 2rs) ≥ r2 }

{ (r1 + r2 = 1 ∧ P(n−1 = 2rs) ≥ r1) + (P(n−1 = 2rs) ≥ r2) } ⇒ { Inv }
od
{ Inv ∧ P(smod 2 = 0) = 0 }

⇒ { P(n−1 = 2rs ∧ odd.s) = 1 }

Note the proof scheme for the loop. It is divided in three sections. The first one corre-
sponds to the positive branch of the if in the premise of rule (While) (notice the positive
cut in precondition (s mod 2 = 0)?q). The second one represents the negative branch
where only skip is performed (notice the negative cut in precondition (smod 2 = 0)?q).
Finally, the third section shows how both branches are combined using probabilistic pred-
icate operator + to finally obtain the invariant Inv . We also remark that rule (Exists)
seems to be applied earlier than strictly necessary. Normally this rule is only applied in
the if construction in the premise of (While). Since the if is omitted here, we include this
derivation in the outlines before the do . We do so in general.

Uniform. For the inner loop in Uniform ′, define invariant Inv : (∃i : q) where

q :
(
∀j : 0 ≤ j < 2lg2.N−lg2.i : P(a = j ∧ k = i) ≥ 2−lg2.N+lg2.i

)

4 PH CALCULUS 12

It states that at iteration lg2.N−lg2.k, a is uniformly distributed in the interval [0, 2lg2.N−lg2.k).

{ P(true) = 1 }
⇒ { P(n = N) = 1 } /* P(n = N) = 1 is assumed to hold */

a := 0; k := n;
{ P(a = 0 ∧ k = N) = 1 } /* by (Assign) */

⇒ { Inv }
{ q } /* by (Exists) */
do k 6= 0 →

{ (k 6= 0)?q }
⇒ {

`
∀j : 0 ≤ j < 2lg2.N−lg2.(i div 2)−1 : P(a = j ∧ k div 2 = i div 2) ≥ 2−lg2.N+lg2.(i div 2)+1

´
}

a := 2a ⊕1/2 a := 2a+ 1;

{
`
∀j : 0 ≤ j < 2lg2.N−lg2.(i div 2) ∧ even.j : P(a = j ∧ k div 2 = i div 2) ≥ 2−lg2.N+lg2.(i div 2)+1

´
⊕1/2

`
∀j : 0 ≤ j < 2lg2.N−lg2.(i div 2) ∧ odd.j : P(a = j ∧ k div 2 = i div 2) ≥ 2−lg2.N+lg2.(i div 2)+1

´
}

⇒ {
`
∀j : 0 ≤ j < 2lg2.N−lg2.(i div 2) : P(a = j ∧ k div 2 = i div 2) ≥ 2−lg2.N+lg2.(i div 2)

´
}

k := k div 2

{
`
∀j : 0 ≤ j < 2lg2.N−lg2.(i div 2) : P(a = j ∧ k = i div 2) ≥ 2−lg2.N+lg2.(i div 2)

´
}

⇒ { q[i/i div 2] }

{¬(k 6= 0)?q } skip {¬(k 6= 0)?q } ⇒ { true }

{ q[i/i div 2] + true } ⇒ { Inv }
od
{ Inv ∧ P(k 6= 0) = 0}

⇒ {
`
∀j : 0 ≤ j < 2lg2.N : P(a = j) = 2−lg2.N

´
}

In the first section of the loop (positive branch), we use i 6= 0⇒ lg2.i = lg2.(i div 2) + 1,
and rules (Prob) and (Assign). The last implication follows by definition of q. The second
section is straightforward use of (Skip) and (Cons). The last section containing the +
combination makes use of (Cons) and the fact that P(dp) ≥ r + true ⇒ P(dp) ≥ r
to show that the invariant is maintained. The last implication after the do construction
is a consequence of the observation that if one of the inequalities P(a = j ∧ k = i) ≥
2−lg2.N+lg2.i were strict (notice that at this point i = 0 since P(k 6= 0) = 0 and hence
P(a = j) ≥ 2−lg2.N), the contradiction P(true) =

∑
j P(a = j) > 1 is obtained.

To prove the main loop Uniform we introduce an auxiliary variable z that counts
the number of iterations of Uniform; recall that it could iterate an unbounded number of
times. The invariant of the main loop in Uniform is defined as follows:

Inv : (∃i : q) ∨ (∀j : 0 < j : p)
q : P(z = i ∧ ¬(0 < a < n)) = (1− ρ)i ∧ (∀j : 1 ≤ j ≤ i : p)
p :

(
∀k : 0 < k < N : P(z = j ∧ a = k) = (1− ρ)j−1 ∗ ρ/(N−1)

)

where ρ = (N−1)2−lg2.N . Predicate p states the probability of terminating in the jth
iteration (notice that it is independent of the value of a). Predicate q talks about the
probability of terminating within i iterations (second conjunct) and the probability that a
is generated outside the range [1, N−1] in the ith iteration. Therefore, the left disjunct
in Inv refers to the probability of either terminating with an appropriate value in a and
the probability that this does not occur within some i iterations. The right disjunct states
that for each iteration j the loop terminates with some probability, and this condition is
needed in order to show termination.

In the next proof outline, the vertical line corresponds to the application of rule
(Or) where the left and right proof outlines correspond to the two triples on the premise

4 PH CALCULUS 13

of the rule.
{ P(true) = 1 }
z := 0; a := n;
{ Inv }

{ (∃i : q) }
{ q }
do ¬(0 < a < n)→

{¬(0 < a < n)?q }
⇒ { P(z = i ∧ ¬(0 < a < n)) = (1− ρ)i }
⇒ { (1− ρ)i · [P(z = i ∧ ¬(0 < a < n)) = 1] }
⇒ { (1− ρ)i · [P(true) = 1 ∧ P(z = i) = 1]}

Uniform ′;
{ (1− ρ)i · [

`
∀k : 0 < k < 2lg2.N : P(a = k) = 2−lg2.N

´
∧

P(z = i) = 1]}
/* this last step holds by (Lin ·), orthogonality on P(z = i) = 1, and */
/* the result above on Uniform ′ */

⇒ { (1− ρ)i · [P(z = i ∧ ¬(0 < a < n)) = (1− ρ) ∧
(∀k : 0 < k < N : P(z = i ∧ a = k) = ρ/(N−1))] }

⇒ { P(z + 1 = i+ 1 ∧ ¬(0 < a < n)) = (1− ρ)i+1∧`
∀k : 0 < k < N : P(z + 1 = i+ 1 ∧ a = k) = (1− ρ)i ∗ ρ/(N−1)

´
}

z := z + 1
{ P(z = i+ 1 ∧ ¬(0 < a < n)) = (1− ρ)i+1 ∧ p[j/i+ 1] }

{ (0 < a < n)?q } skip { (0 < a < n)?q } ⇒ { (∀j : 1 ≤ j ≤ i : p) }

{
`

P(z = i+ 1 ∧ ¬(0 < a < n)) = (1− ρ)i+1 ∧ p[j/i+ 1]
´

+ (∀j : 1 ≤ j ≤ i : p) }
⇒ { q[i/i+ 1] } ⇒ { Inv }

od
{ Inv ∧ P(¬(0 < a < n)) = 0 }

{ (∀j : 0 < j : p) }
do ¬(0 < a < n)→

{¬(0 < a < n)?(∀j : 0 < j : p) }
⇒ {P(true) = 0}

Uniform ′;
z := z + 1
{P(true) = 0}

{ (0 < a < n)?(∀j : 0 < j : p) }
⇒ { (∀j : 0 < j : p) }

skip
{ (∀j : 0 < j : p) }

{ P(true) = 0 + (∀j : 0 < j : p) }
⇒ { (∀j : 0 < j : p) } ⇒ { Inv }

od
{ Inv ∧ P(¬(0 < a < n)) = 0 }

⇒ { (∀k : 0 < k < N : P(a = k) = 1/(N−1)) }

The implication at the very end is obtained as a result of the same series used for the
pGCL verification.

Witness . Like for pGCL, this proof is long, non-probabilistic and mostly straight-
forward. We omit it here and refer to [22] for further details. We only report the loop
invariant and the triple:

Inv : P
(
a′ = a2ys mod n ∧ witness = WITNESS′.n.a.y

)
= 1

{ P(true) = 1 }Witness { P(witness = WITNESS.n.a) = 1 }

One iteration. As for pGCL, we split the proof in two cases. For the case ¬PRIME.n
we calculate:
{ P(¬PRIME.n) = 1 }

⇒ { P(true) = 1 ∧ P(¬PRIME.n) = 1 }
Uniform;
{ (∀j : 0 < j < N : P(a = j) = 1/(N−1)) ∧ P(¬PRIME.n) = 1 } /* by orthogonality and result on Uniform */

⇒ { P(true) = 1 ∧ P(WITNESS.n.a) ≥ 1/2 }
Witness
{ P(witness = WITNESS.n.a) = 1 ∧ P(WITNESS.n.a) ≥ 1/2 } /* by orthogonality and result on Witness */

⇒ { P(¬witness) ≤ 1/2 } (8)

In the second implication we use (4) (see Sec. 3.2), which says that at least half of the
bases in the range [1, N−1] are witnesses when n is not prime.

The proof for PRIME.n is simpler:

{ P(PRIME.n) = 1 }
Uniform;
{ P(PRIME.n) = 1 } /* by orthogonality */
Witness
{ P(PRIME.n) = 1 ∧ P(witness = WITNESS.n.a) = 1 } /* by orthogonality and result on Witness */

⇒ { P(¬witness) = 1 } /* by (3) */

Outer loop. If ¬PRIME.n, we define Inv : (∃i : P(prime) ≤ 2−T+i ∧ P(t = i ∧
¬PRIME.n) = 1) which shows that the probability of the algorithm to err decreases

5 CONCLUSIONS 14

exponentially in each iteration. Notice that Inv is equivalent to (∃i : q) ∨ p where

p : P(prime) ≤ 2−T ∧ P(t = 0 ∧ ¬PRIME.n) = 1
q : P(prime) ≤ 2−T+i ∧ P(0 < t ∧ t = i ∧ ¬PRIME.n) = 1

The following result, which will be of use below, follows by orthogonality, (Assign) and
some simple calculations:

{ P(prime) = 1 ∧ P(¬PRIME.n) = 1 }
Uniform;Witness; prime := prime ∧ ¬witness
{ P(prime) ≤ 1/2 }

(9)

In the calculation below, we apply rule (Or) and use the same format as before.

{ P(¬PRIME.n) = 1 ∧ P(T = t) = 1 }
prime := true;
{ P(¬PRIME.n) = 1 ∧ P(T = t) = 1 ∧ P(prime) = 1 }

⇒ { Inv }

{ (∃i : q) }
{ q } /* by (Exists) */
do t 6= 0→

{ (t 6= 0)?q }
⇒ { ∃r : P(prime) = r ∧ r ≤ 2−T+i ∧ P(t = i ∧ ¬PRIME.n) = 1 }
{ P(prime) = r ∧ r ≤ 2−T+i ∧ P(t = i ∧ ¬PRIME.n) = 1 }
/* last step by (Exists) */

⇒ { r · [P(¬PRIME.n) = 1] ∧ r ≤ 2−T+i ∧ P(t = i ∧ ¬PRIME.n) = 1 }
Uniform;Witness; prime := prime ∧ ¬witness;
{ r · [P(prime) ≤ 1/2] ∧ r ≤ 2−T+i ∧ P(t = i ∧ ¬PRIME.n) = 1 }
/* last step holds by (Lin ·), orthogonality and (9) */

⇒ { P(prime) ≤ 2−T+i−1 ∧ P(t− 1 = i− 1 ∧ ¬PRIME.n) = 1 }
t := t− 1
{ P(prime) ≤ 2−T+i−1 ∧ P(t = i− 1 ∧ ¬PRIME.n) = 1 }

{ ¬(t 6= 0)?q } skip { ¬(t 6= 0)?q } ⇒ { P(true) = 0 }

{
`
P(prime) ≤ 2−T+i−1 ∧ P(t = i− 1 ∧ ¬PRIME.n) = 1

´
+ (P(true) = 0) }

⇒ { q[i/i− 1]} ⇒ { Inv }
od
{ Inv ∧ P(t 6= 0) = 0 }

{ p}
do t 6= 0→

{ (t 6= 0)?p}
⇒ { P(true) = 0 }

Uniform;
Witness;
prime := prime ∧ ¬witness;
t := t− 1
{ P(true) = 0 }

{ ¬(t 6= 0)?p }
skip
{ ¬(t 6= 0)?p } ⇒ { p }

{P(true) = 0 + p}
⇒ { p } ⇒ { Inv }

od
{ Inv ∧ P(t 6= 0) = 0 }

⇒ { P(¬prime) ≥ 1− 2−T }

If n is prime, take Inv : P(PRIME.n) = 1 ∧ P(prime) = 1. Notice that
{Inv}Uniform; Witness {Inv∧P(¬witness) = 1} prime := prime∧¬witness {Inv}.
By observing that Inv ≡ ((t 6= 0) ∧ Inv) ∨ ((t = 0) ∧ Inv) and applying rule (Or), it is
straightforward to calculate the following.

{ P(PRIME.n) = 1 }
prime := true;
{ Inv }
do t 6= 0→ Uniform;Witness; prime := prime ∧ ¬witness; t := t− 1 od
{ Inv ∧ ¬(t 6= 0) } ⇒ { P(prime) = 1 }

5. Conclusions
In the following we report our conclusions on the use of both verification techniques. We
compare them focusing their expressiveness and complexity on formal manipulation. We
also hint some improvements and further research directions.

Expressiveness. We divide this part according to the underlying logic, the program-
ming language, and the full calculus. The logic behind pGCL is the usual predicate logic
but reinterpreted in the real interval [0, 1]. Such interpretation should be understood as the

5 CONCLUSIONS 15

expected probability that the property holds. Instead pH provides a richer language for
the logic where formulas are allowed to talk about the probability of events (described as
plain predicate logic) but still interpreted in the usual boolean lattice. Therefore, it allows,
for instance, to compare probabilities of different events as in P(x > 4) < P(y = z).

With respect to the programming language under the calculus, there are some
characteristics that, though not evident in our article, they are worth to mention. First,
the full pGCL calculus is build based on Jones [12] and Kozen [14] calculi by extend-
ing it with a non-deterministic operation. There is also a version of pH that includes
nondeterminism, but it does not allow for loops [7]. Second, pGCL allows for parameter-
ized probabilistic operation (i.e., the subindex ρ in⊕ρ could be any expression containing
program variables) while pH only allows for constant values.

If restricted to deterministic language, the proof system for pH is richer than the
weakest pre-expectation calculus. pGCL formula and pH triple

ρ ∗ [p] V wp.s.[q] and {P(p) = 1} s {P(q) ≥ ρ} (10)

are equivalent. Consequently, pH allows to verify richer properties in only one proof. A
particular example arises in the proof of one iteration of the main loop of the Miller-Rabin
for the case ¬PRIME.n. pGCL requires two different proof to asses that variable witness
is valid with probability larger than 1/2 (equation (5)) or that it is false with probability
smaller than 1/2 (equation (6)). (Notice that in general is not true that wp.s.[p] ≡ 1 −
wp.s.[¬p] since s may not terminate with certain probability). Instead, pH allows to
deduce one from the other in only one step (see (8)).

It is the view of the authors that a pH triple is usually easier to understand than a
pGCL formula for the following reasons. First, probabilistic predicates in pH are inter-
preted as true or false, while in pGCL the interpretation is on the real line. Second, in a
pGCL expression P V wp.s.Q predicates P and Q are not the pre- and post-condition of
program s. This can be observed in (10) where the value ρ, representing the probability of
the postcondition, appears on the lefthand side (i.e., in P). This has been particularly dis-
turbing at the moment of finding loop invariants in pGCL. They usually were obtained by
fine tuning rather than intuition. (Noticeably, the intuition reported above for loop invari-
ant I in Uniform ′ wrongly –but intentionally– binds operation ∗ to an equality when we
say that the probability “is 2−lg2.k”.) On the contrary, the notion of invariant in pH is fully
compatible with that in Hoare logic since in both cases, assertion {P} in a proof outline
completely describe the set of states that makes P valid at that point of the program.

Complexity of the proofs. pGCL provides a mature and simple calculus. The simplic-
ity arises for a clear separation between predicate logic (appearing only between square
brackets) and functions (which are the interpretation of such predicates). The manipula-
tion of both types of expressions are well understood. Besides, the years of development
and study of pGCL provided a significant number of properties and theorems that facil-
itates its manipulation (see Section 3.1). It is our experience that once familiarized with
the interpretation of the logic, calculations with pGCL are fairly easy.

On the other side, pH has been much harder to manipulate for precisely the oppo-
site reasons. Both the significant expressibility and the lack of development behind this
calculus obliged us to go down to basic semantic manipulations. On the one hand, it is
the lack of an axiomatization for the new operations of the probabilistic logic, namely
summation (P + Q), scalar multiplication (ρ · P), and “cut” (c?P). On the other hand,
proving loop termination demands to check for 〈c, s〉-closedness, a pure semantic notion
that requires fairly complex mathematic manipulation. Compare this to pGCL where we
only used existing theorems and lemmas.

REFERENCES 16

Therefore, there is still much to develop on pH . On this paper, in particular,
we improved the proof outline style (compared to [7]) making proofs more self contained
(rather than splitted in several lemmas). Moreover, our proofs on loops (with the exception
of FactorTwos and Uniform) follows the same pattern: split the invariant in two disjoint
disjuncts, one holding only if the guard of the loop is true, and the other holding only if
the guard is false, and apply rule (Or) on this disjunct. (This proof process was introduced
in [7].) This suggest the following rule

(p ≡ q1 ∨ q2) ∧ ((¬c?q1) ≡ (P(true) = 0)) ∧ ((c?q2) ≡ (P(true) = 0))
{c?q1} s {p} (¬c?q2)⇒ p p is 〈c, s〉-closed

{p} do c→ s od{p ∧ P(c) = 0}
(While′)

where the predicate in the top defines the splitting of invariant p, {c?q1} s {p} is a sim-
plification of the lefthand side of rule (Or), and (¬c?q2) ⇒ p is a simplification of the
righthand side.

Concurrent probabilistic programs. This comparison was motivated as a way to un-
derstand assertional calculi for probabilistic programs with a long-term aim of developing
an assertional calculus for concurrency. The weakest pre-expectation calculus includes
a non-deterministic construction which serves well in order to verify abstract models of
concurrent programs [4] using refinement techniques. Nevertheless, a compositional tech-
nique, such as that of Owicki-Gries for non-probabilistic program [19], provide a direct
verification of concurrent systems. In this direction pH seems more suitable because of
its potential of proof outlining (which is central in Owicki-Gries logic). Alternatively, one
can think of Jones’ work [12] which also presents Hoare like triples (and hence potential
for proof outlines), but like pGCL, assertions are interpreted in the reals.

Thanks
We want to thank especially to Jerry den Hartog and Carroll Morgan for their helpful
comments.

References
[1] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Report, Dep. of Computer Science and

Engineering, Indian Institute of Technology Kanpur, August 2002.

[2] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press/McGraw-
Hill, Cambridge, Massachusetts, 1990.

[3] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood Cliffs, N. J., 1976.

[4] C. Fidge and C. Shankland. But what if i don’t wait forever? Formal Aspects of Computing,
14(3):281–294, April 2003.

[5] R. Gupta, S.A. Smolka, and S. Bhaskar. On randomization in sequential and distributed algo-
rithms. ACM Computing Surveys, 26(1):7–86, 1994.

[6] J.I. den Hartog. Verifying probabilistic programs using a hoare like logic. In P.S. Thiagarajan and
R. Yap, editors, LNCS 1742 (ASIAN’99), pages 113–125. Springer, 1999.

[7] J.I. den Hartog. Probabilistic Extensions of Semantical Models. PhD thesis, Vrije Universiteit
Amsterdam, October 2002.

[8] C.A.R. Hoare. An axiomatic basis for computer programming. Communications of ACM, 12:576–
580, 1969.

[9] J. Hurd. Formal Verification of Probabilistic Algorithms. PhD thesis, Univ. of Cambridge, 2002.

REFERENCES 17

[10] J. Hurd. Verification of the Miller-Rabin probabilistic primality test. Journal of Logic and Alge-
braic Programming, 50(1–2):3–21, May–August 2003.

[11] J. Hurd, A. McIver, and C. Morgan. Probabilistic guarded commands mechanized in hol. 2nd
Workshop on Quantitative Aspects of Programming Languages, 2004.

[12] C. Jones. Probabilistic Non-determinism. PhD thesis, University of Edinburgh, 1990.

[13] D. Kozen. Semantics of probabilistic programs. Journal of Computer and Systems Sciences,
22:328–350, 1981.

[14] D. Kozen. A probabilistic pdl. In Proceedings of the fifteenth annual ACM symposium on Theory
of computing, pages 291–297. ACM Press, 1983.

[15] C. Morgan. Proof rules for probabilistic loops. In He Jifeng, J. Cooke, and P. Wallis, editors,
BCS-FACS 7th Refinement Workshop. Springer, 1996.

[16] C. Morgan and A. McIver. pGCL: Formal reasoning for random algorithms. South African Com-
puter Journal, 22:14–27, March 1999.

[17] C. Morgan, A. McIver, and K. Seidel. Probabilistic predicate transformers. ACM Transactions on
Programming Languages and Systems, 18(3):325–353, May 1996.

[18] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University Press, 1995.

[19] Susan S. Owicki. Axiomatic proof techniques for parallel programs. Technical Report TR75-251,
Cornell University, Computer Science Department, jul 1975.

[20] M.O. Rabin. Probabilistic Algorithms, pages 21–39. Academic Press, NY, 1976.

[21] K. Seidel, C. Morgan, and A. McIver. Probabilistic imperative programming: a rigorous approach.
In L. Groves and S. Reeves, editors, Formal Methods Pacific ’97. Springer, 1997.

[22] M. Vasquez. Verificación Comparativa del Algoritmo de Miller-Rabin. Master’s thesis, Faculty of
Mathematics, Astronomy and Physics, National University of Córdoba, May 2004.

