Bisimilarity is not Borel

Pedro Sánchez Terraf

Dagstuhl Seminar, 08 / 10 / 2012

Contents

1) Introduction

- Labelled Transition Systems (LTS)
- Modal Logics

2. LMP and its Non Deterministic version

- Analytic Spaces and Unique Structure
- Proving Completeness
- Completeness for image-finite NLMP

3. Image Countable case

- A countable logic?
- Wellorders
- Reduction to Trees

Labelled Transition Systems (LTS)

Labelled Transition Systems

Definition

Let L be countable.
$\mathbf{S}=\langle S, L, T\rangle$ such that $T_{a}: S \rightarrow \operatorname{Pow}(S)$ for each $a \in L$.

Labelled Transition Systems (LTS)

Labelled Transition Systems

Definition

Let L be countable.
$\mathbf{S}=\langle S, L, T\rangle$ such that $T_{a}: S \rightarrow \operatorname{Pow}(S)$ for each $a \in L$.
(Kripke frame, no propositional variables).

Labelled Transition Systems

Definition

Let L be countable.
$\mathbf{S}=\langle S, L, T\rangle$ such that $T_{a}: S \rightarrow \operatorname{Pow}(S)$ for each $a \in L$.
(Kripke frame, no propositional variables).

Bisimulation \& Bisimilarity

R is a bisimulation on LTS if it has the back-and-forth property: if $s R t$, then for all $a \in L$,

$$
\forall s^{\prime}: s \xrightarrow{a} s^{\prime} . \exists t^{\prime}\left(t \xrightarrow{a} t^{\prime} \& s^{\prime} R t^{\prime}\right) \text { and the other way round }
$$

s_{1} is bisimilar to $t_{1}\left(s_{1} \sim t_{1}\right)$ if there exists a bisimulation R such that $s_{1} R t_{1}$.

Modal Logics

Logics for Bisimulation

Hennessy-Milner Logic (HML)

$$
\begin{gathered}
\varphi \equiv \top|\neg \varphi| \bigwedge_{i} \varphi_{i} \mid\langle a\rangle \psi \\
\mathbf{S}, s \equiv\langle a\rangle \psi \Longleftrightarrow \exists s^{\prime}: s \xrightarrow{a} s^{\prime} \wedge \mathbf{S}, s^{\prime} \models \psi
\end{gathered}
$$

Logics for Bisimulation

Hennessy-Milner Logic (HML)

$$
\begin{gathered}
\varphi \equiv \top|\neg \varphi| \bigwedge_{i} \varphi_{i} \mid\langle a\rangle \psi \\
\mathbf{S}, s \models\langle a\rangle \psi \Longleftrightarrow \exists s^{\prime}: s \xrightarrow{a} s^{\prime} \wedge \mathbf{S}, s^{\prime} \models \psi
\end{gathered}
$$

Logical Characterization of Bisimulation

Two states in a LTS are bisimilar iff they satisfy the same HML formulas.

Labelled Markov Processes (LMP) and Non Determinism

LMP (Desharnais et al.), SKM (Doberkat)

$\langle S, S, L, t\rangle$ such that $t_{a}(s) \in \mathbf{P}(S)$ for each $s \in S$ and $a \in L$, where

- $\langle S, S\rangle$ is a measurable space;
- $\mathbf{P}(S)$ is the space of (sub)probability measures over $\langle S, S\rangle$;
- $t_{a}: S \rightarrow \mathbf{P}(S)$ is measurable.

Labelled Markov Processes (LMP) and Non Determinism

LMP (Desharnais et al.), SKM (Doberkat)

$\langle S, \mathcal{S}, L, t\rangle$ such that $t_{a}(s) \in \mathbf{P}(S)$ for each $s \in S$ and $a \in L$, where

- $\langle S, S\rangle$ is a measurable space;
- $\mathbf{P}(S)$ is the space of (sub)probability measures over $\langle S, S\rangle$;
- $t_{a}: S \rightarrow \mathbf{P}(S)$ is measurable.

NLMP (D'Argenio and Wolovick)

$\langle S, S, L, T\rangle$ such that $T_{a}(s) \subseteq \mathbf{P}(S)$ para each $s \in S$ y $a \in L$, where:

- $\langle S, S\rangle, \mathbf{P}(S)$ as before;
- For each $s, T_{a}(s)$ is a measurable set, i.e., $T_{a}: S \rightarrow \mathbf{P}(S)$.
- $T_{a}: S \rightarrow \mathbf{P}(S)$ is a measurable map.

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An analytic topological space is the continuous image of a Borel set (v.g., of reals).

A pinch of Descriptive Set Theory：Analytic Spaces

Definition

An analytic topological space is the continuous image of a Borel set （v．g．，of reals）．
An measurable space is analytic if it is isomorphic to $\langle A, \mathbf{B}(A)\rangle$ for some analytic topological space A ．

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An analytic topological space is the continuous image of a Borel set (v.g., of reals).

An measurable space is analytic if it is isomorphic to $\langle A, \mathbf{B}(A)\rangle$ for some analytic topological space A.

Examples

- The convex hull of a Borel set in \mathbb{R}^{n};
- The relation of isomorphism between countable structures.

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An analytic topological space is the continuous image of a Borel set (v.g., of reals).

An measurable space is analytic if it is isomorphic to $\langle A, \mathbf{B}(A)\rangle$ for some analytic topological space A.

Examples

- The convex hull of a Borel set in \mathbb{R}^{n};
- The relation of isomorphism between countable structures.

Unique Structure Theorem

If a sub- σ-algebra $\mathcal{S} \subseteq \mathbf{B}(A)$ is countably generated and separates points, then it is $\mathbf{B}(A)$.

Logics for bisimulation on LMP

HML_{q} (Larsen and Skou, Danos et al.)

$$
\begin{gathered}
\varphi \equiv \top\left|\varphi_{1} \wedge \varphi_{2}\right|\langle a\rangle_{q} \varphi, \quad q \in \mathbb{Q} \\
\mathbf{S}, s \models\langle a\rangle_{q} \psi \Longleftrightarrow P\left(\left\{s^{\prime}: s \xrightarrow{a} s^{\prime} \& \mathbf{S}, s^{\prime} \models \psi\right\}\right)>q
\end{gathered}
$$

Logics for bisimulation on LMP

HML_{q} (Larsen and Skou, Danos et al.)

$$
\begin{gathered}
\varphi \equiv \top\left|\varphi_{1} \wedge \varphi_{2}\right|\langle a\rangle_{q} \varphi, \quad q \in \mathbb{Q} \\
\mathbf{S}, s \models\langle a\rangle_{q} \psi \Longleftrightarrow P\left(\left\{s^{\prime}: s \xrightarrow{a} s^{\prime} \& \mathbf{S}, s^{\prime} \models \psi\right\}\right)>q
\end{gathered}
$$

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP $\langle S, \mathcal{S}, L, t\rangle$ with $\langle S, \mathcal{S}\rangle$ analytic are bisimilar iff they satisfy the same HML_{q} formulas.

Logics for bisimulation on LMP

HML_{q} (Larsen and Skou, Danos et al.)

$$
\begin{gathered}
\varphi \equiv \top\left|\varphi_{1} \wedge \varphi_{2}\right|\langle a\rangle_{q} \varphi, \quad q \in \mathbb{Q} \\
\mathbf{S}, s \models\langle a\rangle_{q} \psi \Longleftrightarrow P\left(\left\{s^{\prime}: s \xrightarrow{a} s^{\prime} \& \mathbf{S}, s^{\prime} \models \psi\right\}\right)>q
\end{gathered}
$$

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP $\langle S, \mathcal{S}, L, t\rangle$ with $\langle S, S\rangle$ analytic are bisimilar iff they satisfy the same HML_{q} formulas.

Proof Strategy (D'Argenio, Celayes, PST)

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and $\wedge ; 2$) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

Completeness and some Counterexamples

Logical Characterization for image finite NLMP (D'Argenio et. al)
Two states in a image finite $\operatorname{NLMP}\langle S, \mathcal{S}, L, t\rangle$ with $\langle S, S\rangle$ analytic are bisimilar iff they satisfy the same \mathscr{L}_{f} formulas:

$$
\varphi \equiv \top\left|\varphi_{1} \wedge \varphi_{2}\right|\langle a\rangle\left\{\varphi_{i}, p_{i}\right\}_{i=1}^{n}, \quad p_{i} \in \mathbb{Q}, n \in \mathbb{N}
$$

Completeness and some Counterexamples

Logical Characterization for image finite NLMP (D'Argenio et. al)

Two states in a image finite $\operatorname{NLMP}\langle S, \mathcal{S}, L, t\rangle$ with $\langle S, S\rangle$ analytic are bisimilar iff they satisfy the same \mathscr{L}_{f} formulas:

$$
\varphi \equiv \top\left|\varphi_{1} \wedge \varphi_{2}\right|\langle a\rangle\left\{\varphi_{i}, p_{i}\right\}_{i=1}^{n}, \quad p_{i} \in \mathbb{Q}, n \in \mathbb{N}
$$

Analiticity is necessary

The category of LMP over arbitrary measurable spaces does not have the right Ore property (semipullbacks) and HML_{q} does not characterize bisimilarity (PST, Inf\& Comp. 209 2011)

At least image-countable is necessary

For NLMP over analytic spaces (D'Argenio, PST, Wolovick, Math.Struct.Comp.Sci, 22 2009).

Proof Strategy

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and $\wedge ; 2$) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

Proof Strategy

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and \wedge; 2) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

One Desperate Question
Is there a countable logic for countable LTS?

An Elegant Answer (X. Caicedo)

There are at most $2^{\aleph_{0}}=\# \operatorname{Pow}(\mathbb{N})$ (bisimilarity classes) of countable LTS.
There is an injective f : bisimilarity classes $\rightarrow \operatorname{Pow}(\mathbb{N})$.
Choose arbitrary atomic "formulas" $P_{n}(n \in \mathbb{N})$ with the following semantics:

$$
\mathbf{S}, s \models P_{n} \Longleftrightarrow n \in f(\langle\mathbf{S}, s\rangle / \sim)
$$

The logic $\mathscr{L}_{X}:=\left\{P_{n}: n \in \mathbb{N}\right\}$ is sound and complete for bisimulation.

Proof Strategy

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and $\wedge ; 2$) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

Proof Strategy

This results holds for every process with an analytic state space and a logic \mathscr{L} that satisfies: 1) \mathscr{L} it contains \top and \wedge; 2) for every $\varphi \in \mathscr{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathscr{L} is countable; and 4) \mathscr{L} separates transitions "locally".

A countable logic?

A notion of reduction

Definition

Let X_{i} be spaces and $A_{i} \subseteq X_{i}(i=1,2)$. A reduction of A_{1} to A_{2} is a $\operatorname{map} f: X_{1} \rightarrow X_{2}$ such that

$$
x \in A_{1} \Longleftrightarrow f(x) \in A_{2} .
$$

A countable logic?

A notion of reduction

Definition

Let X_{i} be spaces and $A_{i} \subseteq X_{i}(i=1,2)$. A reduction of A_{1} to A_{2} is a $\operatorname{map} f: X_{1} \rightarrow X_{2}$ such that

$$
x \in A_{1} \Longleftrightarrow f(x) \in A_{2}
$$

A_{1} is "simpler" than A_{2}.

A notion of reduction

Definition

Let X_{i} be spaces and $A_{i} \subseteq X_{i}(i=1,2)$. A reduction of A_{1} to A_{2} is a $\operatorname{map} f: X_{1} \rightarrow X_{2}$ such that

$$
x \in A_{1} \Longleftrightarrow f(x) \in A_{2} .
$$

A_{1} is "simpler" than A_{2}.

Example

(1) Poly-reductions of NP-problems.
(2) Recursive reductions of undecidable problems.
(3) Continuous reductions in topological spaces.

From WO to Trees．．．

4ロ・岛

Reduction to Trees

From WO to Trees．．．

－$T_{0} \doteq{ }^{\varepsilon}$ ；
－$T_{\alpha+1} \doteq$

－$T_{\lambda} \doteq$

$\beta<\lambda$.

Reduction to Trees

$W O^{\alpha}$ "reduces" to \sim

Lemma

Let T_{α} be the tree associated to wellorders of type α. Then $T_{\alpha} \sim T_{\beta}$ iff $\alpha=\beta$.

$W O^{\alpha}$ "reduces" to \sim

Lemma

Let T_{α} be the tree associated to wellorders of type α. Then $T_{\alpha} \sim T_{\beta}$ iff $\alpha=\beta$.

In general, for every linear order \leq over \mathbb{N} we can define its tree of finite decreasing chains.

Corollary
$W O^{\alpha}=(T .)^{-1}\left(T_{\alpha} / \sim\right)$.

$W O^{\alpha}$＂reduces＂to \sim

Lemma

Let T_{α} be the tree associated to wellorders of type α ．Then $T_{\alpha} \sim T_{\beta}$ iff $\alpha=\beta$ ．

In general，for every linear order \leq over \mathbb{N} we can define its tree of finite decreasing chains．

Corollary
$W O^{\alpha}=(T .)^{-1}\left(T_{\alpha} / \sim\right)$ ．

Theorem

The map T．from is continuous，and hence \sim is not Borel．

No Countable Borel Logic

Lemma

Assume \mathscr{L} is a logic that characterizes bisimulation. Then

$$
s / \sim=\bigcap\{\llbracket \varphi \rrbracket: S, s \models \varphi\} \cap \bigcap\{S \backslash \llbracket \varphi \rrbracket: S, s \not \models \varphi\} .
$$

No Countable Borel Logic

Lemma

Assume \mathscr{L} is a logic that characterizes bisimulation. Then

$$
s / \sim=\bigcap\{\llbracket \varphi \rrbracket: S, s \models \varphi\} \cap \bigcap\{S \backslash \llbracket \varphi \rrbracket: S, s \not \models \varphi\} .
$$

Theorem

There is no countable Borel logic which is complete for \sim.

No Countable Borel Logic

Lemma

Assume \mathscr{L} is a logic that characterizes bisimulation. Then

$$
s / \sim=\bigcap\{\llbracket \varphi \rrbracket: S, s \models \varphi\} \cap \bigcap\{S \backslash \llbracket \varphi \rrbracket: S, s \not \equiv \varphi\} .
$$

Theorem

There is no countable Borel logic which is complete for \sim.
Proof. If \mathscr{L} is a countable logic that characterizes bisimulation and $\llbracket \mathscr{L} \rrbracket \subseteq \mathbf{B}(X)$, then $\langle\mathbf{S}, s\rangle / \sim$ is Borel. Moreover, the complexity of this Borel set is bounded. But the family WO ${ }^{\alpha}$ has unbounded complexity (in the Borel hierarchy).

¡Thank You！

References

國 [2006] V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden

Bisimulation and cocongruence for probabilistic systems. Inf. \& Comp., vol. 204, pp. 503-523.

[1999] J. Desharnais
Labelled Markov Processes.
Ph.D. dissertation, McGill University.

[1994] A. Kechris
Classical Descriptive Set Theory.
Springer.

目
[1991] K. Larsen and A. Skou
Bisimulation through Probabilistic Testing,
Inf. \& Comp., vol. 94, pp. 1-28.

