イロト イワト イヨト イヨト

990

Logics for Markov Decision Processes

Pedro Sánchez Terraf Joint work with P.R. D'Argenio and N. Wolovick

SLALM, UniAndes, 04 / 06 / 2012

Introduction	Labelled Markov Processes (LMP) and its Non Deterministic version	Results	Future Work

Contents

1 Introduction

- Labelled Transition Systems (LTS)
- Modal Logics
- 2 Labelled Markov Processes (LMP) and its Non Deterministic version

□ > < @ > < E > < E >

Jac.

- Analytic Spaces and Unique Structure
- Proving Completeness

3 Results

- Logics for non-deterministic processes
- Some counterexamples

 Introduction
 Labelled Markov Processes (LMP) and its Non Deterministic version
 Results
 Future Work

 •00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00

A toy model

Labelled Transition Systems (LTS)

 $\langle S, L, T \rangle$ such that $T_a : S \to \mathsf{Pow}(S)$ for each $a \in L$.

Introduction ●○○○○○	Labelled Markov Processes (LMP) and its Non Deterministic version	Results	Future Work
Labelled Transitio	n Systems (LTS)		
A toy m	odel		

 $\langle S, L, T \rangle$ such that $T_a : S \to \mathsf{Pow}(S)$ for each $a \in L$.

Zig-zag morphism

A surjective $f: S \to S'$ such that for all $a \in L$ and every $s \in S$, $Pow(f) \circ T_a = T'_a \circ f$.

Sac

lts02.jpg

Introduction ●○○○○○	Labelled Markov Processes (LMP) and its Non Deterministic version	Results	Future Work
Labelled Transition	n Systems (LTS)		
A toy mo	odel		

 $\langle S, L, T \rangle$ such that $T_a : S \to \mathsf{Pow}(S)$ for each $a \in L$.

Zig-zag morphism

A surjective $f: S \to S'$ such that for all $a \in L$ and every $s \in S$, Pow $(f) \circ T_a = T'_a \circ f$.

lts02.jpg

We say that *s* **simulates** *t* because *s* can perform every "sequence of actions" that *t* can.

Introduction Labelled Markov Processes (LMP) and its Non Deterministic version 0●0000 00 Results

Future Work

Labelled Transition Systems (LTS)

Simulation and Bisimulation on LTS

Simulation

It is a relation *R* such that if $s_1 R t_1$ and $t_1 \xrightarrow{a} t_2$ then there is s_2 such that $s_1 \xrightarrow{a} s_2$ and $s_2 R t_2$. In that case we say that s_1 simulates s_2 .

Introduction Labelled Markov Processes (LMP) and its Non Deterministic version

Results

Future Work

Labelled Transition Systems (LTS)

Simulation and Bisimulation on LTS

Simulation

It is a relation *R* such that if $s_1 R t_1$ and $t_1 \xrightarrow{a} t_2$ then there is s_2 such that $s_1 \xrightarrow{a} s_2$ and $s_2 R t_2$. In that case we say that s_1 *simulates* s_2 .

Bisimulation

It is a **symmetric** simulation. We'll say that s_1 is *bisimilar* to t_1 if there exists a bisimulation R such that $s_1 R t_1$.

lts12.jpg

Note: Bisimulation is finer than "double simulation". That's to say, if s_1 is bisimilar to t_1 , then s_1 simulates t_1 and t_1 simulates s_1 , **but not conversely**.

Introduction	Labelled Markov Processes (LMP) and its Non Deterministic version	Results
000000		

Coalgebraic presentation of processes and bisimulation

One categorical counterpart of a relation is a span of morphisms

Coalgebraic presentation of processes and bisimulation

One categorical counterpart of a relation is a span of morphisms

There is a correspondence between cospans and logics

Coalgebraic presentation of processes and bisimulation

One categorical counterpart of a relation is a span of morphisms

There is a correspondence between cospans and logics

Semipullbacks

A category *has semipullbacks* if every cospan can be completed to a commutative diagram with a span.

unc_ubuntu

Coalgebraic presentation of processes and bisimulation

One categorical counterpart of a relation is a span of morphisms

□ > < @ > < E > < E >

There is a correspondence between cospans and logics

Semipullbacks

A category *has semipullbacks* if every cospan can be completed to a commutative diagram with a span.

It is the Amalgamation Property in the opposite category.

unc_ubuntu nc QQ

Labelled Markov Processes (LMP) and its Non Deterministic version $_{\odot \odot}$

Results

Future Work

0

Modal Logics

Logics for Bisimulation

Hennessy-Milner Logic (HML)

$$\varphi \equiv \top \mid \neg \varphi \mid \bigwedge_{i} \varphi_{i} \mid \langle a \rangle \psi$$

Introduction	
000000	

Labelled Markov Processes (LMP) and its Non Deterministic version $_{\bigcirc \bigcirc }$

Results

Future Work

Modal Logics

Simulation and Bisimulation on LTS

Simulation

It is a relation *R* such that if $s_1 R t_1$ and $t_1 \xrightarrow{a} t_2$ then there is s_2 such that $s_1 \xrightarrow{a} s_2$ and $s_2 R t_2$. In that case we say that s_1 *simulates* s_2 .

Bisimulation

It is a **symmetric** simulation. We'll say that s_1 is *bisimilar* to t_1 if there exists a bisimulation R such that $s_1 R t_1$.

" t_1 can make an *a*-transition after which a *c*-transition is not possible".

$$t_1 \models \langle a \rangle \neg \langle c \rangle \top$$

$$s_1 \not\models \langle a \rangle \neg \langle c \rangle \top$$

$$unc_n have$$

lts12.jpg

Labelled Markov Processes (LMP) and its Non Deterministic version $_{\bigcirc \bigcirc }$

Results

Future Work

Modal Logics

Logics for Bisimulation

Hennessy-Milner Logic (HML)

$$\varphi \equiv \top \mid \neg \varphi \mid \bigwedge_{i} \varphi_{i} \mid \langle a \rangle \psi$$

Logical Characterization of Bisimulation

Two states in a LTS are bisimilar iff they satisfy the same HML formulas.

Labelled Markov Processes (LMP) and Non Determinism

LMP (Desharnais et al.)

 $\langle S, S, L, t \rangle$ such that $t_a(s) \in \mathbf{P}(S)$ for each $s \in S$ and $a \in L$, where

- $\langle S, S \rangle$ is a measurable space;
- **P**(*S*) is the space of (sub)probability measures over $\langle S, S \rangle$;
- $t_a: S \to \mathbf{P}(S)$ is measurable.

Labelled Markov Processes (LMP) and Non Determinism

LMP (Desharnais et al.)

 $\langle S, S, L, t \rangle$ such that $t_a(s) \in \mathbf{P}(S)$ for each $s \in S$ and $a \in L$, where

- $\langle S, S \rangle$ is a measurable space;
- **P**(*S*) is the space of (sub)probability measures over $\langle S, S \rangle$;
- $t_a: S \to \mathbf{P}(S)$ is measurable.

NLMP (D'Argenio and Wolovick)

 $\langle S, S, L, T \rangle$ such that $T_a(s) \subseteq \mathbf{P}(S)$ para each $s \in S$ y $a \in L$, where:

- $\langle S, S \rangle$, $\mathbf{P}(S)$ as before;
- For each *s*, $T_a(s)$ is measurable. I.e., $T_a: S \to \mathbf{P}(S)$.
- $T_a: S \to \mathbf{P}(S)$ is a measurable map.

Analytic Spaces and Unique Structure

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals).

Analytic Spaces and Unique Structure

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals). An measurable space is *analytic* if it is isomorphic to $\langle A, \mathbf{B}(A) \rangle$ for some analytic topological space *A*.

Analytic Spaces and Unique Structure

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals). An measurable space is *analytic* if it is isomorphic to $\langle A, \mathbf{B}(A) \rangle$ for some analytic topological space A.

Examples

- The convex hull of a Borel set in \mathbb{R}^n ;
- The relation of isomorphism between countable structures.

Analytic Spaces and Unique Structure

A pinch of Descriptive Set Theory: Analytic Spaces

Definition

An *analytic* topological space is the continuous image of a Borel set (v.g., of reals). An measurable space is *analytic* if it is isomorphic to $\langle A, \mathbf{B}(A) \rangle$ for some analytic topological space A.

Examples

- The convex hull of a Borel set in \mathbb{R}^n ;
- The relation of isomorphism between countable structures.

Unique Structure Theorem

If a sub- σ -algebra $S \subseteq \mathbf{B}(A)$ is countably generated and separates points, then it is $\mathbf{B}(A)$.

Labelled Markov Processes (LMP) and its Non Deterministic version

Results

Future Work

Proving Completeness

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos *et al.*)

$$\phi \equiv \top \mid \phi_1 \wedge \phi_2 \mid \langle a \rangle_q \phi, \qquad q \in \mathbb{Q}$$

Proving Completeness

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos et al.)

$$\mathbf{\phi} \,\equiv\, op \;\mid\; \mathbf{\phi}_1 \wedge \mathbf{\phi}_2 \;\mid\; \langle a
angle_q \mathbf{\phi}, \qquad q \in \mathbb{Q}$$

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same HML_q formulas.

Proving Completeness

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos et al.)

$$\mathbf{\phi} \,\equiv\, op \;\mid\; \mathbf{\phi}_1 \wedge \mathbf{\phi}_2 \;\mid\; \langle a
angle_q \mathbf{\phi}, \qquad q \in \mathbb{Q}$$

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same HML_q formulas.

Proof Strategy (D'Argenio, Celayes, PST)

This results holds for every process with an analytic state space and a logic \mathcal{L} that satisfies: 1) \mathcal{L} it contains \top and \land ; 2) for every $\varphi \in \mathcal{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathcal{L} is countable; and 4) \mathcal{L} separates transitions "locally".

Introduction La

Labelled Markov Processes (LMP) and its Non Deterministic version $_{\odot \odot}$

Results ●○ Future Work

Logics for non-deterministic processes

Logics for bisimulation on LMP

L_f (D'Argenio et. al)

$\mathbf{\varphi} \equiv \top \mid \mathbf{\varphi}_1 \wedge \mathbf{\varphi}_2 \mid \langle a \rangle \{ \mathbf{\varphi}_i, p_i \}_{i=1}^n, \qquad p_i \in \mathbb{Q}, \ n \in \mathbb{N}$

 Introduction
 Labelled Markov Processes (LMP) and its Non Deterministic version

 000000
 00

Results

Future Work

Logics for non-deterministic processes

Logics for bisimulation on LMP

Lf (D'Argenio et. al)

$$\mathbf{\varphi} \equiv \top \mid \mathbf{\varphi}_1 \wedge \mathbf{\varphi}_2 \mid \langle a \rangle \{ \mathbf{\varphi}_i, p_i \}_{i=1}^n, \qquad p_i \in \mathbb{Q}, \ n \in \mathbb{N}$$

The proof strategy immediately gives

Logical Characterization of Bisimulation for image finite NLMP

Two states in a image finite NLMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same \mathcal{L}_f formulas.

 Introduction
 Labelled Markov Processes (LMP) and its Non Deterministic version

 000000
 00

Results

Future Work

Logics for non-deterministic processes

Logics for bisimulation on LMP

L_f (D'Argenio et. al)

$$\mathbf{\varphi} \equiv \top \mid \mathbf{\varphi}_1 \wedge \mathbf{\varphi}_2 \mid \langle a \rangle \{ \mathbf{\varphi}_i, p_i \}_{i=1}^n, \qquad p_i \in \mathbb{Q}, \, n \in \mathbb{N}$$

The proof strategy immediately gives

Logical Characterization of Bisimulation for image finite NLMP

Two states in a image finite NLMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same \mathcal{L}_f formulas.

Δ (D'Argenio *et. al*)

$$\varphi \equiv \top \mid \varphi_1 \land \varphi_2 \mid \langle a \rangle \psi$$
$$\psi \equiv \bigvee_{i \in I} \psi_i \mid \neg \psi \mid [\varphi]_{\geq q}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ○ ◆ ○ ◆

Some counterexamples

Some counterexamples

Analiticity is necessary

The category of LMP over arbitrary measurable spaces does not have semipullbacks and HML_q does not characterize bisimilarity (PST, *Inf& Comp.* **209** 2011)

・何ト・ヨト・ヨ

Some counterexamples

Some counterexamples

Analiticity is necessary

The category of LMP over arbitrary measurable spaces does not have semipullbacks and HML_q does not characterize bisimilarity (PST, *Inf& Comp.* **209** 2011)

At least image-countable is necessary

For NLMP over analytic spaces (D'Argenio, PST, Wolovick, *Math.Struct.Comp.Sci*, **22** 2009).

anouthing

Sac

Logics for bisimulation on LMP

HML_q (Larsen and Skou, Danos et al.)

$$\mathbf{\phi} \equiv \top \mid \mathbf{\phi}_1 \wedge \mathbf{\phi}_2 \mid \langle a \rangle_q \mathbf{\phi}, \qquad q \in \mathbb{Q}$$

Logical Characterization of Bisimulation for LMP (Danos et al.)

Two states in a LMP $\langle S, S, L, t \rangle$ with $\langle S, S \rangle$ analytic are bisimilar iff they satisfy the same HML_q formulas.

Proof Strategy (D'Argenio, Celayes, PST)

This results holds for every process with an analytic state space and a logic \mathcal{L} that satisfies: 1) \mathcal{L} it contains \top and \land ; 2) for every $\varphi \in \mathcal{L}$, $\llbracket \varphi \rrbracket$ is measurable; 3) \mathcal{L} is countable; and 4) \mathcal{L} separates transitions "locally".

Intro	ducti	on

Future Work

 To decide whether there is a nice logical characterization of bisimulation for countable NLMP. Is there a countable logic for countable LTS?

Intro	duc	tion

- To decide whether there is a nice logical characterization of bisimulation for countable NLMP. Is there a countable logic for countable LTS?
- If possible, to extend the logical characterization to Radon spaces $\langle S, S \rangle$ (i.e., $S \subseteq$ universally measurable sets).

Introduction	Labelled Markov Processes (LMP

00

Thank You!

and its Non Deterministic version

Introduction	Labelled Markov Processes (LMP) and its Non Deterministic version	Results

Future Work

Sac

References

 [2006] V. DANOS, J. DESHARNAIS, F. LAVIOLETTE, AND P. PANANGADEN
 Bisimulation and cocongruence for probabilistic systems. Inf. & Comp., vol. 204, pp. 503–523.

[1999] J. DESHARNAIS Labelled Markov Processes.

Ph.D. dissertation, McGill University.

[1991] K. LARSEN AND A. SKOU Bisimulation through Probabilistic Testing, Inf. & Comp., vol. 94, pp. 1–28.