
Strengthen, Widen, Get Semaphores

Javier Blanco1 and Nicolás Wolovick1

Facultad de Matemática, Astronomı́a y F́ısica,
Universidad Nacional de Córdoba,

Medina Allende y Haya de la Torre, Ciudad Universitaria,
Córdoba, Argentina

blanco@mate.uncor.edu, nicolasw@famaf.unc.edu.ar

Abstract. Many parallel programs are expressed in terms of conditional
atomic actions with different degrees of atomicity. It is known that these
synchronization primitives are expensive to implement in its fully gener-
ality [2]. Many platforms provide an efficient set of synchronization prim-
itives. Semaphores are a very special case of conditional atomic actions
which can be considered a canonical synchronization primitive. There
exist methods to transform general conditional atomic actions into these
very special ones. One of the simplest is the Change of Variables method
introduced in [1,2] and generalized in [10]. We review and improve this
method in the context of formal development of multiprograms [4,7].

Keywords: Program transformation; Semaphore synchronization; Mul-
tiprograms; Program derivation; Theory of Owicki and Gries; Efficient
synchronization primitives.

1 Introduction

It has been effectively shown that the Owicki-Gries theory can be used to for-
mally develop parallel and distributed programs [4,7] in spite of its lack of a
uniform way to treat liveness properties. The main reason to choose this theory
is its simplicity and the possibility of avoiding operational reasoning.

Programs developed with this methodology synchronize in terms of condi-
tional atomic actions with different degrees of atomicity. One of the aims of this
article is to fill in the gap between these abstract programs and implementations
in actual computer systems. Since one of the most universal synchronization
primitive is the semaphore, we’ll use this method to transform abstract multi-
programs into concrete ones where all the synchronization is achieved through
semaphores. Since semaphore operations are a special case of conditional atomic
actions, we don’t need to add any new theory to deal with them.

One method to achieve this transformation stated in [1], consists in applying
coordinate transformations to conditional atomic actions to make them equiv-
alent to semaphore primitives. The method is simple, but it can be applied to
a very limited number of examples, even when the solutions are tailored to the
use of semaphore primitives. This method was generalized in [10] allowing the

2 Javier Blanco, Nicolás Wolovick

transformation of a larger number of conditional atomic actions, in particular
the ones with an empty body.

We review and improve this method in the context of formal development
of multiprograms. In particular, finding the new annotations will be done sys-
tematically, the partial correctness will be separated from progress requirements
achieving a good separation of concerns and, since we will only strengthen the
annotations, correctness will be preserved by construction.

2 A Brief Summary of Owicki-Gries Theory

For this work we can explain in a nutshell the Owicki-Gries assertional theory
to prove parallel programs [8,6]. Given a set of sequential Dijkstra’s guarded
command language programs [5] called components, the multiprogram as a whole
will be correct respect to the components annotations if

– local correctness: each assertion is established in the component it occurs.
– global correctness: each assertion in one component is not falsified by any

other assertion-sentence pair of the other components. It is also known as
interference free test.

The idea is simple, if we can show that the assertion {P} is locally valid, and
any {Q}S of other component maintains it1, in an interleaved model of execution
where each sentence between assertions is indivisible, the nondeterminism of the
scheduler won’t affect the strong soundness property [3] of annotated sequential
components.

Put it in other words, interference free test protects assertions from nonde-
terminism and any interleaved model of execution will be valid if it respects the
atomicity given by the assertions.

Unless stated otherwise, we will assume each line of a program to be atomic.

Even though the amount of proof obligations for an annotated multiprogram
is polynomial on the number of annotations, there are techniques to quickly deal
with many simple cases. We show one that is going to be used all through our
presentation, for a more detailed account we refer to [7].

Lemma 1 (Widening). Given a transitive relation � and an expression E
where x does not occur in it, if we can show P ⇒ x � f.x, then the following
triple is valid

{P ∧ E � x} x := f.x {E � x}

In the original work of Owicki, the synchronization and selection constructs
were different, we take the unifying approach, interpreting the one-guard selec-
tion if B → S fi as a synchronization. The most common form of synchronization
is when S is empty, usually called guarded skip.
1 Formally, showing valid the triple {P ∧Q}S{P}.

Strengthen, Widen, Get Semaphores 3

There are also some transformational theorems for multiprograms, one re-
markably useful for our purposes is the following.

Lemma 2 (Guard Strengthening Lemma). The sentence

if B → skip fi

can be replaced by
{C ⇒ B} if C → skip fi

without impairing the correctness of the annotation, given that {C ⇒ B} are
locally and globally correct.

Care must be taken applying this lemma though, because in the process of
strengthening progress may be hampered.

If by any means we show 0 < s ⇒ B, then we can proceed into a more
semaphore-like synchronization, since semaphore operations can be represented
in terms of guarded command language.

P.s : 〈if 0 < s → s := s− 1 fi〉
V.s : 〈s := s + 1〉

The constructor 〈S〉 explicitly states atomicity, but in most cases we won’t use
it because annotations and context will make this point clear.

3 Producer-Consumer

Let’s consider the classical Producer/Consumer problem through a bounded
buffer. The component called producer produces some elements and sends them
to the consumer component which will use them. Some synchronization is needed
to avoid writing on a full buffer or reading from an empty one. The formal
specification or the so-called computation proper of this problem can be stated
as follows2.

Pre : p = 0 ∧ c = 0

Prod : ∗[produce.n
; {p− c < N?}
; buf.(p mod N) := n
; p := p + 1
]

Cons : ∗[{0 < p− c?}
; m := buf.(c mod N)
; c := c + 1
; consume.m
]

The simplest solution for this problem can be obtained using guarded skip state-
ments.

2 The notation ∗[S] is a short for do true → S od, while the question mark ? recalls
the assertion has to be proved and when it’s done we change it into a heart suit ♥.

4 Javier Blanco, Nicolás Wolovick

Pre : p = 0 ∧ c = 0

Prod : ∗[produce.n
; if p− c < N → skip fi
{p− c < N♥}

; buf.(p mod N) := n
; p := p + 1
]

Cons : ∗[if 0 < p− c → skip fi
{0 < p− c♥}

; m := buf.(c mod N)
; c := c + 1
; consume.m
]

Local correctness is immediate. Global correctness is ensured by widening.

Note that his multiprogram satisfies its safety properties by construction.
We can show progress, using semi-formal arguments together with two safety
properties: absence of total deadlock and the existence of a multibound [7] which
shows that the progress of a component implies the progress of the other, and
hence individual progress is reduced to the absence of total deadlock.

We will try to replace the guarded skips with P operations on semaphores.
The guard strengthening lemma is powerful enough to solve this example. We
begin with the producer postulating a predicate Q as precondition of the guarded
skip. We calculate and try to obtain a simple Q which furthermore is as weak
as possible.

Q ⇒ (0 < s ⇒ p− c < N)
≡ { algebra }

Q ⇒ (0 < s ⇒ 0 < N − p + c)
⇐ { transitivity }

Q ⇒ (s ≤ N − p + c)

The weakest Q that satisfies the last property is precisely s ≤ N − p + c. Note
that this is not the weakest precondition that would allow the application of the
guard strengthening lemma. However, one of the main concerns of this method
is to keep the annotation as simple as possible. We obtain the following program.

Pre : p = 0 ∧ c = 0

Prod : ∗[produce.n
{s ≤ N − p + c?}

; if p− c < N → skip fi
{p− c < N}

; buf.(p mod N) := n
; p := p + 1
]

Cons : ∗[if 0 < p− c → skip fi
{0 < p− c}

; m := buf.(c mod N)
; c := c + 1
; consume.m
]

The application of the guard strengthening lemma allows to replace the old
guard by 0 < s preserving the partial correctness. Whereas the question marked
assertion is not yet proven, it will be done and the transformation is hence
justified.

Strengthen, Widen, Get Semaphores 5

Pre : p = 0 ∧ c = 0

Prod : ∗[produce.n
{s ≤ N − p + c?}

; if 0 < s → skip fi
{p− c < N}

; buf.(p mod N) := n
; p := p + 1
]

Cons : ∗[if 0 < p− c → skip fi
{0 < p− c}

; m := buf.(c mod N)
; c := c + 1
; consume.m
]

The next step is to ensure the correctness of the new assertion. Globally it holds
by widening. For the local correctness the only choice is to require that it is an
invariant for the loop. Initially, any value between 0 and N for s would make the
assertion true. We choose s = N as precondition since it is the largest possible
value and hence it will help to satisfy the progress requirement.

The new assertion must also hold at the end of the loop. Without modifying
the computation proper, the only choice is to decrement s anywhere in the
component between (and including) the guarded skip and the p increment. Since
we are trying to get a P operation on a semaphore, we replace the skip by the
required decrement. Note, however, that for this example a weaker primitive
(see for example [9]) would have been enough. The local correctness of the next
program is now obvious, and the global correctness of all the assertions holds by
widening.

Pre : p = 0 ∧ c = 0 ∧ s = N

Prod : ∗[produce.n
{s ≤ N − p + c}

; if 0 < s → s := s− 1 fi
{s ≤ N − p + c− 1}

; buf.(p mod N) := n
; p := p + 1
{s ≤ N − p + c}

]

Cons : ∗[if 0 < p− c → skip fi
{0 < p− c}

; m := buf.(c mod N)
; c := c + 1
; consume.m
]

Whereas the program is partially correct, it suffers from the danger of deadlock,
since the semaphore s is never incremented. In order to satisfy the ground rule
of progress, the consumer should have the potential of truthifying 0 < s. The
only point in the program where this increment can be safely performed without
compromising the assertions’ correctness is together with the increment of c.

Pre : p = 0 ∧ c = 0 ∧ s = N

Prod : ∗[produce.n
{s ≤ N − p + c}

; if 0 < s → s := s− 1 fi
{s ≤ N − p + c− 1}

; buf.(p mod N) := n
; p := p + 1
{s ≤ N − p + c}

]

Cons : ∗[if 0 < p− c → skip fi
{0 < p− c}

; m := buf.(c mod N)
; c, s := c + 1, s + 1
; consume.m
]

Similarly, the guard strengthening lemma can be applied to replace the guarded
skip in the consumer component. We present the final program with all the

6 Javier Blanco, Nicolás Wolovick

annotations and leave to the reader the exercise of reconstructing the calculation.
The precondition for the semaphore t is the only possible choice to make the loop
invariant initially true.

Pre : p = 0 ∧ c = 0 ∧ s = N ∧ t = 0

Prod : ∗[produce.n
{s ≤ N − p + c}

; if 0 < s → s := s− 1 fi
{s ≤ N − p + c− 1}

; buf.(p mod N) := n
; p, t := p + 1, t + 1
{s ≤ N − p + c}

]

Cons : ∗[{t ≤ p− c}
if 0 < t → t := t− 1 fi
{t ≤ p− c− 1}

; m := buf.(c mod N)
; c, s := c + 1, s + 1
{t ≤ p− c}

; consume.m
]

The solution is correct and its full proof can be easily obtained from the given
annotation. However, the grain of atomicity is somewhat coarse for the two
multiassignments. The technique to reduce the grain of atomicity is yet another
application of the guard strengthening lemma, which became standard in [7].
Two new variables, s′ and t′ are introduced which will be used to replace s and
t respectively. The following invariant should be maintained:

0 ≤ s′ ⇒ 0 ≤ s ∧ 0 ≤ t′ ⇒ 0 ≤ t

Again, the easiest way is to require the simpler and stronger invariant

s′ ≤ s ∧ t′ ≤ t

The following annotated program shows that the invariant is preserved if the
increment to s′ (respectively t′) is performed after the one for s (respectively t).
The correction of the annotation is immediate.

Pre : p = 0 ∧ c = 0 ∧ s = N ∧ s′ = N ∧ t = 0 ∧ t′ = 0

Prod : ∗[produce.n
{s ≤ N − p + c}

; if 0 < s → s, s′ := s− 1, s′ − 1 fi
{s ≤ N − p + c− 1}

; buf.(p mod N) := n
; p, t := p + 1, t + 1
{t′ < t}

; t′ := t′ + 1
{s ≤ N − p + c}

]

Cons : ∗[{t ≤ p− c}
if 0 < t → t, t′ := t− 1, t′ − 1 fi
{t ≤ p− c− 1}

; m := buf.(c mod N)
; c, s := c + 1, s + 1
{s′ < s}

; s′ := s′ + 1
{t ≤ p− c}

; consume.m
]

Inv: s′ ≤ s ∧ t′ ≤ t

Changing the guards to 0 < s′ and 0 < t′, makes {s, t} a set of auxiliary variables.
Eliminating them and all annotations except for the original, we obtain the
following program.

Strengthen, Widen, Get Semaphores 7

Pre : p = 0 ∧ c = 0 ∧ s′ = N ∧ t′ = 0

Prod : ∗[produce.n
; if 0 < s′ → s′ := s′ − 1 fi
{p− c < N}

; buf.(p mod N) := n
; p := p + 1
; t′ := t′ + 1
]

Cons : ∗[if 0 < t′ → t′ := t′ − 1 fi
{0 < p− c}

; m := buf.(c mod N)
; c := c + 1
; s′ := s′ + 1
; consume.m
]

Changing back the names of the semaphores, and using P and V operations, we
obtain

Pre : p = 0 ∧ c = 0 ∧ s = N ∧ t = 0

Prod : ∗[produce.n
; P.s
; buf.(p mod N) := n
; p := p + 1
; V.t
]

Cons : ∗[P.t
; m := buf.(c mod N)
; c := c + 1
; V.s
; consume.m
]

There’s one point left though, in the game of strengthening the guards the
possibility of not making progress may have appeared. The still valid multibound
together with the absence of total deadlock guarantee the individual progress for
producer/consumer with semaphores. To prove no total deadlock some auxiliary
variables are needed, this proof is standard so we refer to the literature, for
example [2,7].

Some remarks are appropriate. This example was also treated in [10], but
the derivation in this article differs in subtle but important points.

The assertions required were stronger in Schneider’s work. Instead of the in-
equalities obtained here, equalities were stated between the value of the semaphore
and the expressions in the guards. One may claim that the use of equalities
ensure that progress properties are preserved. Whereas this claim is true, the
strengthening needed to eliminate the multiple assignment can destroy progress,
and hence the proof has to be done again for the stronger annotation. The draw-
back of the equalities is that partial and total correctness cannot be dealt with
separately, since V operations are needed to ensure partial correctness. More-
over, this drawback becomes more apparent with the elimination of multiple
assignments. Here, it was just a canonical application of the guard strengthen-
ing lemma, whereas in Schneider’s derivation a wholly new annotation had to be
devised, since the old one was no longer valid. In more complex examples this
may be an important improvement.

4 Phase Synchronization for Two Machines

We tackle a different problem now, namely the one that synchronizes two com-
ponents in order to execute S or T only when the number of times they’ve been
executed is equal. The computation proper can be stated as follows.

8 Javier Blanco, Nicolás Wolovick

Pre : x = 0 ∧ y = 0

A : ∗[{x ≤ y?}
S

; x := x + 1
]

B : ∗[{y ≤ x?}
T

; y := y + 1
]

Inv : x ≤ y + 1 ∧ y ≤ x + 1

The invariant follows directly from the queried assertions and the structure of
the components, forming a multibound. Through coordinate transformation d =
x− y + 1 we step through the next version

Pre : d = 1

A : ∗[{d ≤ 1?}
S

; d := d + 1
]

B : ∗[{1 ≤ d?}
T

; d := d− 1
]

Inv : 0 ≤ d ≤ 2

To ensure local correctness we make them loop invariants, while global correct-
ness holds by widening.

Pre : d = 1

A : ∗[{d ≤ 1♥}
S

; d := d + 1
{d ≤ 1?}

]

B : ∗[{1 ≤ d♥}
T

; d := d− 1
{1 ≤ d?}

]

Inv : 0 ≤ d ≤ 2

4.1 Symmetric Solution

It’s easy to see that local correctness can be established through a guarded skip
for each component. Again widening applies to prove non interference.

Pre : d = 1

A : ∗[{d ≤ 1}
S

; d := d + 1
; if d ≤ 1 → skip fi
{d ≤ 1♥}

]

B : ∗[{1 ≤ d}
T

; d := d− 1
; if 1 ≤ d → skip fi
{1 ≤ d♥}

]

Inv : 0 ≤ d ≤ 2

From this point on we’ll work, as in the previous example, on a transforma-
tional approach using guard strengthening lemma, to come up with a version
where all synchronization is achieved through semaphores.

Finding a Q such that Q ∧ 0 < s ⇒ d ≤ 1 can be done by simple predicate
calculus.

Q ⇒ 0 < s ⇒ d ≤ 1

Strengthen, Widen, Get Semaphores 9

≡ { algebra }
Q ⇒ 0 < s ⇒ 0 < 2− d

⇐ { transitivity }
Q ⇒ s ≤ 2− d

So we choose Q as weak as possible and annotate the component A with the
new proof obligation.

Pre : d = 1

A : ∗[{d ≤ 1}
S

; d := d + 1
{s ≤ 2− d?}

; if d ≤ 1 → skip fi
{d ≤ 1}

]

B : ∗[{1 ≤ d}
T

; d := d− 1
; if 1 ≤ d → skip fi
{1 ≤ d}

]

Inv : 0 ≤ d ≤ 2

Since local correctness is not automatically established we calculate

wlp.(d := d + 1).(s ≤ 2− d) ≡ s ≤ 1− d

and decide to make it loop invariant for local correctness. Global correctness
once again follows by widening.

The loop invariant is implied by a stronger Pre, namely one that makes s ≤ 0
valid. Given the semaphore invariant 0 ≤ s that is going to hold, we choose to
conjunct Pre with s = 0. In order to have the loop invariant at the end of it
we need to add assignment s := s − 1 somewhere between the d := d + 1 and
the guarded skip. Again because our transformation is going in the semaphores
direction, the election is simple. For the component B the situation is slightly
less complicated, we give the correct annotated program and leave the details
for the reader.

Pre : d = 1 ∧ s = 0 ∧ t = 0

A : ∗[{d ≤ 1} {s ≤ 1− d}
S

; d := d + 1
{s ≤ 2− d}

; if d ≤ 1 → s := s− 1 fi
{d ≤ 1} {s ≤ 1− d}

]

B : ∗[{1 ≤ d} {t < d}
T

; d := d− 1
; {t ≤ d}
; if 1 ≤ d → t := t− 1 fi
{1 ≤ d} {t < d}

]

Inv : 0 ≤ d ≤ 2

As in the previous example, progress requirement suggests some increments of s
and t. The right place to do it is together with assignments to d. We get the next
version applying guard strengthening lemma and adding these new statements.

10 Javier Blanco, Nicolás Wolovick

Pre : d = 1 ∧ s = 0 ∧ t = 0

A : ∗[{d ≤ 1} {s ≤ 1− d}
S

; d, t := d + 1, t + 1
{s ≤ 2− d}

; if 0 < s → s := s− 1 fi
{d ≤ 1} {s ≤ 1− d}

]

B : ∗[{1 ≤ d} {t < d}
T

; d, s := d− 1, s + 1
; {t ≤ d}
; if 0 < t → t := t− 1 fi
{1 ≤ d} {t < d}

]

Inv : 0 ≤ d ≤ 2

Now d is an auxiliary variable and hence it can be eliminated. Finally we can
move to the P , V synchronization. The final version erasing all annotations is
the following.

Pre : s = 0 ∧ t = 0

A : ∗[S
; V (t)
; P (s)
]

B : ∗[T
; V (s)
; P (t)
]

Individual progress is guaranteed by the same arguments we used in the former
example.

The final algorithm is the same obtained in [2]. However, our starting point
is very different since the whole process was formally developed starting from a
specification that was not biased toward a semaphore solution. In [2] the starting
point is just a coordinate transformation of a semaphore.

4.2 Asymmetric Solution

We can consider the asymmetric solution [7] giving a less well-known program.

Pre : d = 1

A : ∗[{d ≤ 1}
S

; if d ≤ 0 → skip fi
{d ≤ 0}

; d := d + 1
{d ≤ 1}

]

B : ∗[{1 ≤ d}
T

; d := d− 1
; if 1 ≤ d → skip fi
{1 ≤ d}

]

Inv : 0 ≤ d ≤ 2

It’s straightforward to obtain the following semaphore solution for this version
applying exactly the same techniques we developed in former examples. The
details are left to the reader.

Pre : s = 0 ∧ t = 0

A : ∗[S
; P (s)
; V (t)
]

B : ∗[T
; V (s)
; P (t)
]

Strengthen, Widen, Get Semaphores 11

This example shows that a solution obtained using methodological development
of multiprograms, can be brought into the realm of semaphores with very little
cost. Since this asymmetric solution using conditional critical regions is new, our
transformation also produces a new semaphore based solution.

5 Conclusions

We show through these examples that it is feasible to successfully use the re-
sults in formal development of multiprograms to obtain semaphore-based parallel
programs. We found the method simple and fairly general. All the examples con-
sidered could be solved with the guard strengthening lemma only. The economy
of tools involved in the transformations, together with the clear separation of
concerns suggests a wide applicability and scalability of the method.

Although all the examples shown were only synchronized using guarded skips,
the same technique could be applied to any kind of conditional atomic action.
As a class exercise, we could easily solve a conditional region example involving
non empty bodies in the synchronization.

The method presented in [10] uses a stronger version of the guard strengthen-
ing lemma which was not needed here. If for some examples the guard strength-
ening lemma is not powerful enough, it is straightforward to use this stronger
version within our methodology.

Although the first two examples do appear in the literature, the construction
of the programs is very different in particular the starting point of our transfor-
mation are programs which are formally developed. Given the fact that formal
development techniques are useful to obtain different solutions of concurrent
problems, our methodology can bring these new solutions into the semaphore
synchronized programs in a fairly simple way. A very small example of this is
the asymmetric solution to the phase synchronization problem.

References

1. G. R. Andrews, A method for solving synchronization problems, Science of Com-
puter Programming 13, 4 (1-21) 1989.

2. G. R. Andrews, Concurrent Programming: principles and practice, Benjamin Cum-
mings, 1991.

3. K. R. Apt and E-R. Olderog, Verification of Sequential and Concurrent Programs,
Springer, 1991.

4. D. S. Buhăceanu and W. H. J. Feijen, Formal derivation of an algorithm for dis-
tributed phase synchronization, Information Processing Letters, 60:207-213, 1996.

5. E. W. Dijkstra, A Discipline of Programming, Prentice-Hall, Englewood Cliffs, N.
J., 1976.

6. E. W. Dijkstra, A personal summary of the Owicki-Gries theory, in: Selected Writ-
ings on Computing: A Personal Perspective, Springer, New York, 1982.

7. W. H. J. Feijen and A. J. M. van Gasteren, On a Method of Multiprogramming,
Monographs in Computer Science, Springer, 1999.

12 Javier Blanco, Nicolás Wolovick

8. S. S. Owicki and D. Gries, An axiomatic proof technique for parallel programs, Acta
Informatica 6, 4 (319-340), 1976.

9. S. R. Faulk, D. L. Parnas, On Synchronization in Hard-Real-Time Systems, CACM
31(3): 274-287, 1988.

10. F. Schneider, On Concurrent Programming, Graduate Texts in Computer Science,
Springer, 1997.

