Permutable bisimulation equivalences of Kripke frames

Pedro Sánchez Terraf ${ }^{1}$
Joint work with M. Campercholi and D. Penazzi

CIEM-FaMAF - Universidad Nacional de Córdoba

$$
\text { SLALM, UBA, } 01 \text { / } 08 \text { / } 2014
$$

[^0]
Contents

1 Introduction
■ Beth's Theorem
■ Duality

- Equational definition of functions

2 Linear graphs ("Rulers")
■ Congruences (as foldings)

- The join

3 Results

- The catalog

Beth's Theorem

Motto: Implicit definability \Longleftrightarrow Explicit definability.
Example
$\Gamma\left(p_{1}, p_{2}, r\right) \doteq\left\{r \rightarrow p_{1}, r \rightarrow p_{2}, p_{1} \rightarrow\left(p_{2} \rightarrow r\right)\right\} .{ }^{2}$$\Gamma\left(p_{1}, p_{2}, r\right), \Gamma\left(p_{1}, p_{2}, r^{\prime}\right) \nmid=\mathrm{CPC} r \leftrightarrow r^{\prime}$.
Theorem (Beth's for CPC)
Every such definition over CDC can be made explicit.
Γ is an implicit definition of \wedge over CPC.
And so is on CPC \rightarrow, but no explicit definition here.

Beth's Theorem

Motto: Implicit definability \Longleftrightarrow Explicit definability.
Example
$\Gamma\left(p_{1}, p_{2}, r\right) \doteq\left\{r \rightarrow p_{1}, r \rightarrow p_{2}, p_{1} \rightarrow\left(p_{2} \rightarrow r\right)\right\} .{ }^{2}$

$$
\Gamma\left(p_{1}, p_{2}, r\right), \Gamma\left(p_{1}, p_{2}, r^{\prime}\right) \models \mathrm{CPC} r \leftrightarrow r^{\prime} .
$$

Theorem (Beth's for CPC)
Every such definition over CPC can be made explicit.
Γ is an implicit definition of \wedge over CPC.
And so is on CPC \rightarrow, but no explicit definition here.

Beth's Theorem

Motto: Implicit definability \Longleftrightarrow Explicit definability.

Example

$\Gamma\left(p_{1}, p_{2}, r\right) \doteq\left\{r \rightarrow p_{1}, r \rightarrow p_{2}, p_{1} \rightarrow\left(p_{2} \rightarrow r\right)\right\} .{ }^{2}$

$$
\Gamma\left(p_{1}, p_{2}, r\right), \Gamma\left(p_{1}, p_{2}, r^{\prime}\right) \models \mathrm{CPC} r \leftrightarrow r^{\prime} .
$$

Theorem (Beth's for CPC)

Every such definition over CPC can be made explicit.
\square
Γ is an implicit definition of \wedge over CPC. And so is on $\mathrm{CPC}^{\rightarrow}$, but no explicit definition here.
${ }^{2}$ Hoogland (2001)

Beth's Theorem

Motto: Implicit definability \Longleftrightarrow Explicit definability.

Example

$\Gamma\left(p_{1}, p_{2}, r\right) \doteq\left\{r \rightarrow p_{1}, r \rightarrow p_{2}, p_{1} \rightarrow\left(p_{2} \rightarrow r\right)\right\} .^{2}$

$$
\Gamma\left(p_{1}, p_{2}, r\right), \Gamma\left(p_{1}, p_{2}, r^{\prime}\right) \models \mathrm{CPC} r \leftrightarrow r^{\prime} .
$$

Theorem (Beth's for CPC)

Every such definition over CPC can be made explicit.
Γ is an implicit definition of \wedge over CPC.
And so is on $\mathrm{CPC}^{\rightarrow}$, but no explicit definition here.

Beth's Theorem

Motto: Implicit definability \Longleftrightarrow Explicit definability.

Example

$\Gamma\left(p_{1}, p_{2}, r\right) \doteq\left\{r \rightarrow p_{1}, r \rightarrow p_{2}, p_{1} \rightarrow\left(p_{2} \rightarrow r\right)\right\} .^{2}$

$$
\Gamma\left(p_{1}, p_{2}, r\right), \Gamma\left(p_{1}, p_{2}, r^{\prime}\right) \models \mathrm{CPC} r \leftrightarrow r^{\prime} .
$$

Theorem (Beth's for CPC)

Every such definition over CPC can be made explicit.
Γ is an implicit definition of \wedge over CPC.
And so is on CPC \rightarrow, but no explicit definition here.

Frames \& BAOs

We will be interested on the (modal) logic of a finite family of finite Kripke frames.

Duality

$$
\begin{aligned}
& \text { Kripke Frames } \longleftrightarrow \\
& \mathbf{L} \doteq\langle L, R\rangle \longleftrightarrow \\
& \mathbf{L} \mathbf{L}^{\bullet} \doteq\left\langle\mathcal{P}(L), \cap, \cup,{ }^{c}, \top, \perp, \diamond_{R}\right\rangle \\
& \mathbf{L} \models \varphi \longleftrightarrow \\
& \mathbf{L}^{\bullet} \models \varphi=\top
\end{aligned}
$$

Equational definition of functions

A function $f: A^{n} \rightarrow A$ is algebraic ${ }^{3}$ in \mathbf{A} if there are terms p_{i}, q_{i} such that

$$
f(\bar{x})=z \Longleftrightarrow \mathbf{A} \models \bigwedge_{i} p_{i}(\bar{x}, z)=q_{i}(\bar{x}, z) .
$$

Algebraic functions in \mathbf{A} are in correspondence with $\forall \exists!\wedge p=q$ sentences holding in \mathbf{A}.

Observation
Every new algebraic function gives a counterexample to Beth's Theorem.
${ }^{3}$ Campercholi and Vaggione (2011a).

Equational definition of functions

A function $f: A^{n} \rightarrow A$ is algebraic ${ }^{3}$ in \mathbf{A} if there are terms p_{i}, q_{i} such that

$$
f(\bar{x})=z \Longleftrightarrow \mathbf{A} \models \bigwedge_{i} p_{i}(\bar{x}, z)=q_{i}(\bar{x}, z)
$$

Algebraic functions in \mathbf{A} are in correspondence with $\forall \exists!\wedge p=q$ sentences holding in \mathbf{A}.

Every new algebraic function gives a counterexample to Beth's Theorem.
${ }^{3}$ Campercholi and Vaggione (2011a).

Equational definition of functions

A function $f: A^{n} \rightarrow A$ is algebraic ${ }^{3}$ in \mathbf{A} if there are terms p_{i}, q_{i} such that

$$
f(\bar{x})=z \Longleftrightarrow \mathbf{A} \models \bigwedge_{i} p_{i}(\bar{x}, z)=q_{i}(\bar{x}, z) .
$$

Algebraic functions in \mathbf{A} are in correspondence with $\forall \exists!\wedge p=q$ sentences holding in \mathbf{A}.

Observation

Every new algebraic function gives a counterexample to Beth's Theorem.

[^1]
Frames \& BAOs

Duality

$$
\begin{aligned}
& \text { Kripke Frames } \longleftrightarrow \\
& \text { Boolean algebras with operators } \\
& \mathbf{L} \doteq\langle L, R\rangle \longleftrightarrow \\
& \mathbf{L}^{\bullet} \doteq\left\langle\mathcal{P}(L), \cap, \cup,{ }^{c}, \top, \perp, \diamond_{R}\right\rangle \\
& \mathbf{L} \models \varphi \longleftrightarrow \\
& \mathbf{L}^{\bullet} \models \varphi=\top
\end{aligned}
$$

Characterization of finite $\forall \exists!\wedge p=q$ classes

Everything in this slide is true up to iso.

```
Theorem (Campercholi and Vaggione (2011b))
Let C a finite class of finite structures. TFAE:
    11C}\mathrm{ is definable bv a set of }\forall\exists! \p=a sentences
    2 C is closed under
    ■ intersection of subalgebras (A,B,C}\in\mathcal{C}&\mathbf{B},\mathbf{C}\leq\mathbf{A}\Longrightarrow\mathbf{B}\cap\mathbf{C}\in\mathcal{C}),\mathrm{ and
    | fixpoint subalgebras (A \in\mathcal{C}& \gamma\in\operatorname{Aut}(\mathbf{A})\Longrightarrow\boldsymbol{Fix}(\gamma)\in\mathcal{C})\mathrm{ .}
```

For infinite \mathcal{C} is extremely difficult. Nachersidal
de Conicobe

Characterization of finite $\forall \exists!\bigwedge p=q$ classes

Everything in this slide is true up to iso.

Theorem (Campercholi and Vaggione (2011b))

Let \mathcal{C} a finite class of finite structures. TFAE:
$1 \mathcal{C}$ is definable by a set of $\forall \exists!\wedge p=q$ sentences;
$2 C$ is closed under
■ intersection of subalgebras ($\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{C} \& \mathbf{B}, \mathbf{C} \leq \mathbf{A} \Longrightarrow \mathbf{B} \cap \mathbf{C} \in \mathcal{C}$), and

- fixpoint subalgebras $(\mathbf{A} \in \mathcal{C} \& \gamma \in \operatorname{Aut}(\mathbf{A}) \Longrightarrow \boldsymbol{F i x}(\gamma) \in \mathcal{C})$.

For infinite \mathcal{C} is extremely difficult.

Characterization of finite $\forall \exists!\bigwedge p=q$ classes

Everything in this slide is true up to iso.

Theorem (Campercholi and Vaggione (2011b))

Let \mathcal{C} a finite class of finite structures. TFAE:
$1 \mathcal{C}$ is definable by a set of $\forall \exists!\wedge p=q$ sentences;
$2 C$ is closed under
■ intersection of subalgebras ($\mathbf{A}, \mathbf{B}, \mathbf{C} \in \mathcal{C} \& \mathbf{B}, \mathbf{C} \leq \mathbf{A} \Longrightarrow \mathbf{B} \cap \mathbf{C} \in \mathcal{C}$), and
■ fixpoint subalgebras $(\mathbf{A} \in \mathcal{C} \& \gamma \in \operatorname{Aut}(\mathbf{A}) \Longrightarrow \boldsymbol{F i x}(\gamma) \in \mathcal{C})$.
For infinite C is extremely difficult.

Frames \& BAOs

Duality

Kripke Frames \longleftrightarrow Boolean algebras with operators $\left.\mathbf{L} \doteq\langle L, R\rangle \quad \longleftrightarrow \quad \mathbf{L}^{\bullet} \doteq\left\langle\mathcal{P}(L), \cap, \cup,{ }^{\mathrm{c}}, \top, \perp,\right\rangle_{R}\right\rangle$ $\mathbf{L} \models \varphi$
Failure of Beth's Bisimulation equivalences
\longleftrightarrow
$\mathbf{L}^{\bullet} \models \varphi=\top$
New algebraic function
Subalgebras

Bisimulation

Definition (Bisimulation)

A relation θ such that whenever $s_{1} \theta t_{1}$, forth if $s_{1} R s_{2}$ then there is t_{2} such that $t_{1} R t_{2}$ and $s_{2} \theta t_{2}$. back if $t_{1} R t_{2}$ then there is s_{2} such that $s_{1} R s_{2}$ and $s_{2} \theta t_{2}$.

Congruence
It's a reflexive, symmetric, and transitive bisimulation.

Bisimulation

Definition (Bisimulation)

A relation θ such that whenever $s_{1} \theta t_{1}$, forth if $s_{1} R s_{2}$ then there is t_{2} such that $t_{1} R t_{2}$ and $s_{2} \theta t_{2}$. back if $t_{1} R t_{2}$ then there is s_{2} such that $s_{1} R s_{2}$ and $s_{2} \theta t_{2}$.

Congruence

It's a reflexive, symmetric, and transitive bisimulation.

Frames \& BAOs

Duality

Kripke Frames	\longleftrightarrow Boolean algebras with operators
$\mathbf{L} \doteq\langle L, R\rangle$	$\longleftrightarrow \mathbf{L}^{\bullet} \doteq\left\langle\mathcal{P}(L), \cap, \cup,{ }^{c}, \top, \perp, \diamond_{R}\right\rangle$
$\mathbf{L} \models \varphi$	$\longleftrightarrow \mathbf{L}^{\bullet} \models \varphi=\top$
Failure of Beth's	\longleftrightarrow New algebraic function
Bisimulation equivalences	\longleftrightarrow Subalgebras
Join	\longleftrightarrow Intersection of subalgebras
FP congruences	\longleftrightarrow FP subalgebras

Rulers

Definition

A ruler is a symmetric reflexive linear Kripke frame:

$$
\mathbf{L}_{\mathbf{n}}=\langle n+1, R\rangle, \text { where } x R y \Longleftrightarrow|x-y| \leq 1
$$

Rulers

Definition

A ruler is a symmetric reflexive linear Kripke frame:

$$
\mathbf{L}_{\mathbf{n}}=\langle n+1, R\rangle, \text { where } x R y \Longleftrightarrow|x-y| \leq 1
$$

For $n=5$:

Rulers

Definition

A ruler is a symmetric reflexive linear Kripke frame:

$$
\mathbf{L}_{\mathbf{n}}=\langle n+1, R\rangle, \text { where } x R y \Longleftrightarrow|x-y| \leq 1
$$

For $n=5$:

400

Foldings

A folding of a ruler ...

$\langle 1\rangle$ on \mathbf{L}_{5}

We also allow 1-unit "rests" (as in long staircases) $\langle 2 ; 2\rangle$ on \mathbf{L}_{5}.
 viceversa.

2 θ is trivial $\Longleftrightarrow \exists x: x \theta x+1 \theta x+2$.

*
AÑOS

Foldings

A folding of a ruler ...
$\langle 1\rangle$ on $\mathbf{L}_{\mathbf{5}}$

We also allow 1-unit "rests" (as in long staircases): $\langle 2 ; 2\rangle$ on \mathbf{L}_{5}.

1 Every congruence $\theta \neq \mathbf{L} \times \mathbf{L}$ is a folding and
2θ is trivial $\Longleftrightarrow \exists x: x \theta x+1 \theta x+2$.

Foldings

A folding of a ruler ...
$\langle 1\rangle$ on $\mathbf{L}_{\mathbf{5}}$

We also allow 1-unit "rests" (as in long staircases): $\langle 2 ; 2\rangle$ on \mathbf{L}_{5}.

1 Every congruence $\theta \neq \mathbf{L} \times \mathbf{L}$ is a folding and viceversa.
2θ is trivial $\Longleftrightarrow \exists x: x \theta x+1 \theta x+2$.

400

The Join

Two congruences on $\mathbf{L}_{\mathbf{1 8}}$:

$$
\theta \vee \delta=\langle k ; \bar{r}\rangle \vee\langle l\rangle \quad k<l
$$

The Join

Two congruences on $\mathbf{L}_{\mathbf{1 8}}$:

$$
\begin{aligned}
& \theta \vee \delta=\langle k ; \bar{r}\rangle \vee\langle l\rangle \quad k<l \\
& \theta \vee \delta=\langle{ }^{k} \overbrace{4,13}^{\bar{r}}\rangle \vee\left\langle{ }^{l}\right\rangle
\end{aligned}
$$

The Join

Two congruences on $\mathbf{L}_{\mathbf{1 8}}$:

$$
\theta \vee \delta=\langle k ; \bar{r}\rangle \vee\langle l\rangle \quad k<l
$$

$\theta \vee \delta=\langle{ }_{4}^{k} ; \overbrace{4,13}^{\bar{r}}\rangle \vee\left\langle{ }^{l}{ }_{6}\right\rangle$

The Join

Some lemmas on trajectories (I)

Lemma

If the trajectory diagram of $\theta \vee \delta$ has two crossings with one coordinate differing in $\frac{1}{2}$, the join is trivial.

Some lemmas on trajectories (I)

Lemma

If the trajectory diagram of $\theta \vee \delta$ has two crossings with one coordinate differing in $\frac{1}{2}$, the join is trivial.

Proof.

Some lemmas on trajectories (I)

Lemma

If the trajectory diagram of $\theta \vee \delta$ has two crossings with one coordinate differing in $\frac{1}{2}$, the join is trivial.

Proof.

Some lemmas on trajectories (II)

Lemma

Bounces strictly less than k apart must be of the same type.

Some lemmas on trajectories (II)

Lemma

Bounces strictly less than k apart must be of the same type.

Proof.

Some lemmas on trajectories (II)

Lemma

Bounces strictly less than k apart must be of the same type.

Proof.

$$
a \theta b \delta c \theta d \delta e
$$

Some lemmas on trajectories (II)

Lemma

Bounces strictly less than k apart must be of the same type.

Proof.

$$
a \theta b \delta c \theta d \delta e
$$

$$
a \delta x \theta y \delta z
$$

Local non-trivial joins

N

N

N

¡Thank You!

References

M. Campercholi, D. Vaggione, Algebraic functions, Studia Logica 98: 285-306 (2011).
M. Campercholi, D. Vaggione, Axiomatizability by forall-exists-sentences, Arch. Math. Log. 50: 713-725 (2011).
E. Hoogland, "Definability and Interpolation - Model-theoretic investigations", Ph.D. thesis, Institute for Logic, Language and Computation. Universiteit van Amsterdam (2001).

[^0]: ${ }^{1}$ Partially supported by CONICET, ANPCyT project PICT 2012-1823, and by SeCyT-UNC project 05/B284

[^1]: ${ }^{3}$ Campercholi and Vaggione (2011a).

