Bisimilarity is not Borel

Pedro Sánchez Terraf

Dagstuhl Seminar, 08 / 10 / 2012

LMP and its Non Deterministic version

Image Countable case

Contents

Introduction

- Labelled Transition Systems (LTS)
- Modal Logics
- 2 LMP and its Non Deterministic version
 - Analytic Spaces and Unique Structure
 - Proving Completeness
 - Completeness for image-finite NLMP
- 3 Image Countable case
 - A countable logic?
 - Wellorders
 - Reduction to Trees

Introduction • Labelled Transition Systems (LTS) LMP and its Non Deterministic version

Image Countable case

Labelled Transition Systems

Definition

Let L be countable.

 $\mathbf{S} = \langle S, L, T \rangle$ such that $T_a : S \to \mathsf{Pow}(S)$ for each $a \in L$.

Introduction • Labelled Transition Systems (LTS) LMP and its Non Deterministic version

Image Countable case

Labelled Transition Systems

Definition

Let *L* be countable.

 $\mathbf{S} = \langle S, L, T \rangle$ such that $T_a : S \to \mathsf{Pow}(S)$ for each $a \in L$.

(Kripke frame, no propositional variables).

Introduction • Labelled Transition Systems (LTS) LMP and its Non Deterministic version

Image Countable case

Labelled Transition Systems

Definition

Let L be countable.

 $\mathbf{S} = \langle S, L, T \rangle$ such that $T_a : S \to \mathsf{Pow}(S)$ for each $a \in L$.

(Kripke frame, no propositional variables).

Bisimulation & Bisimilarity

R is a *bisimulation* on LTS if it has the back-and-forth property: if *s R t*, then for all $a \in L$,

 $\forall s': s \xrightarrow{a} s' . \exists t'(t \xrightarrow{a} t' \& s' R t')$ and the other way round

 s_1 is *bisimilar* to t_1 ($s_1 \sim t_1$) if there exists a bisimulation R such that $s_1 R t_1$.

Modal Logics

LMP and its Non Deterministic version

Image Countable case

Logics for Bisimulation

Hennessy-Milner Logic (HML)

$$\varphi \equiv \top \mid \neg \varphi \mid \bigwedge_{i} \varphi_{i} \mid \langle a \rangle \psi$$
$$\mathbf{S}, s \models \langle a \rangle \psi \iff \exists s' : s \stackrel{a}{\to} s' \land \mathbf{S}, s' \models \psi$$

€

▲ 伊 ト ▲ 王 ト ▲ 王 ト

< □ >

Modal Logics

LMP and its Non Deterministic version

Image Countable case

Logics for Bisimulation

Hennessy-Milner Logic (HML)

$$\begin{split} \mathbf{\phi} \, \equiv \, \top \, \mid \, \neg \mathbf{\phi} \, \mid \, \bigwedge_{i} \mathbf{\phi}_{i} \, \mid \, \langle a \rangle \mathbf{\psi} \\ \mathbf{S}, s \models \langle a \rangle \mathbf{\psi} \, \Longleftrightarrow \, \exists s' : s \stackrel{a}{\rightarrow} s' \wedge \mathbf{S}, s' \models \mathbf{\psi} \end{split}$$

Logical Characterization of Bisimulation

Two states in a LTS are bisimilar iff they satisfy the same HML formulas.

Labelled Markov Processes (LMP) and Non Determinism

LMP (Desharnais et al.), SKM (Doberkat)

 $\langle S, S, L, t \rangle$ such that $t_a(s) \in \mathbf{P}(S)$ for each $s \in S$ and $a \in L$, where

- $\langle S, S \rangle$ is a measurable space;
- **P**(*S*) is the space of (sub)probability measures over $\langle S, S \rangle$;
- $t_a: S \to \mathbf{P}(S)$ is measurable.

Labelled Markov Processes (LMP) and Non Determinism

LMP (Desharnais et al.), SKM (Doberkat)

 $\langle S, S, L, t \rangle$ such that $t_a(s) \in \mathbf{P}(S)$ for each $s \in S$ and $a \in L$, where

- $\langle S, S \rangle$ is a measurable space;
- **P**(*S*) is the space of (sub)probability measures over $\langle S, S \rangle$;
- $t_a: S \to \mathbf{P}(S)$ is measurable.

NLMP (D'Argenio and Wolovick)

 $\langle S, S, L, T \rangle$ such that $T_a(s) \subseteq \mathbf{P}(S)$ para each $s \in S$ y $a \in L$, where:

- $\langle S, S \rangle$, $\mathbf{P}(S)$ as before;
- For each *s*, $T_a(s)$ is a measurable set, i.e., $T_a: S \to \mathbf{P}(S)$.
- $T_a: S \to \mathbf{P}(S)$ is a measurable map.

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals).

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals). An measurable space is *analytic* if it is isomorphic to $\langle A, \mathbf{B}(A) \rangle$ for some analytic topological space A.

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals). An measurable space is *analytic* if it is isomorphic to $\langle A, \mathbf{B}(A) \rangle$ for some analytic topological space A.

Examples

- The convex hull of a Borel set in \mathbb{R}^n ;
- The relation of isomorphism between countable structures.

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals). An measurable space is *analytic* if it is isomorphic to $\langle A, \mathbf{B}(A) \rangle$ for some analytic topological space A.

Examples

- The convex hull of a Borel set in \mathbb{R}^n ;
- The relation of isomorphism between countable structures.

Unique Structure Theorem

If a sub- σ -algebra $S \subseteq \mathbf{B}(A)$ is countably generated and separates points, then it is $\mathbf{B}(A)$.

Proving Completeness

Logics for bisimulation on LMP

$(HML_q (Larsen and Skou, Danos et al.))$

$$\varphi \equiv \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle_q \varphi, \qquad q \in \mathbb{Q}$$
$$\mathbf{S}, s \models \langle a \rangle_q \psi \iff P(\{s' : s \xrightarrow{a} s' \& \mathbf{S}, s' \models \psi\}) > q$$

Proving Completeness

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos et al.)

$$\mathbf{\phi} \,\equiv\, op \, \mid \, \mathbf{\phi}_1 \wedge \mathbf{\phi}_2 \,\mid \, \langle a
angle_q \mathbf{\phi}, \qquad q \in \mathbb{Q}$$

$$\mathbf{S}, s \models \langle a \rangle_q \Psi \iff P(\{s' : s \stackrel{a}{\to} s' \And \mathbf{S}, s' \models \psi\}) > q$$

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same HML_q formulas.

Proving Completeness

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos et al.)

$$\varphi \equiv \top \mid \varphi_1 \wedge \varphi_2 \mid \langle a
angle_q \varphi, \qquad q \in \mathbb{Q}$$

$$\mathbf{S}, s \models \langle a \rangle_q \Psi \iff P(\{s' : s \stackrel{a}{\to} s' \And \mathbf{S}, s' \models \psi\}) > q$$

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same HML_q formulas.

Proof Strategy (D'Argenio, Celayes, PST)

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and \land ; 2) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

Completeness for image-finite NLMP

Completeness and some Counterexamples

Logical Characterization for image finite NLMP (D'Argenio et. al)

Two states in a image finite NLMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same \mathscr{L}_f formulas:

$$\mathbf{\phi} \equiv \top \mid \mathbf{\phi}_1 \land \mathbf{\phi}_2 \mid \langle a \rangle \{ \mathbf{\phi}_i, p_i \}_{i=1}^n, \qquad p_i \in \mathbb{Q}, \, n \in \mathbb{N}$$

Completeness for image-finite NLMP

Completeness and some Counterexamples

Logical Characterization for image finite NLMP (D'Argenio et. al)

Two states in a image finite NLMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same \mathscr{L}_f formulas:

$$\boldsymbol{\varphi} \equiv \top \mid \boldsymbol{\varphi}_1 \wedge \boldsymbol{\varphi}_2 \mid \langle a \rangle \{ \boldsymbol{\varphi}_i, p_i \}_{i=1}^n, \qquad p_i \in \mathbb{Q}, \ n \in \mathbb{N}$$

Analiticity is necessary

The category of LMP over arbitrary measurable spaces does not have the *right Ore property* (semipullbacks) and HML_q does not characterize bisimilarity (PST, *Inf& Comp.* **209** 2011)

At least image-countable is necessary

For NLMP over analytic spaces (D'Argenio, PST, Wolovick, *Math.Struct.Comp.Sci*, **22** 2009).

A countable logic?

Proof Strategy

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and \land ; 2) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

A countable logic?

Proof Strategy

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and \land ; 2) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

One Desperate Question

Is there a countable logic for countable LTS?

A countable logic?

An Elegant Answer (X. Caicedo)

There are at most $2^{\aleph_0}=\#\text{Pow}(\mathbb{N})$ (bisimilarity classes) of countable LTS.

There is an injective f : bisimilarity classes $\rightarrow \mathsf{Pow}(\mathbb{N})$.

Choose arbitrary atomic "formulas" P_n ($n \in \mathbb{N}$) with the following semantics:

$$\mathbf{S}, s \models P_n \iff n \in f(\langle \mathbf{S}, s \rangle / \sim)$$

The logic $\mathscr{L}_X := \{P_n : n \in \mathbb{N}\}$ is sound and complete for bisimulation.

A countable logic?

Proof Strategy

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and \land ; 2) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

A countable logic?

Proof Strategy

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and \land ; 2) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

LMP and its Non Deterministic version

A countable logic?

A notion of reduction

Definition

Let X_i be spaces and $A_i \subseteq X_i$ (i = 1, 2). A **reduction** of A_1 to A_2 is a map $f : X_1 \to X_2$ such that

$$x \in A_1 \iff f(x) \in A_2.$$

LMP and its Non Deterministic version

A countable logic?

A notion of reduction

Definition

Let X_i be spaces and $A_i \subseteq X_i$ (i = 1, 2). A reduction of A_1 to A_2 is a map $f : X_1 \to X_2$ such that

$$x \in A_1 \iff f(x) \in A_2.$$

 A_1 is "simpler" than A_2 .

LMP and its Non Deterministic version

A countable logic?

A notion of reduction

Definition

Let X_i be spaces and $A_i \subseteq X_i$ (i = 1, 2). A reduction of A_1 to A_2 is a map $f : X_1 \to X_2$ such that

$$x \in A_1 \iff f(x) \in A_2.$$

A_1 is "simpler" than A_2 .

Example

- 1 Poly-reductions of NP-problems.
- ② Recursive reductions of undecidable problems.
- ③ Continuous reductions in topological spaces.

Reduction to Trees

From WO to Trees...

< □

€

Reduction to Trees

From WO to Trees...

LMP and its Non Deterministic version

Image Countable case

< □ >

Reduction to Trees

$W\!O^{lpha}$ "reduces" to \sim

Lemma

Let T_{α} be the tree associated to wellorders of type α . Then $T_{\alpha} \sim T_{\beta}$ iff $\alpha = \beta$.

LMP and its Non Deterministic version

Reduction to Trees

$$W\!O^lpha$$
 "reduces" to \sim

Lemma

Let T_{α} be the tree associated to wellorders of type α . Then $T_{\alpha} \sim T_{\beta}$ iff $\alpha = \beta$.

In general, for every linear order \leq over $\mathbb N$ we can define its tree of finite decreasing chains.

Corollary

 $WO^{\alpha} = (T_{\cdot})^{-1}(T_{\alpha}/\sim).$

LMP and its Non Deterministic version

Reduction to Trees

$$W\!O^lpha$$
 "reduces" to \sim

Lemma

Let T_{α} be the tree associated to wellorders of type α . Then $T_{\alpha} \sim T_{\beta}$ iff $\alpha = \beta$.

< □ >

In general, for every linear order \leq over $\mathbb N$ we can define its tree of finite decreasing chains.

Corollary

$$WO^{\alpha} = (T_{\cdot})^{-1}(T_{\alpha}/\sim).$$

Theorem

The map *T*. from is continuous, and hence \sim is not Borel.

Reduction to Trees

No Countable Borel Logic

Lemma

Assume ${\mathscr L}$ is a logic that characterizes bisimulation. Then

$$s/\sim = \bigcap \{\llbracket \varphi \rrbracket : S, s \models \varphi\} \cap \bigcap \{S \setminus \llbracket \varphi \rrbracket : S, s \not\models \varphi\}.$$

Reduction to Trees

No Countable Borel Logic

Lemma

Assume ${\mathscr L}$ is a logic that characterizes bisimulation. Then

$$s/\sim = \bigcap \{\llbracket \varphi \rrbracket : S, s \models \varphi\} \cap \bigcap \{S \setminus \llbracket \varphi \rrbracket : S, s \not\models \varphi\}.$$

Theorem

There is no countable Borel logic which is complete for \sim .

Reduction to Trees

No Countable Borel Logic

Lemma

Assume ${\mathscr L}$ is a logic that characterizes bisimulation. Then

$$s/\sim = \bigcap \{\llbracket \varphi \rrbracket : S, s \models \varphi\} \cap \bigcap \{S \setminus \llbracket \varphi \rrbracket : S, s \not\models \varphi\}.$$

Theorem

There is no countable Borel logic which is complete for \sim . **Proof.** If \mathscr{L} is a countable logic that characterizes bisimulation and $[[\mathscr{L}]] \subseteq \mathbf{B}(X)$, then $\langle \mathbf{S}, s \rangle / \sim$ is Borel. Moreover, the complexity of this Borel set is bounded. But the family WO^{α} has unbounded complexity (in the Borel hierarchy).

Reduction to Trees

¡Thank You!

Reduction to Trees

References

LMP and its Non Deterministic version

 [2006] V. DANOS, J. DESHARNAIS, F. LAVIOLETTE, AND P. PANANGADEN
 Bisimulation and cocongruence for probabilistic systems. Inf. & Comp., vol. 204, pp. 503–523.

[1999] J. DESHARNAIS Labelled Markov Processes.

Ph.D. dissertation, McGill University.

[1994] A. KECHRIS *Classical Descriptive Set Theory.* Springer.

[1991] K. LARSEN AND A. SKOU Bisimulation through Probabilistic Testing, Inf. & Comp., vol. 94, pp. 1–28.

