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Abstract. Continuous-time Markov decision process are an important vari-
ant of labelled transition systems having nondeterminism through labels and
stochasticity through exponential fire-time distributions. Nondeterministic
choices are resolved using the notion of a scheduler. In this paper we charac-
terize the class of measurable schedulers, which is the most general one, and
show how a measurable scheduler induces a unique probability measure on
the sigma-algebra of infinite paths. We then give evidence that for particu-
lar reachability properties it is sufficient to consider a subset of measurable
schedulers. Having analyzed schedulers and their induced probability mea-
sures we finally show that each probability measure on the sigma-algebra
of infinite paths is indeed induced by a measurable scheduler which proves
that this class is complete.

1 Introduction

Continuous-time Markov decision processes (CTMDP) [1,2,3,4] are an important
class of finite labelled transition systems (LTS). They have external nondeterminism
through the interaction with edge labels and internal stochasticity given by the rates
of negative exponential distributions. Besides their applications in, e. g., stochastic
control theory [2], stochastic scheduling [5,6] and dynamic power management [7],
these systems are interesting in their own, because they introduce a continuous
quantity, namely the fire-time of transitions.

The external nondeterminism is usually reduced to probabilism using the notion of
schedulers, also called adversaries or policies. Given that the system is in a par-
ticular state, a randomized scheduler eliminates the nondeterminism by making a
decision for a certain probability distribution over edge labels. This decision making
can be based on the present state alone, or together with all previous states, edge
labels and time points, leading to memoryless or timed history-dependent sched-
ulers, respectively. Besides, it is also possible to have deterministic schedulers as a
particularization of randomized schedulers. However, as shown in [8], timed history-
dependent schedulers are strictly more powerful than schedulers abstracting from
time. Therefore time has an explicit role in the global behavior of the model of
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CTMDPs and cannot, in principle, be avoided. We take the most general class of
schedulers, namely randomized timed history-dependent (THR) schedulers as our
starting point.

Time is continuous in its nature and thus particular issues quickly arise. Many of
them refer to practical aspects as discretization, abstraction, approximation and
computation, but others like measurability are more fundamental [9]. It is well
known, that there are sets, namely Vitali sets, in the real interval [0, 1] that cannot
be measured. A measure is a function that generalizes the usual notions of cardi-
nality, length, area and probability. With these unreasonable sets, all the questions
about our system asking for a quantitative answer start to be endangered. The
motivation of this paper is to tackle this particular problem.

We give a soundness result, showing that measurable schedulers generate a well-
defined probability measure for timed paths. For this we first construct a combined
transition that merges scheduler and CTMDP probabilism in a single transition
probability. We establish that measurability of combined transitions is inherited
from schedulers and vice versa, improving a result from [9]. Based on transition
probabilities we construct a probability measure on the set of infinite timed paths
with the aid of canonical product measure theorems.

A proper subclass of measurable schedulers inducing positive probability measures
on infinite paths is identified. Besides that and the construction of scheduler depen-
dent probability measures, we also answer the question if there is a proper subclass
of measurable schedulers which is easily definable and generates arbitrary measur-
able schedulers (called probabilistically complete) in the affirmative.

Finally a completeness result is presented, showing that every timed path proba-
bility is generated by some measurable scheduler. To do this we motivate the need
of this probability to be related or compatible with the underlying CTMDP. This
compatibility cannot be stated using the probability measure. Instead, (continuous)
conditional probabilities are obtained by the so-called Radon-Nikodym derivatives.
However, those conditional probabilities turn out to be insufficient for the intended
compatibility result. Taking advantage of our particular setting (timed paths as
denumerable product of discrete spaces and positive reals), we use disintegrabil-
ity to obtain transition probabilities instead of conditional ones. Deconstructing
the probability into transition probability lead us to state compatibility and the
completeness theorem.

Outline. The rest of the paper is organized as follows. In Section 2 we give an
overview of related work. Section 3 establishes mathematical background and no-
tation, including the CTMDP model with schedulers, as well as the measurability
problem. Section 4 develops a timed path probability measure w.r.t. measurable
schedulers. In Section 5 we propose the simple scheduler subclass and discuss its
limiting properties. Section 6 shows that measurable schedulers can capture every
probability measure generated by a CTMDP. Finally, Section 7 concludes the paper.

2 Related work

In systems with continuous state spaces featuring nondeterminism and probabilism,
measurability issues of schedulers have been studied from the point of view of timed
systems [10], extensions of discrete probabilistic automata [9] and Markov decision
process (MDP) with Borel state space [11].



In [10] continuous probabilistic timed automata are defined and its concrete seman-
tics is given in terms of dense Markov process once the nondeterminism is resolved
by a timed history-dependent scheduler. Although the model is not comparable
with CTMDPs because of the denseness of the state space, scheduler measurability
issues also appear. The authors disregard this particular problem by considering it
pathological.

Stochastic transition systems [9] are a generalization of CTMDPs and the measura-
bility of schedulers is an important issue here. Cattani et al. show how to construct
a measure on so called executions. For this they have to, and indeed do discard
nonmeasurable schedulers. In particular, although we discuss our results in a more
restrictive modelling formalism, this work is an improvement over their construc-
tion in two aspects. First, we use standard measure-theoretic results in conjunction
with product space measures, leading to results that are more compact and provide
deeper insight than the results presented in [9]. Secondly, the need for measurable
functions in the construction of the probability measure is in this paper directly
inherited from the definition of scheduler measurability. Instead, in [9] measurabil-
ity properties are kind of directly given for the according functions [9, Definition
5] without giving a connection to schedulers. We added to this work a complete
characterization of measurable schedulers, something that has not been considered
in [9].

A result similar to our deconstruction discussed in Section 6 is given in the context of
epistemic game theory [12]. The proof-tools used there are disintegration theorems
for the product of two spaces [13] and the so-called Ionescu-Tulcea theorem. How-
ever, we prove a similar theorem by resorting to the well-known Radon-Nikodym
theorem together with canonical product measures for denumerable product spaces.

To the best of our knowledge, the decomposition of particular probability measures
on the infinite behavior of probabilistic systems with nondeterminism leading to
measurable schedulers has not been considered in the literature so far.

3 Background and problem statement

3.1 Mathematical notation and background

By R and N the set of real numbers and natural numbers are denoted, R+ is the
set of positive real numbers including 0. Disjoint union is denoted Ω1 ] Ω2, while
partial function application is denoted f(·, ω2).

Given a set Ω and a collection F of subsets of Ω, we call F a σ-algebra iff Ω ∈ F
and F is closed under complement and denumerable disjoint union. The σ-algebra
generated by the family H ∈ 2Ω is the minimal σ-algebra containing H. We call
the pair (Ω,F) a measurable space. A measurable set is denoted as A ∈ F . When
dealing with a discrete set Ω, we take the powerset σ-algebra 2Ω as the default,
however we still denote a measurable set as A ∈ F instead of the simpler A ⊆ Ω. Let
(Ωi,Fi), i = 1, 2, . . . , n be arbitrary measurable spaces and Ω = Ω1×Ω2×· · ·×Ωn.
A measurable rectangle in Ω is a set A = A1 × A2 × · · · × An, where Ai ∈ Fi.
The product space σ-algebra denoted FΩ1×Ω2×···×Ωn is the σ-algebra generated by
measurable rectangles. Given a measurable space (Ω,F), a σ-additive function µ :
F → R+ is called measure, and if µ(Ω) = 1 it is called probability measure. The triple
(Ω,F , µ) is a measure space or probability space depending on µ. For a measurable
set (Ω,F) we denote by Distr(Ω) the set of all probability distributions over Ω,
and given µ ∈ Distr(Ω) a support of µ is a measurable set A such that µ(A) = 1.



A function f : (Ω1,F1) → (Ω2,F2) is measurable if ∀A2 ∈ F2, f−1(A2) ∈ F1,
i.e., the inverse function maps measurables to measurables. A measurable predicate
P : Ω → Bool in a measure space (Ω,F , µ) is µ-almost everywhere valid, P a.e. [µ],
iff µ(P−1(false)) = 0, that is the set of non-valid points is negligible. We call a
function f : Ω1 × F2 → [0, 1] transition probability or Markov kernel iff for all
ω1 ∈ Ω1, f(ω1, ·) is a probability measure on (Ω2,F2) and for all A2 ∈ F2, f(·, A2)
is a measurable function.

3.2 Continuous-time Markov Decision Processes

In the following we present the basic definitions of continuous-time Markov decision
processes. We use essentially the same notation as in [3].

Definition 1 (CTMDP). A continuous-time Markov decision process (CTMDP)
is a tuple (S, L,R,Prinit) where S is a finite non-empty set of states, L is a finite
non-empty set of transition labels also called actions, R : S × L × S → R+ is
the three-dimensional rate matrix, Prinit ∈ Distr(S) is the initial distribution over
states.

Given a CTMDP tuple C = (S, L,R,Prinit), we define the projection function
CPrinit

.= Prinit, and so on for the other coordinates. For set Q ⊆ S we denote
by R(s, a,Q) .=

∑
s′∈Q R(s, a, s′) the cumulative rate to leave state s under label

a. In Ls
.= {a ∈ L | R(s, a, S) > 0} we collect all labels that belong to transitions

emanating from s.

Behavior. The behavior of a CTMDP is as follows. R(s, a, s′) > 0 denotes that there
exists a transition from s to s′ under label a where R(s, a, s′) corresponds to the rate
of a negative exponential distribution. When s has more than one successor state
under label a, one of them is selected according to the race condition. The discrete
branching probability Ps(a, s′) from s to s′ under label a is given by Ps(a, s′) .=
R(s,a,s′)
R(s,a,S) , where R(s, a, S) is the overall exit rate of s under label a. The probability
that one of the successors of s is reached within time t is given by 1− e−R(s,a,S)·t.
In CTMCs this time is also referred to as the sojourn time in state s. Given that
a ∈ L is chosen, the sojourn time in s ∈ S is determined by a negative exponential
distribution with rate R(s, a, S).

Figure 1 shows a simple CTMDP. Arrows indicate transitions between states. They
are labelled by an action and a rate, e. g., under label a there exists a transition
from s1 to s3 whose fire-time is exponentially distributed with rate 1.

3.3 Timed paths

A timed path σ in CTMDP C = (S, L,R,Prinit) is a possibly infinite sequence of
states, labels and time points, i. e., σ ∈

(
S × (L× R+ × S)∗

)
]

(
S × (L× R+ × S)ω)

.
For a given path σ = s0a1t1s1 . . . we denote by first(σ) = s0 its first state, σ[k] de-
notes its (k + 1)-st state, e. g., σ[0] = first(σ). A finite path σ′ = s0a1t1s1 . . . aktksk

has length k, denoted as |σ′| = k and its last state equals last(σ) = sk. For arbitrary
paths σ we denote by σi the prefix of length i of σ, i. e., σi = s0a1t1s1 . . . aitisi.
For finite σ′ = s0a1t1s1 . . . aktksk, the prefix of length i > k equals σ′. Pathn,
Path∗, Pathω and Path denote the sets of paths of length n, finite paths, infi-
nite paths and the union thereof, respectively, where Path = Path∗ ] Pathω and
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Fig. 1. Continuous-time Markov decision process

Path∗ =
⊎

n∈N Pathn. A time abstract path is a timed path where time points
are omitted. It will be clear from context which type of path we use in particular
sections. Thus, the above given definitions carry over to time abstract paths.

Paths are defined as arbitrary sequences of states, labels and time points w.r.t. C. We
do not require that R(si, ai, si+1) > 0 but we will overcome this obstacle by giving
all power to our schedulers. Given CTMDP C we distinguish between observable
and unobservable paths w.r.t. C. A path σ = s0a1t1s1 . . . is called observable iff
R(si, ai+1, si+1) > 0 for i = 0, 1, . . . . Otherwise we call σ unobservable. As will be
evident in Section 4, the probability measure on paths induced by a given scheduler
will evaluate to 0 for unobservable paths. But before we introduce the measure, we
have to define the measurable space over paths.

σ-Algebra over timed paths. We endow states and labels with the powerset σ-
algebra, and R+ with the standard Borel σ-algebra. The σ-algebra FPathn is the
standard product space σ-algebra, FS×(L×R+×S)n , generated by the rectangles Q0×
M1×· · ·×Mn, where Q0 ∈ FS and Mi ∈ FL×R+×S . The σ-algebra FPathω is defined
using the concept of cylinders [14, Definition 2.7.1]. Given the set of timed paths
Λ with |Λ| = k, CΛ

.= {σ ∈ Pathω | σk ∈ Λ} defines a cylinder with base Λ. A
measurable cylinder has measurable base, and a measurable rectangle (in Pathω)
is a cylinder whose base is a measurable rectangle. The σ-algebra FPathω is the
minimal σ-algebra generated by either measurable cylinders or measurable rectan-
gles. Finally FPath is standard σ-algebra for the disjoint union of {FPathn}n∈N and
FPathω .

3.4 Schedulers

A scheduler resolves the nondeterminism inherent in a CTMDP. Most generally,
schedulers can be considered as functions from finite paths to probability distribu-
tions over labels. Such a general definition allows for all special cases as, e. g., given
in [3].

Definition 2 (Scheduler over CTMDP). Let C be a CTMDP with label set L.
A scheduler D over C is a function D : Path∗ → Distr(L) such that the support of
D(σ) is equal to Llast(σ).

The support condition says that the scheduler distributes its whole mass among the
outgoing labels. We can also denote D as a two argument function D : Path∗×FL →
[0, 1], being a measure in its second argument D(σ, ·) for all finite path σ. We now



turn our attention to the measurability problem. This is motivated by the fact that
there exist “bad-behaved” schedulers. Reconsider the CTMDP depicted in Figure 1
and the randomized timed history-dependent (THR) scheduler D with

D(s0cts1) =

{
δa if t ∈ V,

δb otherwise,

where δi, i ∈ {a, b} denotes that action i is chosen with probability 1 and V is
the nonmeasurable Vitali set in [0, 1], i. e., for each time point in a nonmeasurable
set, D will choose deterministically a and for all other time points, D will choose
deterministically b. So the question, “What is the probability to reach s3 in two
steps?”, cannot be answered, because it necessarily involves the evaluation of a
measure in the set {t|D(s0cts1) = δa} = V that is nonmeasurable.

In the subsequent definition we restrict to the class of schedulers that respects
measurability issues.

Definition 3 (Measurable scheduler). We call a scheduler D over CTMDP C
measurable scheduler iff for all A ∈ FL, D(·, A) : Path∗ → [0, 1] is a measurable
function.

4 Constructing timed path probability

Probabilistic schedulers allow to quantify uncertainty. Therefore composing CTMDP
negative exponential distributions with a particular scheduler, we can construct
probability measures usually called combined transitions [9].

Definition 4 (Combined transition). For a given CTMDP C, scheduler D and
finite path σ, the combined transition µD : Path∗ ×FL×R+×S → [0, 1] is defined in
the measurable rectangles by

µD(σ, A×I×Q)
.
=

X
a∈A

D(σ, {a})·Plast(σ)(a, Q)·
Z
I

R(last(σ), a, S)e−R(last(σ),a,S)·tdt . (1)

The second factor in the terms of the above summation is the discrete branching
probability from last(σ) to Q by the label a, while the third one is the probability
that the transition triggers within measurable time set I.

We have, thanks to support restriction in the scheduler, µD(σ, L × R+ × S) = 1,
however µD is just defined for the FL×R+×S generators. The extension to the whole
σ-algebra is standard and follows by applying Carathéodory Extension Theorem [14,
Theorem 1.3.10] to the field of finite disjoint unions of measurable rectangles [14,
Problem 2.6.1].

Lemma 1 (Combined transition is a probability measure). Given a CTMDP
C and a finite path σ, the combined transition µD(σ, ·) as defined in (1) extends
uniquely to a probability measure on FL×R+×S.

Additionally we deduce the following lemma, where the only if implication is given
by Lemma 1 and the if implication can be established by considering Definitions 2
and 4.



Lemma 2. Given a CTMDP C and scheduler D, ∀σ ∈ FPath∗ , it is the case that
D(σ, ·) : FL → [0, 1] is a measure iff ∀σ ∈ FPath∗ , we have µD(σ, ·) : FL×R+×S →
[0, 1] is a measure.

Next we prove that combined transition measurability is inherited from scheduler
measurability and vice versa, and this will be crucial to integrate and disintegrate
a probability measure on timed paths.

Theorem 1 (Combined transition measurability). Given a CTMDP C and
scheduler D, ∀A ∈ FL, it is the case that D(·, A) : Path∗ → [0, 1] is measurable iff
∀M ∈ FL×R+×S, we have µD(·,M) : Path∗ → [0, 1] is measurable.

Proof. We prove each direction separately.

Only if: Having D(·, A) measurable, function µD(·, A × I × Q) is measurable in
its first argument because projection functions like last() are measurable, as well
as functions coming from powerset σ-algebras like FS and FL. Closure properties
of measurable functions (sum, product, composition) make the entire expression
measurable.

We have to extend this result to the whole σ-algebra FL×R+×S . We resort to the good
sets principle [14]. Let G = {M ∈ FL×R+×S | µD(·,M) is a measurable function}
and show that the set G forms a σ-algebra. Let {Mi}i∈N be a disjoint collection
such that Mi ∈ G, then by σ-additivity µD(·,

⊎
i∈N Mi) =

∑
i∈N µD(·,Mi), and

this is measurable by closure properties of measurable functions, therefore G is
closed under denumerable disjoint union. It is also closed under complement as
µD(·,M c) = µD(·, L × R+ × S) − µD(·,M). Hence all sets in σ(G) are good, and
since rectangles are included in G we have σ(G) = FL×R+×S , concluding µD(·,M)
is measurable for all M ∈ FL×R+×S .

If: By hypothesis the function µD(·, A×R+×S) is measurable for all A ∈ FL, but
is easy to check that µD(·, A× R+ × S) = D(·, A), finishing our result. �

Given the previous results, we can deduce the following corollary.

Corollary 1. Let D be a measurable scheduler on CTMDP C. D is a transition
probability iff µD is so.

From now on we use canonical product measure theory [14, Sections 2.6, 2.7] to
define finite and infinite timed path probability measure, where the combined tran-
sition plays a central role.

Definition 5 (Probability measure for measurable rectangle finite paths).
Let C be a CTMDP, D a measurable scheduler, and µD their combined transition.
The probability measure for finite paths consisting of measurable rectangles PrD

is given inductively as follows:

Pr0
D(S0) = CPrinit(S0) , (2)

Prn+1
D (Λ×Mn+1) =

∫
σ∈Λ

µD(σ,Mn+1)dPrn
D(σ) . (3)

where Prinit is the initial distribution, Λ is a measurable rectangle of FPathn , and
Mn+1 ∈ FL×R+×S.



Combined transitions are measurable, thus the above Lebesgue integral is well-
defined. However, the definition only captures the measurable rectangles and we
have to extend the measure to the complete σ-algebra. The unique extension of
Prn

D is given by [14, Theorem 2.6.7].

Lemma 3 (Probability measure for finite paths). For each n there is a unique
probability measure Prn

D over the σ-algebra (Pathn,FPathn) that extends Prn
D de-

fined in (2),(3).

Note that Prn
D is not a probability measure for finite paths but a denumerable

set of probability measures one for each path length. They can be put together in
a single probability measure space, namely the infinite timed path measure space
(Pathω,FPathω ,Prω

D) [14, Theorem 2.7.2] [15, Ionescu-Tulcea Theorem].

Lemma 4 (Probability measure for infinite paths). Given the measurable
space (Pathω,FPathω ), if we define a probability measure on measurable rectangle
bases as in Definition 5, then there is a unique probability measure Prω

D on FPathω

such that for all n, Prω
D(CΛ) = Prn

D(Λ) with Λ ∈ FPathn .

The previous results can be summarized in the following theorem.

Theorem 2 (Soundness). Given a measurable scheduler D over CTMDP C, then
a probability measure Prω

D over FPathω can be constructed.

Lemma 3 and Lemma 4 define probability measures for each of the disjoint measur-
able spaces (]n∈N(Pathn,FPathn)) ] (Pathω,FPathω ). A unifying measure (that is
not a probability) on the disjoint union space can be defined in a standard way and
is denoted by PrD. It is important to remark that under this way of constructing
Pr , there is no CTMDP that can “hide” a nonmeasurable scheduler, namely hav-
ing a well defined timed path probability, implies that the combined transition is
measurable, and by Theorem 1 this implies a measurable scheduler.

5 Meaningful schedulers

In the previous section we have defined a measure on paths induced by measurable
schedulers by using measure theoretic results and in particular abstract Lebesgue
integration [14]. Now we examine the integral in more detail and characterize various
classes of measurable schedulers that respect more than just the initial probability
distribution over states. This boils down to investigate basic properties of abstract
Lebesgue integrals over combined transitions. These classes of schedulers are of spe-
cial interest because they comprise all schedulers that contribute to, e. g., particular
reachability properties like: “what is the maximum probability to reach a set B of
states within t time units” [8].

The following results are taken from [14] and give the theoretical background for
our observations. Each nonnegative Borel measurable function f is the limit of a
sequence of increasing simple functions that are nonnegative and finite-valued [14,
Theorem 1.5.5]. And so, given a measurable scheduler D the combined transition
µD(·,M) is measurable for each M ∈ FL×R+×S and is the limit of an increasing
sequence of simple functions, say, µi

D(·,M). Formally, we define µi
D(·,M), for fixed

M ∈ FL×R+×S as



µi
D(σ,M) .=

k − 1
2i

if
k − 1

2i
≤ µD(σ,M) <

k

2i
, k = 1, 2, . . . , 2i . (4)

Due to convergence properties of the abstract Lebesgue integral [14, Theorem 1.6.2]
it holds that Prn

D(Λ×M) = limi 7→∞
∫

σ∈Λ
µi

D(σ,M)dPrn−1
D (σ), i. e., the probability

distribution over infinite paths induced by D coincides with the limiting sequence of
integrals over µi

D. Recall, that the probability measure over infinite paths is defined
w.r.t. finite path-prefixes. Thus we deduce for given Λ with |Λ| = n− 1.

Prn
D(CΛaIs) =

∫
σ∈Λ

µD(σ, (a, I, s))dPrn−1
D (Cσ)

= lim
i 7→∞

∫
σ∈Λ

µi
D(σ, (a, I, s))dPrn−1

D (Cσ)

= lim
i 7→∞

 2i∑
j=1

j − 1
2i

· Prn−1
D (Ai

j)

 , (5)

where Ai
j

.=
{
σ ∈ Λ | j−1

2i ≤ µD(σ, (a, I, s)) < j
2i

}
. The summation in Equation 5 is

a direct consequence of the definition of Lebesgue integration over simple functions.
As a result we see, that the induced probability measure evaluates to zero iff the
limiting sequence evaluates to zero.

Almost Always Measure Zero Schedulers. First of all we characterize the class of
schedulers that gives measure zero to almost all sets of paths of a given CTMDP
C. We refer to the schedulers of this class as almost always measure zero schedulers.
In this class we summarize all schedulers for which it is not possible to find cylin-
ders on which they give positive probability. We restrict to particular cylinders as,
e. g., cylinders Cs, s ∈ S give for each scheduler D that Prω

D(Cs) equals Prinit(s).
Dependent on scheduler D we can always give at least one cylinder base Λ of length
two such that PrD(CΛ) is positive, e. g., for Λ = s0a1I1s1, where I1 is a right-open
interval with |I1| > 0 and D(s0, {a1}) > 0. This motivates the following definition.

Definition 6 (Almost always measure zero scheduler). We call scheduler D
almost always measure zero scheduler (AAMZ) iff PrD(CΛ) = 0 for all Λ with
|Λ| ≥ 2.

The probability measure Prω
D on the set of infinite paths induced by scheduler D

evaluates to 0 iff µD equals 0 a.e. [PrD]. Due to the inductive definition of Prω
D it

can be observed, that µD(σ′, (a′, I ′, s′)) = 0 at some stage of the computation for all
(σ′, (a′, I ′, s′)). We now describe for which type of schedulers this is generally true.
For this we use the notion of time abstract paths and show that AAMZ schedulers
do not give positive probability to all paths σ with corresponding time abstract
path σ′ that is observable in the system. We put this restriction in our analysis
since the probability measure of unobservable paths is always zero, independently
of the scheduler. Thus, the probability measure only depends on the set of time
points I that has to be considered.

Based on I we compute the sojourn time distribution inside of the combined tran-
sition. As sojourn times are distributed according to negative exponential distribu-
tions, this reduces to the standard computation of a Riemann integral. Thus it is
sufficient to investigate when this integral evaluates to zero which is the case for all
point-intervals I. Thus, if I comprises only point-intervals the probability measure
will evaluate to zero. This means, if we can not group paths together in a set Λ′ for
which D behaves friendly, the probability measure will not be positive.



Definition 7 (Friendly scheduler). Let σ = s0a1t1s1 . . . aktksk be an arbitrary
finite path. We say that D behaves friendly on σ iff

∀ti : ∃Ii : ti ∈ Ii ∧ |Ii| > 0 ∧ ∀t ∈ Ii : D(s0a1t1s1 . . . aitsi, {ai+1}) > 0, (6)

where Ii is an interval on R+.

A scheduler that does not behave friendly on path σ is called unfriendly. We can
establish the following lemma.

Lemma 5 (Almost always measure zero). If D behaves unfriendly on all finite
paths σ then D is an AAMZ.

Suppose D is a scheduler behaving unfriendly on all finite paths. Further assume
that we have as cylinder base Λ = s0a1I1s1 . . . akIksk. It holds for D (by Defi-
nition 7) that Ii cannot be partitioned into intervals Ij

i with |Ij
i | > 0 such that

D(s0a1t1s1 . . . aitisi, {ai+1}) > 0 for all ti ∈ Ij
i . As a consequence, we can only

partition Λ into singular paths σ but Prω
D(Cσ) = 0.

Restricted Class of Schedulers. Now we discuss a restricted class of schedulers that
gives positive probability to particular sets of infinite paths. This restriction depends
on the property we want to check for a given CTMDP, i. e., when checking a timed
reachability property like “what is the maximum probability to reach set B within
time t” we are only interested in schedulers that contribute to that probability in a
sense that they give positive probability to all sets of paths hitting B before time t.
It is thus sufficient to consider schedulers that behave friendly on at least one time
abstract path that hits B.

The following example shows how simple the computation of the probability mea-
sure is, when the given scheduler behaves friendly on the given set of paths. Assume
that Λ = s0a1I1s1 . . . akIksk is a given set of finite paths (which all share the same
time-abstract path), where Ii is a nonsingular interval of length greater than 0.
Now suppose scheduler D is such that each decision is consistent in each of the
Ii, i. e., D(s0a0t0s1 . . . ait

m
i si+1) = D(s0a0t0s1 . . . ait

n
i si+1) for all tmi , tni ∈ Ii. The

probability of cylinder CΛ induced by D is given by

Prω
D(CΛ) = Prω

D(CΛk−1akIksk
)

=
∫

σ∈Λ′
µD(σ, (ak, Ik, sk))dPrω

D(Cσ)

=
∫

σ∈Λ′
1Λ′(σ)µD(σ, (ak, Ik, sk))dPrω

D(Cσ)

= µD(Λ′, (ak, Ik, sk)) · Prω
D(CΛ′)

...
= Prinit(s0) · µD(s0, (a1, I1, s1)) · µD(s0a1I1s1, (a2, I2, s2)) · · · ·
·µD(s0a1I1s1 . . . ak−1Ik−1sk−1, (ak, Ik, sk)) ,

where we use, e. g., D(Λ′) to denote D(σ) for arbitrary σ ∈ Λ′. In this case non zero
probability is given as long as D(s0a1I1s1 . . . aiIisi, {ai+1}) > 0 which is a weak
form of a friendly behaving scheduler.



Simple Scheduler. In this section we give the definition of an important class of
schedulers, namely simple schedulers. Simple functions are functions that take on
only finitely many different values. Along this line we define simple schedulers to
have a finite range only, too. In particular, simple scheduler D gives a partition P
of the set of finite paths in finitely many blocks Bj , for j, n ∈ N with n > 0 and
j ≤ n. Given arbitrary block Bj of P it holds that D(σ) = D(σ′) for all σ, σ′ ∈ Bj

i .
Thus, a simple scheduler D is a simple function on the set of finite paths. As a direct
consequence, it can be observed that when D is simple, µD is also a simple function
in its first argument, i. e., µD(·,M) is a simple function for given M ∈ FL×R+×S . As
we have discussed earlier in this section every measurable combined transition is the
limit of simple combined transitions. This, and the fact that each simple combined
transition can only be generated by a simple scheduler leads to the result that the
set of simple schedulers can be used to generate arbitrary measurable schedulers
and thus, this class is probabilistically complete.

Simple schedulers can be partitioned in two sets, namely friendly simple and AAMZ
simple schedulers. An easy example of a friendly simple scheduler is as follows.
Suppose label a is in Ls for all s ∈ S. A scheduler that always chooses a with
probability 1 is friendly and simple. As an example of an AAMZ let D be a scheduler
and µ1, µ2 ∈ Distr(L). When D schedules for all σ where t|σ| is an irrational number
µ1, and µ2 otherwise, then D is simple and an AAMZ scheduler. Simplicity follows
from the fact that D is only supposed to decide between µ1 and µ2. There exists no
path σ such that Equation 6 can be fulfilled for D, thus D is an unfriendly scheduler
and by definition an AAMZ scheduler.

6 Deconstructing timed path probability

In Section 4 a measure PrD for finite and infinite paths was constructed from a
measurable scheduler D. The goal now is to recover a measurable scheduler from
an arbitrary probability measure Prω (note there is no subscript D indicating the
scheduler generating it) on the infinite timed path σ-algebra. This shows that mea-
surable schedulers are sufficient to generate all quantitative behaviors of a CTMDP.

Given a CTMDP not every Prω ∈ Distr(Pathω) is related or compatible with
it. For example in the CTMDP C below, a probability measure Prω such that
Prω(s0a[0, 1]s1a[0, 1]s1) > 0 is not compatible with C. We postpone the definition
of compatibility until we settle down some continuous space measure theoretic re-
sults.

s0
1

a
// s1

1

b
QQ

For a given timed path σ finishing at s, we are aiming at identifying two independent
random sources: the scheduler selecting a label after history σ, and the sojourn time
probability induced by the rate matrix.

Given Prω, the tool to compute this product probability is a conditional probability,
because we want to know the probability of the event CσaIs given that event Cσ

happened.

Prω(CσaIs′ | Cσ) =
Prω(CσaIs′ ∩ Cσ)

Prω(Cσ)
= D(σ, {a}) · R(s, a, s′)

Z
I

e−R(s,a,S)·tdt . (7)



For continuous systems like CTMDPs the numerator will usually be zero, so we re-
sort to the continuous version of conditional probability the Radon-Nikodym deriva-
tive [16]. For this, some definitions are needed.

Definition 8. The marginal of Prω for the first n steps or coordinates is Prn ∈
Distr(Pathn) where Prn(Λ) .= Prω(Λ× (L× R+ × S)ω) = Prω(CΛ) and |Λ| = n.

Definition 9. Given two probability measures µ, ν ∈ Distr(X), we say that µ is
absolutely continuous with respect to ν, notation µ � ν, if ∀A ∈ FX , ν(A) = 0 ⇒
µ(A) = 0.

It is straightforward to see Prn+1(· × M) � Prn, ∀M ∈ FL×R+×S , and this is
the condition to apply Radon-Nikodym [14, Theorem 2.2.1] to obtain (continuous)
conditional probability fn : Pathn×FL×R+×S → [0, 1], such that ∀Λ ∈ FPathn ,M ∈
FL×R+×S :

1. fn(·,M) : Pathn → [0, 1] is measurable,
2. Prn+1(Λ×M) =

∫
Λ

fn(σ,M)dPrn(σ).

Note that conditional probability is defined up-to sets of Prn-measure 0, therefore
there are (potentially) infinite versions of it. This object shares with transition
probability the measurability in its first argument. However if the measurable space
is not restricted conveniently, it may be the case that from all versions of the condi-
tional probability, none of them is a probability measure in its second argument [17,
Section 6.4] [18, Problem 33.13]. Note this would be inconvenient for our purposes
since equation (7) extends straightforwardly to a probability measure for all timed
paths σ.

In our particular measure space (product of discrete spaces and positive reals), tran-
sition probabilities exists among conditional probabilities, and according to [13,19]
we use disintegration. Namely Prω can be disintegrated into transition probabilities,
and this is where the compatibility with CTMDP can be defined.

Lemma 6 (Disintegration). Given a probability measure Prω ∈ Distr(Pathω),
then there is a transition probability µ : Path∗ × FL×R+×S → [0, 1] unique Prω-
almost everywhere, that generates this probability measure.

Proof. Using the same arguments of conditional probability we have for each M ∈
FL×R+×S there is a measurable function µn(·,M) : Pathn → [0, 1] such that ∀Λ ∈
FPathn :

Prn+1(Λ×M) =
∫

Λ

µn(σ,M)dPrn(σ) (8)

From all the versions µn has, there is transition probability if the underlying space is
analytic [20, Theorem 2.2] (the existence argument is over regular conditional proba-
bilities but this problem is equivalent to transition probabilities [19, Theorem 3.1]).
Examples of analytic spaces includes the discrete ones and the reals [9], and adding
the fact that analytic spaces are closed under finite and denumerable product, we
conclude FPathn is a space where we can choose a particular version of µn being a
transition probability. The union ∪0≤nµn is denoted as µ : Path∗×FL×R+×S → [0, 1]
and gives the transition dynamics of the CTMDP.

Finally using Pr0 ∈ Distr(S) and µ, by [14, Theorem 2.6.7] expression (8) extends
uniquely to the marginals Prn. As Prω(CΛ) = Prn(Λ), by [14, Theorem 2.7.2]



Prω is the unique extension of this marginals to the infinite timed path probability
measure, concluding that Pr0 and µ generate Prω. �

Having the transition probabilities underlying Prω, we can state precisely what
compatible means.

Definition 10 (Compatibility). Given a CTMDP C, we say probability measure
Prω on FPathω is compatible with C if: i) Pr0 = CPrinit , ii) there is some scheduler
D and transition probability µ from Lemma 6 that satisfies:

µ(σ, {a} × I × {s′}) = D(σ, {a}) ·R(last(σ), a, s′)
∫
I

e−R(last(σ),a,S)·tdt . (9)

It is clear that Definition 4 satisfies (9), and as both are additive in its second
argument’s first and third component, it is easy to show that µ(σ,A × I × Q) =
µD(σ,A× I ×Q). Using Lemma 1, the main theorem follows.

Theorem 3 (Completeness). Given a probability measure Prω over FPathω com-
patible with CTMDP C, then the underlying transition probability is generated by
some measurable scheduler.

Following the discussion of Section 5 it can be observed that given a positive prob-
ability measure Prω for, e. g., CΛ with |Λ| ≥ 2, yields a friendly scheduler that
generates the underlying transition probability. In contrast, when Prω is almost
always zero in the sense of Definition 6 the obtained scheduler falls in the class of
AAMZ schedulers.

7 Conclusion

This work studies CTMDPs where external nondeterminism is resolved through
timed history-dependent randomized schedulers. Taking time into account is the
key difference that makes continuity and its related problems unavoidable, and this
is where measurability issues arise.

We have obtained a complete characterization of those measurable schedulers, first
using them to construct (integrate) a probability measure on timed paths, and
later to deconstruct (disintegrate) an arbitrary probability measure on timed paths
compatible with the CTMDP into a measurable scheduler. We showed that friendly
schedulers generate positive probability measures and, vice versa, deconstructing
positive measures yields friendly schedulers. We also showed an easily definable and
probabilistically complete subclass of measurable schedulers.

As mentioned in Section 2, most of the results presented in this paper, however, do
also carry over to less restrictive systems, e. g., stochastic transition systems [9]. We
leave the consideration of a similar characterization of schedulers and the precise
adaption of definitions and theorems to future work.
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