Permutable bisimulation equivalences of Kripke frames

Pedro Sánchez Terraf¹ Joint work with M. Campercholi and D. Penazzi

CIEM-FaMAF — Universidad Nacional de Córdoba

SLALM, UBA, 01 / 08 / 2014

¹Partially supported by CONICET, ANPCyT project PICT 2012-1823, and by SeCyT-UNC project 05/B284

Contents

1 Introduction

- Beth's Theorem
- Duality
- Equational definition of functions
- 2 Linear graphs ("Rulers")
 - Congruences (as foldings)
 - The join
- 3 Results
 - The catalog

Example

 $\Gamma(p_1, p_2, r) \doteq \{r \rightarrow p_1, r \rightarrow p_2, p_1 \rightarrow (p_2 \rightarrow r)\}.^2$

$\Gamma(p_1,p_2,r), \Gamma(p_1,p_2,r') \models_{\mathsf{CPC}} r \leftrightarrow r'.$

Theorem (Beth's for CPC)

Every such definition over CPC can be made explicit.

 Γ is an **implicit** definition of \land over CPC. And so is on CPC^{\rightarrow}, but no explicit definition here.

²Hoogland (2001)

Example

 $\Gamma(p_1, p_2, r) \doteq \{r \rightarrow p_1, r \rightarrow p_2, p_1 \rightarrow (p_2 \rightarrow r)\}.^2$

$$\Gamma(p_1,p_2,r), \Gamma(p_1,p_2,r') \models_{\mathsf{CPC}} r \leftrightarrow r'.$$

Theorem (Beth's for CPC)

Every such definition over CPC can be made explicit.

 Γ is an implicit definition of \land over CPC. And so is on CPC^{\rightarrow}, but no explicit definition here.

²Hoogland (2001)

Example

$$\Gamma(p_1, p_2, r) \doteq \{r \rightarrow p_1, r \rightarrow p_2, p_1 \rightarrow (p_2 \rightarrow r)\}.^2$$

$$\Gamma(p_1,p_2,r), \Gamma(p_1,p_2,r') \models_{\mathsf{CPC}} r \leftrightarrow r'.$$

Theorem (Beth's for CPC)

Every such definition over CPC can be made explicit.

 Γ is an implicit definition of \wedge over CPC. And so is on CPC $^{\rightarrow},$ but no explicit definition here.

²Hoogland (2001)

Example $$\begin{split} &\Gamma(p_1,p_2,r) \doteq \{r \rightarrow p_1, r \rightarrow p_2, p_1 \rightarrow (p_2 \rightarrow r)\}.^2 \\ &\Gamma(p_1,p_2,r), \Gamma(p_1,p_2,r') \models_{\mathsf{CPC}} r \leftrightarrow r'. \end{split}$$

Theorem (Beth's for CPC)

Every such definition over CPC can be made explicit.

 Γ is an implicit definition of \land over CPC. And so is on CPC^{\rightarrow}, but no explicit definition here.

²Hoogland (2001)

Example $$\begin{split} &\Gamma(p_1,p_2,r) \doteq \{r \rightarrow p_1, r \rightarrow p_2, p_1 \rightarrow (p_2 \rightarrow r)\}.^2 \\ &\Gamma(p_1,p_2,r), \Gamma(p_1,p_2,r') \models_{\mathsf{CPC}} r \leftrightarrow r'. \end{split}$$

Theorem (Beth's for CPC)

Every such definition over CPC can be made explicit.

 Γ is an implicit definition of \land over CPC. And so is on CPC $^{\rightarrow}$, but no explicit definition here.

²Hoogland (2001)

We will be interested on the (modal) logic of a finite family of finite Kripke frames.

Duality

 $\begin{array}{ccc} \mathsf{Kripke Frames} & \longleftrightarrow & \mathsf{Boolean algebras with operators} \\ \mathbf{L} \doteq \langle L, R \rangle & \longleftrightarrow & \mathbf{L}^{\bullet} \doteq \langle \mathscr{P}(L), \cap, \cup, \cdot^{\mathsf{c}}, \top, \bot, \Diamond_R \rangle \\ \mathbf{L} \models \phi & \longleftrightarrow & \mathbf{L}^{\bullet} \models \phi = \top \end{array}$

A function $f : A^n \to A$ is algebraic³ in **A** if there are terms p_i, q_i such that

$$f(\bar{x}) = z \iff \mathbf{A} \models \bigwedge_i p_i(\bar{x}, z) = q_i(\bar{x}, z).$$

Algebraic functions in A are in correspondence with $\forall \exists ! \land p = q$ sentences holding in A.

Observation

Every new algebraic function gives a counterexample to Beth's Theorem.

³Campercholi and Vaggione (2011a).

A function $f : A^n \to A$ is algebraic³ in **A** if there are terms p_i, q_i such that

$$f(\bar{x}) = z \iff \mathbf{A} \models \bigwedge_i p_i(\bar{x}, z) = q_i(\bar{x}, z).$$

Algebraic functions in A are in correspondence with $\forall \exists! \land p = q$ sentences holding in A.

Observation

Every new algebraic function gives a counterexample to Beth's Theorem.

³Campercholi and Vaggione (2011a).

A function $f : A^n \to A$ is algebraic³ in **A** if there are terms p_i, q_i such that

$$f(\bar{x}) = z \iff \mathbf{A} \models \bigwedge_i p_i(\bar{x}, z) = q_i(\bar{x}, z).$$

Algebraic functions in **A** are in correspondence with $\forall \exists ! \land p = q$ sentences holding in **A**.

Observation

Every new algebraic function gives a counterexample to Beth's Theorem.

³Campercholi and Vaggione (2011a).

Duality

Kripke Frames \longleftrightarrow

Boolean algebras with operators $\mathbf{L} \doteq \langle L, R \rangle \quad \longleftrightarrow \quad \mathbf{L}^{\bullet} \doteq \langle \mathcal{P}(L), \cap, \cup, \cdot^{\circ}, \top, \bot, \Diamond_R \rangle$ $L \models \phi \quad \longleftrightarrow \quad L^{\bullet} \models \phi = \top$

Everything in this slide is true up to iso.

Theorem (Campercholi and Vaggione (2011b))

Let *C* a finite class of finite structures. TFAE:

- **1** *C* is definable by a set of $\forall \exists ! \land p = q$ sentences;
- 2 C is closed under
 - Intersection of subalgebras (A, B, C $\in C$ & B, C \leq A \implies B \cap C $\in C$), and
 - fixpoint subalgebras ($\mathbf{A} \in \mathcal{C} \& \gamma \in \operatorname{Aut}(\mathbf{A}) \Longrightarrow \operatorname{Fix}(\gamma) \in \mathcal{C}$).

For infinite C is extremely difficult.

Everything in this slide is true up to iso.

Theorem (Campercholi and Vaggione (2011b))

Let C a finite class of finite structures. TFAE:

- **1** *C* is definable by a set of $\forall \exists ! \land p = q$ sentences;
- 2 C is closed under
 - $\blacksquare \ \textit{intersection of subalgebras} \ (A,B,C \in \mathcal{C} \ \& \ B,C \leq A \implies B \cap C \in \mathcal{C})\textit{, and}$
 - fixpoint subalgebras ($A \in C \& \gamma \in Aut(A) \implies Fix(\gamma) \in C$).

For infinite C is extremely difficult.

Everything in this slide is true up to iso.

Theorem (Campercholi and Vaggione (2011b))

Let C a finite class of finite structures. TFAE:

- **1** *C* is definable by a set of $\forall \exists ! \land p = q$ sentences;
- 2 C is closed under
 - $\blacksquare \ \textit{intersection of subalgebras} \ (A,B,C \in \mathcal{C} \ \& \ B,C \leq A \implies B \cap C \in \mathcal{C} \textit{), and}$
 - fixpoint subalgebras ($A \in C \& \gamma \in Aut(A) \implies Fix(\gamma) \in C$).

For infinite C is extremely difficult.

Duality

Kripke Frames

$$\mathbf{L} \doteq \langle L, R \rangle \quad \Leftarrow$$

$$L\models \phi\quad\longleftrightarrow\quad$$

 \longleftrightarrow

 \rightarrow

 $\mathbf{L} \models \boldsymbol{\Psi}$

Failure of Beth's \leftarrow

Bisimulation equivalences \longleftrightarrow

Boolean algebras with operators

$$\mathbf{L}^{\bullet} \doteq \langle \mathcal{P}(L), \cap, \cup, \cdot^{\mathsf{c}}, \top, \bot, \Diamond_R \rangle$$

$$\mathbf{L}^{\bullet} \models \phi = \exists$$

- New algebraic function
- ightarrow Subalgebras

Definition (Bisimulation)

A relation θ such that whenever $s_1 \theta t_1$,

forth if $s_1 R s_2$ then there is t_2 such that $t_1 R t_2$ and $s_2 \theta t_2$. back if $t_1 R t_2$ then there is s_2 such that $s_1 R s_2$ and $s_2 \theta t_2$.

Congruence

It's a reflexive, symmetric, and transitive bisimulation.

Definition (Bisimulation)

A relation θ such that whenever $s_1 \theta t_1$,

forth if $s_1 R s_2$ then there is t_2 such that $t_1 R t_2$ and $s_2 \theta t_2$.

back if $t_1 R t_2$ then there is s_2 such that $s_1 R s_2$ and $s_2 \theta t_2$.

Congruence

It's a reflexive, symmetric, and transitive bisimulation.

Duality

Kripke Frames

$$\mathbf{L} \doteq \langle L, R \rangle \quad \longleftrightarrow$$

$$L\models \phi$$

 \longleftrightarrow

 \longleftrightarrow

Failure of Beth's

Bisimulation equivalences

 $\mathsf{Join} \longleftrightarrow$

FP congruences \longleftrightarrow

Boolean algebras with operators

$$\mathbf{L}^{\bullet} \doteq \langle \mathcal{P}(L), \cap, \cup, \cdot^{c}, \top, \bot, \Diamond_{R} \rangle$$

$$\mathbf{L}^{\bullet} \models \boldsymbol{\varphi} = \top$$

- $\longleftarrow \quad \text{New algebraic function} \quad$
- \longleftrightarrow Subalgebras
 - \rightarrow Intersection of subalgebras
 - FP subalgebras

Rulers

Definition

A ruler is a symmetric reflexive linear Kripke frame:

$$\mathbf{L}_{\mathbf{n}} = \langle n+1, R \rangle$$
, where $x R y \iff |x-y| \le 1$.

For n = 5



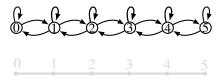
Rulers

Definition

A ruler is a symmetric reflexive linear Kripke frame:

$$\mathbf{L}_{\mathbf{n}} = \langle n+1, R \rangle$$
, where $x R y \iff |x-y| \le 1$.

For *n* = 5:



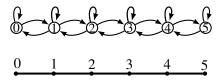
Rulers

Definition

A ruler is a symmetric reflexive linear Kripke frame:

$$\mathbf{L}_{\mathbf{n}} = \langle n+1, R \rangle$$
, where $x R y \iff |x-y| \le 1$.

For *n* = 5:



Foldings

A folding of a ruler ...

$\langle 1 \rangle$ on L₅

We also allow 1-unit "rests" (as in long staircases): $\langle 2;2\rangle$ on $L_5.$

1 Every congruence $\theta \neq L \times L$ is a folding and viceversa.

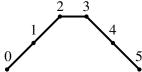
2 θ is trivial $\iff \exists x : x \ \theta \ x + 1 \ \theta \ x + 2$

Foldings

A folding of a ruler ...

$\langle 1 \rangle$ on L₅

We also allow 1-unit "rests" (as in long staircases): $\langle 2;2\rangle$ on $L_5.$



1 Every congruence $\theta \neq L \times L$ is a folding and viceversa.

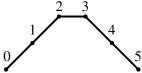
2 θ is trivial $\iff \exists x : x \ \theta \ x + 1 \ \theta \ x + 2$

Foldings

A folding of a ruler ...

$\langle 1 \rangle$ on L₅

We also allow 1-unit "rests" (as in long staircases): $\langle 2;2\rangle$ on $L_5.$



1 Every congruence $\theta \neq L \times L$ is a folding and viceversa.

2 θ is trivial $\iff \exists x : x \ \theta \ x + 1 \ \theta \ x + 2.$

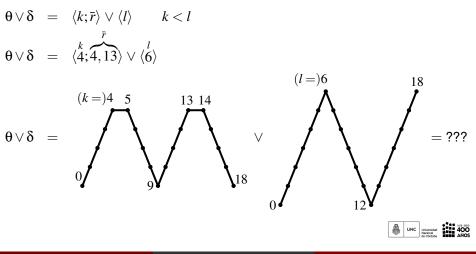
Two congruences on L_{18} :

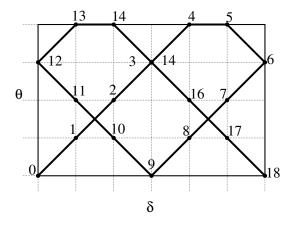
 $\theta \lor \delta = \langle k; \bar{r} \rangle \lor \langle l \rangle \qquad k < l$

Two congruences on L_{18} :

$$\begin{array}{lll} \boldsymbol{\theta} \vee \boldsymbol{\delta} & = & \langle k; \bar{r} \rangle \vee \langle l \rangle & k < l \\ \\ \boldsymbol{\theta} \vee \boldsymbol{\delta} & = & \langle \overset{k}{4}; \overbrace{4,13}^{\bar{r}} \rangle \vee \langle \overset{l}{6} \rangle \end{array}$$

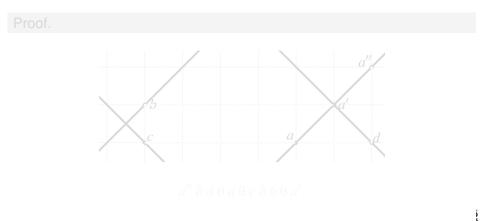
Two congruences on L_{18} :





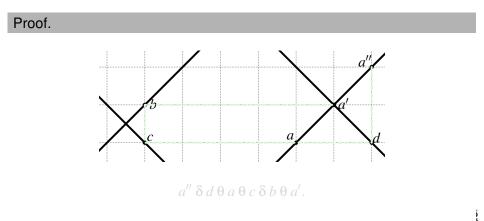
Lemma

If the trajectory diagram of $\theta \lor \delta$ has two crossings with one coordinate differing in $\frac{1}{2}$, the join is trivial.



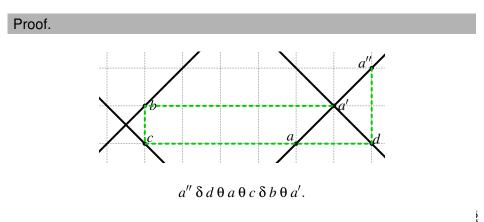
Lemma

If the trajectory diagram of $\theta \lor \delta$ has two crossings with one coordinate differing in $\frac{1}{2}$, the join is trivial.



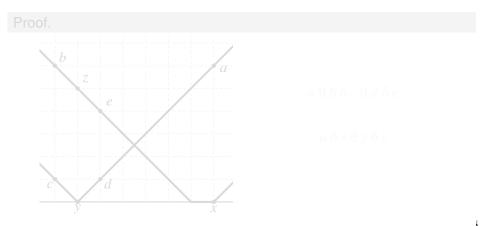
Lemma

If the trajectory diagram of $\theta \lor \delta$ has two crossings with one coordinate differing in $\frac{1}{2}$, the join is trivial.



Lemma

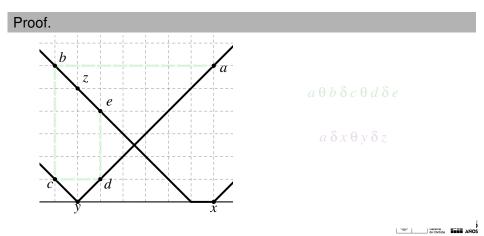
Bounces strictly less than k apart must be of the same type.



de Córdoba

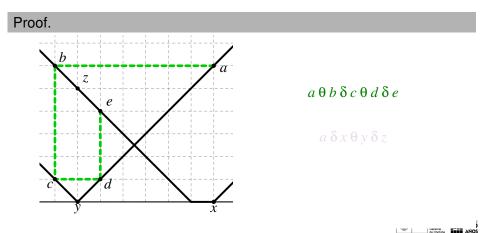
Lemma

Bounces strictly less than k apart must be of the same type.



Lemma

Bounces strictly less than k apart must be of the same type.

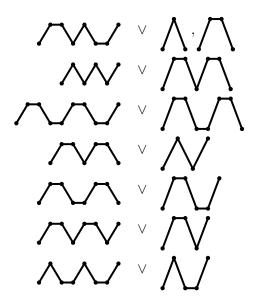


Lemma

Bounces strictly less than k apart must be of the same type.



Local non-trivial joins



¡Thank You!

Campercholi, Penazzi, PST (UNC)

Congruences for Rulers

SLALM, UBA, 01 / 08 / 2014 18 / 20



- M. CAMPERCHOLI, D. VAGGIONE, Algebraic functions, *Studia Logica* **98**: 285–306 (2011).
- M. CAMPERCHOLI, D. VAGGIONE, Axiomatizability by forall-exists-sentences, *Arch. Math. Log.* **50**: 713–725 (2011).
- E. HOOGLAND, "Definability and Interpolation Model-theoretic investigations", Ph.D. thesis, Institute for Logic, Language and Computation. Universiteit van Amsterdam (2001).

