
Optimizing Probabilities of
Real-Time Test Case Execution

Nicolás Wolovick and Pedro R. D’Argenio
Fa.M.A.F.

Universidad Nacional de Córdoba
5000 Córdoba, Argentina

Email: {nicolasw,dargenio}@famaf.unc.edu.ar

Hongyang Qu
Department of Computing

Imperial College
London SW7 2RH, U.K.

Email: hongyang.qu@imperial.ac.uk

Abstract—Model-based test derivation for real-time system
has been proven to be a hard problem for exhaustive test
suites. Therefore, techniques for real-time testing do not aim
to exhaustiveness but instead respond to particular coverage
criteria. Since it is not feasible to generate complete test suites
for real time systems, it is very important that test cases are
executed in a way that they can achieve the best possible result.
As a consequence, it is imperative to increase the probability of
success of a test case execution (by ‘success’ we actually mean
‘the test finds an error’). This work presents a technique to
guide the execution of a test case towards a particular objective
with the highest possible probability. The technique takes as a
starting point a model described in terms of an input/output
stochastic automata, where input actions are fully controlled by
the tester and the occurrence time of output action responds to
uniform distributions. Derived test cases are sequences of inputs
and outputs actions. This work discusses several techniques to
obtain the optimum times in which the tester must feed the
inputs of the test case in order to achieve maximum probability
of success in a test case execution. In particular, we show this
optimization problem is equivalent to maximizing the sectional
volume of a convex polytope when the probability distributions
involved are uniform.

I. I

Testing is an essential component of the life cycle of
computer systems. It is usually at the last stage of the devel-
opment process and it has the aim to find the errors that were
introduced in the implementation or that remained undetected
in previous verification phases. One prominent approach to
test derivation is the so-called model-based testing, which is
mainly a black-box technique (see, e.g., [6]). In this approach,
tests are derived from a model that provides an abstract
description of the functional and quantitative aspects of the
system under test. A widely studied approach is test derivation
out of automata-like models (e.g. [18], [28]).

In the context of this work we focus on testing real-time
systems. Model-based test derivation for real-time system
has been proven to be a hard problem for exhaustive test
suites [27]. Therefore, techniques for real-time testing do

Research supported by the CNRS/CONICET Cooperation Project “Verifica-
tion Methods for Timed and Probabilistic Concurrent Programs”. N. Wolovick
and P.R. D’Argenio are supported by the the ANPCyT project PICT 26135 and
CONICET project PIP 6391. P.R. D’Argenio is also a CONICET Researcher.
H. Qu is supported by the European Commission Framework 6 funded project
CONTRACT (IST Project Number 034418).

not aim to exhaustiveness and respond to particular coverage
criteria (see e.g. [7], [22], [10], [5] and references therein).

Since it is not feasible to generate complete test suites for
real time systems, it is important that test cases are executed
in a way that they can achieve the best possible result. As
tests cannot guarantee the absence of error, one may consider
that a successful test is the one that actually finds an error.
This work presents a technique to guide the execution of
a test case towards a particular objective with the highest
possible probability. Such objective very much depends on the
coverage criteria and the aim of the test case. For example,
one may argue that errors are more likely to happen around
the boundaries of time specifications [7]. So one would like to
guide a test to increase the probability of reaching a particular
boundary. Alternatively, one may like to increase probabilities
for stress testing, thus guiding the test to reach extreme
situations that are more likely to fail (e.g. buffer overflows).

In this work, we assume that the system is modelled as
a set of parallel components. Each component is modelled
as a controlled automaton where (controlled) input actions are
governed by the environment and (uncontrolled) output actions
can occur within a given time interval. The best possible
choice to estimate the occurrence time of an event when only
the time interval is known is by assuming that it is uniformly
distributed (uniform distributions are precisely the maximum
entropy probability distribution supported in a closed interval).
There is also an important technical consequence of choosing
only uniform distributions: the density function of a uniform
is a constant function, and hence the problem we deal with
is much more tractable. Therefore, the technique starts with
a model of the real-time system, represented in a controlled
variation of the so-called generalized semi-Markov processes
(GSMP) [12]. In this model there are (controlled) input and
(uncontrolled) output actions. Inputs are fully controlled by
the user and outputs are temporized actions controlled by a
uniform distribution just like in GSMPs.

It is not the aim of this paper to address test case derivation
in general, but only to derive the best possible times in which
inputs should be fed. So we assume test cases are already
obtained somehow on (some abstraction of) this model (see
Sec. IV). We consider the test case to be a sequence of inputs
and outputs ending on a verdict. The execution of the test case

can be seen as a game between the tester, that feeds the inputs,
and the system under test (SUT), that plays an adversarial role
by producing outputs. These outputs may be expected in the
test cases, or unexpected, in which case the verdict would most
probably be inconclusive.

We present a technique to derive the optimal time to feed
each input of the test case to the SUT so that the system is
guided with highest probability towards the end of the test
case, where the actual verdict takes place. Most of the paper
is devoted to the calculations of the input times off-line, that
is, prior to the actual execution of the test. We show that the
problem of computing the optimal input transition times to
maximize the probability of a test case execution, is equivalent
to maximizing the sectional volume of a convex polytope.
This actually presents the bulk of the technical details. The
basic ideas of the technique are based on [14], where test
cases were merely observational (not controlled), and hence
present only a calculational technique, in the sense that it only
reports a probability value (contrarily to our work that attacks
an optimization problem).

Of course, fixing the time in which every input should be
feed prior to the execution of the test is suboptimal. Consider,
for instance, a test aibjc where i and j are inputs and the
rest outputs. It is most likely that the optimal time to feed
j depends on all the past history, that is, in order to decide
when to feed j it is better to know the occurrence times of
a, i, and b. Therefore it is convenient to be adaptive, that is,
to select the input time only when the execution time of all
previous events are known. We also present an adaptation of
the previous algorithm to an on-the-fly version.

As computation takes time and we are testing real-time sys-
tems, on-the-fly calculations are continuously racing against
the occurrence time of the SUT output events. Therefore, we
discuss a modification of this “ideal” on-the-fly algorithm to
deal with the races and get the best possible choice on the
time to feed an input.

These novel ideas leave room for much improvement. Some
of the used algorithms are of exponential nature but used
together with simple DBM-like structures [8]. Moreover, some
calculations in the on-the-fly algorithm can be partly reused
along the execution of the test and we have not explored
how much of the calculations can be performed symbolically
off-line. These and many other issues are discussed in the
conclusion of the paper.

Related topics: In [20] optimal input times are also selected
but in a different context and model. They obtain a parametric
integral that is a measure of the correctness of the implemen-
tation. Besides the stochastic component is separated from the
model. The non-observable timeouts of a timed finite state
machine are modelled through an inertia probability function.
Although similar integrals are obtained, in this work it is not
mentioned how to obtain the optimal times.

Organization of the paper: Sec. II introduces the preliminaries
on mathematics. The model is introduced in Sec. III and
Sec. IV discusses possible solutions to test case derivation.

Sec. V presents the calculation of the probability of a test case.
This probability value is actually a function on the occurrence
time of the inputs and it is the object of maximization. In
fact, such function is a parametric volume which is subject
of study in Sec. VI. The maximization algorithm is presented
in Sec. VII. Sec. VIII discusses the on-the-fly maximization
algorithm and the variant that deals with the race against the
occurrence time of the SUT output events. Sec. IX concludes
the paper mainly focusing on possible improving techniques
and further work.

II. M 

Given a set Ω and a collection F of subsets of Ω, we call F
a σ-algebra iff Ω ∈ F and F is closed under complement and
denumerable disjoint union. We call the pair (Ω,F) a measur-
able space. Any set A ∈ F is called measurable. By B(T) we
denote the Borel σ-algebra of topological space T generated
by open sets, e. g., B(R+) denotes the set generated by all right-
open intervals over R+. Given a measurable space (Ω,F), a σ-
additive function P : F → [0, 1] is called probability measure
if P(Ω) = 1. The triple (Ω,F , P) is a probability measure
space. A function f : (Ω1,F1) → (Ω2,F2) is measurable if
∀A2 ∈ F2, f −1(A2) ∈ F1, i. e., the inverse function maps mea-
surables to measurables. This condition is fulfilled for a Borel
σ-algebra over the reals iff f −1([a, b)) ∈ B(R), i. e. it has to be
valid for the generators. A random variable X on a probability
space (Ω,F , P) is a Borel measurable function from Ω to R,
for example, the identity function or any linear function is a
random variable on the probability space (R,B(R), P). Given
random variable X, the probability measure induced by X is
PX(B) � P {ω | X(ω) ∈ B} = P(X−1(B)), where B ∈ B(R).
A Borel measurable function f is the probability density of
random variable X if PX(B) =

∫
B f (x) dx for all B ∈ B(R).

Examples of a density function is the uniform distribution
on [a, b], f (x) = (if a ≤ x ≤ b then (b − a)−1 else 0). A
random vector X is a measurable function from Ω to Rn,
which all the above definitions apply and it can be regarded as
n random variables (X1, . . . , Xn). These random variables are
said to be independent if P{X1 ∈ B1, . . . , Xn ∈ Bn} = P{X1 ∈

B1} · · · P{Xn ∈ Bn} and this corresponds to the intuition that
knowledge about any subset of random variables {Xi} does
not affect the odds of the rest. Given an independent random
vector X = X1, . . . , Xn with density functions f1, . . . , fn, by
previous definition and [1, Corollary 4.8.5] we have:

PX(B) =

∫
B

f1(x1) . . . fn(xn) dx1 . . . dxn (1)

A subset K of Euclidean space Rn is said to be convex if for
all x1, x2 ∈ K and 0 < λ < 1 then λx1 +(1−λ)x2 ∈ K. In Rn we
call half-space the sets of points in one of the two regions in
which a hyperplane divides the whole space, i. e. the solutions
of a1x1 + · · ·+anxn ≤ b. A convex polytope is a bounded subset
of Rn which can be equivalently defined as the solutions of the
inequality A~x ≤ ~b or the finite intersection of half-spaces (This
is the so-called halfspace representation.). Convex polytopes
are closed under intersections and projections. Given two

polytopes K1,K2 the Minkowski sum is the sum of all vectors
belonging to each polytope K1 + K2 � {x1 + x2 | x1 ∈ K1, x2 ∈

K2}. We could seemingly define scalar multiplication λK of a
polytope. By Vol(K) we denote the volume of polytope K.

III. T 

Definition 1: A Stochastic Timed I/O Automaton (STIOA) is
a structure T = (V,Σ) where

1) V is a finite set of program variables, and
2) Σ is a finite set of transitions partitioned in two sets: set

ΣI of input transitions and set ΣO of output transitions.
Each transition α ∈ Σ includes the following components:
a) A first order predicate en(α) over the variables V

called enabling condition of α.
b) A transformation function Fα : V → V on the program

variables V which is applied to them if transition α is
taken.

c) For output transitions, the interval [lα, uα] states the
period during which α can be taken starting when en(α)
first holds. We require lα < uα, and for simplicity we
set bounds in N.

Each output transition α is associated with a count-down
clock cl(α). Every time α becomes enabled, cl(α) is set to a
value in the interval [lα, uα], and its value starts to decrease.
Once it is equal to zero, α is executed. If α is disabled before
its clock reading reaches zero, the clock stops running and
it is reset to zero (note that α is not executed). There is
also an increasing global clock cl(gt) per system. When the
system starts to run, it begins to run and never stops. For
α ∈ ΣO, cl(α)(s) (respectively cl(gt)(s)) denotes the reading of
cl(α) (respectively cl(gt)) in the state s (value of variables and
clocks), and for α ∈ ΣO ∪ ΣI , s |= en(α) represents that the
enabling condition en(α) of α holds in the state s, i. e., α is
enabled in s.

The model is similar to the one in [14]. However, we
differentiate between input and output transitions, obtaining a
nondeterministic system. Output transitions are not governed
by the environment and the occurrence time of an output
transition αO ∈ ΣO respects a probability distribution whose
support set falls in the interval [lαO , uαO]. For the rest of the
work, we fix this distribution to be uniform in such interval.

The input transitions are controlled by the environment.
The precise moment in which an input transition takes place
is chosen non-deterministically by the environment. Hence
it does not obey any probability distribution inherent to the
system. Basically these inputs parametrize the model in [14].

We define probabilistic execution as an alternating sequence
of time passing and transition executions starting from an
initial state s0.

Definition 2: A probabilistic execution of a system T is a
finite sequence of the form s0g1α1s1g2α2s2g3 . . . sn−1gnαnsn,
where si, gi are states and αi are transitions. The state s0 is
the initial state of T . The adjacent pair si, gi+1 represents
time passing, therefore V(si) = V(gi+1), whereas all the
enabled clocks move at the same speed, e.g., cl(αi+1)(si) −

cl(αi+1)(gi+1) = cl(gt)(gi+1) − cl(gt)(si) if αi+1 ∈ ΣO. The
triple giαisi represents a transition execution, so αi has to be
enabled in gi, i. e., gi |= en(αi) and, if αi ∈ ΣO, its clock
reading should be 0, that is, cl(αi)(gi) = 0. The transition
execution is instantaneous such that cl(gt)(gi) = cl(gt)(si), and
the state changes accordingly V(si) = Fαi (V(gi)). If a transition
β ∈ ΣO becomes enabled by the execution of αi such that
gi |= ¬en(β) ∧ si |= en(β), or β = αi becomes enabled again
si |= en(β), then cl(β)(si) is a value chosen randomly in [lβ, uβ].
In the case a transition γ ∈ ΣO is disabled by the execution of
αi such that gi |= en(γ) ∧ si |= ¬en(γ), its clock is reset, i. e.,
cl(γ)(si) = 0. Clocks of other transitions remain unchanged in
si and gi.

Definition 3: A path is a finite sequence of actions σ =

α1 . . . αn. It is consistent with an execution ρ if it is obtained
by removing all the state components of ρ.

Participating transitions: When the system reaches a state,
it defines a set of transitions that are enabled. At this point,
a race begins if there are more than one enabled transition.
Therefore the probability of taking a transition is a function
of all enabled transitions, not only the one that is needed to
be taken.

Definition 4: The enabledness period of a transition αi

(not necessarily in ρ) with respect to the execution ρ =

s0g1α1s1g2α2s2g3 . . . sn−1gnαnsn is [start(i), stop(i)], where
start(i) � min{ j | 0 ≤ j ≤ (n − 1) ∧ s j |= en(αi)} and
stop(i) � max{ j | 1 ≤ j ≤ n ∧ g j |= en(αi)}. If a transition
is never enabled in ρ, its enabledness period is empty.
A transition is a participating transition of an execution
ρ if its enabledness period with respect to ρ is nonempty.
By definition αi in ρ has nonempty enabledness period that
includes i. We consider all transitions participating in a path
to be different, renaming each occurrence when necessary to
comply with this restriction. Then we can easily see that the
enabledness period of αi in ρ is continuous, i. e. sstart(i) |=

en(αi), gstop(i) |= en(αi) and ∀ j : j ∈ [start(i) + 1, stop(i) − 1] :
s j |= en(αi) ∧ g j |= en(αi).

IV. I    

It is not the aim of this paper to address test case deriva-
tion. Nevertheless, in this section we briefly review existing
techniques and mention how they can be applied to our model.

First of all, notice that a STIOA is a (externally) determinis-
tic I/O labelled transition system (IOTS) when time aspects are
disregarded: states are given only by assignment on variables
in V (but have no information on clock values), the set of
labels is ΣI ∪ ΣO = Σ, and the transition relation is defined
by s

α
−−→ s′ whenever s |= en(α) and V(s′) = Fα(V(s)) for all

α ∈ Σ. The IOTS can be easily modified to be input enabled. A
possible modification is to add a new state sδ and a transition
s

α
−−→ sδ for each state s and α ∈ ΣI such that s 6|= en(α).
On this model, it is possible to use, for instance, Tretmans’

algorithm for test case derivation [28]. Test cases obtained this
way are trees where each node has either a single outgoing
input transition, or a set of outgoing outputs. As we need tests

that are linear sequences, they can be obtained from the tree by
selecting a descending path. A transition that branches away
from the path yields a failing test if it ends in a failing node
in the original test, or an inconclusive test if the original test
has a continuation.

A STIOA can also be translated to observable nondetermin-
istic finite state machine (ONFSM) by taking two new labels −i

and −o that identify the null input and null output respectively,
and defining s

α/−o
−−−−→ s′ if s |= en(α) and V(s′) = Fα(V(s)) for

all α ∈ ΣI ; if, instead, α ∈ ΣO, define s
−i/α
−−−−→ s′. The set of

states are as for IOTS. On this model, test cases can also be
derived (see, e.g, [18]).

Other methods and techniques are possible, but, in any case,
the generated test cases should be carefully considered. When
the time behavior is disregarded, impossible test cases can be
derived. For instance, consider the STIOA

•s1 •s0a
[1,2]oo

b

[3,4] // •s2

with s0 being the initial state. A test for the b transition is
never realized since transition a is always faster. If time is
taken into account in order to derive tests, impossible tests
are not generated (see e.g. [7], [27], [22], [10], [4]), though
timed test derivation may become prohibitively expensive if
trying to be exhaustive [27].

A successful test is the one that actually finds an error. In
the following, we present a technique to probabilistically guide
the execution of a test case towards a particular objective. Such
objective very much depends on the coverage criteria and the
aim of the test case.

V. T     

We first define a test case as a path ending in an output
action, i. e. given σ = α1α2 . . . αn, then αn ∈ ΣO. The
assumption that test cases end with an output is reasonable
(inputs can be fed at any moment) and consistent with existing
techniques for test derivation (see e.g. [28]). Given a test case
running on the execution ρ = s0g1α1s1g2α2s2g3 . . . sn−1gnαnsn,
let [ρ] = {α1, . . . , αn} be the set of transitions in the test case
and [ρ]′ = {αn+1, . . . , αm} be the set of transitions that are
enabled somewhere along ρ but do not belong to [ρ], i. e., they
are not executed by ρ. We do not consider input transitions
that are enabled along ρ but deviate from its execution. Such
inputs would make the test case render an inconclusive verdict
something one can avoid since inputs are controllable.

Let [ρ]I = {I1, . . . , Ik} ⊆ [ρ] ∪ [ρ]′ be the set of the input
transitions and [ρ]O = {O1, . . . ,Ol} ⊆ [ρ] ∪ [ρ]′ the set of the
output transitions, where k + l = m. Let X = {x0, . . . , xn} be
the set of global time points where xi = cl(gt)(si) (1 ≤ i ≤ n)
is the instant when αi ∈ [ρ] is taken (we take x0 = 0). For
any output transition αO j ∈ [ρ]O with the enabledness period
[start(O j), stop(O j)], xstart(O j) ∈ X is the time point where αO j

becomes enabled, and xO j = xstart(O j) + cl(αO j)(sstart(O j)) is the
time αO j is expected to occur, where cl(αO j)(sstart(O j)) is the
initial value of the clock cl(αO j) in the state sstart(O j). For any
α′O j
∈ [ρ]′, xstop(O j) ∈ X is the time α′O j

becomes disabled.

In order to compute the probability of executing the given
test case, we need to set up time constraints for the test case.
First of all, the global time points in X are ordered in time,
which is deduced from the sequential execution of transitions
in [ρ].

x0 < x1 < · · · < xn (2)

For every output transition (taken or enabled but not taken)
αO j ∈ [ρ]O, the initial value of the clock cl(αO j) has to be
chosen within its bounds when it has been enabled.

lO j ≤ cl(αO j)(sstart(O j)) = xO j − xstart(O j) ≤ uO j (3)

To make sure that all transitions αO j ∈ [ρ]′ are not executed,
we require the following constraint, which means that when
αO j becomes disabled, it has a nonzero clock value.

xstop(O j) < xO j (4)

Note that if the system is composed solely of outputs, then
all xO j would be bounded. Adding inputs can invalidate this
property. Since we are aiming to give the best timing to feed
inputs we can safely disregard systems where this time could
be arbitrary. From now on, we will assume that the STIOA
model and the test case define an inequality system where all
global time values x1, . . . , xm are bounded.

Example: This system has three parallel components with two
inputs i, j and four output transitions a, b, c, d. The output
transition a is used to synchronize the enabling of i and j,
and for that purpose it was split in a synchronized sender a!
and a receiver a?.

•s1
a? // •s2

i // •s3
b

[4,6]
// •s4

•t1
a!

[1,2]
// •t2

j // •t3
c

[2,5]
// •t4

•u1
d

[1,9]
// •u2

The relevant part of the parallel composition of this system
with respect to the test case σ = aijbc is:

•w1
a

[1,2]
//

d

[1,9]
##FF

FF
FF

FF
F •w2

i //
d

[1,9]
##FF

FF
FF

FF
F •w3

j //
d

[1,9]
##FF

FF
FF

FF
F

b

[4,6]

;;xxxxxxxxx
•w4

b

[4,6]
//

d

[1,9]
##FF

FF
FF

FF
F

c

[2,5]

;;xxxxxxxxx
•w5

c

[2,5]
//

d

[1,9]
##FF

FF
FF

FF
F •w6

d

[1,9]
!!B

BB
BB

BB
B

d

[1,9]
!!B

BB
BB

BB
B

Note how transitions b, c, d have enabledness period that are
not singletons therefore its clocks are set in its first occurrence.
Below is the summary of all inequalities obtained using (2)
and (4) for the left column, and (3) for the right column.

0 < xa < xi < x j < xb < xc 1 ≤ xa ≤ 2
xc < xd 4 ≤ xb − xi ≤ 6

2 ≤ xc − x j ≤ 5
1 ≤ xd ≤ 9

Given the execution ρ, inequalities (2), (3) and (4) define a
region B ranging on two different types of variables: inputs
xIi and outputs xO j . The inputs are defined by the envi-
ronment therefore we consider them as external parameters.

The outputs have a stochastic behavior given by indepen-
dent random variables on the probability space (Ω,F , P) =

([0, 1],B([0, 1]),U[0, 1]), i. e. the standard uniform probability
space on the real interval [0, 1]. Each random variable is in
fact a measurable linear function xO j : [0, 1]→ R+ that maps
the interval [0, 1] to lay in (3):

xO j (w) = (uO j − lO j)w + lO j + xstart(O j) (5)

Region B can be seen as a function from inputs parameters to
a region ranged by independent uniformly distributed random
variables, B(xI1 , . . . xIk). The probability of this parametric
region B is given by equation (1).

PxO1 ,...,xOl
(B(xI1 , . . . , xIk)) =∫

B(xI1 ,...,xIk)
f1(xO1) . . . fl(xOl) dxO1 . . . dxOl

where f j is the probability density distribution of random vari-
able xO j , that is ((xstart(O j) + uO j)− (xstart(O j) + lO j))

−1 = 1
uO j−lO j

.
Factoring out constants, the probability of an execution is:

PxO1 ,...,xOl
(B(xI1 , . . . , xIk)) =

l∏
j=1

1
uO j−lO j

·

∫
B(xI1 ,...,xIk)

xO1 . . . dxOl (6)

where the integral is simply the volume of the region
B(xI1 , . . . , xIk) and it will be denoted V(xI1 , . . . , xIk) �
Vol(B(xI1 , . . . , xIk)). The expression follows the classical idea
of probability theory, the probability is the possible volume
divided by total volume. Note that if there are no inputs, the
expression is the same as obtained in [14].

The inputs add parameters to the probability therefore it is
reasonable to ask when those input actions should be taken
in order to maximize the probability of the test case. Put in
other words, find which xI1 , . . . , xIk give the maximum volume
of B(xI1 , . . . , xIk). But first we focus on practical aspects about
the computation of the V function.

VI. P    

Given the test case, there is a set α1 . . . αnαn+1 . . . αm of
participating transitions, which in turn generate a set of
inequalities through (2), (3) and (4). For the sake of volume
computation it is the same if we take all inequalities as ≤. In
general these equations form a system of inequalities A~x ≤ ~b,
where the vector ~x denote the outputs xO1 , . . . , xOl and inputs
xI1 , . . . , xIk , A is a matrix of size o × m with elements in
{−1, 0, 1}, where o is the number of simple inequalities of the
form ±xi ≤ c or xi − x j ≤ c generated by previous equations,
and ~b is a column vector of integer constants of size m.
This kind of system is known as separation theory [23], [21],
and the model checking community has developed a practical
representation called DBM [8].

Then B(xI1 , . . . , xIk) is simply the set of solutions of the
system {~x | A~x ≤ ~b}, therefore we need to compute the volume
of a parametric convex polytope of dimension l.

The procedure is based on the Fourier-Motzkin (FM) elim-
ination method described in [25]. The same has been done
in [14], but our case adds k columns for the inputs.

The FM method projects a system of inequalities in a
given coordinate in order to eliminate that variable. It is
to systems of inequalities what Gaussian elimination is to
systems of equalities. It is based on scaling, rearranging and
adding of rows, in order to obtain a system with the same
set of solutions but more suited to get the lower and upper
bounds of the solution set for each coordinate. It is worth
mentioning that all operations applied to the system maintain
the invariance of being DBM-like. The main difference with
Gaussian elimination is that rows are added to the matrix, in a
possibly exponential number. (There are many practical details
about the FM method, such as unsatisfiability of the system,
for this we suggest to read [25], [26].).

After applying the FM method to B(xI1 , . . . , xIk), we obtain a
set of matrices, which partition B(xI1 , . . . , xIk) into subregions.
In each subregion, the lower and upper bounds of xOi (1 ≤
i ≤ l) are the functions of xO1 , . . . , xOi−1 , xI1 , . . . , xIk , and the
lower and upper bounds of xI j (1 ≤ j ≤ k) are the functions of
xI1 , . . . , xI j−1 . The general form of a matrix is shown in Fig. 1.

xOl + a1
2 xOl−1 + · · ·+ a1

l xO1 + a1
l+1 xIk + · · ·+ a1

l+k xI1 ≤D1

−xOl + a2
2 xOl−1 + · · ·+ a2

l xO1 + a2
l+1 xIk + · · ·+ a2

l+k xI1 ≤D2

xOl−1 + · · ·+ a3
l xO1 + a3

l+1 xIk + · · ·+ a3
l+k xI1 ≤D3

−xOl−1 + · · ·+ a4
l xO1 + a4

l+1 xIk + · · ·+ a4
l+k xI1 ≤D4

. . .
...

xO1 + a2l−1
l+1 xIk + · · ·+ a2l−1

l+k xI1 ≤D2l−1

−xO1 + a2l
l+1 xIk + · · ·+ a2l

l+k xI1 ≤D2l

xIk + · · ·+ a2l+1
l+k xI1 ≤D2l+1

−xIk + · · ·+ a2l+2
l+k xI1 ≤D2l+2

. . .
...

xI1 ≤D2l+2k−1

−xI1 ≤D2l+2k

Fig. 1. A matrix generated by the FM method.

From the first 2l rows we obtain the affine limits of
integration for the outputs xO1 , . . . , xOl , while the rest 2k rows
constitute the applicability condition of the integral based
on the first 2l rows. The integral can be solved recursively
by symbolic computation using the fundamental theorem of
calculus

∫ b
a xk dx = xk+1

k+1

∣∣∣b
a, rendering a polynomial of degree l

on the k input variables. The sum of all polynomials that have
the same applicability function defines the evaluation function
of the applicability function. The whole set of matrices out
of the FM method gives V(xI1 , . . . , xIk) as a piecewise defined
continuous function of those polynomials given each applica-
bility condition.

Example: For the previous example STIOA with two inputs,
four outputs and test case σ = aijbc, the set of inequalities
generates a volume function which is a piecewise continuous
polynomial on xi, x j of degree 4 divided in 12 regions whose
function V is shown in Fig. 2 and depicted in Fig. 3.

V(xi, x j) =

− 1
6 (−5 + xi)3 (3≤ xi<4 ∧ x j−xi<2 ∧ 4≤ x j)∨

(4≤ xi<5 ∧ 0< x j−xi<2)
1
3 (49 − 24xi + 3x2

i) 2< xi<3 ∧ 2< x j−xi ∧ 4≤ x j
1
2 (6 + xi − x j)(−7 + x j)2 2< xi<3 ∧ 4< x j−xi ∧ x j<7
1
2 (−1 + xi)(6 + xi − x j)(−7 + x j)2 1< xi<2 ∧ 4< x j−xi ∧ x j<7
− 1

6 (−1 + xi − x j)2(−13 + xi + 2x j) (2< xi<3 ∧ 0≤ x j−xi<1)∨
(3≤ xi<4 ∧ 0< x j−xi ∧ x j<4)

− 1
6 (−1 + xi)(−1 + xi − x j)2(−13 + xi + 2x j) 1< xi<2 ∧ 0≤ x j−xi<1

1
3 (1 − 24xi + 3x2

i + 24x j − 3x2
j) 2< xi<3 ∧ 1< x j−xi ∧ x j<4

1
3 (−1 + xi)(1 − 24xi + 3x2

i + 24x j − 3x2
j) 1< xi<2 ∧ 1≤ x j−xi<2

1
6 (49 − 147xi + 84x j + 42xi x j − 27x2

j − 3xi x2
j + 2x3

j) 3≤ xi<5 ∧ 2< x j−xi ∧ x j<7
1
6 (22 − 120xi − 9x2

i + x3
i + 84x j + 42xi x j − 27x2

j−

3xi x2
j + 2x3

j) 2< xi<3 ∧ 2< x j−xi<4
1
6 (74 + 46xi − 111x2

i − 10x3
i + x4

i − 132x j + 90xi x j+

42x2
i x j + 33x2

j − 30xi x2
j − 3x2

i x2
j − 2x3

j + 2xi x3
j) 1< xi<2 ∧ 2< x j−xi ∧ x j<4

1
6 (−22 + 142xi − 111x2

i − 10x3
i + x4

i − 84x j + 42xi x j+

42x2
i x j + 27x2

j − 24xi x2
j − 3x2

i x2
j − 2x3

j + 2xi x3
j) 1< xi<2 ∧ x j−xi<4 ∧ 4≤ x j

Fig. 2. Sectional volume function for the running example.

Fig. 3. V(xi, x j) and its applicability conditions.

Complexity: The process of building V is divided in three
stages: the FM method, the symbolic integration and the
generation of the evaluation functions for the applicability
conditions.

For a test case ρ without input transitions, the complexity
for the first stage, defined on the number of integrals obtained
by the FM method, is O(9m) [14, Section 4.3], where m is
the number of transitions involved in ρ. Indeed, if there are
k input transitions and l output transition (k + l = m) in ρ,
the complexity is still O(9m) because each input transition can
be seen as an output transition with the bounds [0,∞) for the
FM method. It is worth noting that for implementation issues
there are specific techniques to deal with sparse matrices, like
the one in [26], where the authors proposed simplification,
variable selection and quasi-syntactic redundancy removal to
lessen the exponential growth of matrices.

The complexity for symbolic computation of an integral
obtained in the first stage is evaluated on the maximum number
of factors generated during integration. Note that we need to
integrate on the variables xOi (1 ≤ i ≤ l) for output transitions.
Moreover, we perform the integration backward, i. e., from
xOl to xO1 . To integrate the j-th variable xO j , the integration
function is of the form∑

Cyr1
1 yr2

2 . . . y
rp
p (7)

where yi ∈ {xO1 , . . . , xO j } ∪ {xI1 , . . . , xIk }, C is a constant and

q =
p∑

i=1
ri ≤ l− j. The number of factors in this function is less

than that in the following function

(y1 + · · · + yp + C)q, (8)

which has O((p + 1)q)) factors. Due to the important charac-
teristic of the FM method that a bound in the integral involves
at most one variable with power 1 and a constant, it is easy
to see that p + q ≤ m and p ≤ 2(l − j). We also know that
(p+1)(q−1) < pq. Therefore, the maximum number of factors in
formula (8) is O((m/2)(m/2)) if m

2 ≤ l or O((m − l)l) otherwise.
Obviously, the complexity of computing the evaluation

functions for the applicability conditions is linear in the
number of integrals obtained in the first stage.

VII. M     

In (6) the probability of the path was established as a
fraction with a numerator that is a function of xI1 , . . . , xIk , the
global times when the inputs are activated, and the constant
denominator that comes from the system being tested. The
maximization problem then has to deal with the numerator,
i. e. the integral, and it has special characteristics that make it
computationally tractable by a family of numerical algorithms.

The inequalities (2), (3) and (4) form an intersection
of convex halfspaces on variables x1, . . . , xm. Being those
variables bounded by system definition, then the inequali-
ties form a convex polytope of dimension m. The integral∫

B(xI1 ,...,xIk) dx1 . . . dxl is then the volume of B(xI1 , . . . , xIk),

and it is a function V : (R+)k → R+, where xI1 . . . xIk are the
input parameters of the maximization problem.

Let h(x, i) be the hyperplane in (R+)m defined by fix-
ing xi = x, let H be the subspace H(xI1 , . . . , xIk) �
{(xI1 , . . . , xIk , xO1 , . . . , xOl) | xO j ∈ R+, 1 ≤ j ≤ l}, that is the
intersection of the k hyperplanes h(xI1 , 1)∩ · · · ∩ h(xIk , k) each
of them fixing one input of the system, and let K be the convex
polytope generated by inequalities (2), (3) and (4). Then the
function V(xI1 , . . . , xIk) can also be seen as the volume of
the convex polytope K ∩ H(xI1 , . . . , xIk) that lays in (R+)m,
therefore the problem is equivalent to the maximization of the
sectional volume of a convex polytope.

V(xI1 , . . . , xIk) = Vol(K ∩ H(xI1 , . . . , xIk)) (9)

In [2] a particular version of this problem was solved, specifi-
cally when there is only one parameter for H (therefore it is a
hyperplane), that in our STIOA model corresponds to having
just one input. Avis et. al. first proved using Brunn-Minkowski
inequality [11] that V(x) is unimodal and then they used this
fact to compute the exact value for the maximum using a
prune-and-search strategy. Our case is a generalization of this
problem, namely instead of having an intersection hyperplane
of m−1 dimensions, it is a subspace H(xI1 , . . . , xIk) of m−k < m
dimensions.

In Fig. 4 there is a convex polytope in (R+)3 generated by
two outputs and one input satisfying 0< xi< xa< xb, 1≤ xa−xi≤

3 and 2 ≤ xb ≤ 5. There is also a sectional plane in xi = 2.
To the right is the continuous function of the sectional area
V(xi). Note the three different parts, being the first a concave
quadratic, the second linear and the third convex quadratic.

Fig. 4. A convex polytope and its sectional area.

Unimodality of sectional volume: Brunn-Minkowski inequal-
ity implies that the function giving the volume of parallel hy-
perplane sections of a convex body is unimodal [11], [2]. This
result is still valid if we extend the sectioning hyperplane to
intersections of hyperplanes forming a subspace with parallel
borders to the axis. This is exactly what we need for our case.

First we need to extend the concept of unidimensional
unimodality [2] to many dimensional functions [11, p.25].

Definition 5: If f is a nonnegative function on Rd, call f
unimodal if the level sets L(f , t) � {x | f (x) ≥ t} are convex
for every t ≥ 0.
Given a convex polytope K ⊆ Rd and the subspace generating
function H : Rc → Rd with c < d, where H(x1, . . . , xc) �
{(x1, . . . , xc, xc+1, . . . , xd) | xc+1, . . . , xd ∈ R} we define the
sectional volume of the polytope V(~x) � Vol(K ∩ H(~x)).
(Although function H maps into Rd, notice that the result
of applying H is a d − c dimensional volume.) We state the
Brunn-Minkowski inequality [11] that relates the volume of
two convex bodies.

Theorem 1 (Brunn-Minkowski): Given convex polytopes K,
L in Rd and λ ∈ (0, 1) the following inequality holds: Vol(λK+

(1 − λ)L)1/d ≥ λVol(K)1/d + (1 − λ)Vol(L)1/d.
The following set inclusion involving the Minkowsky sum

is also needed, with 0<λ<1.

K ∩ H(λ1~x1 + (1 − λ)~x2) ⊇
λ(K ∩ H(~x1)) + (1 − λ)(K ∩ H(~x2)) (10)

The following corollary is the main result of this section.
Corollary 1: The sectional volume V(~x) of a convex poly-

tope is a unimodal function.
Proof: Let ~x1, ~x2 ∈ Rc and S 1 = K ∩ H(~x1), S 2 =

K ∩ H(~x2). Clearly S 1, S 2 are convex polytopes in Rd−c.
Unimodality of V(~x) holds if the level sets L(V, t) are convex
for all t ≥ 0. Now suppose 0<λ<1 and ~x1, ~x2 ∈ L(V, t), that is
V(~x1),V(~x2) ≥ t, then we have to show V(λ~x1 + (1−λ) ~x2) ≥ t.

V(λ~x1 + (1 − λ)~x2)1/(d−c)

≥ { Using (10) }
Vol(λS 1 + (1 − λ)S 2)1/(d−c)

≥ { Brunn −Minkowski }
λVol(S 1)1/(d−c) + (1 − λ)Vol(S 2)1/(d−c)

≥ { ~x1, ~x2 ∈ L(V, t) }
t1/(d−c)

Convexity of level sets leads directly to the next proposition.
Proposition 1: For every unimodal function, local maxima

coincide with the global maximum.

Maximum Search: As we already said, our problem is a
generalization of the one given by [2]. It is worth to remark
that this method is not only exact but also fast, since it is linear
in the number of faces of the convex polytope in the case of
one input variable.

Although to the extent of this work we are not going to
extend the aforementioned exact and quick maximum sectional
volume computation, the unimodality of V let us approximate
the maximum value using numerical optimization methods. In
general the V function is not differentiable (in a finite set of
points) nor it maintains its convexity (see Fig. 4), therefore
many classical analytic methods are not applicable. However
its unimodality implies that there is one local maximum and
it coincides with the global maximum. In the unidimensional
case this leads to a family of algorithms that iteratively reduce
the interval of uncertainty where the maximum is achieved up
to an ε degree of accuracy [19]. The algorithm is based on
an invariant that says the point x∗ where f hits the maximum
is in the interval [a, b]. This interval is narrowed, choosing
two internal points a′ < b′ and comparing their f value. If
f (a′)< f (b′) then the maximum cannot be in [a, a′] therefore
the leftmost interval is discarded. The case f (a′) ≥ f (b′) is
symmetric. When the iterative construction finishes, the middle
point (a + b)/2 is usually taken as a final approximation of x∗.

{ Precondition : f (x∗) = maxx∈[a,b] f (x) }
{ Invariant : x∗ ∈ [a, b] }
do b − a ≥ ε →

Choose a′, b′ such that a<a′<b′<b
if f (a′)< f (b′)→ a, b := a′, b
2 f (a′) ≥ f (b′)→a, b := a, b′

fi
od

The way a′, b′ are chosen derives in different algorithms,
namely, golden ratio search, Fibonacci search, or its variation
using Lucas numbers [29]. If the number of evaluations is
fixed, Fibonacci search has been proven optimal (in the num-
ber of evaluations of the function) for finding the maximum
of a unimodal function [13]. For large number of iterations
Fibonacci search and golden ratio search coincide. Suppose
we choose Fibonacci search, therefore in the long run the
bracketing interval decreases 2/(1 +

√
5) ≈ 0.61803 each time.

The following rule of thumb is given in [24]: there is no
need to go for an ε smaller than 10−4 or 3 × 10−8 for single
or double precision floating point numbers respectively. This
implies approximately 20 or 36 iterations for each case, adding
4 iterations per digit of the initial bracketing interval length.

The case for many dimensions is described in [16] and it
is based on a recursion in the dimensions of the search space.
The base case is covered by the unidimensional algorithm.
Suppose we have an algorithm to approximate the maximum
for d dimensions maxx1,...,xd f (x1, . . . , xd), we can construct

an algorithm for d + 1 using the unidimensional algorithm
over the function maxx1,...,xd f (x1, . . . , xd, xd+1). Therefore this
algorithm is O(Nd), where N is the number of iterations for
the unidimensional case.

A crucial assumption for this class of algorithms is that
the region of uncertainty where the maximum lies has to be
known beforehand, and the size of this region is an important
complexity factor. The following is a procedure to get the
initial bracketing for one of the many pieces V can have. Recall
that FM method maintains DBM-like inequalities, therefore
the applicability condition can be of two forms: ±xi ≤ c and
xi − x j ≤ c. Since we ask the body defined by (2)–(4) to be
bounded, so this will be the initial bracketing.

In [23] a system of inequalities is encoded in a weighted
directed graph to decide satisfiability. The vertices are the
variables x1, ..., xm with a special vertex representing 0. For
each inequality xi − x j ≤ c the edge xi

c
−→ x j is added. In

the case of xi ≤ c, we add edge xi
c
−→ 0, changing the arrow

direction for −xi ≤ c. Then the shortest path from xi to 0
(0 to xi) is the minimal upper (maximal lower) bound of xi.
Using the Bellman-Ford single source shortest path algorithm,
in O(m2) steps we get all shortest paths from 0 to any xi, that is
all maximal lower bounds. Flipping the direction of all edges
and computing again we get the shortest paths from xi to 0,
obtaining the desired minimal upper bounds.

Example: For the running example the maximum volume is
4.333 achieved at xi = 2, x j = 4. Note that the maximum is
obtained pressing i as soon as we are sure a occurred, while
j has to be delayed two time units in a trade-off between
allowing b to happen first, and avoiding d to occur.

VIII. O--  

Given a system, we have showed how to compute all the
input action times in order to maximize the probability of a
test case σ. However, once some part of the test case has been
executed it is likely that the values originally calculated are not
optimal anymore knowing that certain values (the past values)
will not change in the future. In this section, we address the
question of whether these timings can be recomputed while the
test case is executing so that we can improve the probability
of success of the test case.

That is, we want to be adaptive along the test case execution
based on the timed history of such execution. Based on this
time history the algorithm should decide which is the optimal
time to feed the next input so that the probability of success
of the remaining part of the test case is maximized. Therefore
we need to define the concept of timed history.

Definition 6: A sequence 〈α1,C1〉, . . . , 〈αi,Ci〉 is a timed
history of path σ = α1, . . . , αn if 0<C1 < · · · <Ci and i ≤ n.

Given a path and a timed history of it, the system of
inequalities has to change in order to reflect that all global
time points x1, . . . , xi are fixed according to the timed-history.
This involves adding i equalities to the system.

x1 = C1, . . . , xi = Ci

Note that inequality (2) implies that every other absolute clock
should be greater or equal than the last clock value Ci. The
previous modification can lead to nontrivial arrangements in
the system of inequalities and this implies, in principle, a
complete recomputation of the function V .

Example: Here we have two processes with one input and
three outputs, being a! an output transition with a pairing input
transition a? that synchronize the two processes.

•s1
a? // •s2

b

[1,2]
// •s3

•t1
a!

[1,2]
// •t2

i // •t3
c

[1,2]
// •t4

The inequalities for the test case σ = aib are:

0 < xa < xi < xb 1 ≤ xa ≤ 2
xb < xc 1 ≤ xb − xa ≤ 2

1 ≤ xc − xi ≤ 2

and the volume function is:

V(xi) =


1
6 (1 − 6xi + 6x2

i + x3
i) 1 < xi < 2

1
6 (−33 + 39xi − 12x2

i + x3
i) 2 ≤ xi < 3

1
2 (16 − 8xi + x2

i) 3 ≤ xi < 4

V(xi) achieves a maximum of 0.8987 at xi = 2.26795. If the
output xa = 3

2 gets fixed in the timed history, the volume
function changes in a non-trivial way.

Ṽ(xi) =

{ 1
8 (−17 + 20xi − 4x2

i) 3
2 < xi<

5
2

1
2 (7 − 2xi) 5

2 ≤ xi<
7
2

Now the maximum is 1 at xi = 2.5, showing that the probabil-
ity could increase given that we have more information (The
intervals have length 1, therefore the probability is exactly the
volume.). Also note that the xi corresponding to previous V is
no longer optimal, Ṽ(2.26795) = 0.973.

It is worth mentioning that there are specific techniques to
deal with the projections of a system that is mix of equalities
and inequalities, where the Gaussian elimination and the FM
method are interleaved. Moreover in [26] it is argued that
adding equalities x=C instead of the equivalent two opposite
inequalities C ≤ x ≤C is an opportunity to lessen the matrix
growth in the projection process.

Suppose the system is evolving, namely the timed history
is growing in length. There are two possible cases for the next
incoming event, it could be output or input.

For the output case, there is nothing to do except recording
its occurrence time. Note that it is possible that given this
information the probability of the test case decreases. For
example, given a test case generating the area x1 ≤ x2 in the
square [0, 1]2, even though the surface occupies half the square
(a fair coin), if x1 falls in the second half, the probability of
remaining in the test case would be 1 − x1, becoming unfair.

For the input case the situation is different since we can
effectively act, taking into account the current timed his-
tory and achieve the maximum probability for the recorded
information. Given a running system and its timed history
〈α1,C1〉, . . . , 〈αi,Ci〉, where αi+1 = αI j ∈ ΣI is the next
incoming input, we add the i equalities to the system, V is

computed to reflect those changes, and later it is maximized
for all the remaining input variables. Finally this vector is
projected on the first coordinate xi+1, giving the exact time
when to feed the input.

It is worth noting that only xi+1 = xI j is used and the rest of
the maximizing values xI j+1 , . . . , xIk are discarded. Being the
time complexity of the maximization process exponential in
the number of inputs, discarding k− j−1 values seems a waste
of resources. One possibility would be to maximize only in
xI j , but in Fig. 3 we can see that V(xi, x j) cannot be maximized
fixing some arbitrary value of x j. Unfortunately, there is no
reason to save the costly computed values xI j+1 , . . . , xIk , since,
as we have already seen, recording one occurring output and
adding it as an equality to the inequalities system, leads
to a different sectional volume function Ṽ . Previous values
xI j+1 , . . . , xIk could only be suboptimal for Ṽ maximization,
since it is also unimodal and therefore has only one maximum.

The race against the execution time of the test case: All
computations to get the optimal input times are costly and in
general not compatible with the real-time nature of the system.
While computing on-the-fly the next input time xi+1 = xI j ,
it can be quite possible that computation finishes after the
calculated optimal value, which may render the test useless.
In this sense, the computation time races against the wall-clock
time in which events occur, and hence it makes necessary to
give up calculations in favour of the best possible probability
(rather than the maximum).

In the following, we propose an algorithm that takes into ac-
count the global clock and decides whether it is convenient to
stop computations and, in such a case, if it is better to keep the
currently approximated value or resort to previously computed
values. The algorithm has two phases: the computation V and
the maximization V . Suppose the system is running, the timed
history 〈α1,C1〉, . . . , 〈αi,Ci〉 has been fixed, and αi+1 = αI j is
the next input to be fed in the test case, with precomputed
value xI j . Note that there is always a precomputed value for
this input since previous to the test case execution, we compute
the best values xI1 , . . . xIk for input times. Besides, later in the
execution, the remaining input values may be recomputed in
each new input time choice. For the first phase, the timeout
is xI j , because we cannot be sure that in case we finish
the FM method and the symbolic integral computation, the
maximization would render a value that is not only better
but also ahead of xI j . If the global clock reaches xI j while
computing the volume function, the computation is discarded
and transition αi+1 is taken immediately. In the second phase
the calculation of the new xI j takes place. As the calculation is
based on an approximation algorithm that iteratively narrows
the interval [a, b] in which the optimal reside, we have more
information to decide the choice of xI j . So, in a sense, we
have to define an algorithm that compute its own deadline. In
the following we give a proposal for such algorithm.

Notice that there are two time values involved: one is the
global clock value x = cl(gt), and the other one, the value
that is currently being calculated in the approximation interval

[a, b]. We take x̃I j = a+b
2 to be best approximation for this last

value. (Notice that the precomputed activation time xI j is of
no use now since we already computed the new volume V
and we are in a position to compute a value that is proper for
this modified volume function.) Two orders between x, x̃I j are
possible. If x̃I j < x, we assume that the best time has already
occurred and we feed input αI j immediately. Otherwise x < x̃I j ,
in which case we assume that there is still time to continue the
computation of the optimal value. If the computation finishes,
this will define new optimal values for the remaining input
times; in particular, the new value xI j > x which is the optimal
time value to feed the current input.

With this procedure the loop guard on the maximum search
algorithm can be independent of any ε, and rest on the
variant function x̃I j − x given the above real-time conditions.
Stopping the loop to wait for the clock to reach x̃I j or continue
approximating the best value, is an implementation decision
later to be taken in the design process.

Irrespective of the way of exiting this loop, we always store
the values for all the remaining input variables, in order to use
them in the first phase of next incoming inputs.

IX. C

In this paper we extended [14] adding inputs to the
stochastic timed transition system. In this augmented model
we showed that the problem of computing the best input
times in order to maximize the probability of a test case
execution, is equivalent to maximizing the sectional volume of
a convex polytope when the probability distributions involved
are uniform. The sectional volume function was computed
using the FM method obtaining a piecewise continuous map.
This function was proven to be unimodal extending a known
result [11], [2]. The maximum was approximated to a desired
degree of accuracy using numerical optimization methods
specifically tailored to unimodal functions. Then we showed
how this maximum computation could be adaptive to a running
system where more information is available as a timed history.

We also showed that the complexity of most operations
involved in the whole process (the FM method, the sym-
bolic integration, function evaluation and maximization) are
basically exponential in the path length. Although this seems
contrary to real-time, we presented two strategies to avoid
that problem. First, we showed how to compute the best
values before the system starts running when all the available
information are the causality relation of transitions, and the
interval of time when the outputs could occur. Then, in the case
we want to do it on-the-fly and profit from the time information
recollected, we presented a partial computation method that
does the best effort against a racing output transition that is
likely to occur first. In [9] it is stated that the exact volume
computation of convex polytopes is #P-hard (it contains the
NP class complexity) which is precisely our problem: we deal
with a function that is the (sectional) volume of a convex
polytope of dimension given by the number of inputs.

There are opportunities for specific optimizations that could
help to lessen this time complexity in practice. For example,

there are techniques for sparse systems [26], but, to the authors
knowledge, there is no specific optimizations of FM method
tailored to DBM-like inequality systems like the ones gener-
ated by our test cases. (Research areas like Timed Automata
Model Checking, Constraint Logic Programming and Abstract
Interpretation could also profit from that algorithm.) Also
in [26] there are techniques that trade precision for improved
tractability in the FM method, avoiding the exponential growth
of the matrix in the first phase of our computation. Since this
is compatible with later phases (e.g. Fibonacci search), we
could also profit from this idea. Another possible source of
improvement lies on the integration procedure. We have shown
that the classical way to compute integration, which is used
in Section VI, has a high complexity, and therefore it is time
consuming. In [3] a system of integral equations is converted
into an equivalent system of differential equations to allow fast
computation. A challenge in applying this approach to our
case is how to handle parameters during converting integral
equations and solving differential equations. There are also
probabilistic approaches to volume estimation giving super-
polynomial speed-up [15], obtaining randomized polynomial
algorithms in the dimensions of the convex polytope.

In case of the on-the-fly probability maximization, we
showed an example where adding a point in the timed history
as an equality changes the shape of the volume function in a
way that is not clear if previous computations can be reused.
We also found models and test cases where that single equality
only produces a selection of pieces of the original sectional
volume function or a minor variation of it, instead a completely
new function. Those cases could be detected in order to reuse
previous computations. In addition, the dynamics of the race
between output transitions and the next input time under
calculation has not been explored. For instance, it could be the
case that in the approximation interval [a, b] during maximum
search b stays fixed and it is only a that grows. If such speed
is growing faster than the wall clock, it may be reasonable to
continue the computation rather than aborting.

In [2] the problem of maximum sectional volume of a
convex polytope is solved for hyperplanes, that in our setting
means having just one input transition. Moreover this solution
is not an approximation. Achieving a generalization of this
Computational Geometry algorithm would render a symbolic
computation of the maximum, where the next incoming input
feed time is a function of the timed history. The obvious
question is whether this approach could lead to relief the
now expensive on-the-fly computation to a simple function
evaluation, moving most of the work to off-line processing.

It would also be interesting to relate this work to cost
optimal reachability analysis for timed automata using priced
zones [17]. Although probabilities are not considered per se,
they could be encoded as prices and Uppaal CORA could
generate a trace that is globally optimal with respect to price.

Acknowledgements: We would like to thank Peter Niebert for
fruitful discussions and also to the anonymous referees for
their careful reading and references to related work.

R
[1] R.B. Ash and C.A. Doléans-Dade. Probability & Measure Theory.

Academic Press, 2000.
[2] D. Avis, P. Bose, G.T. Toussaint, T.C. Shermer, B. Zhu, and J. Snoeyink.

On the sectional area of convex polytopes. In Symposium on Computa-
tional Geometry, pages C–11–C–12, 1996.

[3] M. Bernadsky and R. Alur. Symbolic analysis for GSMP models with
one stateful clock. In Procs. HSCC 2007, volume 4416 of LNCS, pages
90–103. Springer, 2007.

[4] L. Brandán Briones and E. Brinksma. A test generation framework for
quiescent real-time systems. In Procs. of FATES 2004, volume 3395 of
LNCS, pages 64–78. Springer, 2005.

[5] L. Brandán Briones and M. Röhl. Test derivation from timed automata.
In Broy et al. [6], pages 201–231.

[6] M. Broy, B. Jonsson, J.-P. Katoen, M. Leucker, and A. Pretschner,
editors. Model-Based Testing of Reactive Systems, Advanced Lectures,
volume 3472 of LNCS. Springer, 2005.

[7] D. Clarke and I. Lee. Automatic test generation for the analysis of a
real-time system: Case stud. In Procs. of RTAS ’97, pages 112–124.
IEEE, 1997.

[8] D.L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In J. Sifakis, editor, Procs. of the International Workshop on
Automatic Verification Methods for Finite State Systems, volume 407 of
LNCS, pages 197–212. Springer, 1990.

[9] M.E. Dyer and A.M. Frieze. On the complexity of computing the volume
of a polyhedron. SICOMP: SIAM Journal on Computing, 17, 1988.

[10] M.A. Fecko, M. Ümit Uyar, A.Y. Duale, and P.D. Amer. A technique to
generate feasible tests for communications systems with multiple timers.
IEEE/ACM Trans. Netw., 11(5):796–809, 2003.

[11] R.J. Gardner. The Brunn-Minkowski inequality. Bulletin of the American
Mathematical Society, 39(3):355–405, 2002.

[12] P.W. Glynn. A GSMP formalism for discrete event simulation. Pro-
ceedings of the IEEE, 77(1):14–23, 1989.

[13] S.M. Johnson. Best exploration for maximum is fibonaccian. Technical
Report P-856, Rand Corp., 1956.

[14] M. Jurdziński, D. Peled, and H. Qu. Calculating probabilities of real-
time test cases. In Procs. FATES 2005, volume 3997 of LNCS, pages
134–151. Springer, 2006.

[15] R. Kannan, L. Lovász, and M. Simonovits. Random walks and an
O ∗ (n5) volume algorithm for convex bodies. RSA: Random Structures
& Algorithms, 11, 1997.

[16] P.D. Krolak and L. Cooper. An extension of fibonaccian search to several
variables. Commun. ACM, 6(10):639–641, 1963.

[17] K.G. Larsen, G. Behrmann, E. Brinksma, A. Fehnker, T.S. Hune,
P. Petterson, and J.M.T. Romijn. As cheap as possible: Efficient cost-
optimal reachability for priced timed automata. In Procs. CAV’01, 2001.

[18] G. Luo, G. von Bochmann, and A. Petrenko. Test selection based on
communicating nondeterministic finite-state machines using a general-
ized wp-method. IEEE Trans. Software Eng., 20(2):149–162, 1994.

[19] J.M. Martı́nez and S.A. Santos. Métodos Computacionais de
Otimização. Colóquio Brasileiro de Matemática, Apostilas. 20. So-
ciedade Brasileira de Matemática, 1995.

[20] M.G. Merayo, M. Núñez, and I. Rodrı́guez. Generation of optimal finite
test suites for timed systems. In TASE, pages 149–158. IEEE, 2007.

[21] A. Miné. The octagon abstract domain. Higher-Order and Symbolic
Computation, 19(1):31–100, 2006.

[22] B. Nielsen and A. Skou. Automated test generation from timed
automata. STTT, 5(1):59–77, 2003.

[23] V.R. Pratt. Two easy theories whose combination is hard. Technical
report, November 13 1977.

[24] W.H. Press et al. Numerical Recipes in C (Second Edition). 1992.
[25] M. Schechter. Integration over a polyhedron: an application of the

Fourier-Motzkin elimination method. The American Mathematical
Monthly, 105(3):246–251, 1998.

[26] A. Simon and A. King. Exploiting sparsity in polyhedral analysis. In
Procs. SAS 2005, volume 3672 of LNCS, pages 336–351. Springer, 2005.

[27] J. Springintveld, F.W. Vaandrager, and P.R. D’Argenio. Testing timed
automata. Theor. Comput. Sci., 254(1-2):225–257, 2001.

[28] J. Tretmans. Conformance testing with labelled transition systems:
Implementation relations and test generation. Computer Networks and
ISDN Systems, 29(1):49–79, 1996.

[29] B. Yildiz and E. Karaduman. On Fibonacci search method with k-Lucas
numbers. App. Math. and Comp., 143(2–3):523–531, 2003.

