
M4M 2007

HTab: A Terminating Tableaux System
for Hybrid Logic

Guillaume Hoffmann1

TALARIS
INRIA Lorraine

54602 Villers-lès-Nancy, France

Carlos Areces2

TALARIS
INRIA Lorraine

54602 Villers-lès-Nancy, France

Abstract

Hybrid logic is a formalism that is closely related to both modal logic and description logic. A variety of
proof mechanisms for hybrid logic exist, but the only widely available implemented proof system, HyLoRes,
is based on the resolution method. An alternative to resolution is the tableaux method, already widely
used for both modal and description logics. Tableaux algorithms have also been developed for a number of
hybrid logics, and the goal of the present work is to implement one of them.
In this article we present the implementation of a terminating tableaux algorithm for the basic hybrid logic.
The performance of the tableaux algorithm is compared with the performances of HyLoRes and HyLoTab
(a system based on a different tableaux algorithm).
HTab is implemented in the functional language Haskell, using the Glasgow Haskell Compiler (GHC). The
code is released under the GNU GPL and can be downloaded from http://trac.loria.fr/projects/htab.

Keywords: hybrid logic, tableaux method, theorem proving

1 Introduction

In this article we present the implementation of a terminating tableau algorithm
for the basic hybrid logic H(@) described in [5]. The performance of the tableaux
algorithm is compared with the performance of two other theorem provers for hy-
brid logics, HyLoRes (see [3]) and HyLoTab (see [6]). Some optimisations aimed at
improving the behavior of the prover are also explored.

In section 2, we provide a brief introduction to hybrid logics, presenting the
basic syntax and semantics for the hybrid language H(@). In section 3, we discuss
the main goals we have set for the HTab prover. In section 4, we present the rules

1 Email: guillaume.hoffmann@loria.fr
2 Email: carlos.areces@loria.fr

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

http://trac.loria.fr/projects/htab
mailto:guillaume.hoffmann@loria.fr
mailto:carlos.areces@loria.fr

Hoffmann and Areces

of the tableaux method, their implementation, and some basic optimisations. In
section 5, we list the result of preliminary testing. In the conclusion we see the
perspectives for further developments of the prover.

2 The Hybrid Logic H(@)

H(@) extends the basic modal language by adding nominals and satisfaction oper-
ator. The following definition gives the syntax and the semantic of this language.

Definition 2.1 Let REL = {31,32, . . .} (relational symbols), PROP = {p1, p2, . . .}
(propositional variables) and NOM = {i1, i2, . . .} (nominals) be disjoint and count-
able sets of symbols. Well formed formulas of the hybrid language H(@) in the
signature 〈REL,PROP,NOM〉 are given by the following recursive definition:

FORMS ::= p | i | ¬ϕ | ϕ1 ∧ ϕ2 | 3ϕ | @iϕ,

where p ∈ PROP, i ∈ NOM, 3 ∈ REL and ϕ,ϕ1, ϕ2 ∈ FORMS.
A (hybrid) model M is a tripleM = 〈M, (3M)3∈REL, V 〉 such that M is a non-

empty set, each 3M is a binary relation onM , and V : PROP∪NOM→ ℘(M) is such
that for each nominal i ∈ NOM, V (i) is a singleton subset of M . We commonly
write M for the domain of a model M, and we call states, worlds or points the
elements of M . Each 3M is an accessibility relation, and V is the valuation.

Let M = 〈M, (3M)3∈REL, V 〉 be a model and m ∈ M . For each nominal
i ∈ NOM, let [i]M be the state referred by i (i.e., for i ∈ NOM, [i]M is the unique
m ∈ M such that V (i) = {m}). Then, the satisfaction relation is defined as
following:

M,m |= p iif m ∈ V (p) for p ∈ PROP

M,m |= i iif m = [i]M for i ∈ NOM

M,m |= ¬ϕ iif M,m 6|= ϕ

M,m |= ϕ1 ∧ ϕ2 iif M,m |= ϕ1 andM,m |= ϕ2

M,m |= 3ϕ iif exists a state m′ s.t. 3M(m,m′) andM,m′ |= ϕ

M,m |= @iϕ iif M, [i]M |= ϕ for i ∈ NOM

A formula ϕ is satisfiable if there is a model M and a world m ∈ M such that
M,m |= ϕ. A formula ϕ is valid (notation: |= ϕ) if for all models M,M |= ϕ.

In [2], it is shown that the satisfiability problem for H(@) is decidable and
PSPACE-complete.

3 Aims of HTab

The main goal behind HTab is to make available an optimised tableaux prover for
hybrid logics, using algorithms that ensure termination. We ultimately aim to cover
a number of frame conditions (i.e., reflexivity, symmetry, antisymmetry, etc.), as far
as we can ensure termination. Moreover, we are interested in providing a range of

2

Hoffmann and Areces

inference services beyond satisfiability checking. For example, the current version
of HTab includes model generation.

In this paper we report on version 1.0 of the prover. It is distributed un-
der the GNU GPL, and the source code is available for download at http:
//trac.loria.fr/projects/htab. For the moment, the prover only includes min-
imal optimisations and can handle the basic modal logic H(@). Version 2.0 of the
prover is envisioned for December, 2007, which will include a graphical front end,
graphical visualisation of generated models, and basic frame conditions.

Even though other provers for languages similar toH(@) exists, HTab has a num-
ber of particularities that make it a potentially useful tool. We mention here some
related provers, list their main characteristics and provide appropriate references.
We will then comment on the main differences with HTab.

• RACER [8] implements a tableaux algorithm for a very expressive description logic
(ALCQHIR+). It is highly optimised and very flexible. It implements state-
of-the-art optimisations and heuristics, and provides inference services beyond
satisfiability checking which are typical of description logic reasoners (building
a concept taxonomy, retrieval, etc). The language ALCQHIR+ is incomparable
with H(@). Intuitively, it has a restricted use of @, and nominals are not allowed.

• HyLoTab [6] is a tableaux based prover for the hybrid logics up to H(@,3−1, ↓,A)
(3−1 is the inverse modality, ↓ is the ‘bind-to-the-current-state’ binder, and A is
the universal modality). The prover can handle the reflexivity, transitivity and
minimality frame conditions, and can generate a model from an open branch in
the tableaux. The complete languageH(@,3−1, ↓,A) is undecidable (the ↓ binder
is to blame), and hence, general terminating algorithms are not possible. But,
unfortunately, the rules implemented by HyLoTab do not guarantee termination
even for decidable subfragments of H(@,3−1, ↓,A) like H(@).

• HyLoRes [3] is a resolution based prover for the hybrid logics up to H(@,3−1, ↓).
The implemented algorithm is terminating for formulas in H(@,3−1), and does
model generation, but it doesn’t handle frame conditions. The prover actually
performs resolution with order and selections functions, and different orders and
selection functions can be specified. The complexity of the implemented algorithm
is EXPTIME, even for fragments of H(@,3−1, ↓) with lower complexity.

As we said above, HTab has particularities that differentiate it from each of the
three provers we just mentioned. To start with, it handles the hybrid operators (@
and nominals) with no restrictions and it performs model generation. These two
features distinguishes it from RACER. On the negative side, the current version of
HTab has only minimal optimisations, while RACER is a mature theorem prover
that includes most state-of-the-art optimisation techniques. We aim to incorporate
further optimisations (e.g., backjumping, model caching, etc.) step by step, in fu-
ture versions of the prover. HyLoTab is the system most similar to HTab, being
both tableaux based provers for hybrid logic. Besides some technical issues (the
way in which substitutions are handled in HyLoTab differs from the approach taken
in HTab) the main difference is termination: one of the main aims of HTab is to
always ensure that the general algorithm is terminating. Finally, HTab and Hy-
LoRes are actually being developed in coordination, and a generic inference system

3

http://trac.loria.fr/projects/htab
http://trac.loria.fr/projects/htab

Hoffmann and Areces

σ:(ϕ ∧ ψ)
(∧)

σ:ϕ, σ:ψ

σ:(ϕ ∨ ψ)
(∨)

σ:ϕ | σ:ψ

σ:3ϕ
(3)1

σ:3τ, τ :ϕ

σ:�ϕ, σ:3τ
(�)

τ :ϕ

σ:@aϕ
(@)1

τ :a, τ :ϕ

σ:¬a
(¬)1

τ :a

σ:ϕ, σ:a, τ :a
(νId)2

τ :ϕ
σ:b, σ:a, τ :a

(nom)
τ :b

1 The prefix τ is new on the branch.
2 τ is the earliest introduced prefix in the branch making a true.

Fig. 1. Rules of the prefixed tableaux method for H(@)

involving both provers is being designed (see [1]). The aim is to take advantage of
the dual behaviour existing between the resolution and tableaux algorithms: while
resolution is usually most efficient for unsatisfiable formulas (i.e., a contradition can
be reported as soon as the empty clause is derived), tableaux methods are better
suited to handle satisfiable formlulas (i.e., a saturated open branch in the tableaux
represents a model for the input formula).

4 A Tableaux Method for Hybrid Logics

The tableaux algorithm implemented in HTab is taken from [5] where a terminating
decision procedure for hybrid logics up to H(@, A,3−1) was introduced (currently,
HTab implements only the rules for H(@)).

4.1 Rules

The rules of the prefixed tableaux method for the language H(@) are given on
figure 1.

As can be seen in the figure, the rules handle prefixed formulas, which are of the
form σ:ϕ, for ϕ a formula of the hybrid language, and σ ∈ PREF, a countable set
of symbols called prefixes. The interpretation of a prefixed formula σ:ϕ is that ϕ is
true in a world designated by σ. In addition to prefixed formulas, we notice that
the rule 3 produces accessibility formulas, of the form σ:3τ , where σ and τ are

4

Hoffmann and Areces

prefixes. Such formulas do not belong to the object language, but help the course
of the procedure 3 .

A tableau for an input formula ϕ in this calculus is a wellfounded, finitely branch-
ing tree with root σ:ϕ, and in which each node is labeled by a prefixed formula, and
the edges represent applications of tableau rules in the usual way.

A branch is said to be closed if it contains the formulas σ:ϕ and σ:¬ϕ, with
σ ∈ PREF and ϕ ∈ FORMS.

From a direct examination of the rules, we can already dicuss some of the main
characteristics behind HTab. For example, to avoid useless repeated applications,
five of the eight rules (∧, ∨, 3, @, ¬) can be constrained so that the premise formula
is eliminated from the branch once the rule is applied. For the � rule on the other
hand, it is necessary to keep the two premise formulas after the application of the
rule, because they can be used once again separately in other applications. The 3

rule has a side condition requiring the prefix to be new in the branch, and hence we
should keep track of already used prefixes.

Finally, given the expressivity of the hybrid language (which provides a limited
kind of equality between states), prefixes and nominals form equivalence classes
intuitively defined by the relation “refer to the same state as.” In the course of
the procedure, these equivalence classes are created, enlarged and merged. As we
will see in the next section, efficiently handling these operations is crucial for an
appropriate performance of the prover. The effect of rule (νId) is that the smallest
prefix in a given equivalence class should inherit a copy of all the formulas true at
any other prefix in the same class. This rule requires a mapping between nominals
and the smallest prefix making it true. The rule (nom) can be intuitively interpreted
as an instruction to merge equivalence classes. Contrary to (νId), it does not impose
a direction on the propagation of information. We will see how these two last rules
are implemented in the next section.

4.2 Implementation

We will now introduce the main details concerning the implementation of HTab. As
the code is released under the GPL, we want to provide some insight on the main
algorithms of the system to invite independent development.

We will start by describing the structures used in our implementation, then the
algorithm implementing the method.

HTab is being developed in the functional language Haskell [9], using the Glasgow
Haskell Compiler [7]. It uses a monad structure to define a global state where the
main data structure is a branch. A branch contains:

• A set of prefixed atomic formulas, of the form σ:n or σ:¬n, where n ∈ PROP ∪
NOM. These are the atomic formulas which are satisfied in the model correspond-
ing to the branch.

• An independent set for prefixed formulas of the kind ∧, ∨, 3, � , @, ¬nominal.

3 In other words, the tableaux rules deal with two sets of symbols – prefixes and nominals – that refer
to states in the model. Intuitively, we can think of prefixes are ‘new nominals’ which are introduced on
demand during the application of the tableaux rules, while any nominal appearing in a node of the tableau
should appear also in the input formula. Keeping these two kind of symbols apart is useful for ensuring
termination of the algorithm.

5

Hoffmann and Areces

Non atomic formulas are classified in terms of their main connective, as this
determines the rules that can be applied to them.

• A list BoxRuleChart, used to store the pairs (accessibility formula, � formula)
which have already been used by the � rule

• A counter indicating the last prefix created.

The main algorithm can be specified in two steps. First, during the initialisation
step the input formula is put into negative normal form, prefixed with the prefix
0 and stored in one of the lists in the branch structure depending of its main
connective. The second step is then started taking as input this initial branch.

Algorithm 1 Tableaux algorithm
Require: a branch B
Ensure: SAT or UNSAT

1: if B is closed then
2: return UNSAT
3: else
4: LR ← possibleRulesApplications(B)
5: if LR empty then
6: res = SAT
7: else
8: R ← chooseRuleAmong(LR)
9: LB ← applyRuleOnBranch(R, B)

10: repeat
11: B′ ← chooseBranchAmong(LB)
12: LB ← LB - B′
13: res ← apply the algorithm on B′
14: until res = SAT or LB is empty
15: end if
16: return res
17: end if

Some of the functions mentioned in Algorithm 1 deserve further comments:

possibleRulesApplications: creates a list of possible rules applications. To do
so, each of the set of formulas of the branch is scanned, with some constraints
begin checked (like the one of the rule � with BoxRuleChart). This list can be
of the type (rule, [formula]).

applyRuleOnBranch: this function creates one or several branches. Each new
branch is created from the current branch, with modifications among the follow-
ing:
• suppression of a formula (typically, the premise formula),
• addition of one or several formulas (typically, the conclusions of a rule),
• addition of an accessibility formula,
• incrementation of the counter of the last prefix generated in the branch (in the

case of the rule 3),
• addition of a pair (accessibility formula, � rule) in BoxRuleChart.

6

Hoffmann and Areces

Clash detection consists of detecting σ:n and σ:¬n in the same branch, with
σ ∈ PREF and p ∈ PROP ∪NOM. To do so, each prefixed atomic formula added in
the branch is saved in a dedicated structure. When this is done, the possibility of
a clash is checked. If a clash is detected the algorithm stops, returning the branch
and the culprit formula.

4.2.1 Structures and Invariants for (νId) and (nom)
To implement the rules (νId) and (nom), we proceed differently than for the other
rules. We include these rules in the algorithm as a set of invariants that we ensure
every time that a formula is added to the current branch. Thus, the question of
saturation is irrelevant in these two cases.

To specify these invariants, let B be the set of formulas in the current branch, let
≤ be an arbitrary order over PREF, let H1 : NOM→ PREF be a mapping assigning
prefixes to nominals, let H2 : PREF → 2FORMS be a mapping assigning sets of
formulas to prefixes, and let M : (PREF × NOM) → {True,False} be a Boolean
matrix.

• Imin : H1(a) = p ⇔ (p:a ∈ B) ∧ ∀p′.(p′:a ∈ B ⇒ p ≤ p′). This invariant simply
characterizes H1 as the function mapping each nominal to the smallest prefix in
the branch making the nominal true.

• Isaturation : H1(a) = p ⇔ ∀p′.((p′:ϕ ∈ Br) ∧ (p′:a ∈ B) ⇒ p:ϕ ∈ B). This
invariant expresses the necessity that the smallest prefix of a class must retrieve
a copy of all the formulas of the other prefixes of the class.

• Imember : ϕ ∈ H2(p)⇔ p:ϕ ∈ B. This invariant characterises H2 as the function
mapping each prefix to the set of formulas that holds in that prefix.

• Ieq : σ:i ∈ B ⇒ Mσ,i = True. The matrix will record the equivalent classes
determined by the appearance of formulas of the form σ:i, where i is a nominal,
in the branch.

• Inom : Mσ,j = Mσ,i = Mτ,i = True ⇒ Mτ,j = True. This invariant is the
direct translation of the rule (nom).

Notice that given the order ≤ on PREF, the matrixM enables as to retrieve the
minimal prefix for a given equivalence class.

These invariants are equivalent to the use of the rules (νId) and (nom) in a stan-
dard tableaux method. The effect of having the rule (νId) applied with the highest
priority among all rules is taken care of by the invariants Imin and Isaturation. The
case is similar for the rule (nom) and the invariants Ieq and Inom. The invariant
Imember simply prepares the ground for all the other invariants.

Let us now describe how this set of invariants is mantained in HTab.

4.2.2 Maintaining the Invariants
When a formula is added to a branch, two different cases must be handled to
maintain the invariants mentioned in the previous section. The simplest case is
when a formula σ:ϕ, with ϕ /∈ NOM, is added to a branch (see algorithm 2). In this
case we only need to ensure that the formula ϕ is copied to the smallest prefix –
the urfather – of the equivalence class. This is because such formulas do not change

7

Hoffmann and Areces

the equivalent classes defined over NOM ∪ PREF.

Algorithm 2 Maintaining of the invariants when p:ϕ (ϕ /∈ NOM) is added to the
branch

1: H2(p)← H2(p) ∪ ϕ // to maintain Imember

2: B ← B ∪ urfather(p):ϕ

urfather : Prefix → Prefix is the function that, for a given prefix, returns the
smallest prefix of its equivalence class (see algorithm 3).

Algorithm 3 urfather function
Require: σ the prefix whom we look for the urfather
Ensure: τ the smallest prefix in the equivalence class of σ

imin ← min {i | Mσ,i = True}
τ ← min {j | Mj,imin = True}

The second case, when a formula σ:a, with a ∈ NOM, is added to the branch,
is more complicated. The algorithm 4, handles both subcases: when it provokes
a merge of two equivalence classes and when it does not. We can sum up this
algorithm in two lines:

(i) add σ:a to the equivalence classes, and merge if needed (lines 1 to 5)

(ii) copy formulas of each “old” urfather to the “new” urfather (lines 6 to 16)

An example of the first part is given in figure 2.

Algorithm 4 Maintaining of the invariants when p:a (a ∈ NOM) is added to the
branch

1: Mp,a ← True // to maintain Ieq

2: L ← {Ln | Mp,n = True}
3: M ←M with the rows of L replaced by or(L)
4: C ← {Cq | Mq,a = True}
5: M ←M with the columns of C replaced by or(C) // to maintain Inom

6: iC ← list of the index of the columns of C ,
7: oldUrfathers ← {H1(n) | n ∈ iC} ∪ p
8: newUrfather ← min(oldUrfathers)
9: for p′ ∈ (oldUrfathers− newUrfather) do

10: for ϕ ∈ H2(p′) do
11: B ← B ∪ newUrfather:ϕ // to maintain Isaturation

12: end for
13: end for
14: for n ∈ iC do
15: H1(n)← newUrfather // to maintain Imin

16: end for

4.3 Optimisations

Currently, HTab includes only some minimal optimisations. Beside some care with
the choice of datatypes, the only optimisations included are semantic branching and

8

Hoffmann and Areces

(a) New point (b) OR rows and write (c) OR cols. and write (d) Result

Fig. 2. Example of update of the matrix M

full clash detection. They are briefly described below.
Semantic branching: Semantic branching addresses one of the problems of the
tableaux method, which is that the different branches of the tree might ‘overlap’
(in terms of the possible models they represent). This leads to superposition of the
search space explored by each branch.

The solution consists in adding to the second explored branch the negation of
the formula added in the first branch – which is closed. The disjunction rule is
replaced by:

σ:(ϕ ∨ ψ)
(semantic branching)

σ:ϕ | σ:(¬ϕ) ∧ ψ

Full clash: In the hope of make a clash happen earlier, we can extend clash
detection to complete formulas. To do so, formulas should not be transformed into
negative normal form. Then, a simple generalization of the clash-detection structure
seen in section 4.2 is all that is required.

The testing we carried out showed that from these two optimizations semantic
branching is the one with the highest inpact. While full clash detection did resulted
in some improvements, it doesn’t seem to be crucial for the system

4.4 Model Building

HTab includes basic model building support. The technique used, which we do not
detail here, makes use of Herbrand models as an intermediate representation of
models.

5 Tests

To evaluate the performance of HTab, we use a suite of test scripts originally devel-
oped for HyLoRes. The tests are launched on batches of random hybrid formulas.
They are done by steps of bigger and bigger formula sizes.

We will compare the performance of HTab with both HyLoRes and HyLoTab on
formulas of H(@) that contain 2 propositional symbols, 2 nominals, 1 relational
symbol, and a modal depth of 2. We go from formulas of size 1 to formulas of size
35, in number of conjunctions of clauses. The percentage of satisfiability of the
input formulas can be seen on figure 3 (as reported by HyLoRes, the system with

9

Hoffmann and Areces

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

F
ra

ct
io

n

Number of clauses

Sat/Unsat relation of hylores_2.1 with V = 2, N = 2, R = 1, D = 2, L = [1..35]

sat
unsat

timeout

Fig. 3. SAT/UNSAT/Timeout repartition of the formulas for HyLoRes

 0.1

 1

 10

 100

 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

M
ed

ia
n

us
er

 e
xe

cu
tio

n
tim

e

L

Test with V = 2, N = 2, R = 1, D = 2, L = [1..35]

htab_002_sb1_fc1
hylotab

hylores_2.1

Fig. 4. Median time of execution between HyLoTab, HTab and HyLoRes

the smallest number of timeouts): we go from mostly satisfiable formulas to mostly
unsatisfiable ones. As it is in general the case, the hardest formulas are in the
area of maximum uncertainty, where the percentage of satisfiable and unsatisfiable
formulas is roughly the same.

We can see the results on figure 4. For the smallest formulas, HTab behaves
better than both HyLoTab and HyLoRes. For formulas that have more than 20
clauses, HyLoRes starts to gain the upper hand, while HyLoTab is far behind. For
the biggest formulas, we can see on figure 5 that in some cases HTab is the only
prover to give an answer, which makes it still interesting to use, even for the bigger
formulas, where its average performance is behind HyLoRes’s.

There is still much to be done before getting a prover whose performance is on
par with HyLoRes. To start with, some of the functions and data structures used
were not specially tuned for performance. As an illustration, by doing a profiling
test, we see that one of the bottlenecks of HTab is a function used to get the list of
pairs (accessibility formula, � formula) that have not yet been used by the rule �.
Its implementation is indeed basic and costly, and it could easily be improved.

10

Hoffmann and Areces

 0

 5

 10

 15

 20

 25

 30

 35

987654321

N
um

be
r

of
 u

ni
qu

e
re

sp
on

se
s

Batch

Test with V = 2, N = 2, R = 1, D = 2, L = [1..35]

htab_002_sb1_fc1
hylotab

hylores_2.1

Fig. 5. Unique responses

6 Example of Use

As an input, HTab takes a file containing a set of formulas. The syntax used can
be seen with this sample input file :

begin
<>[](p1 v p2) & []<>(p2 v p1) & <><>(p1) & <><>(p2);
([](-p1 v -p2) & [](p3 <->p1)) & ([](p1 <-> p2 & [](p2 <-> p1)));
(@ n1 (p1 <-> p3) & (@ n2 (p1 <-> p2)) & (@ n1 -n2))
end

Executing HTab on these formulas is done with this call:

$ htab -f test.frm
Reading parameters from .htabrc

The formula is satisfiable.
(final statistics)
begin

Closed branches: 612

end
Elapsed time: 0.180011

The argument -gm filename can be added in order to generate a model and write
it into the file filename. The model found for the previous formula is :

Model{
worlds = fromList [N0,N1,N2,N3,N4,N5,N6,N7,N8,N9,N10],
succs = [(N2,R1,N3),(N2,R1,N5),(N2,R1,N7),(N3,R1,N4),

(N3,R1,N10),(N5,R1,N6),(N5,R1,N9),(N7,R1,N8)],
valP = [(P1,fromList [N0,N1,N6,N8,N9,N10]),

(P2,fromList [N1,N4]),

11

Hoffmann and Areces

(P3,fromList [N0])],
valN = [(N0,N0),(N1,N1),(N2,N2),(N3,N3),(N4,N4),(N5,N5),(N6,N6),

(N7,N7),(N8,N8),(N9,N9),(N10,N10),(N11,N0),(N12,N1)],
sig = Sig {nomSymbols = fromList [N0,N1,N2,N3,N4,N5,N6,N7,N8,

N9,N10,N11,N12],
propSymbols = fromList [P1,P2,P3],
relSymbols = fromList [R1]}}

7 Conclusion

We have implemented the first version of a prover for hybrid logic based on tableaux
method, guaranteeing termination for all input formulas of H(@).

Althought we are still at the stage of a preliminary implementation, the perfor-
mance we get is satisfying. There is still room for optimisations on both the internal
data structures used and on the tableau algorithm itself. For example, although the
algorithm we are using to update the equivalence classes of prefixes and nominals
has been optimised, its implementation uses copies of structures. As the algorithm
in itself is already complex enough, we have decided to first implement a correct
version with unoptimised data types. This leads to copies of big structures that
seriously slow down the prover. This could be addressed by using dynamic memory
allocation. Moreover, it would be interesting to examine the number of duplications
of formulas caused by the rule (νId), in order to find ways to reduce them.

We have not yet implemented some optimisations of the basic tableaux algorithm
which are standards in state-of-the-art tableaux-based provers like racer. These
optimisations include, for example, model caching and backjumping.

Once the basic hybrid logic is tamed, our next goal is to implement frame con-
ditions, like reflexivity or transitivity, by using the current work of Bolander and
Blackburn (see [4]).

References

[1] C. Areces, P. Blackburn, D. Goŕın, and G. Hoffmann. Inference tools for hybrid logics (InToHyLo), 2007.
Submitted to Method for Modalities 5, 2007.

[2] C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid logics. In J. Flum
and M. Rodŕıguez-Artalejo, editors, Computer Science Logic, number 1683 in LNCS, pages 307–321.
Springer, 1999. Proceedings of the 8th Annual Conference of the EACSL, Madrid, September 1999.

[3] C. Areces and D. Goŕın. Ordered resolution with selection for H(@). In F. Baader and A. Voronkov,
editors, Proceedings of LPAR 2004, volume 3452 of LNCS, pages 125–141. Springer, 2005.

[4] T. Bolander and P. Blackburn. Decidable tableau calculi for modal and temporal hybrid logics extending
K, 2007. Submitted to Method for Modalities 5, 2007.

[5] T. Bolander and P. Blackburn. Termination for hybrid tableaus. Journal of Logic and Computation,
17:517–554, 2007.

[6] J. van Eijck. HyLoTab — Tableau-based theorem proving for hybrid logics. manuscript, CWI, available
from http://www.cwi.nl/~jve/hylotab, 2002.

[7] GHC, The Glasgow Haskell Compiler. http://www.haskell.org/ghc/. Last visited: 15/09/07.

[8] V. Haarslev and R. Möller. RACER system description. Lecture Notes in Computer Science, 2083:701–
705, 2001.

[9] S. Peyton Jones and J. Hughes (editors). Haskell 98: A non-strict, purely functional language. Technical
report, Haskell.org, 1999.

12

http://www.haskell.org/ghc/

	Introduction
	The Hybrid Logic H(@)
	Aims of HTab
	A Tableaux Method for Hybrid Logics
	Rules
	Implementation
	Optimisations
	Model Building

	Tests
	Example of Use
	Conclusion
	References

