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abstract. In this article we study interpolation properties for
the minimal system of interpretability logic IL. We prove that ar-
row interpolation holds for IL and that turnstile interpolation and
interpolation for the �-modality easily follow from this result. Fur-
thermore, these properties are extended to the system ILP. Failure
of arrow interpolation for ILW is established by providing an explicit
counterexample. The related issues of Beth definability and fixed
points are also addressed. It will be shown that for a general class of
logics the Beth property and the fixed point property are interderiv-
able. This in particular yields alternative proofs for the fixed point
theorem for IL (cf. de Jongh and Visser 1991) and the Beth theorem
for all provability logics (cf. Maksimova 1989). Moreover, it entails
that all extensions of IL have the Beth property.

1 Introduction

Interpretability logics are extensions of provability logics introduced in
Visser 1990. In that paper the modal logics IL, ILM and ILP are defined
by extending the object language of the basic provability logic L with a
binary operator �. This modality is to be read, relative to an (arithmeti-
cal) theory T , as: A � B iff T + B is relatively interpretable in T + A.
To put it simply, there is a function f (the interpretation) on the formulas
of the language of T such that T + B ` C ⇒ T + A ` f(C). (Obviously
this translation function should satisfy certain further requirements.) The
main importance of interpretability logics is that they permit a finer anal-
ysis of arithmetical theories than provability logics. For example, whereas
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the provability operators 2PA and 2GB
1 have the same properties, the in-

terpretability operator for PA and the one for GB differ: �PA satisfies the
axiom M : A�B → (A∧2C)� (B∧2C), whereas �GB satisfies the axiom
P : A�B → 2(A�B).

Interpretability logics are useful and powerful tools for the study of the
strength of different theories. However, in this work we are only interested
in interpretability logics as systems of (nonstandard) modal logic. In the
present article we establish purely theoretical results about systems of in-
terpretability logic, like the interpolation property for IL and ILP. Hereto,
a simple modal reading of � over Kripke models suffices.

Acknowledgment We thank Petr Hájek for kindly sharing with us his
unpublished partial proof of interpolation for IL (Hájek 1992) and his corre-
spondence with Ignatiev on this matter (Ignatiev 1992). Moreover, we are
thankful for his permission to publish his elegant proof that the interpola-
tion property for ILP follows from interpolation of IL (also in Hájek 1992).

1.1 Interpretability and Interpolation

When a new logic is defined, some questions immediately come to mind
as a yardstick by which to measure the behavior of the newborn logic. Is
the logic sound, complete, decidable? In this article we deal with some
of these metalogical questions: Craig interpolation, Beth definability and
fixed points. The last two properties —which will be shown to hold for
all extensions of the basic system IL— will follow from the interpolation
property for IL.

In Craig 1957 the famous interpolation theorem for first-order logic (FO)
was proven: Whenever `FO A → B, then there exists a formula I (the
interpolant) in the common language of A and B such that `FO A → I

and `FO I → B. The interpolation property is a sign of a well-behaved
deduction system. Besides its theoretical interest, this property plays a
crucial role in, for example, the field of automated theorem proving, where
it can be used to restrict the search space of the inference algorithm, in
looking for intermediate lemmas.

For interpretability logics, some (positive and negative) results about
interpolation are known (for the definition of the systems mentioned we
refer to Visser 1997). In Visser 1997 a proof by Ignatiev of failure of inter-
polation for ILM is adapted, showing that systems between ILM0 and ILM

do not have interpolation. It follows for example that ILW∗ does not have

1PA is Peano’s formalization of Arithmetic and GB is the Gödel-Bernays formalization

of Set Theory.
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interpolation. In de Rijke 1992 unary interpretability logic, i.e., the logic
of (>�ψ) is studied. de Rijke shows that the restricted systems il, ilp and
ilm, all satisfy interpolation.

The question of interpolation for the basic system IL was raised by
Baaz. Hájek 1992 gave a positive answer to this question, but unfortunately
overlooked some cases as was pointed out by Ignatiev. The latter fixed some
of the cases in Ignatiev 1992, but the proof remained incomplete for years.
In this article we provide a full proof. The techniques developed for this
proof also serve to establish interpolation for the system ILP. An alternative
way of settling this question was given by Hájek who showed interpolation
for ILP assuming that this property holds for IL (cf. Hájek 1992). By using
the model theoretic notion of bisimulation we will furthermore prove failure
of interpolation for ILW.

The following table summarizes the results in the field after our contribu-
tion.

Binary Systems IL ILP ILM ILF ILW ILW∗

Interpolation yes yes no open no no

Proved in This paper Hájek Ignatiev This paper Visser

1992 1997
This paper

Unary Systems il ilp ilm

Interpolation yes yes yes

Proved in de Rijke de Rijke de Rijke

1992 1992 1992

In this article we assume the reader is familiar with basic notions of modal
logic in general, but we develop in detail the necessary concepts specifically
devised in the context of provability and interpretability logics (Section 2).
For a thorough introduction to this topic covering the arithmetical interest
of the project we refer to Japaridze and de Jongh 1998 and Visser 1997.
Section 3 contains the main result of the present paper showing that ar-
row interpolation holds for IL. As corollaries we obtain in Section 4 that
turnstile interpolation and �-interpolation also hold for IL. We also show
that all these properties transfer to ILP. Section 5 provides a counter ex-
ample to arrow interpolation for ILW. In the final section we will deepen
an interesting interplay between Beth definability and fixed points. For
a general class of logics these two properties will be shown to be inter-
derivable. This class includes all provability and interpretability logics.
Since the Beth property can be derived in IL from arrow interpolation as
usual, this yields an alternative proof for the fixed point theorem for IL (cf.
de Jongh and Visser 1991). Moreover, it implies that all extensions of the
basic system of provability logic L and all extensions of IL have the Beth de-
finability property. This extends the result in Maksimova 1989 concerning
the Beth property for provability logics.
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2 Preliminaries

We now gather some definitions and preliminary results needed for our
main theorem. We start by defining the basic system of interpretability
logic IL.

Definition 2.1 (The System IL) The basic system for interpretability
logic IL is defined by the following axiom schemes:

L1 All classical tautologies,
L2 2(A → B) → (2A → 2B),
L3 2A→ 22A,
L4 2(2A → A) → 2A,
J1 2(A → B) → A� B,
J2 (A� B ∧ B � C) → A� C,
J3 (A� C ∧ B � C) → (A ∨ B) � C,
J4 A�B → (3A → 3B),
J5 3A�A,

together with the rules of Modus Ponens and Necessitation (i.e., ` A ⇒
` 2A). The notions of proof in IL and of theorems and rules are defined as
usual.

For some intuitions about the role of the above axioms let us turn for a
moment to their arithmetical interpretation. Axioms L1 to L4 are the prin-
ciples of Löb’s Logic L, the basic system of provability logic; J1 says that the
identity is an interpretation; J2 expresses transitivity of the �-modality,
reflecting that interpretations can be composed. By J3 two different in-
terpretations can be joined in a definition by cases; J4 states that relative
interpretability implies relative consistency; J5 is the ‘Interpretation Exis-
tence Lemma’ (cf. Visser 1997), a formalization in arithmetic of Henkin’s
completeness theorem.

In the proof of Theorem 1 the following facts will be useful. The proofs
can be found in Japaridze and de Jongh 1998 and Visser 1997.

Proposition 2.2 In IL the following theorems are derivable:
1. ` 2D ↔ ¬D � ⊥.
2. ` (D ∨ 3D) �D.
3. ` D � (D ∧ 2¬D).
4. ` ((D ∧ E) � F ) → (¬D � F → E � F ).

Proof of Proposition 2.2. Part (1), (2) and (4) are easy; (3) follows
from the fact that in Löb’s Logic L we can derive `L 3D → 3(D ∧ 2¬D),
and hence `L D → (D ∧ 2¬D) ∨ 3(D ∧ 2¬D). Now apply (2). a
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We now turn to semantics. A Kripke semantics (in this case also called Velt-
man semantics) for IL was first presented in de Jongh and Veltman 1990.

Definition 2.3 (IL-Frame, IL-Model, Forcing Relation) An IL-frame
is a tuple 〈W,R, S〉, where:

• W is a non-empty set.
• R is a transitive, upwards well-founded binary relation on W .
• For each w ∈W ,

- Sw is a binary relation defined on w↑ =def {u ∈ W : wRu}.
- Sw is transitive and reflexive.
- wRuRv ⇒ uSwv.

An IL-model is a structure 〈〈W,R, S〉, V 〉, where 〈W,R, S〉 is an IL-frame
and V is a modal valuation assigning subsets of W to proposition letters.

A forcing relation |= on an IL-model satisfies the usual clauses for atomic
formulas, Boolean connectives and 2-modality (with R as the accessibility
relation), plus the following extra clause:

• w |= A�B ⇔ ∀u((wRu ∧ u |= A) → ∃v(uSwv ∧ v |= B)).

de Jongh and Veltman 1990 provides a modal completeness theorem for IL

with respect to finite IL-models.
Note that the clause for the �-modality in the definition of the forcing

relation above, is unlike the clause for the usual 2-modality. This is why we
consider interpretability logics to be non-standard systems of modal logic.

Convention 2.4 In the rest of the section we will tacitly assume that we
are working in IL. Hence all the notions defined below are to be read relative
to this system. For example, when we speak about a set of formulas it will
be understood that these are IL-formulas, etc.

The method we will use for showing interpolation will be a standard model-
theoretic Henkin style proof as can be found, e.g., in the proof of interpola-
tion for provability logic in Smoryński 1978. The aim of these proofs is to
construct a model of the logic under consideration whose worlds are based
on maximal consistent sets of formulas. However, since IL is not compact,
maximal consistent sets should be confined to finite adequate subsets of
the language. Our first task is to specify this notion of adequateness (see
de Jongh and Veltman 1990).

Definition 2.5 (∼A, Adequate Set) If the formula A is not a negation,
then ∼A is ¬A. Otherwise, if A is ¬B, then ∼A is B. A set X of formulas
is called adequate if X is closed under subformulas and the ∼-operation,
⊥�⊥ ∈ X andX containsA�B wheneverA,B are antecedent or succedent
of a �-formula in X .
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From this point onwards it is best to consider 2A as an abbreviation of
∼A � ⊥. This is allowed by Proposition 2.2.1. In particular, this im-
plies that whenever formulas of the form 2¬A,2¬B are contained in an
adequate set X , then also A�B ∈ X .

Notation 2.6 For any set of formulas X there exists a smallest adequate
set containing X , denoted by AX . As usual, we will omit brackets when
appropriate. By LX (read: the language of X) we denote the set of IL-
formulas built up from proposition letters occurring in formulas in X . For
X a finite set of formulas, we interchangeably write X for its conjunction:
e.g. `

∧
X → A will be written simply as ` X → A.

Remark 2.7 Note that if X is finite, then so is AX , as desired. In order
to ensure this, the set X in Definition 2.5 was required to be closed under
negation of non-negated formulas only.

In modal logic, proofs of interpolation are in general close in spirit to com-
pleteness proofs. The central role played by maximal consistent sets in the
latter is in the former taken over by complete inseparable pairs.

Definition 2.8 (Inseparable Pair) A pair 〈X,Y 〉 of finite sets of for-
mulas is called separable if there exists a formula A ∈ LX ∩ LY such that
` X → A and ` Y → ¬A. A pair is called inseparable if it is not separable.

Note that for any inseparable pair 〈X,Y 〉, the sets X and Y are each
consistent.

Definition 2.9 (Complete Pair) Let 〈X,Y 〉 be an inseparable pair. We
say that 〈X,Y 〉 is complete if

1. For each A ∈ AX , either A ∈ X or ∼A ∈ X .
2. For each A ∈ AY , either A ∈ Y or ∼A ∈ Y .

In e.g. Smoryński 1985 the following analogue of Lindenbaum’s Lemma can
be found.

Proposition 2.10 Let 〈X,Y 〉 be an inseparable pair. Then there exist sets
X ′, Y ′ such that X ⊆ X ′ ⊆ AX , Y ⊆ Y ′ ⊆ AY and 〈X ′, Y ′〉 is a complete
pair.

The preparations up to now suffice to define the worlds of the construction
we are after. To define the relations in this model the following notion is
needed.
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Definition 2.11 (≺ Relation) Let 〈X,Y 〉, 〈X ′, Y ′〉 be two complete pairs
such that AX = AX′ , AY = AY ′ . We put 〈X,Y 〉 ≺ 〈X ′, Y ′〉 if

1. For each A, if 2A ∈ X ∪ Y then 2A,A ∈ X ′ ∪ Y ′.
2. There exists some A such that 2A 6∈ X ∪ Y but 2A ∈ X ′ ∪ Y ′.

The above is the canonical definition of the accessibility relation for the
2-modality which takes care of the conditions of transitivity and upward
well-foundedness.

In order to motivate the next definition, let us jump a little bit ahead of
ourselves and ask what this entire enterprise should amount to. As usual
in Henkin-style proofs for interpolation, the idea is the following. On the
assumption that some two formulas B and C (such that ` B → C) do not
have an interpolant, the pair 〈{B}, {¬C}〉 can be extended to a complete
pair which will be a world in the model that is now to be constructed. The
key point is then to prove a truth lemma for the eventual model saying
that a formula is valid in a world if and only if that formula is contained
in one component of the complete pair which constitutes that world. This
lemma implies that we have constructed a world in which B and ¬C holds,
contrary to the fact that B → C is a theorem and we are done. Now, for
proving the truth lemma we will in particular have to show that, if a formula
of the form ¬(G � A) is contained in some world w, then w 6|= (G � A).
According to the truth definition, we should in that case produce an R-
successor u of w which contains G and which ‘avoids’ A in the sense that
any Sw-successor of u does not contain A.

What makes this concept of ‘A-avoiding’ hard to grasp, is the fact that
avoiding a formula A involves other formulas D as well. Let us see why.
Consider a world w which contains a formula of the form D�A. Hence, by
the truth lemma, w |= D � A. In this case any truly A-avoiding successor
u of w is not allowed to contain D, nor to have an R-successor v containing
D. In the first case it follows directly from the truth definition that u has
an Sw-successor satisfying A, contrary to u being A-avoiding. In the second
case we reason as follows. Since wRv (by transitivity of R) it follows again
from the truth-definition that v has an Sw-successor z which contains A.
Moreover, wRuRv and hence, by the definition of IL-frame, uSwv. Since
Sw is transitive, this shows that z is a Sw-successor of u, and again we end
up with an Sw-successor of u containing A. Bearing this in mind, a first
attempt to formalize the intuitive notion of ‘A-avoiding successor’ would
be via the following concept of A-criticality (see Hájek 1992).

Definition 2.12 (A-Critical, preliminary) Let 〈X,Y 〉, 〈X ′, Y ′〉 be
two complete pairs such that AX = AX′ , AY = AY ′ . Let 2¬A ∈ AX∪AY .
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We say that 〈X ′, Y ′〉 is an A-critical successor of 〈X,Y 〉 if the following
conditions are met.

1. 〈X,Y 〉 ≺ 〈X ′, Y ′〉.
2. X1 =def {¬D,2¬D : D �A ∈ X} ⊆ X ′.
Y1 =def {¬E,2¬E : E �A ∈ Y } ⊆ Y ′.

However complicated as the above definition may seem, it does not yet
suffice since it does not reckon with a possible interplay between formulas
from AX and AY . To make this point more precise, let us imagine the
situation where A ∈ AX \AY and B ∈ AY \AX . Although the formulas A
and B come from entirely different adequate sets, still B can turn out to be
an undesirable member of any A-critical successor of a pair 〈X,Y 〉. For it
can be the case that ` X → C�A and ` Y → B�C, for some C ∈ LX∩LY

but not necessarily in AX or AY . By soundness then 〈X,Y 〉 |= B�A, and
B should henceforth be avoided as not to run in the same trouble as before.
However, since B�A is not contained in any of the adequate sets AX ,AY ,
and hence B � A 6∈ X ∪ Y , Definition 2.12 does not give any restrictions
in this case. On these grounds we exchange our preliminary definition for
the one below.

Definition 2.13 (A-Critical) Let 〈X,Y 〉, 〈X ′, Y ′〉 be two complete pairs
such that AX = AX′ , AY = AY ′ . Let 2¬A ∈ AX ∪ AY . We say that
〈X ′, Y ′〉 is an A-critical successor of 〈X,Y 〉 (notation: 〈X,Y 〉 ≺A 〈X ′, Y ′〉),
if the following conditions are met.

1. 〈X,Y 〉 ≺ 〈X ′, Y ′〉.
2. If 2¬A ∈ AX , then
X1=def{¬D,2¬D : D �A ∈ X} ⊆ X ′.
Y1=def{¬E,2¬E : 2¬E ∈ AY &

∃C∈LX ∩ LY [` Y →(E � C) & ` X→(C �A)]} ⊆ Y ′.
3. If 2¬A ∈ AY , then
X2=def{¬D,2¬D : 2¬D ∈ AX&

∃C∈LX ∩ LY [` X→(D � C) & ` Y →(C �A)]} ⊆ X ′.
Y2=def{¬E,2¬E : E �A ∈ Y } ⊆ Y ′.

Note that the complications described above only occur in case A and B

are contained in different adequate sets. That is why the sets X1 and
Y2 in Definition 2.13 remain unaltered as compared to the sets X1, Y1 in
Definition 2.12.

Summarizing, the difficulties in finding the above notion of criticality
which will turn out to be the one needed for the interpolation proof were
twofold. First, the non-standard character of the �-modality brought on
the problem that avoiding one formula involves other formulas. Second, the

8



fact that we are interested in interpolation made us pay attention to the
languages. The next claim implies that the above notion is well-defined.

Claim 2.14 If 2¬A ∈ AX ∩ AY in Definition 2.13, then X1 = X2 and
Y1 = Y2.

Proof of Claim 2.14. Let 2¬A ∈ AX ∩ AY . Obviously X1 ⊆ X2. For
the other inclusion, consider a formula D such that ¬D,2¬D ∈ X2. That
is, 2¬D ∈ AX and there exists some C ∈ LX ∩ LY such that (*) ` X →
(D � C) and ` Y → (C � A). We want to show that ¬D,2¬D ∈ X1,
i.e., D � A ∈ X . Let us assume for contradiction that D � A 6∈ X . Since
D�A ∈ AX , by completeness of 〈X,Y 〉 this assumption implies that (**)
¬(D � A) ∈ X . By (*), ` X → [(C � A) → (D � A)]. From (**) it now
follows that ` X → ¬(C � A). We conclude that C � A separates X and
Y . Contradiction. To show that Y1 = Y2, one proceeds analogously. a

Note that for any 〈X,Y 〉, 〈X ′, Y ′〉, 〈X ′′, Y ′′〉 and any formula A we have
that

〈X,Y 〉 ≺A 〈X ′, Y ′〉 ≺ 〈X ′′, Y ′′〉 =⇒ 〈X,Y 〉 ≺A 〈X ′′, Y ′′〉.

This finishes the necessary preliminaries for the next section.

3 The Interpolation Theorem for IL

The next theorem is the main result of this paper.

Theorem 1 (The Arrow Interpolation Theorem for IL) Let D0, E0

be IL-formulas. Assume `IL D0 → E0. Then there exists an IL-formula
I ∈ LD0

∩ LE0
such that `IL D0 → I and `IL I → E0.

Proof of Theorem 1. Let `IL D0 → E0. Assume there is no interpolant.
In the next few pages it will be shown that this assumption enables us to
construct an IL-model which contains a world satisfying both D0 and ¬E0.
From the soundness of IL a contradiction follows. Now let us get to work.

By assumption `IL D0 → E0 has no interpolant. In other words, 〈{D0},
{¬E0}〉 is inseparable. By Proposition 2.10 there exist sets X0, Y0 such
that {D0} ⊆ X0 ⊆ AD0

, {¬E0} ⊆ Y0 ⊆ AE0
and 〈X0, Y0〉 is a complete

pair. We define the model M =def 〈〈W,R, S〉, V 〉 as follows.
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Begin construction of model.

• Each world in W will be a sequence of 2-tuples consisting of a com-
plete pair together with a sequence of formulas recording ‘how we
arrived at that pair’. Let [] represent the empty sequence and ∗
stand for concatenation. Formally, W is the smallest set satisfying
the following two conditions:

– w0 =def [(〈X0, Y0〉, [])] ∈W .

– Let [(〈X0, Y0〉, []), . . . , (〈Xn, Yn〉, τn)] ∈ W . Let 〈X,Y 〉 be a com-
plete pair such that X ⊆ AD0

, Y ⊆ AE0
and 〈Xn, Yn〉≺A〈X,Y 〉,

for some A. Then [(〈X0, Y0〉, []), . . . , (〈Xn, Yn〉, τn), (〈X,Y 〉, τn ∗
[A])] ∈W .

Notation 3.1 For all w ∈ W , w = [(〈X0, Y0〉, []), . . . , (〈Xn, Yn〉, τn)]
we will write Xw (resp. Yw, τw) for the set Xn (resp. Yn, τn). For
w, u ∈ W, the notation w ⊆ u (resp. w ⊂ u) indicates that w is an
initial (resp. proper initial) segment of u.

• For all w, u ∈W, we define wRu iff w ⊂ u.

• For all w, u, v ∈ W, we define uSwv iff there exists some formula A
and complete pairs 〈X ′, Y ′〉, 〈X ′′, Y ′′〉 such that w ∗ [(〈X ′, Y ′〉, τw ∗
[A])] ⊆ u, w ∗ [(〈X ′′, Y ′′〉, τw ∗ [A])] ⊆ v.

• For every w ∈W and every proposition letter p ∈ LD0
∪ LE0

, we set
the valuation V to w ∈ V (p) iff p ∈ Xw ∪ Yw.

End of construction.

We leave it to the reader to check that 〈W,R, S〉 is an IL-frame. That
is, W is finite, R is transitive and irreflexive, and Sw is a transitive and
reflexive relation defined over the set {u ∈ W : wRu} such that for every
w′, w′′ ∈W we have that wRw′Rw′′ implies w′Sww

′′.
The proof of Theorem 1 now reduces to the following truth lemma.

Lemma 3.2 (Truth Lemma) Let M = 〈〈W,R, S〉, V 〉 be the model de-
fined above. Then for any w ∈W ,

1. B ∈ AD0
implies w |= B ⇔ B ∈ Xw, and

2. B ∈ AE0
implies w |= B ⇔ B ∈ Yw.

Note that this in particular implies that w0 |= D0 and w0 |= ¬E0, for
w0 ∈ W defined above. Hence this lemma is all that stands between us
and a proof of Theorem 1.
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The hard part of proving the Truth Lemma is summarized in the two
lemmas below, the proof of which is postponed till their use has been
demonstrated.

Notation 3.3 For all w, u ∈W , and any formula A,

wRAu
def
⇐⇒ there exists 〈X ′, Y ′〉 such that w ∗ [(〈X ′, Y ′〉, τw ∗ [A])] ⊆ u.

So, wRAu implies that 〈Xw, Yw〉 ≺A 〈Xu, Yu〉.

Lemma 3.4 Let ¬(G�F ) ∈ Xw (resp. Yw). Then there exists some u ∈ W

such that wRFu and G ∈ Xu (resp. Yu).

Lemma 3.5 Let G� F ∈ Xw (resp. Yw). Let u ∈ W be such that wRAu

and G ∈ Xu (resp. Yu). Then there exists v ∈ W such that wRAv and
F ∈ Xv (resp. Yv).

Proof of Truth Lemma. This proof is by induction on the complexity
of B. The atomic case is given by definition, the Boolean cases are an
easy exercise and the 2-case is an instance of the �-case. Hence let us
concentrate on the latter.

Let B be of the form G�F ∈ AD0
∪ AE0

. Let us assume that G�F ∈
AD0

(in case that (G� F ) ∈ AE0
we reason similarly).

CASE “⇒”: Let G�F 6∈ Xw. By completeness of 〈Xw, Yw〉, then ¬(G�

F ) ∈ Xw. By Lemma 3.4, no Sw-successor v of the element u produced
there, satisfies F : for, wRFu and uSwv imply that wRF v. Since F � F ∈
Xw, it follows that v 6|= F . Hence w 6|= G� F , and we are done.

CASE “⇐”: Let G�F ∈ Xw. Let u ∈ W be such that wRu and u |= G.
Then wRAu, for some formula A. By induction hypothesis, G ∈ Xu. By
Lemma 3.5 there exists some v ∈ W such that uSwv and F ∈ Xv . Again
by the induction hypothesis v |= F , and it follows that w |= G� F . a

Now let us prove the two auxiliary lemmas. Both lemmas will be shown to
hold for Xw, Xu, Xv. For Yw, Yu, Yv , the proofs are similar.

Proof of Lemma 3.4. Let ¬(G � F ) ∈ Xw. We define

X− =def �Xw ∪ {G,2¬G} ∪ {¬D,2¬D : D � F ∈ Xw},
Y − =def � Yw ∪ {¬E,2¬E : 2¬E ∈ AE0

& ∃C ∈ LD0
∩ LE0

[` Yw →
(E � C) & ` Xw → (C � F )]},
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where here, as elsewhere in the proof, for any set of formulas X ,

�X =def {D,2D : 2D ∈ X}.

We will show that X− and Y − are inseparable. For then, by Proposi-
tion 2.10 we can extend 〈X−, Y −〉 to a complete pair 〈Xu, Yu〉, and the
element u =def w ∗ [(〈Xu, Yu〉, τw ∗ [F ])] will satisfy all our requirements.

Let us assume for contradiction that X− and Y − are separable. That is,
there exists some I ∈ LD0

∩ LE0
such that

` X− → I and ` Y − → ¬I.

Now we can derive the following:

` �Xw → [(G ∧ 2¬G ∧ ¬I) →
∨

D�F∈Xw

(D ∨ 3D)].

Henceforth we will simply omit the index set (in this case Xw) over which
a disjunction is taken, in case this set is clear from the context. Reasoning
as in provability logic, we obtain from the definition of �Xw and axiom J1
that

` Xw → [(G ∧ 2¬G ∧ ¬I) �

∨
(D ∨ 3D)].

By Proposition 2.2.2 and the fact that D � F ∈ Xw, then

` Xw → [(G ∧ 2¬G ∧ ¬I) � F ].

With the help of Proposition 2.2.4 we derive that

` Xw → [(I � F ) → ((G ∧ 2¬G) � F )].(1)

On the other hand,

` �Yw → [I →
∨

(Ej ∨ 3Ej)],

for some finite index set J . The formulas Ej are such that there exist
Cj ∈ LD0

∩ LE0
for which

` Yw → [I � (
∨
Cj)] and ` Xw → [(

∨
Cj) � F ] holds.

It follows that

` Xw → [(I � (
∨
Cj)) → (I � F )].

12



Together with (1) and the fact that ¬(G�F ) ∈ Xw this implies via Propo-
sition 2.2.3 that

` Xw → [¬(I � (
∨
Cj))].

Hence I � (
∨
Cj) separates Xw and Yw. A contradiction. a

Proof of Lemma 3.5. Let G�F ∈ Xw. Let u ∈ W be such that wRAu

and G ∈ Xu. By definition of criticality, 2¬A ∈ AD0
∪ AE0

. In this proof
we distinguish as to whether 2¬A ∈ AD0

or 2¬A ∈ AE0
.

CASE 1: Let 2¬A ∈ AD0
. Analogously to the proof of Lemma 3.4 we

define

X− =def �Xw ∪ {F,2¬F} ∪ {¬D,2¬D : D �A ∈ Xw},
Y − =def � Yw ∪ {¬E,2¬E : 2¬E ∈ AE0

& ∃C ∈ LD0
∩ LE0

[` Yw →
(E � C) & ` Xw → (C �A)]}.

Again we will show that 〈X−, Y −〉 can be extended to a complete pair
〈Xv, Yv〉. Then, the element v =def w ∗ [(〈Xv , Yv〉, τw ∗ [A])] will have all the
required properties.

So, let us assume for contradiction that there exists some I ∈ LD0
∩ LE0

such that

` X− → I and ` Y − → ¬I.

Again we derive that

` �Xw → [(F ∧ 2¬F ∧ ¬I) →
∨

(D ∨ 3D)].

Reasoning as before we see that

` Xw → [(F ∧ 2¬F ∧ ¬I) �A],

and

` Xw → [(I �A) → (F ∧ 2¬F �A)].(2)

Since G� F ∈ Xw one immediately sees that

` Xw → [(F �A) → (G�A)].(3)

Now assume that (G � A) ∈ Xw. Since wRAu, then ¬G ∈ Xu, which by
assumption is not the case. We conclude that (G � A) 6∈ Xw, hence by
completeness of 〈Xw, Yw〉

13



¬(G �A) ∈ Xw.(4)

On the other hand,

` �Yw → [I →
∨

(Ej ∨ 3Ej)],

for some finite index set J . The formulas Ej are chosen in such a way that
there exist formulas Cj ∈ LD0

∩ LE0
such that

` Yw → [I � (
∨
Cj)] and ` Xw → [(

∨
Cj) �A].

It follows that

` Xw → [(I � (
∨
Cj)) → (I �A)].(5)

(2), (3), (4), (5) and Proposition 2.2.3 together imply that

` Xw → [¬(I � (
∨
Cj))].

This shows that (I � (
∨
Cj)) separates Xw and Yw, which is again a con-

tradiction.

CASE 2: Let 2¬A ∈ AE0
. This time we define

X− =def �Xw ∪ {F,2¬F} ∪ {¬D,2¬D : 2¬D ∈ AD0
&

∃C ∈ LD0
∩ LE0

[` Xw → (D � C) & ` Yw → (C �A)]},
Y − =def � Yw ∪ {¬E,2¬E : E �A ∈ Yw}.

Again we assume for contradiction that there exists some I ∈ LD0
∩ LE0

such that

` X− → I and ` Y − → ¬I.

Now we reason as follows. First note that

` �Yw → [I →
∨

(E ∨ 3E)],

where for every E it is the case that (E �A) ∈ Yw. Hence

` Yw → [I �A].(6)

Also,

` �Xw → [(F ∧ 2¬F ) → (I ∨
∨

(Dj ∨ 3Dj))],

14



for some finite index set J . Since G � F ∈ Xw this implies by Proposi-
tion 2.2.3 that

` Xw → [G� (I ∨
∨

(Dj ∨ 3Di))].(7)

The formulas Dj are such that there exist formulas Cj ∈ LD0
∩ LE0

for
which

` Yw → [(
∨
Cj) �A], and(8)

` Xw → [(
∨
Dj) � (

∨
Cj)].

Then also ` Xw → [(I ∨ (
∨
Dj)) � (I ∨ (

∨
Cj))], hence by (7),

` Xw → [G� (I ∨ (
∨
Cj))].(9)

From (8) and (6) it follows that

` Yw → [(I ∨ (
∨
Cj)) �A].(10)

By definition of A-criticality, (9) and (10) imply that ¬G ∈ Xw′ , for every
A-critical successor w′ of w. But wRAu, and G ∈ Xu. Contradiction.
Again we conclude that the pair 〈X−, Y −〉 is inseparable, and we can extend
it to a complete pair 〈Xv , Yv〉. The element v =def w ∗ [(〈Xv , Yv〉, τw ∗ [A])]
has all the required properties. a

This ends the proof of Theorem 1. a

4 Derived Results on Interpolation

4.1 Different Interpolation Properties for IL

In the literature on interpolation we will find that this property is presented
in many (in principle different) ways, depending on e.g. the consequence re-
lation under consideration, or our understanding of a ‘common’ language.
Perhaps the two best known definitions in this genre are the arrow in-
terpolation considered so far and the turnstile interpolation (where → is
replaced by `), and their corresponding semantic versions. There is no
general connection between these properties. However, in the presence of
a Deduction Theorem one easily derives turnstile interpolation from arrow
interpolation.
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Proposition 4.1 (Deduction Theorem for IL) For any pair of IL-
formulas A and B, A `IL B iff `IL (A ∧ 2A) → B.

As a consequence of the above proposition and Theorem 1, IL also has
turnstile interpolation.

Corollary 4.2 (`-Interpolation for IL) Let D0, E0 be IL-formulas. As-
sume D0 `IL E0. Then there exists an IL-formula I ∈ LD0

∩ LE0
such that

D0 `IL I and I `IL E0.

Because the �-modality can be thought of as a conditional, the following
interpolation property suggests itself. Corollary 4.4 follows immediately
from Proposition 4.3 and Theorem 1.

Proposition 4.3 `IL D �E if and only if `IL D → E ∨ 3E.

Proof of Proposition 4.3. “⇐” follows from Proposition 2.2.2. For
“⇒”, assume 6`IL D → E ∨ 3E. By completeness there exists an IL-
model 〈〈W,R, S〉, V 〉 and some world w1 ∈W such that w1 |= D and w1 6|=
E∨3E. LetW ′ =def {w ∈ W : w1Rw}∪{w1, w0}, where w0 is some fresh el-
ement. By R′ we denote the transitive closure of (Rd(W ′\{w0})∪〈w0, w1〉).
Here by Rd(W ′ \ {w0}) we understand the restriction of the relation R to
the set W ′ \ {w0}. Let S′

w0
be the reflexive closure of Rd(W ′ \ {w0}), and

S′
w = Sw, for w ∈ W ′ \ {w0}. The so obtained 〈〈W ′, R′, S′〉, V ′〉, where
V ′ is any valuation extending V , is an IL-model. Moreover, w1 is an R′-
successor of w0 satisfying D without a S ′

w0
-successor satisfying E. In other

words, w0 6|= D �E. a

Corollary 4.4 (�-Interpolation for IL) Let D0, E0 be IL-formulas.
Assume `IL D0 �E0. Then there exists an IL-formula I ∈ LD0

∩ LE0
such

that `IL D0 � I and `IL I �E0.

4.2 The Interpolation Theorems for ILP

The system ILP is defined by adding to IL the persistence principle, P :
A�B → 2(A�B) (i.e. if T +B is relatively interpretable in T +A, then
this can be proved in T ). A direct proof of interpolation for ILP can be
obtained using the techniques introduced in this paper. More elegantly, the
question of interpolation for ILP can be reduced to a corollary of Theorem 1
by observing, as was done in Hájek 1992, that ILP is strongly interpretable
in IL.

Definition 4.5 (Strong Interpretation of ILP in IL) We define the
translation # for a formula A in ILP as follows: for A atomic, A# is A, #
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commutes with Boolean connectives and with 2 and (B � C)# is (B#
�

C#) ∧ 2(B#
� C#).

Given the P axiom it is immediate that `ILP A↔ A#.

Proposition 4.6 `IL A
# if and only if `ILP A.

Proof of Proposition 4.6. Left to right is trivial. The other direction
is proved by induction on the length of the proof in ILP. The core of the
proof consists of establishing that the translation of all the axioms of ILP

are theorems of IL. a

Theorem 2 The Arrow Interpolation Theorem for ILP Let D0, E0 be ILP-
formulas. Assume `ILP D0 → E0. Then there exists an ILP- formula
I ∈ LD0

∩ LE0
such that `ILP D0 → I and `ILP I → E0.

The proof below is due to Hájek.

Proof of Theorem 2. We reduce interpolation for ILP to interpolation
for IL. Assume `ILP E0 → D0. Then by Proposition 4.6, `IL E

#
0 → D

#
0 .

Applying the interpolation result for IL, we then obtain a formula I such
that `IL E

#
0 → I and `IL I → D

#
0 . Obviously then, `ILP E

#
0 → I and `ILP

I → D
#
0 . As `ILP A

# ↔ A, it follows that `ILP E0 → I and `ILP I → D0.
Note that I is in the common language of E0, D0, since the translation #

does not alter languages. a

Reasoning as we did for IL it is straightforward to prove that

Corollary 4.7 ILP has turnstile- and �-interpolation.

5 Failure of Interpolation in ILW

We finish the part of this article on interpolation with a negative result:
ILW, the system obtained by extending IL with the axiom W : A � B →
A � (B ∧ 2¬A), does not have interpolation. To establish this failure we
should exhibit a pair of formulas D,E such that `ILW D → E whereas no
interpolant exists for D and E. We propose the following implication

D → E =def (2(s↔ 2¬p) ∧ (p� q)) → (q � r → r � (r ∧ s)).

Claim 5.1 `ILW D → E.
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Proof of Claim 5.1. That D → E is a theorem of ILW follows from
J2 : p � q → (q � r → p � r) and (*) `ILW p � r → r � (r ∧ 2¬p). To
prove this last theorem, reason as follows. By propositional logic, `ILW r →
((r ∧ 2¬p) ∨ (r ∧ 3p)) and with the aid of J1 we derive

`ILW r � ((r ∧ 2¬p) ∨ (r ∧ 3p)).(11)

On the other hand, from W : p � r → p � (r ∧ 2¬p), by J2 and J5 we
obtain `ILW p� r → 3p� (r ∧ 2¬p) and hence,

`ILW p� r → (r ∧ 3p) � (r ∧ 2¬p).(12)

(11) and (12) immediately imply (*). a

What remains to prove is that D → E does not have an interpolant. The
following notion of bisimulation, introduced in Visser 1990, is crucial.

Definition 5.2 (P -bisimulation) Let M = 〈〈W,R, S〉, V 〉 and M′ =
〈〈W ′, R′, S′〉, V ′〉 be two models and P a set of proposition letters. A
P -bisimulation between M and M′ is a nonempty relation Z ⊆ W ×W ′

such that

atom wZw′ ⇒ (w ∈ V (p) iff w′ ∈ V ′(p)), for all p ∈ P .

zig If wZw′ and wRv, then there is a v′ with vZv′ and w′R′v′ and, for all
u′ with v′Sw′u′, there is an u with uZu′ and vSwu.

zag If wZw′ and w′R′v′, then there is an v with vZv′ and wRv and, for
all u with vSwu, there is an u′ with uZu′ and v′Sw′u′.

Recall that by LP we denote the set of IL-formulas built up from proposition
letters in P . The important result about P -bisimulations (Visser 1990) is
that they preserve truth of formulas in LP .

Proposition 5.3 Let M and M′ be two IL-models and Z a P -bisimulation
between them. Then for any formula A ∈ LP , wZw′ ⇒ (M, w  A iff
M′, w′

 A).

ILW-frames are IL-frames such that for each w, the composition R ◦ Sw

is upwards wellfounded. de Jongh and Veltman 1999 proves completeness
for ILW w.r.t. finite ILW-models.

Consider now the two ILW-models in Figure 1. We use the following con-
ventions. Worlds are labeled with the proposition letters which hold in
them. Filled arrows stand for both R and S relations, while dashed arrows
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Figure 1: {q, s}-bisimilar models.

are S relations only. Whenever we have wRv, wRu and vSu then actually
vSwu. Finally we should consider the transitive closure of the filled arrows
and the reflexive-transitive closure of the dashed ones.

We claim that the relation linking pairs of worlds labeled by the same
letter (disregarding subindices and ′) is a {q, s}-bisimulation. Condition
atom is easily checked. Verifying zig and zag requires more work.

To this aim, we point out that we can interpret the zig (and similarly
the zag) condition on bisimulations as a rule in a game which requires that
whenever wZw′ and a ‘move’ wRv has been played, we should be able to
answer with a ‘counter-move’ w′R′v′ which fulfills the necessary conditions
on S and Z. We have labeled the arrows in the models according to this
idea. An arrow marked n (for n ∈ {0, . . . , 9}) is ‘answered’ by the arrow
marked an in the other model. Note that some arrows are played twice
because the bisimulation is not injective. For example, arrow 2 is answered
by a2 when played from the position bZb′1 and by a2′ when played from
bZb′2.

Once the fact that M and M′ are {q, s}-bisimilar has been established,
what rests is simple. Suppose D → E above has an interpolant I . Note
that M, a  D. As `ILW D → I , we have M, a  I . But, as shown,
there is a {q, s}-bisimulation linking a and a′. Hence by Proposition 5.3,
M′, a′  I . As `ILW I → E, we have M′, a′  E, which is not the case,
proving that no interpolant for D → E exists.

Finally, let us remark that our failure result is of a less general kind
than Visser’s result (Visser 1997) mentioned in Section 1. As the model
on the right in Figure 1 is not an ILM-model we cannot extend the failure
result to all logics between ILW and ILM.
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6 Beth Definability and Fixed Points

Ever since 1957 when W. Craig gave an alternative proof for the Beth
definability theorem for first-order logic (Beth 1953) via interpolation, these
two properties are often studied together. Albeit their close relation, it
turns out that they behave quite differently in the context of interpretability
logics.

Notation 6.1 In this section we will, if useful, denote formulas in such a
way that the proposition letters from which they are built up are displayed.
For example, the notation A(p̄, r) implies that the proposition letters that
occur in the formula A are among p1, . . . , pk, r. Also, for any formula A we
will write �A to abbreviate A ∧ 2A. Moreover, a formula A is said to be
modalized in r if every occurrence of the proposition letter r in A is in the
scope of a modality.

Definition 6.2 (Beth Definability Property) A logic L has the Beth
definability property iff for all formulas A(p̄, r) the following holds:

If `L �A(p̄, r) ∧ �A(p̄, r′) → (r ↔ r′),

(in words, if A(p̄, r) implicitly defines r in terms of p̄) then there exists a
formula C(p̄) (called an explicit definition) such that

`L �A(p̄, r) → (C(p̄) ↔ r).

Using a standard argument (cf. e.g. Chang and Keisler 1990) we can easily
derive the Beth definability property for IL from Theorem 2. But as we
will shortly see (cf. Corollary 6.8), we can infer much more. Hereto we will
make a detour via fixed points.

Definition 6.3 (Fixed Point Property) A logic L has the fixed point
property iff for any formula A(p̄, r) which is modalized in r, there exists a
formula F (p̄) (called a fixed point) such that

`L F (p̄) ↔ A(p̄, F (p̄)) (existence), and
`L �(r ↔ A(p̄, r)) ∧ �(r′ ↔ A(p̄, r′)) → r ↔ r′ (uniqueness).

Outline of this section First we will show in Theorem 3 that for a
general class of logics the fixed point property can be derived from the
Beth property. Second it will be proven in Theorem 4 that for these logics
the Beth property is in its turn derivable from the fixed point property.
Since any extension of IL is such a logic, we can reason as follows. As
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noted above, IL has the Beth property. Hence by Theorem 3, IL has the
fixed point property. The nature of the fixed point property is such that
it is inherited by any extension. Via Theorem 4 we then reach the general
conclusion that any extension of IL has the Beth property.

Let us finally note that Theorem 3 and Theorem 4 also apply to all
extensions of the provability logic L, hereby subsuming known results in
that area (see Smoryński 1978 and Maksimova 1989).

6.1 From Beth Definability to Fixed Points

One of the well-known applications of the Beth definability property can
be found in the literature on provability logic. In 1978, C. Smoryński
derives for the provability logic L the existence of fixed points —the more
interesting half of the fixed point theorem— from the uniqueness of fixed
points via an application of the Beth property. Theorem 3 generalizes this
result.

Theorem 3 Let L be a normal modal logic in which
1. `L 2A → 22A,
2. `L �B → (2A → A) implies `L �B → A,
3. the Beth theorem holds.

Then L has the fixed point property.

Proof of Theorem 3. Let the logic L satisfy the conditions in the theo-
rem, and let A(p̄, r) be an L-formula which is modalized in r. For brevity,
let us write A(r). As every occurrence of r in A is in the scope of a modality,
we have

`L 2(r ↔ r′) → (A(r) ↔ A(r′)).

Hence

`L �((r ↔ A(r)) ∧ (r′ ↔ A(r′))) → (2(r ↔ r′) → (r ↔ r′)).

An application of the second condition on the logic L shows that fixed
points of A(r) are unique.

In order to construct a fixed point for this formula, we note that unique-
ness of fixed points of A(r) is equivalent to A(r) ↔ r being an implicit
definition of r in terms of p̄. As L has the Beth property, this implies the
existence of some formula C built up from propositional variables in p̄ such
that

`L �(A(r) ↔ r) → (r ↔ C).(13)
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We will show that C is a fixed point for A(r). We first substitute A(C) for
r in (13), yielding

`L �(A(A(C)) ↔ A(C)) → (A(C) ↔ C).(14)

Reasoning in K4, we then infer that

`L 2(A(A(C)) ↔ A(C)) → 2(A(C) ↔ C).

That is, A(C) and C are equivalent under the 2-operator, given 2(A(A(C))
↔ A(C)). As r is modalized in A(r) this implies that

`L 2(A(A(C)) ↔ A(C)) → (A(A(C)) ↔ A(C)).

By the second condition on the logic L this suffices to conclude that

`L A(A(C)) ↔ A(C).

Hence `L �(A(A(C)) ↔ A(C)). Recalling (14) we conclude that

`L A(C) ↔ C.

a

Remark 6.4 Consider the following weakening of the second condition in
Theorem 3,

2′. `L 2A→ A implies `L A.

We note that in the above proof the existence of fixed points is actually
derived from conditions 1 and 3 together with this weakened version of con-
dition 2. Theorem 3 could therefore be rephrased as saying that any normal
modal logic L has the fixed point property if the following requirements are
met: `L 2A → 22A, condition 2’ holds, L has the Beth property, and
fixed points in L are unique.

Let us verify that Theorem 3 is indeed a generalization of the aforemen-
tioned result by Smoryński. Moreover, some more efforts will yield the
fixed point theorem for IL, a direct proof of which was already given in
de Jongh and Visser 1991.

Corollary 6.5 Let L be an extension of L, or an extension of IL. Then L
has the fixed point property.
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Proof of Corollary 6.5. We will check that L and IL satisfy the con-
ditions in Theorem 3. The first condition needs no comment. The Beth
theorem for L is proven in Smoryński 1978. As we noted before, the Beth
theorem for IL can be derived from Theorem 1 as usual. With regard to the
second condition, we note that in any logic L which satisfies the provability
axioms (cf. L1–L4 in Definition 2.1), `L �B → 2A can be inferred from
`L �B → (2A→ A). An application of modus ponens yields condition 2.
We conclude from Theorem 3 that L and IL have the fixed point property.
This obviously implies that all extensions of L and IL have the fixed point
property. a

6.2 From Fixed Points to Beth Definability

Another angle on the Beth property and fixed points was first taken in
1989 when L. Maksimova showed that for provability logics the fixed point
property in its turn implies the Beth property. In what follows, we will
generalize this result.

Theorem 4 Let L be a normal modal logic in which
1. `L 2A → 22A,
2. `L �B → (2A → A) implies `L �B → A,
3. the fixed point theorem holds.

Then L has the Beth property.

A first difficulty that arises in proving the Beth theorem from the fixed point
theorem, is the more general character of the former. For, the fixed point
theorem that is at our disposal is a statement about modalized formulas,
whereas the Beth theorem is about arbitrary formulas. The next lemma,
due to Maksimova (1989), reduces arbitrary formulas to ones which are
‘largely modalized’, and thereby provides a starting point for proving the
Beth theorem from the fixed point theorem.

Lemma 6.6 Let L be a normal modal logic, and let A(p̄, r) be an arbi-
trary L-formula. Then there exist L-formulas A1(p̄, r), A2(p̄, r) which are
modalized in r such that

`L A(p̄, r) ↔ [(r ∧ A1(p̄, r)) ∨ (¬r ∧ A2(p̄, r))].

This observation rests on some syntactic considerations: writing an ar-
bitrary formula in disjunctive normal form and collecting the disjuncts
containing r and the ones containing ¬r will give the form required by
Lemma 6.6.
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Proof of Theorem 4. Let the logic L satisfy the conditions in the the-
orem. Consider an implicit L-definition A(p̄, r) of r in terms of p̄. Abbre-
viating A(p̄, r) to A(r), this can be expressed by

`L �A(r) ∧ �A(r′) → (r ↔ r′).(15)

Let us gather some facts. By the previous lemma, there exist formulas
A1(r), A2(r) which are modalized in r such that

`L A(r) ↔ [(r ∧ A1(r)) ∨ (¬r ∧ A2(r))].(16)

As L has the fixed point property, there exists a formula F1 built up from
propositional variables in p̄ which is a fixed point of A1(r), i.e.,

`L F1 ↔ A1(F1).(17)

Moreover, fixed points are unique. Hence,

`L �(r ↔ A1(r)) → (r ↔ F1).(18)

Our aim is to show the following claim.

Claim 6.7 `L �A(r) → [2(A1(r) → r) → (A1(r) → r)].

From this claim it follows by the second condition on the logic L that

`L �A(r) → (A1(r) → r).(19)

On the other hand, from (16) it is obvious that `L A(r) → (r → A1(r)).
Hence from (19) we conclude that `L �A(r) → (r ↔ A1(r)), and therefore,

`L �A(r) → �(r ↔ A1(r)).

From the uniqueness of fixed points (see (18) above), it then follows that

`L �A(r) → (r ↔ F1).

Ergo, F1 is an explicit definition of r. What remains is to prove Claim 6.7.

Proof of Claim 6.7. As observed before, `L A(r) → (r → A1(r)), and
hence ` 2A(r) → 2(r → A1(r)). Therefore,

`L �A(r) ∧ 2(A1(r) → r) → 2(r ↔ A1(r)).(20)

For notational convenience, let us denote the formula �A(r)∧2(A1(r) → r)
by C. So (20) amounts to
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`L C → 2(r ↔ A1(r)).(21)

From the uniqueness of fixed points (18) it follows that `L 2(r ↔ A1(r)) →
2(r ↔ F1), hence by (21)

`L C → 2(r ↔ F1).

In other words, r and F1 are equivalent under the 2-operator (relative to
C). In particular,

`L C → 2(A(F1)), and(22)

`L C → (A1(r) → A1(F1)),(23)

where (23) holds by virtue of A1 being modalized in r, and (22) by definition
of C. Let us note for future reference that from (23) and the fact that F1

is a fixed point for A1 (cf. (17)) it follows that

`L C → (A1(r) → F1),(24)

and `L C → [A1(r) → (F1 ∧ A1(F1))]. By (16), this latter implication
shows that `L C → (A1(r) → A(F1)) which together with (22) implies

`L C → (A1(r) → �A(F1)).(25)

A(r) being an implicit definition of r (cf. (15)) entails that `L �A(r) ∧
�A(F1) → (r ↔ F1). From (25) we then derive that

`L C → (A1(r) → (r ↔ F1)).

By (24), we obtain the claim. a

This finishs the proof of Theorem 4. a

In the proof of Corollary 6.5 it has already been shown that all extensions
of L and all extensions of IL satisfy conditions 1–2 in Theorem 4. Hence
from Theorem 4 and Corollary 6.5 we obtain the following result.

Corollary 6.8 Let L be an extension of L, or an extension of IL. Then L
has the Beth property.

This corollary reveals a striking contrast between interpolation and defin-
ability properties for interpretability logics. For example, as was mentioned
in the introduction, all systems between ILM0 and ILM lack interpolation.
Or, as was shown in Section 5, ILW does not have this property either. On
the other hand, by Corollary 6.8 they all have the Beth property.
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