Regressive order on subsets of regular cardinals

Y. Peng P. Sánchez Terraf¹ W. Weiss

University of Toronto CIEM-FaMAF — Universidad Nacional de Córdoba

International Congress of Mathematicians Rio de Janeiro, 2018 / 08 / 02

¹Supported by CONICET and SeCyT-UNC.

Summary

- 1 Intro: The club filter on ω_1
 - Club sets
 - Stationary sets
 - Pressing-down lemma
- **2** The regressive order on $[\omega_1]^{\aleph_1}$
 - Problems and examples
 - Lower bounds
 - Characterization of $<_R$ for ω_1
- 3 Generalizations
 - \blacksquare < β -to-one regressive maps
 - Many maximal elements

Let ω_1 be the first uncountable ordinal.

 $C \subseteq \omega_1$ is club (*closed unbounded*) if it is unbounded in ω_1 and it contains all of its limit points.

Analogy: Borel sets of measure 1 in [0, 1].

Example

The set Lim of limit ordinals in ω_1 : $\{\omega, \omega \cdot 2, \omega \cdot 3, \dots, \omega^2, \omega^2 + \omega, \dots\}$

Given $g: \omega_1 \to \omega_1$, $C_g := \{\beta \in \omega_1 : \forall \alpha < \beta(g(\alpha) < \beta)\}$

Lemma

Clubs are closed under countable intersections.

Hence subsets containing a club form a filter, the club filter. Analogy: Lebesgue measurable sets of measure 1 in [0, 1].

Y. Peng, PST, W. Weiss (UofT, UNC)

Regressive order on $[\omega_1]^{\omega_1}$

Let ω_1 be the first uncountable ordinal.

 $C \subseteq \omega_1$ is club (*closed unbounded*) if it is unbounded in ω_1 and it contains all of its limit points.

Analogy: Borel sets of measure 1 in [0, 1].

The set Lim of limit ordinals in
$$\omega_1$$
:
 $\{\omega, \omega \cdot 2, \omega \cdot 3, \dots, \omega^2, \omega^2 + \omega, \dots\}$

Analogy: Lebesgue measurable sets of measure 1 in [0, 1].

Y. Peng, PST, W. Weiss (UofT, UNC)

Regressive order on $[\omega_1]^{\omega_1}$

Let ω_1 be the first uncountable ordinal.

 $C \subseteq \omega_1$ is club (*closed unbounded*) if it is unbounded in ω_1 and it contains all of its limit points.

Analogy: Borel sets of measure 1 in [0, 1].

Example

• The set Lim of limit ordinals in ω_1 : { $\omega, \omega \cdot 2, \omega \cdot 3, \dots, \omega^2, \omega^2 + \omega, \dots$ }

Given
$$g: \omega_1 \to \omega_1$$
,
 $C_g := \{ \beta \in \omega_1 : \forall \alpha < \beta(g(\alpha) < \beta) \}$

Lemma

Clubs are closed under countable intersections.

Hence subsets containing a club form a filter, the club filter. Analogy: Lebesgue measurable sets of measure 1 in [0,1].

Y. Peng, PST, W. Weiss (UofT, UNC)

Let ω_1 be the first uncountable ordinal.

 $C \subseteq \omega_1$ is club (*closed unbounded*) if it is unbounded in ω_1 and it contains all of its limit points.

Analogy: Borel sets of measure 1 in [0, 1].

Example

■ The set Lim of limit ordinals in ω_1 : { $\omega, \omega \cdot 2, \omega \cdot 3, \dots, \omega^2, \omega^2 + \omega, \dots$ }

Given
$$g: \omega_1 \to \omega_1$$
,
 $C_g := \{\beta \in \omega_1 : \forall \alpha < \beta(g(\alpha) < \beta)\}$

Lemma

Clubs are closed under countable intersections.

Hence subsets containing a club form a filter, the club filter. Analogy: Lebesgue measurable sets of measure 1 in [0,1].

Y. Peng, PST, W. Weiss (UofT, UNC)

Regressive order on $[\omega_1]^{\omega_1}$

Let ω_1 be the first uncountable ordinal.

 $C \subseteq \omega_1$ is club (*closed unbounded*) if it is unbounded in ω_1 and it contains all of its limit points.

Analogy: Borel sets of measure 1 in [0, 1].

Example

■ The set Lim of limit ordinals in ω_1 : { $\omega, \omega \cdot 2, \omega \cdot 3, \dots, \omega^2, \omega^2 + \omega, \dots$ }

Given
$$g: \omega_1 \to \omega_1$$
,
 $C_g := \{\beta \in \omega_1 : \forall \alpha < \beta(g(\alpha) < \beta)\}$

Lemma

Clubs are closed under countable intersections.

Hence subsets containing a club form a filter, the club filter. Analogy: Lebesgue measurable sets of measure 1 in [0, 1].

Y. Peng, PST, W. Weiss (UofT, UNC)

Regressive order on $[\omega_1]^{\omega_1}$

Analogy: sets of outer measure 0 in [0, 1].

Example

 $N_0 := \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \} \subseteq \omega_1 \setminus \{ \omega^\alpha : 2 \le \alpha \in \omega_1 \}.$

 $S \subseteq \omega_1$ is stationary if it is not nonstationary. Equivalently, S intersects every club.

Analogy: sets of positive outer measure in [0, 1].

- Every stationary set is unbounded in ω_1 (intersects every $[\alpha, \omega_1)$).
- Every stationary set contains (many) limit ordinals.

Analogy: sets of outer measure 0 in [0, 1].

Example

 $N_0 := \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \} \subseteq \omega_1 \setminus \{ \omega^\alpha : 2 \le \alpha \in \omega_1 \}.$

 $S \subseteq \omega_1$ is stationary if it is not nonstationary. Equivalently, S intersects every club.

Analogy: sets of positive outer measure in [0, 1].

- Every stationary set is unbounded in ω_1 (intersects every $[\alpha, \omega_1)$).
- Every stationary set contains (many) limit ordinals.

Analogy: sets of outer measure 0 in [0, 1].

Example

 $N_0 \mathrel{\mathop:}= \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \} \subseteq \omega_1 \setminus \{ \omega^\alpha : 2 \le \alpha \in \omega_1 \}.$

 $S \subseteq \omega_1$ is stationary if it is not nonstationary. Equivalently, S intersects every club.

Analogy: sets of positive outer measure in [0, 1].

- Every stationary set is unbounded in ω_1 (intersects every $[\alpha, \omega_1)$).
- Every stationary set contains (many) limit ordinals.

Stationary sets

 $N \subseteq \omega_1$ is nonstationary if its complement contains a club. They form an ideal, dual to the club filter.

Analogy: sets of outer measure 0 in [0, 1].

Example

 $N_0 \mathrel{\mathop:}= \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \} \subseteq \omega_1 \setminus \{ \omega^\alpha : 2 \le \alpha \in \omega_1 \}.$

 $S \subseteq \omega_1$ is stationary if it is not nonstationary. Equivalently, *S* intersects every club.

Analogy: sets of positive outer measure in [0, 1].

- Every stationary set is unbounded in ω_1 (intersects every $[\alpha, \omega_1)$).
- Every stationary set contains (many) limit ordinals.

Analogy: sets of outer measure 0 in [0, 1].

Example

 $N_0 \mathrel{\mathop:}= \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \} \subseteq \omega_1 \setminus \{ \omega^\alpha : 2 \le \alpha \in \omega_1 \}.$

 $S \subseteq \omega_1$ is stationary if it is not nonstationary. Equivalently, *S* intersects every club.

Analogy: sets of positive outer measure in [0, 1].

- Every stationary set is unbounded in ω_1 (intersects every $[\alpha, \omega_1)$).
- Every stationary set contains (many) limit ordinals.

The pressing-down lemma

Intuition

- Sets in the club filter have "density 1 at infinity."
- Stationary sets have "positive density at infinity"

We can't bring a stationary set from infinity in a 1-1 fashion.

Fodor's Lemma

Let $S \subseteq \omega_1$ be stationary and $f: S \to \omega_1$ such that $f(\alpha) < \alpha$ for all $\alpha \in S$. Then there exists $\beta \in \omega_1$ such that $f^{-1}(\beta)$ is stationary (viz., uncountable).

Y. Peng, PST, W. Weiss (UofT, UNC)

The pressing-down lemma

Intuition

- Sets in the club filter have "density 1 at infinity."
- Stationary sets have "positive density at infinity"

We can't bring a stationary set from infinity in a 1-1 fashion.

Fodor's Lemma

Let $S \subseteq \omega_1$ be stationary and $f: S \to \omega_1$ such that $f(\alpha) < \alpha$ for all $\alpha \in S$. Then there exists $\beta \in \omega_1$ such that $f^{-1}(\beta)$ is stationary (viz., uncountable).

Y. Peng, PST, W. Weiss (UofT, UNC)

The pressing-down lemma

Intuition

- Sets in the club filter have "density 1 at infinity."
- Stationary sets have "positive density at infinity"

We can't bring a stationary set from infinity in a 1-1 fashion.

Fodor's Lemma

Let $S \subseteq \omega_1$ be stationary and $f: S \to \omega_1$ such that $f(\alpha) < \alpha$ for all $\alpha \in S$. Then there exists $\beta \in \omega_1$ such that $f^{-1}(\beta)$ is stationary (viz., uncountable).

We say that a function $f: N \to \omega_1$ is regressive if $f(\alpha) < \alpha$ for all $\alpha \in N$. For $X, Y \subseteq \omega_1$, we write $X <_R Y$ if there exist $\gamma < \omega_1$ and an injective regressive $f: X \setminus \gamma \to Y$.

Questions

When a subset $N \subseteq \omega_1$ admits an injective regressive function to ω_1 ? More generally, characterize when $X \leq_R Y$ for $X, Y \subseteq \omega_1$.

Fact

Every nonstationary set admits a 2-1 regressive function.

Proposition

We say that a function $f: N \to \omega_1$ is regressive if $f(\alpha) < \alpha$ for all $\alpha \in N$. For $X, Y \subseteq \omega_1$, we write $X <_R Y$ if there exist $\gamma < \omega_1$ and an injective regressive $f: X \setminus \gamma \to Y$.

Questions

When a subset $N \subseteq \omega_1$ admits an injective regressive function to ω_1 ? More generally, characterize when $X \leq_R Y$ for $X, Y \subseteq \omega_1$.

Fact

Every nonstationary set admits a 2-1 regressive function.

Proposition

We say that a function $f: N \to \omega_1$ is regressive if $f(\alpha) < \alpha$ for all $\alpha \in N$. For $X, Y \subseteq \omega_1$, we write $X <_R Y$ if there exist $\gamma < \omega_1$ and an injective regressive $f: X \setminus \gamma \to Y$.

Questions

When a subset $N \subseteq \omega_1$ admits an injective regressive function to ω_1 ? More generally, characterize when $X <_R Y$ for $X, Y \subseteq \omega_1$.

Fact

Every nonstationary set admits a 2-1 regressive function.

Proposition

We say that a function $f: N \to \omega_1$ is regressive if $f(\alpha) < \alpha$ for all $\alpha \in N$. For $X, Y \subseteq \omega_1$, we write $X <_R Y$ if there exist $\gamma < \omega_1$ and an injective regressive $f: X \setminus \gamma \to Y$.

Questions

When a subset $N \subseteq \omega_1$ admits an injective regressive function to ω_1 ? More generally, characterize when $X <_R Y$ for $X, Y \subseteq \omega_1$.

Fact

Every nonstationary set admits a 2-1 regressive function.

Proposition

We say that a function $f: N \to \omega_1$ is regressive if $f(\alpha) < \alpha$ for all $\alpha \in N$. For $X, Y \subseteq \omega_1$, we write $X <_R Y$ if there exist $\gamma < \omega_1$ and an injective regressive $f: X \setminus \gamma \to Y$.

Questions

When a subset $N \subseteq \omega_1$ admits an injective regressive function to ω_1 ? More generally, characterize when $X <_R Y$ for $X, Y \subseteq \omega_1$.

Fact

Every nonstationary set admits a 2-1 regressive function.

Proposition

We say that a function $f: N \to \omega_1$ is regressive if $f(\alpha) < \alpha$ for all $\alpha \in N$. For $X, Y \subseteq \omega_1$, we write $X <_R Y$ if there exist $\gamma < \omega_1$ and an injective regressive $f: X \setminus \gamma \to Y$.

Questions

When a subset $N \subseteq \omega_1$ admits an injective regressive function to ω_1 ? More generally, characterize when $X <_R Y$ for $X, Y \subseteq \omega_1$.

Fact

Every nonstationary set admits a 2-1 regressive function.

Proposition

The nonstationary set $N_0 = \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \}$ does not admit an injective regressive function.

UNC Universidad Años

The nonstationary set $N_0 = \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \}$ does not admit an injective regressive function.

Proof.

Assume $f: N_0 \rightarrow \omega_1$ is 1-1 regressive.

$$g(\alpha) := egin{cases} f^{-1}(\alpha) & lpha \in img(f) \\ 0 & ext{otherwise} \end{cases}$$

Let $\delta \in C_g \cap \text{Lim.}$ $\alpha < \delta \implies g(\alpha) < \delta$. Then $\beta \ge \delta \implies f(\beta) \ge \delta$. But then *f* maps $(\delta, \delta + \omega]$ into $[\delta, \delta + \omega)$. Contradiction.

The nonstationary set $N_0 = \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \}$ does not admit an injective regressive function.

Proof.

Assume $f: N_0 \rightarrow \omega_1$ is 1-1 regressive.

 $g(\alpha) := \begin{cases} f^{-1}(\alpha) & \alpha \in img(f) \\ 0 & \text{otherwise} \end{cases}$

Let $\delta \in C_g \cap \text{Lim.}$ $\alpha < \delta \implies g(\alpha) < \delta$. Then $\beta \ge \delta \implies f(\beta) \ge \delta$. But then *f* maps $(\delta, \delta + \omega]$ into $[\delta, \delta + \omega)$. Contradiction.

The nonstationary set $N_0 = \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \}$ does not admit an injective regressive function.

Proof.

Assume $f: N_0 \rightarrow \omega_1$ is 1-1 regressive.

$$g(\alpha) := egin{cases} f^{-1}(\alpha) & lpha \in img(f) \\ 0 & ext{otherwise} \end{cases}$$

Let $\delta \in C_g \cap \text{Lim.}$ $\alpha < \delta \implies g(\alpha) < \delta$. Then $\beta \ge \delta \implies f(\beta) \ge \delta$. But then *f* maps $(\delta, \delta + \omega]$ into $[\delta, \delta + \omega)$. Contradiction.

Š

The nonstationary set $N_0 = \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \}$ does not admit an injective regressive function.

Proof.

Assume $f: N_0 \rightarrow \omega_1$ is 1-1 regressive.

$$g(\pmb{lpha}) \mathrel{\mathop:}= egin{cases} f^{-1}(\pmb{lpha}) & \pmb{lpha} \in \mathit{img}(f) \\ 0 & ext{otherwise} \end{cases}$$

Let
$$\delta \in C_g \cap \text{Lim.}$$

 $\alpha < \delta \implies g(\alpha) < \delta$.
Then $\beta \ge \delta \implies f(\beta) \ge \delta$.
But then f maps $(\delta, \delta + \omega]$ into $[\delta, \delta + \omega)$.
Contradiction.

Ĵ

The nonstationary set $N_0 = \bigcup \{ (\delta, \delta + \omega] : \delta \in \omega_1 \text{ limit} \}$ does not admit an injective regressive function.

Proof.

Assume $f: N_0 \rightarrow \omega_1$ is 1-1 regressive.

$$g(\pmb{lpha}) \mathrel{\mathop:}= egin{cases} f^{-1}(\pmb{lpha}) & \pmb{lpha} \in \mathit{img}(f) \\ 0 & ext{otherwise} \end{cases}$$

Let
$$\delta \in C_g \cap \text{Lim.}$$

 $\alpha < \delta \implies g(\alpha) < \delta$.
Then $\beta \ge \delta \implies f(\beta) \ge \delta$.
But then *f* maps $(\delta, \delta + \omega]$ into $[\delta, \delta + \omega)$.
Contradiction.

Ĵ

Proposition

Every family of \aleph_1 subsets of ω_1 has a lower bound.

Proposition

Every family of \aleph_1 subsets of ω_1 has a lower bound.

Proof.

Let $X_{\alpha} \subseteq \omega_1$ ($\alpha \in \omega_1$).

1 Define
$$X = \{x_{\alpha} : \alpha < \omega_1\} \subseteq \omega_1$$
 by:

$$x_{\alpha} := \sup\{X_{\beta}(\alpha) + 1 : \beta \leq \alpha\}.$$

2 The map

$$x\longmapsto X_{\beta}(\min\{\alpha:x_{\alpha}=x\})$$

is well defined from X to X_{β} .

3 Since $x_{\alpha} > X_{\beta}(\alpha)$ for all $\alpha \ge \beta$, it is regressive on $X \setminus \{x_{\alpha} : \alpha < \beta\}$.

Proposition

Every family of \aleph_1 subsets of ω_1 has a lower bound.

Proof.

Let $X_{\alpha} \subseteq \omega_1$ ($\alpha \in \omega_1$).

1 Define
$$X = \{x_{\alpha} : \alpha < \omega_1\} \subseteq \omega_1$$
 by:

$$x_{\alpha} := \sup\{X_{\beta}(\alpha) + 1 : \beta \leq \alpha\}.$$

2 The map

$$x\longmapsto X_{\beta}(\min\{\alpha:x_{\alpha}=x\})$$

is well defined from X to X_{β} .

3 Since $x_{\alpha} > X_{\beta}(\alpha)$ for all $\alpha \ge \beta$, it is regressive on $X \setminus \{x_{\alpha} : \alpha < \beta\}$.

Proposition

Every family of \aleph_1 subsets of ω_1 has a lower bound.

Proof.

Let $X_{\alpha} \subseteq \omega_1$ ($\alpha \in \omega_1$).

1 Define
$$X = \{x_{\alpha} : \alpha < \omega_1\} \subseteq \omega_1$$
 by:

$$x_{\alpha} := \sup\{X_{\beta}(\alpha) + 1 : \beta \leq \alpha\}.$$

2 The map

$$x\longmapsto X_{\beta}(\min\{\alpha:x_{\alpha}=x\})$$

is well defined from X to X_{β} .

3 Since $x_{\alpha} > X_{\beta}(\alpha)$ for all $\alpha \ge \beta$, it is regressive on $X \setminus \{x_{\alpha} : \alpha < \beta\}$.

Elements of *X* are indicated by a bar | (ordinals outside of *X* are denoted by a box \Box).

Elements of *X* are indicated by a bar | (ordinals outside of *X* are denoted by a box \Box).

Elements of *X* are indicated by a bar | (ordinals outside of *X* are denoted by a box \Box).

Given $X \subseteq \omega_1$, let $A_{lpha} \in \mathbb{Z} \cup \{\pm \infty\}$ be defined by

$$A_{0} := 1$$

$$A_{\alpha+1} := \begin{cases} A_{\alpha} & \alpha+1 \in X \\ A_{\alpha}+1 & \alpha+1 \notin X \end{cases}$$

$$A_{\gamma} := \begin{cases} \liminf_{\alpha < \gamma} (A_{\alpha}-1) & \gamma \in X \\ (\liminf_{\alpha < \gamma} (A_{\alpha}-1)) + 1 & \gamma \notin X \end{cases} \quad \gamma \text{ limit,}$$
(1)
$$(1)$$

Straightforward extension A^δ_lpha if the "origin" is δ instead of 0 (and $X\subseteq [\delta, \omega_1)).$

Given $X \subseteq \omega_1$, let $A_{lpha} \in \mathbb{Z} \cup \{\pm \infty\}$ be defined by

$$A_{0} := 1$$

$$A_{\alpha+1} := \begin{cases} A_{\alpha} & \alpha+1 \in X \\ A_{\alpha}+1 & \alpha+1 \notin X \end{cases}$$

$$A_{\gamma} := \begin{cases} \liminf_{\alpha < \gamma} (A_{\alpha}-1) & \gamma \in X \\ (\liminf_{\alpha < \gamma} (A_{\alpha}-1)) + 1 & \gamma \notin X \end{cases} \quad \gamma \text{ limit,}$$
(1)
$$(1)$$

Straightforward extension A_{α}^{δ} if the "origin" is δ instead of 0 (and $X \subseteq [\delta, \omega_1)$).

Y. Peng, PST, W. Weiss (UofT, UNC)

Given $X \subseteq \omega_1$, let $A_{lpha} \in \mathbb{Z} \cup \{\pm \infty\}$ be defined by

$$A_{\delta}^{\delta} := 1$$

$$A_{\alpha+1}^{\delta} := \begin{cases} A_{\alpha}^{\delta} & \alpha+1 \in X \\ A_{\alpha}^{\delta}+1 & \alpha+1 \notin X \end{cases}$$

$$A_{\gamma}^{\delta} := \begin{cases} \liminf_{\alpha < \gamma} (A_{\alpha}^{\delta}-1) & \gamma \in X \\ (\liminf_{\alpha < \gamma} (A_{\alpha}^{\delta}-1)) + 1 & \gamma \notin X \end{cases} \quad \gamma \text{ limit,} \qquad (2)$$

Straightforward extension A_{α}^{δ} if the "origin" is δ instead of 0 (and $X \subseteq [\delta, \omega_1)$).

Characterization of $<_R$ for ω_1

We first characterize the non- $<_R$ -maximal subsets of ω_1 .

Theorem

Assume $X \subseteq \omega_1$. The following are equivalent:

1 There exists a 1-1 regressive function $f: X \to \omega_1$;

2 There exists a club $C \subseteq \omega_1$ such that $C \cap X = \emptyset$ and for all $\delta \in C$, $A_{\alpha}^{\delta} > 0$ for $\alpha \in X$, or there exists $\beta \in (\delta, \delta^+)$ such that the former holds for $\alpha < \beta$ and $A_{\beta}^{\delta} = \omega$.

For the characterization of \leq_R , the existence of an injective regressive map from *X* into *Y* really depends on the relative position of each of them in $Z := X \cup Y$.

$$A_{0} := 1$$

$$A_{\alpha+1} := A_{\alpha} - \chi_{X}(Z(\alpha+1)) + \chi_{Y}(Z(\alpha+1))$$

$$A_{\gamma} := \liminf_{\alpha < \gamma} (A_{\alpha} - \chi_{Y}(Z(\alpha))) - \chi_{X}(Z(\gamma)) + \chi_{Y}(Z(\gamma))$$

Y. Peng, PST, W. Weiss (UofT, UNC)

Š

Characterization of $<_R$ for ω_l

We first characterize the non- $<_R$ -maximal subsets of ω_1 .

Theorem

Assume $X \subseteq \omega_1$. The following are equivalent:

1 There exists a 1-1 regressive function $f: X \to \omega_1$;

2 There exists a club $C \subseteq \omega_1$ such that $C \cap X = \emptyset$ and for all $\delta \in C$, $A_{\alpha}^{\delta} > 0$ for $\alpha \in X$, or there exists $\beta \in (\delta, \delta^+)$ such that the former holds for $\alpha < \beta$ and $A_{\beta}^{\delta} = \omega$.

For the characterization of \leq_R , the existence of an injective regressive map from *X* into *Y* really depends on the relative position of each of them in $Z := X \cup Y$.

$$A_{0} := 1$$

$$A_{\alpha+1} := A_{\alpha} - \chi_{X}(Z(\alpha+1)) + \chi_{Y}(Z(\alpha+1))$$

$$A_{\gamma} := \liminf_{\alpha < \gamma} (A_{\alpha} - \chi_{Y}(Z(\alpha))) - \chi_{X}(Z(\gamma)) + \chi_{Y}(Z(\gamma))$$

Y. Peng, PST, W. Weiss (UofT, UNC)

C

$<\beta$ – 1 regressive maps

Let $\beta \leq \omega_1$.

Definition

 $X <^{\beta}_{R} Y$: For some $\gamma < \omega_{1}, \exists f : X \setminus \gamma \to Y$ regressive such that

 $\forall y < \boldsymbol{\omega}_1, \text{ order-type}(f^{-1}(y)) < \boldsymbol{\beta}.$

Note:

 $\begin{array}{ll} X <^2_R Y & \text{iff} & X <_R Y \\ X <^{\omega_1}_R Y & \text{iff} & \text{there is a countable-to-one regressive } f : X \setminus \{0\} \to Y. \end{array}$

There exist 2^{\aleph_1} ($<_R^{\omega_1}$)-maximal nonstationary sets.

Proof.

- **1** Partition ω_1 into \aleph_1 stationary set $S_0, \ldots, S_{\omega_1}$.
- **2** Given $Y \subseteq \omega_1$, translate S_α by 1 for $\alpha \in Y$.
- 3 Take the union of the whole thing:

 $\bigcup \{S_{\alpha}+1: \alpha \in Y\} \cup \bigcup \{S_{\alpha}: \alpha \in (\omega_1 \setminus Y) \cup \{\omega_1\}\}.$

There exist 2^{\aleph_1} ($<_R^{\omega_1}$)-maximal nonstationary sets.

Proof.

- **1** Partition ω_1 into \aleph_1 stationary set $S_0, \ldots, S_{\omega_1}$.
- **2** Given $Y \subseteq \omega_1$, translate S_α by 1 for $\alpha \in Y$.
- 3 Take the union of the whole thing:

$$\bigcup \{S_{\alpha}+1: \alpha \in Y\} \cup \bigcup \{S_{\alpha}: \alpha \in (\omega_1 \setminus Y) \cup \{\omega_1\}\}.$$

- We have characterizations of $<^{\beta}_{R}$ on ω_{1} for $\beta \leq \omega + 1$. We plan to extend them for arbitrary $\beta < \omega_{1}$
- Apply Milner-Rado pigeonhole principles (e.g. the eponymous "paradox") to the case of $<^{\beta}_{R}$ on cardinals $\kappa > \omega_{1}$).

- We have characterizations of <^β_R on ω₁ for β ≤ ω + 1. We plan to extend them for arbitrary β < ω₁
- Apply Milner-Rado pigeonhole principles (e.g. the eponymous "paradox") to the case of $<^{\beta}_{R}$ on cardinals $\kappa > \omega_{1}$).

Thank you!

Y. Peng, PST, W. Weiss (UofT, UNC)

Regressive order on $[\omega_1]^{\omega_1}$

ICM2018. Rio, 2018/08/02 15 / 15