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Abstract We investigate labeled resolution calculi for hybrid logics with inference rules
restricted via selection functions and orders. We start by providing a sound and refutationally
complete calculus for the hybrid logic (@, ],A), even under restrictions by selection
functions and orders. Then, by imposing further restrictions in the original calculus, we
develop a sound, complete and terminating calculus for the .7 ( @) sublanguage. The proof
scheme we use to show refutational completeness of these calculi is an adaptation of a
standard completeness proof for saturation-based calculi for first-order logic that guarantees
completeness even under redundancy elimination. In fact, one of the contributions of this
article is to show that the general framework of saturation-based proving for first-order logic
with equality can be naturally adapted to saturation-based calculi for other languages, in
particular modal and hybrid logics.

1 Introduction

In this article we study resolution based inference methods for hybrid logics. Our main,
concrete contribution is to show that a labeled resolution calculus for the logic 57 (@, |,A)
originally presented in [7] can be modified so that inference rules can be restricted via se-
lection functions and orders [14]. More generally and, in our opinion, more fundamentally,
the article shows how standard techniques from the well-established theory of first-order
saturation-based reasoning can be adapted to this and similar calculi. This opens the way to
efficient implementations, on the one hand, and further transfer of results and techniques on
the other. We also show that a refinement of this calculus can be used as a decision method
for the decidable fragment 7 (@).

State-of-the-art saturation-based methods for first-order logic have a very mature theory.
The general framework presented by Bachmair and Ganzinger [14] can be used to estab-
lish the completeness of diverse calculi allowing their inference rules to be restricted with
selection functions and orders. Carefully tailored selection functions and orders can then
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be used to implement special refutation strategies, guarantee termination for certain frag-
ments, or simply reduce the search space. Moreover, using this framework one can prove
the completeness of a saturation-based method even in the presence of simplification rules
and redundancy elimination. All these techniques play a crucial role in the implementation
of efficient first-order automated theorem provers like Vampire [45], SPASS [53], etc.

For many modal and hybrid logics it is possible to define polynomial (sometimes even
linear) time, satisfiability preserving translations into first-order logic. This has been a very
successful approach and it takes advantage, in a natural way, of the well developed theo-
rem proving methods for first-order logic. It originated with the work of Ohlbach (cf. [44]),
and continued with the definition of different specialized translations into first-order logic
which ensured better computational behavior and, in some cases, even termination of varied
inference methods when applied to the output of the translation [48,49,8,34,50,36]. The
translation based approach has even been proposed as a meta-framework for developing
various calculi for different modal logics, as presented by Schmidt in [3]. This last article
is, perhaps, the closest in spirit to the results we will present in this article. While Schmidt
shows how tableau and other calculi can be developed for modal logics by using a suitable
translation to first-order logic, and then applying the first-order resolution framework to syn-
thesize inference rules, we aim to adapt the general framework of saturation-based inference
of Bachmair and Ganzinger to calculi for logics other than first-order.

The saturation-based inference framework of Bachmair and Ganzinger was designed
with first-order logic in mind (and targeted saturation-based calculi like resolution, super-
position, etc.) but its definition is very abstract. As we are going to show in this article, it is
indeed abstract enough to accommodate a labeled resolution calculus for hybrid logics.

We will present Bachmair and Ganzinger framework in detail in Section 3, but its ab-
stract nature is already hinted by the following quote from [14, p. 35, no emphasis added]:

We will next describe a comprehensive framework for modeling the key aspects of
theorem proving, such as deduction, deletion, and simplification [...] The concepts
and results in this chapter do not depend on details pertaining to specific syntax
and representation of formulas, but apply to general clauses containing arbitrary
quantifier-free subformulas [...] We assume that deduction is based on a clausal
inference system I".

While Bachmair and Ganzinger were probably aiming to cover different calculi for di-
verse presentations and fragments of first-order logic', we will show that with suitable mod-
ifications the framework can be used on calculi for other languages (in our case, for hybrid
logics). To the best of our knowledge, this is the first time the framework is used in this way.

The calculi we will consider target the very expressive hybrid language .72 (@,|,A)
(which is expressively equivalent to the first-order language over the appropriate signa-
ture [10]). Interestingly, complete calculi (and, in some cases, even terminating calculi) for
sublanguages of the full language can be obtained by eliminating/restricting some rules and
defining suitable orders and selection functions. In Section 6 we show how this is done for
the logic 77 (@). We conjecture that the general framework we present here can be used
to develop complete and terminating calculi for other decidable fragments of J#(@,|,A)
(e.g., the extension of (@) with converse operators, transitive modalities, etc.).

This article is organized as follows. In Section 2 we start with a brief introduction to
modal and hybrid languages and discuss previous work on resolution in these languages,

' E.g., the restriction to quantifier-free formulas in the quote above is needed in the first-order case because
of the particular way in which unification is handled; the calculi we are going to define work on ground
formulas and do not require unification.



including a presentation of the labeled resolution calculus of [7]. In Section 3 we give an
abstract description of the framework of Bachmair and Ganzinger (based on the presen-
tation in [14]) and provide the outline of the general proof of refutational completeness
for saturation-based proving, to set up the ground for the rest of the paper. In particular,
we discuss the main differences between the first-order and the hybrid case. In Section 4
we prove the first main result in the paper (Theorem 1): the labeled resolution calculus
R [ (@, ], A)] is refutationally complete. This result, though, does not imply termina-
tion even for the decidable fragment 7 (@) of 77 (@, ], A). In Section 5 we show that we
can change the paramodulation rule used in R [Z"(@, |, A)] by a much more restricted
rule while preserving refutational completeness. Moreover as we show in Section 6, using
the restricted paramodulation rule, a terminating calculus for 57 (@) can be obtained, and
hence a decision method (Theorem 7). In Section 7 we discuss the results presented in the
paper. Detailed proofs have been moved to the Appendix.

2 Modal and Hybrid Logics

Modal logics [17,18] are languages which were originally introduced to analyze concepts
like necessity, possibility, etc [39]. Nowadays, they can be considered as languages which
can capture fragments of first and higher-order logics and encapsulate them in a seemingly
propositional set up. Their semantics, though, is presented in terms of relational first-order
models (usually called Kripke models). Actually, we can obtain a quite accurate intuition
of modal languages by thinking about them as languages specially devised to describe la-
beled graphs. Under this interpretation, the standard modal operators O (which traditionally
represented “necessity”) and < (which traditionally stood for “possibility””) mean “in all
successors of a particular state” and “in some successor of a particular state,” respectively.

Modal languages offer relatively high expressive power, but unlike full classical first-
order logic, they usually have a decidable satisfiability problem. For example, deciding sat-
isfiability for the basic modal logic is PSpace-complete.

The classical modal language (i.e., the language containing only the relational modalities
O and <) suffers from some expressive limitations. On the one hand, it cannot make explicit
reference to concrete elements of the domain (in terms of first-order logic, we would say
that its signature does not contain constants). On the other hand, it can’t express equality
between elements. Hybrid logics [16,10] are extensions of the classical modal logic that
aim to solve these limitations by the introduction of nominals and special modal operators.

Intuitively, a nominal is a name for an element of a model even though, syntactically, it
behaves exactly like a proposition symbol and can be used wherever the latter is acceptable.
Nominals are simply a new sort of atomic symbols disjoint from the set of propositional
variables. For example, if i is a nominal and p and ¢ are propositional variables, then

0i — (¢g — Og) and Op — (Og — Oq)

are both well formed hybrid formulas; but they have quite a different meaning. Actually, as
we will now explain, the first is a tautology while the second is contingent. The difference
comes from the interpretation that should be attributed to nominals. Because they are stand-
ing for particular elements in the model they should be true at a unique state. Formally, their
interpretation is an element of the domain. Coming back to the examples above then, the
antecedent Oi implies that the number of accessible states is at most one, and this condition
is sufficient to make the consequent true (if g is true at some successor of the current state
then it is true at all successors, given that the current state has at most one successor). This



is, of course, not the case for the antecedent Op of the second formula, as nothing forbids
the existence of various accessible states where p holds.

But nominals are only the tip of the iceberg. Once we have names for states at our
disposal we can introduce, for each nominal i, an operator @; that allows us to jump to the
point named by i. The formula @;¢ (read ‘at i, ¢’) moves the point of evaluation to the state
named by 7 and evaluates ¢ there. Intuitively, the @; operators internalize the satisfaction
relation ‘=’ into the logical language:

M,w = ¢ iff M = @;@, where i is a nominal naming w.

For this reason, these operators are usually called satisfaction operators.

Nominals and @; constitute the basic hybrid operators. The more expressive hybrid
languages that we are going to investigate include the universal modality A and the ‘bind-
to-the-current-point’ binder |. But let’s introduce the language formally.

Definition 1 (Syntax) The set of formulas of the hybrid logic 77 (@, |, A) is defined with
respect to a signature . = (PROP,NOM, REL), where PROP = {p,q,r,...} (the proposi-
tion symbols), NOM = {i, j,k,...} (the nominals) and REL = {ry,r,r3,...} (the relation
symbols) are infinite, enumerable, pairwise disjoint sets. ATOM = PROPUNOM is the set
of atomic symbols. Given a signature . the set of (@, |, A)-formulas over .7 is defined
as follows:
H(@,LA) u=a|-¢|oAg [[o| @ |lig|Ap

where a € ATOM, i € NOM, r € REL and ¢,¢’ € ##(@,|,A). The remaining standard
operators ({r), E, V, etc.) are defined in the usual way (i.e., (r)¢ = —[r]—¢, Ep = -A-0,
V@' ==(=pA=9)).

An occurrence of a nominal i in a formula is bound whenever it is under the scope of a i
operator. Non-bound occurrences of a nominal are called free. To avoid having to distinguish
between free and bound occurrences of a given nominal in a formula we stipulate, without
loss of generality, that no nominal appears both free and bound in a formula.

Except when indicated, in the rest of the paper we will assume a fixed arbitrary signature
. = (PROP,NOM, REL).

Definition 2 (Semantics) A hybrid model is defined as a tuple M = (W, (") ,creL, V. g)
where W is a non-empty set, ¥ C W x W is a binary relation for each r € REL, and V and
g are mappings such that V(p) C W for each p € PROP, and g(i) € W for each i € NOM.
Given a model M = (W, (r),creL,V, g), an element w € W and a nominal i, we define the
model MY as (W, ("),creL, V,g') where g’ is identical to g except perhaps in that g’ (i) = w.
Given a hybrid model M = (W, (rM),creL,V, g) and an element w € W the satisfiability
relation M, w |= ¢ (read “model M satisfies formula ¢ at state w”) is defined as follows:

MwEp iff we V(p), p € PROP

MwEi iff w=g(i), i € NOM

MwkE-9 ffMwie
MwE@A@iffM,wl @ and M, w = ¢

M,w=[rle  iff M (w,w') implies M,w' |= @, for all W' € W
M= @p  iff M,g(i) = ¢

MwElip iffM wk=e

MwEAp  iff M,w =@, forallw e W.

We write M |= ¢ if M,w |= ¢ for all w in the domain, and if @ is a set of formulas we
write M = @ if M = ¢ for all ¢ € .



The language 7 (@,],A) is actually equivalent to first-order logic with equality over a
vocabulary consisting of unary and binary predicate symbols, constants and no function
symbols [10]. First-order quantification can be expressed in terms of | and A: for example
Vx.R(x,x) can be translated as Alx.({r)x. Intuitively, 77 (@, ], A) is decoupling the quantifi-
cational aspect (using A) from the binding aspect (using |) of the classical V operator.

Interestingly, hybrid operators can be thought of in a modular way, giving rise to differ-
ent subsystems of (@, ],A), such as (@), 7 (A), or (@, ). Already the weakest
hybrid logic we are going to consider, (@), is more expressive than classical modal
logic [4]. In particular it introduces, through nominals and @, a weak notion of equality
reasoning. For example, the formulas

@;i (reflexivity),

@;j @i (symmetry),

(@;jA@jk) — @;k (transitivity), and

@;j — (@ «> @(i/j)) (substitution by identicals)?

for arbitrary nominals i, j, k and an arbitrary formula ¢ are tautologies of J7(@,|,A).
Nevertheless, the satisfiability problem of .7°(@) remains PSpace-complete [5]. .72 (A) is
also decidable, its satisfiability problem is EXPTime-complete, while the innocent-looking
A (]) —even though expressively weaker than first-order logic— is already undecidable.

2.1 Resolution in Modal and Hybrid Logics

A characteristic of modal logics is that they are usually computationally robust [51,31]. They
have been extensively used in applications, specially in the area of verification via model
checking [20]. But automated satisfiability testing in modal logics has also a long history
and a large community, with a wide range of approaches. Not aiming to be comprehensive,
we can mention calculi and implemented systems which are based on tableaux, translation
into other languages (e.g., propositional, first-order and higher-order logics) and formalisms
(e.g., automata), resolution, sequents, etc.

In particular, the field of resolution for modal logics was especially active during the
80s and beginning of the 90s. Farifas del Cerro et al. presented some of the first results
including resolution based calculi for a number of modal logics [24,25,23], a notion of
Herbrand models [19], an extension of PROLOG with modal operators [26, 15], and special
resolution strategies for certain language fragments [11]. Also Mints [40,41] investigated
resolution calculi for modal logics, and in particular their relation with Gentzen systems.
These proposals usually describe clausal resolution methods, i.e., input formulas are first
put into some kind of clausal form, before resolution takes place (a recent account of this
tradition can be found in [42]). But non-clausal approaches (closer in spirit to the method
we introduce in this article) were also investigated in, e.g., [1,2,27].

During the same period, a different approach to resolution for modal languages was
developed by Ohlbach [44]. The idea in this case was to translate modal formulas into
predicate logic preserving satisfiability, and then apply saturation-based (e.g., resolution,
superposition, etc.) inference methods, taking advantage in this way, of the extensive work
on first-order automated deduction [46]. Later, much work was devoted to define specialized
translations [48,49, 8,34, 50] which would ensure better computational behavior and in some
cases even termination. Recent publications had targeted very expressive modal languages,

2 @(i/J) is the formula obtained by replacing all occurrences of i in ¢ by j. Notice that because j appears
free in the antecedent, we know that it doesn’t appear bound in ¢, and hence the formula is indeed a tautology.



like the description logic SHOIQ [36]. The translation based approach has even been used
as a meta-framework for developing various calculi for different modal logics, as presented
in [3]. A survey on translation-based approaches can be found in [22]. Much attention has
also been paid to developing saturation-based calculi for ‘modal’ fragments of first-order
logics, like guarded fragments [28,21,35].

As we mentioned above, we are interested in investigating whether the general frame-
work of saturation-based inference for first-order logic with equality can be directly adapted
to modal logics, i.e., without first translating modal formulas into their first-order equivalent.
In [7] a resolution based calculus for 72 (@, |, A) is proposed. The formulation of the cal-
culus that we will present takes formulas in negation normal form (NNF), i.e., the negation
operator can only be applied to atoms. As a consequence, V, (-) and E become primitive
symbols. We define the set of formulas #"" (@, |, A) as follows:

AN(@,L,A) i=a|-a| oV |oAg [ (Ne|[rle| @@|lie|Ap|Ep

where a € ATOM, r € REL,i € NOM and ¢, ¢’ € 7™ (@, |, A). A formula of the form @;¢
will be called an @-formula and i will be called its label. For any formula in 57 (@, ], A),
an equivalent formula in S (@, ], A) can be obtained in linear time. From now on, we
will only consider formulas in NNF unless we indicate otherwise.

Like the resolution calculus for first-order logic, the hybrid resolution calculus works
on sets of clauses. A clause, in this context, is a finite set of arbitrary #™"(@,],A) @-
formulas. A clause represents the disjunction of its formulas, but there’s no additional re-
striction regarding the form of the formulas (i.e., they do not need to be literals). It is worth
noting that to allow only @-formulas in a clause is not an expressivity limitation in terms
of satisfiability: a formula ¢ is satisfiable if and only if for some arbitrary nominal i not
occurring in ¢, @; ¢ is satisfiable.

Given a formula ¢ € 7" (@, ], A), we define ClSet(¢) = {{@;¢}}, for i an arbitrary
nominal not occurring in @. CISer* (@), the saturated set of clauses for ¢, is then defined
as the smallest set that includes ClSez(¢@) and is closed under the rules of the resolution
calculus R[7Z7™F (@, |,A)] given in Figure 1, where i, j € NOM, p € PROP, ¢, ¢, ¢, are
arbitrary formulas of ™™ (@,],A) and C, D are arbitrary clauses>. In the antecedent of the
PAR rule, ¢(i) indicates that the nominal i appears in @.

We can group the rules in Figure 1 according to their role. The A, V, @ and | rules handle
formula decomposition. The (r) and E rules both do a form of skolemization, assigning a
new name (through a new nominal) to an element of the model which was existentially
quantified. The RES rule is a ground version of the resolution rule for first-order logic,
while the [r] propagates information across modal contexts. The A rule is just unrestricted
instantiation. Finally, the SYM, REF and PAR rules are the standard set of rules for equality
handling in (function free) first-order logic resolution [13]. Actually, we will usually call
formulas of the form @;j equality statements or, simply, equalities.

Rules (r) and E are clearly satisfaction-preserving (i.e., if a model satisfies the an-
tecedent, then there is a model that satisfies the consequent); the rest of the rules preserve
satisfaction even in the same model (i.e., if a model satisfies the antecedent, then the same
model satisfies the consequent), in the case of the | rule under the assumption that i does
not occur bound in ¢.

3 For simplicity, the definition of CiSer* (@) does not take into account the possibility of redundancy elim-
ination as used in [14]. But it should be noted that the calculi we will present in Sections 4, 5 and 6 have the
reduction property for counterexamples and the rules are reductive with respect to admissible orders (cf. [14]),
and hence are compatible with both the trivial and the standard redundancy criteria.



RES cu{@;~p} Du{@p} REF cu{@~i}
CuD C
cu{@;i} Cu{e(®)} Du{@ij}
SYM — = PAR
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[r] CU{@I[”](D} DU{@,<}’>]} <F> CU{@1<r>(p} +
cubpu{@;e} cu{ei(rn)jt cu{e;e}
A cu{@;Ap} E cu{@Ep} ¥
cu{e,;p} cu{@;e}
@ CU{@,‘@_/QD} 1 CU{@,\U.(P}
cu{e;p} cu{@e(j/i)}
Side conditions
t j € NOM is fresh.
t j € NOM already occurs in the clause set.

Fig. 1 The Resolution Calculus R[7Z™"F(@, |,A)].

The construction of CISer*(¢) is a correct and complete algorithm for satisfiability for
(@, |, A) (and hence for 77(@, ], A) and all its sublanguages): ¢ is unsatisfiable if and
only if the empty clause {} is an element of CISer* () [7]. However, the size of CISer*(¢)
cannot be bounded in terms of the subformulas of ¢ because each application of the (r) and
E rules introduces a new nominal. Thus, the construction of CiSet*(¢) is not necessarily a
decision method for satisfiability. In Section 6 we will first show that indeed, we can obtain
infinite derivations, even after imposing restrictions to some of the rules, and then discuss
how to obtain a decidable resolution calculus for satisfiability in 77 (@).

A standard technique to regulate the generation of clauses in resolution for first-order
logic is called ordered resolution with selection functions [14]. The general idea is to estab-
lish certain conditions under which it is safe to choose a literal from each clause such that
rules are to be applied to a clause only to eliminate its chosen literal. The ordered resolution
calculus with selection functions is refutationally complete for first-order logic when an or-
der > with certain properties is used (see [14]). In the following sections we develop similar
strategies for R[7Z™"(@, ], A)]. Preliminary results have been presented in [9].

3 A unified framework for saturation-based theorem proving

A straightforward, naive implementation of a saturation-based calculus in which one exhaus-
tively applies inferences to previously derived clauses will be hopelessly inefficient in all but
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T MCZ(N).
t M C C(I'(N)) where C(I'(N)) are the consequents of I'(N).

Fig. 2 Derivations for a calculus I" with redundancy criterion Z.

the most trivial cases. In a clausal, saturation-based, refutational theorem-prover, each de-
rived clause is a potential partial derivation of the empty clause and is increasing the search
space. A partial derivation of the empty clause that is subsumed by another one is redun-
dant and should be deleted to avoid useless computations. In most refutational provers, the
deductive core accounts for a rather small part of the system, while most of its complexity
derives from the implementation of redundancy elimination and simplification techniques.

While redundancy elimination techniques are crucial from a practical point of view, it is
not a priori clear to what extent they can be performed without compromising refutational
completeness. Bachmair and Ganzinger [14] address this issue by introducing a theoretical
framework for saturation-based theorem proving, which we briefly present now.

Theorem proving is modeled in [14] as a series of derivations that transform a set of
clauses by additions and removals (we only consider the case for ground clauses here; for
general clauses, an additional lifting has to be done). Derivation rules are shown in Figure 2.
Observe that this is a very abstract presentation, where the calculus is represented by a map
I' from a set of clauses to the set of all inferences that may be drawn from those clauses, and
Z is a redundancy criterion that maps a set of clauses N to a set of clauses deemed redundant
by N (for simplicity, we have not listed some properties that a redundancy criterion must
satisfy, e.g., removing redundant clauses preserves unsatisfiability, etc.).

A clause set is said to be saturated up to redundancy (with respect to I and %) if all
inferences in I" with non-redundant premises are redundant in N, i.e., C(I'(N\ Z(N))) C
Z(N). It can be shown that saturation up to redundancy can be achieved by “fair” deriva-
tions, that is, derivations where no non-redundant inference is delayed indefinitely.

Bachmair and Ganzinger also define what they call the standard redundancy criterion
and give general conditions under which a refutationally complete calculus I" induces a
system that is derivationally complete, i.e., every unsatisfiable set saturated up to redundancy
contains the empty clause. In their words, the standard redundancy criterion “justifies most,
if not all, of the common simplification and deletion techniques used in refutational theorem
provers.” Standard redundancy is defined for ordered calculi. Intuitively, a clause C is said
to be redundant with respect to a set N of clauses if there are clauses Cj,...Cy in N such
that Cy,...,Cr = C and C > C; for all 1 < i < k. Observe that the definition comprehends
the most classical form of redundancy elimination: the subsumption principle [47].

Now, what are the general conditions that guarantee that the standard redundancy crite-
rion turns a refutationally complete system into a derivationally complete one? What [14]
shows is that any calculus that possess what they call the reduction property for counterex-
amples is refutationally complete and induces a derivationally complete system in conjunc-
tion with the standard redundancy criterion, provided the logic is compact and the underlying
order > is total and well-founded.* The upshot is that given a saturation-based refutational

4 The reader will not find this exact formulation in [14], but it follows from the results presented there.
Bachmair and Ganzinger first establish in §3 that ground ordered resolution for first-order logic has the reduc-



calculus, if one can establish its completeness by proving the reduction property for coun-
terexamples, one gets an “adequacy for implementations” result for free. In a way, it can be
regarded as a completeness proof scheme that comes with an added value.

In the following sections we will prove the refutational completeness of several saturation-
based calculi for hybrid logics by showing they possess the reduction property for coun-
terexamples. Completeness proofs in general tend to be long and technical, and ours are no
exception, but being familiar with the proof-scheme used makes them easier to follow.

Let clauses be just collections (e.g., sets or multisets) of ground formulas, interpreted
in a disjunctive way. A calculus will be presented as a collection of inference rules; when a
rule has more than one premise, we assume that one of them is tagged as the main premise,
the others will be called side premises. Finally, we take as given a satisfaction relation =
defined between models and formulas, clauses, etc. A set of clauses N is called saturated
with respect to a set of rules R if every clause obtained from N by the application of one of
the rules in R is already in N. A set of clauses N is inconsistent with respect to R whenever
the saturation of N with respect to R contains the empty clause, otherwise it is consistent.
A saturation-based calculus R is refutationally complete (or complete for short) if every
unsatisfiable set of clauses is inconsistent with respect to R.

A completeness proof can be reduced to showing that every saturated consistent clause
set is satisfiable, i.e., has a model. One of the main ingredients of this proof strategy is a
procedure that builds a candidate model from any consistent (but not necessarily saturated
nor satisfiable) set of clauses N. Let Iy be the model obtained from a set N using such a
procedure. What is ultimately shown is that if Iy = N, then N is not saturated.

To prove this, the proof-scheme relies on a well-founded total order on clauses >.
These two conditions guarantee that whenever N is consistent and Iy £ N, then there exists
a minimum (with respect to >.) clause C € N such that Iy [~ C; we call C the minimum
counterexample of Iy. The reduction property for counterexamples (with respect to > and
the candidate model building procedure) holds if for every N and every minimum coun-
terexample C of Iy, there exists an inference from N with main premise C and a conclusion
D such that C > D and D is also a counterexample of Iy. Observe that this trivially implies
that N is not saturated and, therefore, this property implies refutational completeness.

The proof of this property is typically split in two lemmas which trivially imply it:

Lemma (Main premise reduction lemma) On every inference rule, every consequent is
smaller than its main premise.

Lemma (Counterexample lemma) Let N be consistent, and let C € N be a clause such
that Iy W~ C; then there exists some valid inference with C as main premise and the side
premises, if any, in N, such that for some consequent D, Iy = D.

We haven’t said much about Iy yet. In a classical first-order setting, Herbrand models
are used [32]. These are models whose domain is the set of (ground) syntactic terms of
the language and that may be represented succinctly by a set of positive ground literals.
Therefore, building a model from N in the classical setting amounts to generating a set of
positive ground literals occurring in N.

tion property for counterexamples if > is “admissible” (a standard notion in first-order logic theorem proving,
which implies the mentioned conditions) and then show in §4 that if an inference system I” has the reduction
property for counterexamples for an admissible order >, then I" is compatible with the standard redundancy
criterion; but this proof only uses the fact that > is total and well-founded (together with compactness of
first-order logic). The last part of §4 is devoted to show how to deal with unification.



The model building procedure is relatively simple. Every clause C € N contributes at
most one formula to Iy. Let & be what C contributes to the model Iy, then & is either a
singleton set containing a (positive) literal, or the empty set. When &¢ is not empty, C is said
to be a productive clause. Now, it is important to observe that the content of &- depends
on the contributions of the clauses which are >.-smaller than C. Its precise definition has
to be carefully tailored in order to prove the Counterexample lemma. The set of contribu-
tions of clauses >.-smaller then C we just mentioned (i.e. o, p €p) plays an important role
throughout the proof and is usually called /c.

The general structure of the completeness proof is essentially simple (and very elegant),
but carrying it out usually relies on the following two rather technical lemmas:

Lemma (Downwards preservation lemma) If Iy [~ C, then Ic [~ C.

Lemma (Upwards preservation lemma) Let D be the consequent of an inference whose
main premise is C. If Iy = C and I¢c [~ D, then Iy [~ D.

Let’s see the role these two lemmas usually play. Given a clause C such that C € N and
Iy [~ C, using the Downwards preservation lemma we can conclude that it is also the case
that Ic [~ C. But since Ic = ¢, p €p, one needs to show that some productive clause D must
have contributed a formula to /¢ that “made” C not true (of course, the details of this vary
with every proof). This fact should make D a suitable side premise for an inference from C
such that for at least one consequent E, I¢ t~ E. Finally, we need the Upwards preservation
lemma to conclude Iy [~ E.

For the calculi we will consider this is all what we need as we will always be working
with ground clauses. In the case of calculi for first-order logic, the result for ground clauses
must be extended to general clauses (containing variables). This is typically done by using
liftable orders, i.e., orders which are invariant under substitution of variables by terms [14].

As a final remark, although we have presented the proof-scheme in terms of an order
on clauses >, this is normally just an extension to clauses of a specially tailored, total,
well-founded order on formulas - ;. This order on clauses should at least ensure that C >~
D implies either D = {} or max, (C) = max, (D) (where max, ,(C) is the maximum
formula in C according to > 7). Such order can be obtained, for example, using the multiset
extension order [12].

4 Ordered hybrid resolution with selection functions

The calculus R[Z™"™(@, |, A)] shown in Figure 1, although sound and complete, is simply
not suitable for a realistic theorem-prover implementation: because every formula in each
clause may lead to some inference, the set of clauses will tend to grow in an unmanageable
way for all but the most trivial cases. As was already mentioned at the end of Section 2.1,
we want to establish conditions under which it is safe to restrict the attention to only one
formula per clause.

A customary way of achieving this is using ordered resolution. An ordered resolution
calculus uses an order on formulas to restrict which formulas in a clause may participate
in inferences. Of course, certain admissibility conditions must be imposed on the order to
ensure completeness.

For some applications (e.g., terminating heuristics for special fragments), though, one
wishes to be able to impose specific conditions on the criteria used for the selection of for-
mulas in clauses in a way that cannot be expressed using an order on formulas. Thus, some
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ordered resolution calculi provide a mechanism to optionally override the default order-
based formula selection using so-called selection functions. Here too, some conditions have
to be imposed on the selection functions in order to preserve completeness.

In the rest of this section, we turn R[7Z™"™(@, |, A)] into a calculus of ordered resolution
with selection functions and give an admissibility condition on orders with which we prove
refutational completeness. Contrasting with the case of resolution in first-order logic where
orders are partial to account for unification of non ground terms, the orders we require are
total. Hence, at most one formula in each clause will be available for inferences’.

We begin by formalizing our notion of selection function. Our focus is on selection
functions that pick at most one formula per clause. In the case of first-order logic, selection
formulas typically may choose only negative literals [14] and we will follow essentially the
same approach. However, as we work with clauses which can contain arbitrary @-formulas
from 7™ (@, |,A), we will not use the concept of “negative literals” in defining selection
functions but rather that of “not being a positive literal”, where the set of positive literals
PLIT is defined as

PLIT == @,j | @ip| @i(r)j

fori, j € NOM, p € PROP and r € REL. Observe that in first-order logic resolution, being a
negative literal is the same as not being a positive literal.

Definition 3 (Selection function) A selection function S assigns to each clause C a set of
@-formulas S(C) such that S(C) C C, |S(C)| < 1 and S(C)NPLIT = 0.

Figure 3 defines the calculus RS [ (@, |, A)], which is parameterized over an order
on formulas > and a selection formula S. The main premise of the binary rules is the left-
most. We denote as ClSer; (¢) the minimum set that contains CISer(¢) and is closed under
the rules of R* [ (@, ], A)].

R [ (@,],A)] differs from R[Z™(@, |,A)] only in its global and side condi-
tions. The side conditions prevent certain redundant inferences by: i) enforcing a normal
form on equalities (SYM and PAR rules); ii) making the choice of the main premise unique
(PAR rule) and iii) avoiding useless skolemizations ((r) and E rules). The global conditions,
on the other hand, ensure that only one formula in each clause may be involved in inferences.
We will call this formula the distinguished formula of the clause.

Definition 4 (max™ and dist>™) Given an order = and a selection function S, we define
max™ (C) as the maximum formula (with respect to >) in C, and dist>" (C) as the function
such that dist>™ (C) = @ whenever either S(C) = {@}, or both S(C) = {} and max™ (C) = ¢.

In Section 4.1 we will define a class of orders for which we will guarantee refutational
completeness in Section 4.3, using the notion of Herbrand model introduced in Section 4.2.

4.1 Admissible orders

In a strict sense, any > such that R ["(@, |,A)] is refutationally complete would be
an admissible order, but this notion of admissibility, undeniably general, would not be of
much use. Instead, we will give the name “admissible” to a non-empty class of orders sat-
isfying certain conditions that can be effectively checked; and we will later prove that any
admissible order (in this sense) induces a complete calculus.

> This property could simplify implementations and result in efficiency gains.



RES CU{@,“!p} DU{@ip} REF CU{@i“i}
[6]6)))] Cc
cufe;iy Cu{e(®)} Du{@ij}
SYM —— PAR .
cu{@;j} CuDuU{e(i/j)}
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- in DU{y}, yis such that S(DU{y}) =0 and {y} > D.

Fig. 3 The Resolution Calculus RS~ [Z"NF(@, |, A)], for S a selection function and > an order.

In order to make this paper self-contained, we include formal definitions for the follow-
ing well-known orders (see, e.g., [12] for details).

Definition 5 A binary relation > is called an order if it is transitive and irreflexive; if,
additionally, for any two distinct elements x and y one of x > y or y > x holds, > is said to
be total. An order > is called well-founded when there is no infinite chain x; > xp > x3...

Let > be an order between formulas, and let’s indicate with ¢[y], a formula ¢ where
Y appears at position p. We say that > has the subformula property if ¢[y], >~ ¥ whenever
o[y], # v, and that it is a rewrite order when @[y1], > @[y»], iff yi > y.

A well-founded rewrite order is called a reduction order, and if it also has the subformula
property, it is called a simplification order.

We will typically work with a lifting to clauses >, of an order on formulas >. As was
mentioned at the end of Section 3, we need >, to be total, well-founded and to satisfy
that if C =, D, then either D = @ or max™ (C) = max™ (D). We include, for the sake of
completeness, a possible lifting.
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Definition 6 For > a total order on formulas, . is the unique order on clauses such that
C . D if and only if C # 0, and either

- D=0,o0r
- max” (C) > max™ (D), or
- max™ (C) = max™ (D) and C \ max™ (C) >, D\ max™ (D).

Definition 6 is just a specialization of the multiset order to the case of finite sets. Therefore,
> 1s a total order, and well-founded whenever > is well-founded [12]. From now on, we
will use > to denote both an order on formulas an its lifting to clauses.

Definition 7 (Admissible orders) We say an order > over #™"(@, ], A)-formulas is ad-
missible (for R¥ [7™F(@,],A)]) if it satisfies the following conditions, for all ¢,y €
(@, ,A) and all i, j € NOM:

Al) > is a total simplification order

A2) ¢ iforall @ ¢ NOM

A3) if ¢ - y, then @;0 >~ @,y

A4) if y is a proper subformula of ¢, then @ = y(i/j)
AS) [r]i = (r)j.

Definition 7 is simply listing conditions that are used throughout the completeness proof.
We shall motivate them by way of examples.

— Conditions Al and A3 imply a notion of subformula property for @-formulas (e.g.,
@;(r)@ > @ ;). This is used in the proof of the Main premise reduction lemma.

— Conditions A2 and A3 imply that equalities are the smallest @-formulas, and this will
be important when proving the Upwards and downwards preservation lemma.

- Condition A4 is required to guarantee that @,].j.¢ = @;@(j/i) in the proof of the Main
premise reduction lemma. It is also used in the Upwards preservation lemma.

— Condition A5 is needed, for example, to guarantee that, in the [r] rule, the side premise is
smaller than the main premise and, thus, that the Main premise reduction lemma holds.

Lemma 1 (Main premise reduction for R* [ (@, |,A)]) Let > be an admissible or-
der. If C is the main premise of an inference rule of R [ (@, |,A)] and D is one of its
conclusions, then C >~ D.

Proof The proof is straightforward but rather tedious due to the numerous cases to consider.
The Appendix contains all the details.

Finally, we only need to show the conditions in Definition 7 are not too restrictive, and
that there actually exist orders satisfying them. We will exhibit one such order, based on the
Knuth-Bendix order (KBO) [37]. In what follows, we will consider every 2™ (@,|,A)-
formula as a ground term over the set of operators

0 =PROPUNOMURELU{—,A,V, @, |,(),[],A,E}

with the obvious arities, the only proviso being that the nominal argument of every @-
formula is considered as the rightmost argument in the corresponding term (e.g., the formula
@, (r)p will correspond to the term @ ({ )(r, p),i)).

Proposition 1 Ler > be any total order over O and let w: O — IN\ {0} be any weight
function such that
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1. w(i) =w(j) forall i, j € NOM
2. w(f) > w(i) forall f € O\NOM, i € NOM
3. w([]) >w(())-

Let . be the Knuth-Bendix order based on > and w. Then, . is an admissible order.

Proof Since > is total, > is a total simplification order on ground terms [12]. Let w(r) be
the sum of the weights of all the symbols occurring in ¢. Condition 2 guarantees that w(¢) >
w(i) for all ¢ ¢ NOM and, thus, A2 holds. For A3, observe that, from the definition of KBO,
if @ = w (and w(@) = w(y)) then @(@,i) = @(y,j). If ¢ has a proper subformula v, it
is because @ is of the form f(@i,... @) and, from Condition 2 we have w(f) > 0 which
implies w(@(y)) > w(y). But from Condition 1 we have w(y) = w(y(i/j)) and, thus,
¢ = w(i/j), which establishes A4. Finally, A5 follows trivially from Conditions 1 and 3.

4.2 Herbrand models for 57 (@, ], A)

We already said that, in order to carry out the completeness proof sketched in Section 3 we
shall provide a suitable notion of Herbrand model for 57 (@, |,A). But before going into
the details of this, we ought to give the abstract conditions we expect such models to satisfy.

There are two features of classical Herbrand models we want to mimic. First, we want
Herbrand models to be syntactic in nature: in first-order logic, the domain of a Herbrand
model is the set of all ground terms of the language (or a partition of that set if dealing
with equality) and, thus, the interpretation function for constants and function symbols is
trivial. Second, we want to mirror the fact that any set of ground first-order atoms I" induces
a Herbrand model Hr such that Hr = I". With this in mind, we are now ready to define
hybrid Herbrand models.

Definition 8 (~;) Given I C PLIT, define ~;C NOM x NOM as the reflexive, symmetric
and transitive closure of {(i, j) | @;j € I'}. NOM/., is the set of equivalence classes of ~,
and [i]; is the equivalence class assigned to i by ~;. We will usually write [{] instead of [i];
when / is clear from context.

Definition 9 (Hybrid Herbrand models) A hybrid Herbrand model is just a set I C PLIT.
Furthermore, let (PROP,NOM, REL) be the signature of PLIT and i € NOM; we will say
that 1,i = ¢ iff M!,[i] |= @, where M = (W', (r!),creL, V!, g") with

wli = NOM/.,

S I
Vi(p) = {li]| @p e 1}
g'(i) = [i.

Summing up, we identify hybrid Herbrand models with sets of positive literals, and
interpret them as hybrid models whose domain is a partition of the set of all nominals.

Proposition 2 If 1 is a hybrid Herbrand model, then I |= 1.

Proof Straightforward from Definition 9.



4.3 Refutational completeness of RS~ [.2™"(@, |, A)]

We are now ready to prove that if > is an admissible order, then R [ (@, ],A)] is
refutationally complete. Thus, in what follows we take > to be a fixed admissible order.

The only ingredient still missing from the sketch in Section 3 is the model-building
procedure. Before going into its formal definitions, let us explain what we will be trying
to achieve. Candidate models for N are hybrid Herbrand models defined using &¢, i.e., the
contribution of each clause C to the final model. Because we want every productive clause
(i.e., clauses with a non-empty contribution) to be a potential side premise for a binary
rule, we will stipulate that only clauses C such that S(C) = 0 and max™ (C) € PLIT may be
productive. Moreover, in order to properly deal with equality, we require an additional tech-
nical property on every productive clause C: the contribution of C must not be reducible by
paramodulation with another productive clause. A similar requirement is usually demanded
in the proof of completeness for other paramodulation-based calculi (cf. [43]). Definition 12
properly formalizes this notion of reducedness, but observe that it must be necessarily de-
fined along with &c in a mutually recursive way. In defining this reduced form, we will use
a substitution of nominals by the smallest nominal in the equivalence class induced by a
Herbrand interpretation which we now introduce.

Definition 10 (o;) Given a hybrid Herbrand interpretation /, we define the substitution of
nominals by nominals:

o1 = (i jlimg JA )k~ AR ) > k= )},

In words, o; substitutes each nominal with the least nominal of its class, which is taken
as the class representative. We now define the set SIMP of formulas that cannot be further
simplified using unary rules (i.e., rules with only one premise).

Definition 11 (SIMP) The set of simple formulas of ™" (@,],A) is defined as:
SIMP ::= @;j (with i > j) | @;p | @;—a | @i(r>j ‘ @i[r](p
where i, j € NOM, p € PROP, a € ATOM, r € REL and ¢ € 5 (@, ],A).

We define next the candidate model building procedure. Observe that Definitions 12
and 13 are mutually recursive.

Definition 12 (Reduced form) Let C be a clause and ¢ = max™ (C). If ¢ € SIMP and either
a) @ € PLIT and ¢ = @0y, or b) ¢ = @;[r|y and i = icy,., then we say that both ¢ and C
are in reduced form.

Definition 13 (I, IC, Ic and &¢) Let N be an arbitrary set of clauses, C an arbitrary clause
(not necessarily in N), and let ¢ = max™ (C).

Iy, a candidate model for N, is defined as Iy = UCENIC.
I€, the partial interpretation of N above C is defined as I = I- U gc.
Ic, the partial interpretation of N below C is defined as Ic = e, p €p-
£, the contribution of C to the candidate model, is defined as e = {¢@} whenever it
simultaneously holds that:
1. CeN
2. Cis inreduced form
3. p € PLIT



4. Ic }~C, and
5. 8(C)=0.
and g = 0 otherwise. If &c # 0 then we call C productive.

Note that, because of the admissibility conditions, equalities are the smallest @-formu-
las. Hence, if C is productive and dist>”~ (C) is an equality then every formula in C must also
be an equality. Furthermore, if dist>” (C) is not an equality, then oy = oy, forall D >~ C.

From here on when not specified otherwise, N is taken to be an arbitrary but fixed set of
clauses, and C an arbitrary but fixed clause not necessarily in N.

Lemma 2 (Downwards preservation for R® [ (@, |, A))) If Iy [~ C, then I¢c [~ C.

Proof (sketch, full details in the Appendix) We prove the contrapositive form, so assume,
for the sake of contradiction, that for some @ € C, Ic = ¢ but Iy [~ ¢. Observe that it
cannot be the case ¢ € PLIT. Now, consider the least D = C such that Ip = ¢ but I” = ¢.
From Definition 13 there are only three cases to consider: ep = {@;j}, ep = {@;p} and
ep ={@;(r)j}. We will only look here at the last case which implies that there exist y; and
Y, such that [r]y, is a subformula of y; and ¢ = @, y,. But, by conditions Al, A2 and A5
of Definition 7, y; > [r]ya = (r)j, and, thus, we get @;(r)j = max™ (C) = ¢ > @;(r)].

By requiring productive clauses to be in reduced form, we can give a syntactic descrip-
tion of equalities occurring in Iy that allows us to prove the Upwards preservation lemma
(refer to the Appendix for the proof).

Lemma 3 [fioy, # i, then Iy contains only one equality where i occurs, and it is of the form
@;jwith j = jG[N.

Lemma 4 (Upwards preservation for R [7"""(@, |, A)]) Let D be the consequent of an
inference rule whose main premise is C. If Iy = C and I¢ V= D, then Iy = D.

Proof (sketch, full details in the Appendix) Because of the Main premise reduction lemma,
max~ (C) = ¢ for all ¢ € D. Since Iy [~ C, we already know Iy [~ max™(C). Hence, we
can reduce the proof to showing that, for any @, if max™(C) > ¢ and Ic [~ @, then Iy - ¢.
Now, suppose, for the sake of contradiction, that E > C is the least clause such that ¢ is true
under /£ but false under I. Of the three alternatives, here we will only consider the most
interesting one, namely, &g = { @, j}.

Clearly, for this to be possible ¢ must be of the form @;/. Now, by Lemma 3, we
conclude that either &g C { @1, @k}, or &g C {@,m, @;m} C IE. However, the latter cannot
be true since that would imply k > m and [ > m and, because > is a rewrite order, we would
have @,/ = @;m and @l = @;m (notice, for the second case, that if k = [ then @,/ >
@pm > @;m, while, if [ = k, then @ > @k = @;m). Thus, &g C {@;l, @k} should hold.
However, g = { @]} cannot be the case, since that would imply @,/ = max™(C) = @;l.
Finally, if g = { @k}, then [ > k and @] =~ @k = @ > @l.

An inspection of the above proof shows that we can actually assert a more general result:
if max™ (C) > ¢ and I¢ |~ @ then Ip [~ @ for all D > C. From this, we get the following:

Corollary 1 If C is a productive clause and ¢ € C but ¢ # {@}, then Ip [= ¢ for all D > C.

Lemma 5 Let C € N be such that C # {} and Ic V= C. If C is not productive, then there
exists an inference in RS [ (@, |, A)] such that



1. C is the main premise
2. the side premise (if present) is productive, and
3. some consequent E is such that Ic |~ E.

Proof (sketch, full details in the Appendix) Let @ = dist>” (C). If ¢ ¢ SIMP, C is trivially
the premise of some unary rule and the proposition holds. Now, suppose ¢ € SIMP is not in
reduced form; this means, using Lemma 3, that some clause D (with C > D) contributes an
@, j for an i occurring in @. It is easy to check that, in this case, PAR can be applied on D
and C. Finally, if ¢ is in reduced form, it must be of the form @;—i (note that @;—; cannot
be in reduced form if Ic = @;j and i # j), @;—p or @;[r]y. We show how to proceed in the
last case using the [r] rule; the remaining two cases are analogous.

For I¢c = @;[r]y to happen, it must be the case that, for some nominal j, Ic,i = (r) j but
Ic, j F~ w. This implies, together with the fact that C is in reduced form, that @;(r)k € I¢
for some k such that Ic = @ jk. Therefore, there must exist a clause D such that C = D
and gp = {@;(r)k} which, hence, may be the side premise in an instance of the [r] rule
with C as the main premise. Now, let E = {@ ;y} UC'UD', where C' = C\ {@;[r]y} and
D' =D\ {@;{r)k} be the consequent of the inference. Ic = E follows from:

1. Ic b= C implies Ic = C',
2. C = D implies (using Corollary 1) Ic = D', and
3. Ic ’: @jk and Ic [;é @kl[/, 1mphes Ic % @Jl[/

We can finally put all the pieces together as was planned in Section 3. Lemmas 2, 4
and 5 fit together nicely into a Counterexample lemma which, together with Lemma 1, gives
us the completeness result.

Theorem 1 R[5 (@, ],A)] has the reduction property for counterexamples and is,
therefore, refutationally complete.

Summing up, then, with Theorem 1 we have established refutational completeness of
RS- [ (@, ], A)] and, moreover, the proof was obtained by following the standard proof-
scheme for first-order saturation-based methods. This ensures the calculus can be imple-
mented using standard redundancy elimination techniques.

In the rest of this paper we will pursue the definition of a terminating direct resolution
based calculus for .7°(@) and we will introduce two refinements of R*- [ (@, ], A)].
The one in Section 5 will allow us to limit the paramodulation inferences needed to guaran-
tee completeness. This time, however, the completeness proof will have to be less standard
and more involved. Finally, this calculus will be extended in Section 6 with machinery to
control the generation of witnesses by rules (r) and E. The completeness proof will be es-
sentially the same, but additionally we will be able to prove termination for .77 (@).

5 Paramodulation restricted to labels: R} [ (@, |,A)]

From the proof of Lemma 5 we can see that refutational completeness is preserved even if
paramodulation is restricted to SIMP formulas. What we will see now is that by adding a
simple sound rule to the calculus and using a construction slightly more involved, one can
repeat the above proof and establish the stronger result that paramodulation inferences can
be further restricted to the following rule:

CU{@z(P} DU{@lj} i j,o>j@;pcSIMP.
CUDU{@J(p} ) IR
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That is, we need not consider any other nominal but the label i of the distinguished formula
@; ¢ of the main premise and we don’t have to replace other occurrences of i inside ¢. This
by itself is a nice property from a practical point of view. Moreover, by taking advantage of
this restriction we will be able to define in Section 6 a terminating calculus for .77(@).

In Figure 4 we define R$-[2™™"(@, ], A)]. Observe that not only we replaced PAR by
the aforementioned rule, but we added a new inference rule: SYM . The calculus would not
be complete without this additional rule; this is witnessed by the following example.

Example 1 Consider the set N = {C,C,} where C; = {@;j} and C, = {@ ;—i} with an
order such that i > j. N is evidently unsatisfiable so, if SYM™ were not required for the
completeness of R} [ (@, ],A)], one should be able to find a R} [ (@, ],A)]-
derivation of the empty clause that does not use the SYM " rule. However, we cannot use
PAR® to replace i by j in C», and since i = j we cannot use SYM on Cj to derive {@;i}
aiming to replace j by i in C;. Without SYM ™ we would be stuck. But if we use it, we can
derive {@;—} from C,, which can then be used along with C; to derive { @ ;—} using the
PAR® rule, and from there rule REF gives us the empty clause.

We now have to make changes to the completeness proof of Section 4 until everything
fits together again. It must be said upfront that, in this case, the required notions and defini-
tions are much less intuitive. We will try to motivate them by giving a short account of the
problems we will have to face when adapting the proof.

Example 2 Let i > j >k and let N = {C{,C,C3} where C| = {@ jk}, C; = {@k, @;j},
and C3 = {@;—j}. It follows that, for any admissible order, C3 > C; > C;; therefore, we
expect C to be productive and, thus, we should have Ic, = {@ jk}.

If we use the definitions from the completeness proof for R®- [ (@, ], A)], C; would
have to be non-productive (since it is not in reduced form) and this would make it the min-
imum counterexample for Iy, only reducible by PAR with C;. However, this would not be
a valid inference in R}~ [ (@, |,A)]. The notion of “reduced form” was introduced to
characterize clauses that cannot be the main premise of a paramodulation inference using a
productive clause as side premise. Hence, we can already see that we need to adjust the no-
tion of “being in reduced form” in order to account for the fact that C; cannot be reduced by
paramodulation. The natural way to do this is by demanding only the label of the maximum
formula to be reduced (this notion will be called weak reduced form in Definition 15).

But here comes the tricky part. If C; becomes a reduced clause, it will also turn into a
productive one. In that case, C3 would be the minimum counterexample for Iy and the only
inference we can draw from it is by using the PAR® rule on C, obtaining D = {@k,@;—j}.
However, now Iy = D, and thus we don’t obtain a new counterexample. A closer inspection
of this example shows that it is actually the Upwards preservation lemma that is failing.

cu{@;-i}
CU{@;—j}

Cu{@p} DU{@ij}
CUDU{@j(p}

SYM™ t PAR®

EeR

Side conditions

TixJ
t i j, ¢~ jand @;p €SIMP

Fig. 4 R} [2A"\F(@, |, A)] is obtained from RS~ [s#"F(@, |, A)] by replacing PAR by SYM ™ and PAR®.
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Summing up, in order to use the proof-scheme of Section 3 we need an Upwards preser-
vation lemma. But from the above example, that implies that the following should hold:

IN':@ij IN':@jk IN%@ik

which is simply not possible (because |= (@; j A @ jk) — @ ;k). To escape from this apparent
dead end, what we do is to drop the |= relation altogether and repeat the completeness proof
of Section 4, but now in terms of a carefully tailored relation k= for which we shall have
IN F\‘/ @ij and IN F"z @jk while IN ?3 @,‘k.

Of course, we will also have to ensure that whenever Iy k= @, then Iy |= @ too, thus from
proving that every saturated consistent set of clauses is f-satisfiable we shall infer that every
saturated consistent set of clauses is also |=-satisfiable. Before moving to the definition of
ke, it is worth observing that a similar example can be devised for relations.

Example 3 Leti> j>k>1landlet N ={C,C,,C3,C4} where C; = {@;l}, C; = { @k},
C3 ={@(r)j,@;(r)k}, and C4 = {@;[r]—j}. This time any admissible order entails C4 >
C3 = C > C} and, clearly, C; and C, must be productive clauses. According to the notion
of reducedness of Definition 12, C3 would be reducible and, therefore non-productive and
the minimum counterexample for /. However, no inference can be drawn from Cs. Just
like in Example 2 everything suggests we need to consider C3 as a reduced clause, since its
distinguished formula is @;(r);j and [ is indeed reduced, but this also makes it productive
and C; becomes the minimum counterexample for Iy. The only clause we can derive from
C4isD={@;~j,@;(r)k}, but Iy |= D (because Iy = @;(r)k) and therefore we don’t obtain
a smaller counterexample as required in the completeness proof.

It turns out that Examples 2 and 3 are sufficiently general, in the sense that every other
counterexample can be seen as an instance of one of these two. Essentially, we can say that
the exhibited problem relates to some form of aliasing due to the presence of nominals: in a
productive clause, there is some non-distinguished formula that also becomes true when the
distinguished formula is included in the candidate model (e.g. @;k in C; of Example 2 and
@;(r)k in C5 of Example 3); we shall call them aliased formulas.

Now, fortunately, given some candidate model Iy, we can give a syntactic characteriza-
tion of all the potential aliased formulas even without knowledge of N. So, we will basically
stipulate that I k= @ holds whenever I |= ¢ and ¢ is not potentially aliased, according to /.

Definition 14 (k) We define k= as the largest relation between hybrid Herbrand models and
@-formulas, such that:

1. I @ impliesI = ¢

2. Ik @jiffl k @;i

3. Ik @;jand i > jimplies that for no k such that/ |= @ jk and k > j, @k € I

4. I'k @(r)j implies that for no k and / such that I |= @;k, I = @;l and [ > j, @;(r)k € 1.

Revisiting Example 2 may help grasp the ideas behind Definition 14.

- Iy R @k holds because @ jk € Iy and no other equality labeled with j occurs in Iy.

— Iy & @;j holds for analogous reasons.

— Now, observe that Iy k= @;k does not hold because Iy = @ jk, @;j € Iy but j > k. The
last part is crucial; it implies that @;j >~ @;k and, hence, @;k is a potentially aliased
formula in the clause that contributed @;j to Iy (in fact, in Example 2 it is aliased).
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The slight asymmetry between cases 3 and 4 in Definition 14 is due to the fact that, as shown
in Example 3, in the case of relations the labels of the maximum formula and the aliased
formula may differ®. The remaining definitions are more natural.

Definition 15 (Weak reduced form) Let C be a clause and ¢ = max”™ (C). If o = @;y is a
formula of SIMP and i = ioj,., then we say that both ¢ and C are in weak reduced form.

As in the previous section, let N be an arbitrary but fixed set of clauses.

Definition 16 (&¢ for R{™ [ (@, |,A)]) Let C be a clause (not necessarily in N) and let
@ = max~ (C). If it simultaneously holds that:

CeN

. Cis in weak reduced form
. @ ePLIT

Icf=C

. S(C)=0

then ec = {¢}; otherwise, &c = 0.

Lemma 6 (Main clause reduction for R}~ 7" (@, |, A)]) If C is the main premise of an
inference rule of RS- [ (@, ], A)] and D is one of its conclusions, then C = D.

Proof For SYM™, the property follows from its side-condition. For the rest of the rules, it
follows from the Main clause reduction lemma for R [ (@, |, A)].

Lemma 7 (Downwards preservation for R} [ (@, |,A)]) If Iy = C, then I¢ = C

Proof The proof runs similar to that of the equivalent lemma for RS- [ (@, |, A)]. We
take D = C to be the least clause such that Ip k= C but I” & C. Now, it must be the case that
for some ¢ € C, Ip k= @, but this implies that Ip = ¢@. At this point, one can copy almost
verbatim the proof of Lemma 2 to conclude that it must also be the case that I” |= ¢. Hence,
if 1P & ¢, it must be because one of Conditions 3 or 4 of Definition 14 does not hold.

For the first case, assume ¢ = @;j and, thus, I” }& @, j. Since we know Ip |= @ j, it must
be the case that for some k > j, I” |= @ jk and @;k € I”. This opens up two possibilities:

1. @ik € Ip. Since Ip |= @}, Ip |= @ jk, but that would imply Ip = @;j.

2. ep = {@;k}. We know Ip = @;j, but since D is productive, it must be in weak re-
duced form, hence, joy, = i which implies j = i. But since @;k € SIMP, i = k and, by
hypothesis, k > j, which leads to j =i >k > j.

For the second case, let ¢ = @;(r) j. Since Ip k= @;(r) j, Ip must contain formulas other
than equalities and €p cannot be an equality. Hence, it must be the case that ep = {@;(r)k}
for  and k such that [ > j, Ip |= @;k and Ip |= @ ;1. But since D is in weak reduced form we
have loy, = [ which implies jor, = and, thus, j > [. This contradicts [/ > j.

Observe that as a corollary we get that if C is productive, then Iy k¢ C, which given
conditions 3 and 4 of Definition 14, was not obvious.

6 At this point some readers may wonder if Definition 14 couldn’t be made simpler, e.g., by reducing
case 3 to “I r @, implies @;j € I.” We encourage those readers to verify that with the simpler definition
no counterexample can be inferred from the minimum counterexample for Iy, when N is C; = {@ jk},C, =
{@ik},C3 = {@4)},Ch = {@;)},C5 = {@;—j}; with i = j > k.
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Lemma 8 (Upwards preservation for R}~ [57"""(@, |, A)]) Let D be the consequent of an
inference rule whose main premise is C. If Iy < C and I¢ |z D, then Iy = D.

Proof (sketch, full details in the Appendix) The proof follows the scheme of Lemma 4.
Thus, let @ be such that max™ (C) > ¢ and I¢ [ @, and let E = C be the least clause such
that I [ @ but IZ k= ¢. Of the three possible cases, &g = {@;p} is handled exactly like in
the proof for Lemma 4. We sketch the procedure for the case where &g is an equality, the
remaining case runs similarly.

If e = {@,b} with a,b € NOM, then a > b, acy, = a and ¢ has to be an equality.
That is, for some 7, j € NOM, i >~ j, then either ¢ = @;j or ¢ = @;i. In any case, we have
@ = @;j and also [ k= @;j iff I k= @. We can arrive to a contradiction proving, by case
analysis, that it cannot be the case a > i nor i > a nor a = i. The first two rely only on
properties of admissible orders, so we will only cover the last case here.

Let us assume that &g is { @;b}. If j = b, then @;j = @;b =max" (E) = max™ (C) > @ >
@; j. Now suppose b > j. For this case, we will rely on Condition 3 of Definition 14. Since
IE R @;}, it must be the case IE = @;j. Now, from this and @;b € IE, we get IF = @;b,
but since b - j, @;b = @, and, thus, we get the contradiction IZ k@)

From here we can essentially repeat all the steps that lead us to Theorem 1. The only
additional step is to verify that if the distinguished formula of the minimum counterexample
is of the form @;—; and is in weak reduced form, then we must have j > i and, thus, the
SYM " rule is applicable, which is straightforward (see the Appendix).

Theorem 2 R™ [ (@, |,A)] has the reduction property for counterexamples and is,
therefore, refutationally complete.

6 A decision procedure for the satisfiability of /7 (@)

We mentioned in Section 2 that (@) is a decidable subsystem of (@, |, A). In this sec-
tion we show how the calculus R~ [5#""(@, |, A)] can be turned into a decision procedure
for the satisfiability problem of .7’ (@). We will introduce the necessary changes to ensure
that, for any formula ¢ € 7™ (@), the set that extends CISet(¢) and is closed by the rules
of the calculus is a finite set. If this condition holds, implementing an effective algorithm
that computes this set in finite time is straightforward (e.g., using the “given clause algo-
rithm” [52]) . Observe, however, that RS [ (@, ],A)], the calculus we will introduce
next, will still contain rules that handle the full 5#(@,],A) language; we will show it to be
sound and complete for .7#(@, ], A) and terminating for 7 (@).

First of all, it should be noted that, even when restricted to formulas from 2 (@), the
calculus R[Z™F(@, ], A)] introduced in Figure 1 can trivially generate an infinite saturated
set of clauses, as the (r) rule can be applied to formulas of the form @,(r)j for j € NOM’.
Although both RS [ (@, |, A)] and R}~ [ (@, |, A)] avoid this behavior, an infinite
number of nominals can still be introduced by the interaction between the [r], (r) and the
paramodulation rules. As no other symbols but nominals are introduced during resolution,
and given that formulas in consequents are never larger (in number of operators) than those
in the antecedent, if we can control the generation of nominals we will ensure termination.

7 Actually, just repetitive application of the (r) rule to the same clause leads to the generation of an infinite
set. This can be easily avoided by applying the rule only once to each (r)-formula in a clause.
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There are essentially two ways in which an infinite number of nominals can be in-
troduced by the rules of R* [ (@, ,A)] (or R} [ (@,],A)]) when applied to a
SN (@)-formula:

Type 1. A formula of the form @;(r)¢ introduces a new nominal which, in turn, contributes
to the derivation of a new clause containing @,(r)¢@. All of these new nominals are
immediate successors of i and they are actually representing the same state in the model,
but the calculus cannot detect it.

Type 2. There is a formula ¢ and an infinite sequence of distinct nominals i, i;,i2, ... such
that, for all n > 0, some @;, (r)@, in the saturated set introduces, by way of the (r) rule,
the nominal i, . The calculus is exploring a cycle in the model and cannot detect when
to stop the search.

For concrete examples, try the rules of RS-[7"(@,],A)] over the formulas @;(r)p A
@;[r](qV @;(r)p) and @;(r)p A @;[r](i A (r)p) using any admissible order where i is the
smallest nominal and p > g.

This suggests that, to ensure termination, we need to impose some control both on the
nominals generated by the (r) rule and on the way chains of nominal successors are treated.
We will do this by introducing a hybrid version of Hilbert’s €-operator and modifying the
calculus to exploit it.

6.1 Hilbert’s e-operator and R§> [ (@, |, A)]

The e-operator was introduced by Hilbert as part of his program to establish the consistency
of arithmetic by finitary means. A first-order £-term is of the form ex.¢(x) where ¢(x) is a
formula and its intended meaning is: “some element e such that ¢(e) holds, or an arbitrary
element if no such e exists” [33,38]. The &-terms were later investigated in the context
of linguistics, philosophy and non-classical logics. From the point of view of automated
reasoning, €-terms can be seen as an alternative to skolem functions [29], and will serve as
witnesses for existentially quantified objects.

In first-order logic enriched with the &-operator, the notion of formula and term become
mutually recursive. In hybrid logics, on the other hand, the boundary between formula and
term vanishes; hence, they are an interesting setting in which to introduce &-operators. The
only important difference between e-terms and fresh nominals is that the former will keep a
record of which formula generated the new witness.

We will enrich 57 (@,],A) with two types of (hybrid) &-terms. The simplest of them
will be of the form £¢, with the intended meaning “an element where ¢ holds or an arbitrary
one, if no such element exists.” For every nominal or €-term /, and every relation symbol 7,
we will also have terms of the form &(I,r, @) denoting “an r-successor of / where ¢ holds if
such exists, or any element (not necessarily a successor of /) otherwise.” Observe that unlike
their first-order cousins, hybrid &-terms do not bind variables.

Definition 17 (Syntax of .77(@,|,A,¢)) Let ¥ = (PROP,NOM, REL), we define

H(@,|Ae)i=al=@|oNg'|[[rlo| @@ ]|lig|Ap
e-forms = €@ | €(l,r, @)
LAB ::= NOM U &-forms
ATOM ::= PROPULAB

where a € ATOM; i € NOM; I,m € LAB; r € REL and ¢, ¢’ € (@, ],A,¢€).
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Observe that e-terms can occur nested, as in @ (; , —p).rp.p)) (¢ A\ [r1]€q). Elements of the
set LAB of labels will be denoted /,m,n, ... Derived connectives are defined as expected.
Also, the subsets of 57 (@,],A) that were used until now are lifted to 57 (@,],A €) in a
natural way, using elements of LAB instead of just nominals (e.g., PLIT ::= @m | @p |
@;(r)m,SIMP := @m | @,;p | @;(rym | @,[r]o, etc.).

Definition 18 (Semantics of 77 (@, |, A, €)) We shall call pre-structure to any tuple (M,A)
where M = (W, (rM),creL,V, g) is a conventional hybrid model, and A : e-forms — W. The
satisfaction relation = is defined as follows:

(M,A),wEp iff we V(p), p € PROP

(M,A),wEi iff w=g(i), i € NOM

(M,A),wEe iff w=A(e), e € e-forms

(M,A),wi=—g iff (M,A),w % @

(M,AY,w = @1 A @ iff (M,A),w = @) and (M, A),w = ¢

(M,A),w = [rlo  iff ™ (w,w') implies (M,A),w = @, for all w' € W
<M7A>’W|:@i(p lff(M,A>,g(l)':(P,l€NOM

(M,A),wE @, iff (M,A),A(e) = @,e € e-forms

(M A),wi=lig iff (M}, A),w= @

(M,A),w =A@  iff (M,A),w = @, forevery w € W.

A pre-structure (M, A) will be called a model when the following two conditions hold: i) if
(M,A) =Eg then (M,A) |= @ @; and ii) if (M,A) |= @,(r)¢ then (M,A) |= @,(r)e(l,1, @)
and (M,A) |= @ .o @. Whenever (M,A) = @;m implies A(&(l,r,@)) = A(e(m,1,)) we
will say that (M, A) is closed under renaming of labels.

Proposition 3 Let ¢ be a formula where no e-term occurs. Then @ is satisfiable iff it is
satisfiable by a model closed under renaming of labels.

Proof The right-to-left implication is trivial. Now, for the other direction, since no &-term
occurs in ¢, that means that (M,A) = ¢ implies M |= ¢. So we only need to check that
given M = {W, (M), creL,V, g} we can always pick an A’ such that (M,A’) is closed under
renaming of labels. For this, take any total and well-founded order over W, let w, be some
fixed element of W and simply define:

A(eg) = min{w |M,w |= ¢} if M |=E¢
w otherwise
min{w | ™ (g(l),w) and M,w |= @} if/ € NOMand M |= @,(r)¢
Al(e(l,r,@)) = ¢ min{w | M (A'(I),w) and M,w |= @} if [ is an e-term and M |= @, (r)¢
W otherwise

A’ is well-defined and it is trivial to verify that (M,A’) is closed under renaming of labels.

As before, for the rest of this section we will work with formulas in NNF. In Fig-
ure 5 we introduce the rules of R};[2Z™"(@,],A)], a calculus that we will prove com-
plete for ##(@,],A) and terminating for the fragment .7’ (@). This calculus differs from
R} [ (@, ], A)] in only a few aspects: i) the rules are written in terms of formulas which
may be labeled by elements in LAB, ii) rules (r) and E now use e-terms instead of fresh nom-
inals and, iii) the PAR® rule is replaced by three rules: PAR®", PAR®$ and PARZ . The
first two are simply the PAR® rule over a restricted domain. As we will later see, the last one
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Fig. 5 The Resolution Calculus R7; [7#"F(@, |, A)], for S a selection function and > an order.

R@<>

no-€&

is crucial in order to guarantee termination while PA
does not contain the |-operator.

We first prove soundness of the calculus, as the proof is slightly more involved than in
the previous cases.

Theorem 3 RS [J7™™'(@,],A)] is a sound calculus.

Proof Let ¢ be an @-formula in (@, |,A). There exists a model M such that M |= ¢
iff, for any A, (M,A) |= ¢ and, from Proposition 3, this will happen iff there exists A’ such
that (M,A’) = @ and (M,A’) is closed under variable renaming. But R, [ (@, |,A)]
is clearly sound with respect to the class of models closed under variable renaming, so the
empty clause cannot be derived from a satisfiable formula.

is not necessary when the input

We now move to refutational completeness. For this, we first need to extend the notion
of admissible order to the new language.
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Definition 19 (Admissible orders) We say an order > over s (@, ], A, €)-formulas is
admissible for R} [7™F (@, ], A)] if it satisfies the following conditions, for all i € NOM,
every [,m € LAB and all ¢,y € ™M™ (@, ], A ¢):

Al) > is a total simplification order

A2) ¢ = [forall ¢ & LAB

A3) if ¢ > y, then @;¢ - @,y

A4) if y is a proper subformula of ¢, then @ > y(I/m)
A5) [r]l = (rym

A6) [ > mimplies (I, r, @) > €(m,r, Q).

The reader should check that conditions Al to AS are essentially those of Definition 7
but generalized to LAB. It is straightforward to extend the Knuth-Bendix order we used in
Proposition 1 to obtain an order that also satisfies Condition A6. Notice that this condition
guarantees that the main premise of rule PARE@ © is greater than its consequents. With this,
it is easy to see that the Main premise reduction lemma holds.

Theorem 4 RS> [7"(@,],A)] has the reduction property for counterexamples and is,
therefore, refutationally complete.

Proof The proof is an almost verbatim reproduction of the completeness proof we already
did for R~ [ (@, |, A)]. The only thing to be adjusted is that now a set I of PLIT formu-
las shall denote the pre-structure (I,As), where A;(I) = [I], i.e., the equivalence class of / in
I. Observe that when the least counterexample is not in weak-reduced form, the PAR®™?,
PARZ® and PAR® rules can guarantee that a new counterexample is derived.

Notice that the calculus RS, [ (@, |, A)] is not complete for 72(@, |, A, €), but only
for (@, |,A). For example, the formula @;p A @¢,—p leads to a consistent clause set
although it is unsatisfiable (since @, —p must be false, according to Definition 18, in models
where there is a state making p true, which is exactly what @;p ensures). The catch in the
proof of Theorem 4 is that the pre-structure (I,A;) does not necessarily satisfy the conditions
imposed in Definition 18 for it to be a model of (@, ], A, €).

6.2 RS- [ (@, ],A)] is terminating for 7 (@)

We now prove that there are admissible orders > such that, when the input formula is in
HN(@), RS [N (@, ], A)] doesn’t generate infinite saturated sets.

Definition 20 Define the function level : LAB — IN:

level(i) = 0
level(ep) =0
level(e(l,r,@)) = level(l) + 1.

We say that - respects levels if for every I,m € LAB, level(l) > level(m) implies [ > m.

We will prove that if an order - is admissible for R}, [ (@, |,A)] and respects levels
then, for every ¢ € (@), the following conditions hold:
T1(¢@): the set {/ | level(l) = k and [ occurs in CiSet; (@)} is finite, for all k > 0.

S-T

T2(¢@): the set {level(l) | / occurs in CISer; (@)} is finite.

S-T1
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where CiSet . (@) is the least set that contains CISet(¢) and is closed under the rules of
R [ (@, ], A)]. The reader can check that these conditions guarantee, respectively, that
problems of Type 1 and 2 discussed above cannot occur. Condition T1 actually holds even
for formulas of (@, A). In what follows, > is taken to be an arbitrary admissible order
for RS- [ (@, ], A)] that respects levels.

Theorem 5 For every ¢ € " (@,A), TI(@) holds.

Proof First, three rather trivial observations:

1. If (1, r, y) occurs in CiSet_ (@), then so does /.
2. If &(l,r, ) occurs in CISet;_ (@), then (r)y must be a subformula of ¢.

3. If ey occurs in CiSet;_ (), then y must be a subformula of ¢.

Observe that the last two do not hold if the |-operator occurs in @8. Now, let us define
C* = {I'| level(l) = k and [ occurs in CISez;_.(¢)}, and proceed by induction on k. C is
finite: it contains the finitely many nominals in CISet(¢) plus, from Observation 3, finitely
many terms of the form €y. For the inductive case, let us suppose, that C¥ is finite but
C**1 is not. By Observation 1, it must be the case that for some / € C* there exist infinitely
many (ro)Wo, (r1) w1, (r) ... such that €(I,r;, y;) € CK*! for i > 0. However, this clearly

contradicts Observation 2, for ¢ has only finitely many subformulas.

To prove that condition T2(¢@) holds for ¢ € J# (@), we need to find an upper bound
for the level of the labels that may appear in CISet; . (¢). The modal depth d(¢) (as defined
for the basic modal logic, i.e., the maximum nesting of diamonds and boxes, see [17]) gives
us the desired bound. The proof relies heavily on the fact that, as long as the |-binder does
not occur in the input formula, terms of the form &(/,r, y) may occur only in restricted
positions. The following lemma formalizes this statement (again, the property holds even
for (@, A)).

Lemma9 For all ¢ € (@, A), €(l,r,¥) occurs in ClSet;

. (@) only in the following
kind of formulas:

1. @ue(l,ry), withm # €(l,r,y)
2. @Z<F>€<l,}", l//>
3. @) 0, and if an e-term occurs in 0, then @, ;0 is also a formula of kind 1 or 2.

Proof The proof is by induction on the derivation of a formula where £(/,r, ) occurs. For
the base case, an €-term simply cannot occur in ¢. For the inductive case, consider the
last rule used to derive a formula containing &(/,r, y). We discuss only the few interesting
cases. It cannot be the case that the SYM ™ rule generates @,,—¢&(l, r, ) because the premise
would have to be @ .\,»—m and, since by inductive hypothesis m could not be an e-term,
level((l,r, y)) > level(m) and this implies, by Definition 20, that £(/,r, y) > m which con-
tradicts the side-condition of the rule. For the PAR®™ rule, the interesting case is when
both premises are equalities but in that case the side condition guarantees that @,,m cannot
be derived. Finally, observe that, by inductive hypothesis, there are no suitable premises for
the PAR®Y rule.

no-€
Incidentally, the above proof also shows that the PAR(“@(fS> rule only is required when
the input formula contains the |-operator (since no suitable premises for this rule will be

8 For examples of this, consider ¢ = @;(r)]j.(r)(j A p) and @ = @;(r)|j.E-j.
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derived otherwise). The above lemma is roughly saying that, in CiSet; . (@), terms of the
form &(I, r, y) may occur only as labels of @-formulas, or as the right-hand-side of equalities
and relations. However, in the last case they are restricted to this form: @;(rye(l,r, y) and
we know that level(e(l,r, y)) = level(/) + 1. Hence, in order to show that T2(¢) holds, we
only need to find a bound for the level of e-terms occurring in labels and in the right-hand-
side of equalities.

Theorem 6 [f ¢ € ™" (@) then:

- @y occurs in ClSets_ (@) implies level(l) +d(y) < d(¢)
— @m occurs in CiSet; (@) implies level(m) < d(o).

S-1

The proof is carried out by (a rather long yet straightforward) induction on the derivation
of formulas. It is presented in full detail in the Appendix. Observe that the theorem does not
hold if there are occurrences of A, since after an application of the A rule it is not necessarily
the case that level(l) +d(y) < d(¢).

Corollary 2 Forall ¢ € 7(@), T2(p) holds.

Since, for ¢ € 7 (@), every formula in CiSet; . (¢) is made of subformulas of ¢ and
e-terms, and from Theorem 5 and Corollary 2 there are only finitely many of the latter, it

follows that CiSetg . (¢) must be finite.

Theorem 7 R{> [/ (@, |,A)] is a decision procedure for the satisfiability of 7 (@).

7 Conclusions

In this article we have investigated the labeled resolution calculus introduced in [7] for the
hybrid logic 57 (@, |,A), paying special attention to the decidable fragment J#(@). In
particular, we described the changes needed to turn it into a calculus of ordered resolution
with selection functions that is complete even under standard redundancy elimination (which
is crucial for the development of efficient provers).

More generally, we aimed to show that the general framework of saturation-based rea-
soning for first-order logic with equality, as presented for example in [14,43], can be suc-
cessfully adapted to calculi for other logics.

After introducing the notions of selection functions (Definition3) and admissible orders
(Definition 7), we proved a general completeness result: the calculus R [ (@, |, A)] is
complete for any admissible order and selection function (Theorem 1). Choosing different
solving strategies is usually crucial to tune the behavior of a resolution prover to a particular
application. The results presented in this paper show that, as long as the solving strategies
can be expressed in terms of admissible orders and selection functions, they will be refu-
tationally complete. We actually proved that the calculus possesses the reduction property
for counterexamples, which guarantees that refutational completeness holds even under re-
dundancy elimination and simplification techniques. In the terminology of Bachmair and
Ganzinger, we established that the calculus is derivationally complete.

We then showed that completeness is preserved even when paramodulation is restricted
to labels in formulas (Theorem 2). It is well-known that paramodulation needs to be tightly
controlled to obtain realistic implementations, and Theorem 2 shows that the set of clauses
one needs to consider as candidates for paramodulation can be greatly reduced. But more
importantly, this result paves the way to a decision method for 7 (@). We show that, by
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restricting paramodulation rules and using suitable orders, we can obtain a calculus that
decides 77’ (@) (Theorems 3, 4 and 7).

Termination of saturation-based calculi is typically established showing that the number
of clauses in any saturated clause set is finite. For example, ordered resolution can be shown
to decide certain fragments of first-order logic defining orders and selection functions that
ensure a bound in the size of terms that can appear in clauses. The first two labeled resolution
calculi we considered do not have a notion analogous to “term structure” that we could
use: on-the-fly skolemization introduced nominals, which possess no inner structure. This
motivated the introduction of €-terms. These are semantically close to nominals (as both
are used to univocally identify elements) but they have internal structure. By restricting to
orders that treat -terms in a special way (Definition 20) we bounded their size, and hence
proved that saturated clause sets are always finite. Notice that the decidability —actually, the
exact complexity— of 77 (@) is a known result.” What the current article provides is a direct
(i.e., without translation into first-order logic) saturation-based decision method for 77 (@)
with restrictions via selection functions and orders.

To close this article we will mention certain aspects of our usage of the framework of
saturation-based reasoning that are worth discussing.

i) The calculi we introduced do not involve unification. Hence we are only concerned with
the ground version of the saturation-based framework. Liftable orders (partial orders
which are invariant under substitutions), which play an important role in the original,
first-order formulation of the framework ensuring that the order of literals is preserved
once unification takes place, are not relevant in our case.

ii) Also, because we are dealing with ground calculi and total orders, there is exactly one
formula per clause that can participate in inferences and, therefore, there is no need for
selection functions that select more than one literal.

iii) Since our clauses are disjunctions of arbitrary @-formulas, the typical restriction of
selection functions selecting only “negative” literals is too strong in our case. Instead
we require selection functions to pick a “non-positive literal.” We see this as a gener-
alization of the condition for the first-order case, where the notions of “negative” and
“non-positive” literals coincide.

iv) A crucial component in the proof that establishes the reduction property for counterex-
amples is a method for building candidate models. To this aim, we developed a suitable
notion of Herbrand model for hybrid logics. This notion depends intrinsically on hybrid
logics being able to directly refer to elements in their domain, and express reachability
and (dis)equality between elements.

v) In the case of first-order logic, the term “admissible order” has a well-defined mean-
ing (cf. e.g., [14]). The importance of these orders lies in that they ensure refutational
completeness of classical first-order resolution calculi. We have retained the name “ad-
missible” for an order that ensures that the reduction property for counterexample holds.
Our notion of “admissibility” for the labeled resolution calculi is more complex than

9 The decidability of the satisfiability problem for # (@) was established in [5], where the problem is
shown to be PSpace-complete. Decidability results for more expressive extensions of the language are also
known: e.g., the complexity of the satisfiability problem for .7#’(@) extended with the universal modality A,
the difference modality D, and inverse modalities (-)~ was shown to be ExpTime-complete in [6]. A 2Exp-
Time upper bound for the extended language actually follows from complexity results for guarded fragments
of first-order logic with equality [30]. Ganzinger and de Nivelle give in [28] a superposition decision proce-
dure for the guarded fragment with equality but without functions nor constants (apart from those introduced
by skolemization).
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the one for first-order logic resolution. This seems to be the price to pay for having cal-
culi that works on arbitrary formulas (and hence, with a larger number of rules), instead
of requiring formulas to be in some kind of simplified clausal form.

Given that hybrid logics are extensions of modal logics, our results apply also to a num-
ber of modal logics. Clearly, we can decide satisfiability of formulas in the basic modal
language K [17] using the terminating resolution calculus for 5#(@). But in addition, many
other standard modal logics (e.g., T, 4, etc.) can be defined in 7 (@, |,A) (up to satisfia-
bility preservation), and hence our results also produce complete (possible non-terminating)
calculi for them. More interestingly, modal logics can be defined in a modular way (i.e.,
new logics can be defined by the additions of new modal operators). These new modal op-
erators can be handled by introducing new rules to the calculi we presented (as typically
done, for example, in tableaux calculi for modal logics). If these new rules also satisfy that
consequents are smaller than premises, and are enough to handle every counterexample to a
candidate model then derivational completeness will also hold for the new calculus.

Appendix: Detailed proofs

Lemma 1 (Main premise reduction for RS [JZ™F(@, |,A)]) Let > be an admissible order. If C is the
main premise of an inference rule of RS ["NF (@, ], A)] and D is one of its conclusions, then C = D.

Proof Lemma 1 is a consequence of lemmas A1, A2 and A3 below. By Lemma A3, dist™ (C) ¢ D and from
Lemma A1l and Lemma A2 it follows that if ¢ € D and ¢ > dist>™ (C), then ¢ € C, thus, C > D.

Lemma A1 Let C be the main premise of an inference rule of RS~ [ (@, ], A)] and D one of its conclu-
sions. If ¢ € D is a formula that does not occur in any of the premises, then dist>” (C) = o.

Proof Let us consider each rule:

A,V Since > is a simplification order, (@; A @) = @, where n € {1,2} and, thus, @;(Q; A @2) > @;@,.
The case for V is analogous.

r]  Because of the subformula property, [r]@ > ¢, thus, by Condition A3 of Definition 7, @;[r|¢ > @ ;¢.

r) A variation of the former proof establishes @;(r)@ ~ @ ;. The remaining case, @;(r)@ > @;(r)j,
follows from Condition A2 and the side condition of the inference rule, that guarantees ¢ ¢ NOM.

A, E Analogous to the A rule.

@ By the subformula property, @;@ ;¢ ~ @ ;.

{ By Condition A4, we have |j.¢ > ¢(j/i) which, entails @;j.¢ > @;¢(j/i).

SYM Condition A3 of Definition 7 guarantees @ ;i = @; j whenever i > j.

PAR If j > i, then it must be the case ¢(j) > ¢(j/i) since > is a rewrite order.

o~

Lemma A2 Let clauses C and D be, respectively, the main and side premises of a binary inference rule of
R [sANNF(@, |, A)]. Then distS™ (C) = max™ (D) and, therefore, {dist> (C)} > D.

Proof In the case of the PAR rule this is true by the side condition. If the inference is an instance of the
RES rule, then, since the admissible order has the subformula property,—p > p for all p € PROP and thus,
because - is a rewrite order, @;,—p > @;p.

The interesting case is the [r] rule, where we must verify that @;[r]y > @;(r)j. By Condition A2 of
Definition 7, there exists a nominal k such that ¢ > k and, thus, [r]¢ > [r]k. Finally, by Condition A5, [r]¢ >
[k > {r).j.

Lemma A3 [f C is the main premise of an inference rule of RS [N (@, ], A)] one of whose conclusions
is D, then dist® (C) & D, hence C Z D.

Proof On unary inferences this is self-evident. Now, on a binary inference with side premise C’ we know from
Lemma A2 that {dist” (C)} = C’, so dist> (C) ¢ C'. From this and Lemma A1 it follows that dist> (C) ¢ D.

Lemma 2 (Downwards preservation for RS~ [ (@,|,A)]) IfIy - C, then I¢ |~ C.
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Proof We will prove the contrapositive: if Ic = C, then Iy |= C. For the simpler case, if C contains a formula
in PLIT that is true under I, then, since Io C Iy, C must be true under Iy.

Now suppose for the sake of contradiction, that there is in C some formula ¢ ¢ PLIT that is true under
Ic but not under Iy. Because of compactness, there must exist some D = C such that Ip = ¢ but P ¥ @)
furthermore, since > is total and well-founded, we can ask D to be the minimum such clause. This means
that D contributes a formula that modifies Ip in a way that renders ¢ false under I°. From Definition 13 we
know that there are only three possibilities: ep = { @, j}, ep = {@;p} or ep = {@;(r)j}.

Case ep = {@;j}. If ¢ & PLIT, then, because of conditions A2 and A3 of Definition 7, max™ (C) = ¢ > @,
so it cannot be the case D >~ C.

Case ep = {@;p}. Itis clear that in this case, ¢ should be of form @ ;y and p would have to occur with a
negative polarity in y. But, that means that p would have to be a proper subformula of y, so, ¢ > p and,
thus, @;p = max™(C) = @;y > @;p.

Case ep = {@;(r)j}. In this case, there should exist formulas y; and Y, such that [r]y; is a subformula
of Y and ¢ = @, y,. But, by conditions Al, A2 and A5, y; > [r]y, > (r)j (note that if y» & NOM,
[Pl = [ = (1)), 50 @(r) = max™ (C) = ¢ - @;(1)].

Lemma 3 If icy, # i, then Iy contains only one equality where i occurs, and it is of the form @;j with
J=Joiy-

Proof We will first show that Iy cannot contain two distinct equalities of the form @;k and @;/. Next, we
prove that if @;j occurs in Iy, then j = joy, . These two facts together further guarantee that two equalities
of the form @i and @;/ cannot occur simultaneously in Zy.

Suppose, for the sake of contradiction, that two distinct equalities @;k and @,/ occur in Iy, and let C and
D be productive clauses contributing each equality respectively, with C > D. Under these assumptions, it fol-
lows that &¢ = {@;k} and @,/ € I¢. From Definition 13, @;k must be in reduced form so, from Definition 12,
it must be the case that i = ioy.. However, if @;/ € Ic, this cannot be true, for i > 1.

We now turn to the second part of the proof, and we reason once again by contradiction. Suppose @;j €
Iy and yet joj, # j. If this is the case, there must be two clauses C and D such that C produces @;; while
D contributes @ ;k, thus, i > j = k. From Condition A3 of Definition 7 we infer that @;j = @ jk so C > D,
hence @ jk € Ic and, once again, C cannot be a productive clause since @;j would not be in reduced form.

Lemma 4 (Upwards preservation for RS~ [#™NF(@, |, A)]) Let D be the consequent of an inference rule
whose main premise is C. If Iy [~ C and I¢c | D, then Iy £~ D.

Proof Because of the Main premise reduction lemma, max™ (C) = ¢ for all ¢ € D. Since Iy [~ C, we already
know Iy £ max™ (C). Hence, we can reduce the proof to showing that, for any @, if max™ (C) > ¢ and Ic }~ @,
then Iy = ¢. Now, suppose, for the sake of contradiction, that E > C is the least clause such that @ is true
under 7% but false under Ix. By Definition 13, there are only three cases we have to consider:

Case eg = {@;j}. Clearly, this is only possible if @ is an equality too; thus, let ¢ = @;I. Now, by Lemma 3,
we conclude that either &g C { @1, @k}, or &g C {@m, @;m} C I¥. However, the latter cannot be true
since that would imply k > m and [ > m and, because - is a rewrite order, we would have @/ > @;m
and @,/ > @;m (notice, for the second case, that if k > [ then @,/ >~ @;m > @;m, while, if [ > k, then
@l >~ @k - @;m). Thus, eg C { @1, @k} should hold. However, eg = { @1} cannot be the case, since
that would imply @/ > max™ (C) = @l. Finally, if eg = { @k}, then [ = k and @ = @k = @ = @;l.

Case eg = {@;p}. If this were the case, p would have to be a subformula of ¢. It cannot be the case that
@ = @y, for that would mean that koy, = i, which implies k > i and ¢ = @;p = max™ (C) > ¢.If, on
the other hand, ¢ = @y with y > p, then ¢ > @;p = max™ (C) > ¢.

Case eg = {@;(r)j}. In this case, (r)y would have to be a subformula of ¢ for some formula y. If y &
NOM, then, since (r)y > (r)j, ¢ = @;(r)j = max™ (C) > ¢. Now suppose that y = k for some nominal
k.If @ is of the form @;(r)k and is true under I because of @;(r) j, then it must be the case /oy, =i and
koy, = j. However, that would imply / = i, k > j and, thus, ¢ > @;(r) j = max”™ (C) > ¢. Finally, suppose
@ = @y, where (r)k is a proper formula of y’. Now, by Condition A4 of Definition 7, y' > (r)j and,
thus, @ = @;(r)j = max™ (C) > ¢.

Lemma 5 Let C € N be such that C # {} and I¢ - C. If C is not productive, then there exists an inference
in RS [N (@, |, A)] such that

1. C is the main premise

2. the side premise (if present) is productive, and

3. some consequent E is such that I¢c [~ E.
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Proof We only need to prove that for each C satisfying the hypothesis, there always exists an inference
on C that generates a suitable consequent. Let ¢ = dist>” (C), the following case analysis shows that the
lemmas A4, AS, A6 and A7 below handle all possible cases:

— The case where ¢ € SIMP, is handled by Lemma A4.

— Otherwise, if ¢ € SIMP,
— Lemma A5 handles the case where ¢ is not in reduced form.
— If, on the other hand, ¢ is in reduced form,

e ¢ cannot be in PLIT, for in that case S(C) = {} and C would have to be a productive clause;

o the case where ¢ is of the form @;—i is trivial by using the REF rule;

e @ cannot be of the form @;—; with j a nominal other than i because @;—; false under I
would imply, using Lemma 3, { @k, @ jk} C I¢ for some nominal k and, thus, ¢ would not be
in reduced form;

e Lemma A7 handles the case where ¢ is of the form @;—p;

e Lemma A6 handles the case where @ is of the form @;[r]y.

Lemma A4 [fC # {}, Ic I~ C and dist> (C) & SIMP, then C may be the premise of an unary inference of
RS- [ (@, |, A)] one of whose conclusions is false under I too.

Proof We only consider the (r) rule (the rest are either trivial or analogous). Suppose C is false under I with
dist’” (C) = @;{r)y and y ¢ NOM. The consequents of the (r) rule would be in this case D = C' U{@;(r)j}
and E = C'U{ @y} for some nominal j, where C' = C\ dist>" (C). Since C’ is false under I, we only need
to verify that either @;(r)j or @ ;y is a false under Ic. However, this is evident, since otherwise, @;(r)y
would have to be true under I, and that would contradict our first assumption.

Lemma A5 IfC # {}, Ic ¥~ C and dist* (C) € SIMP is not in reduced form, then there exists a productive
clause D such that there is an instance of the PAR rule with C and D as premises whose conclusion is false
under I¢ too.

Proof Let ¢ = dist>” (C). Since @ € SIMP but is not in reduced form, from Definition 12, it follows that
o # ¢0j.. That is, for some nominal i occurring in @, i #+ ioj.. Therefore, there exists some clause D = C
such that ep = {@; j}. Now, if @ is not an equality, then trivially ¢ > @, j; otherwise, since it would not be
possible S(C) = { @} (for equalities are in PLIT), we conclude max™ (C) = ¢ and, thus, ¢ > @;j. This means
that C and D can be the premises of the PAR rule. Now, let E = {¢(i/j)}UC' UD’, where C' = C\ {¢} and
D' =D\ {@;} be the consequent of the inference. I¢ [~ E follows from:

1. Ic [~ C implies Ic = C',
2. C > Dimplies Ic £ D' (using Corollary 1), and
3. Ic = @;j and Ic [~ @ implies Ic = @(i/j).

Lemma A6 If C # {}, Ic W~ C and dist>™ (C) = @;[r]@ is in reduced form, then there exists a productive
clause D such that C and D may be the premises of an instance of the [r] rule whose consequent is false under
Ic too.

Proof In this case, Ic [~ C is only possible if for some nominal j it simultaneously holds I¢,i = (r)j and
Ic,j = @. This implies, together with the fact that C is in reduced form, that @;(r)k € I¢ for some k such
that I |= @ k. For this to happen, there must exist a clause D such that C > D and &p = {@;(r)k} which,
hence, may be the side premise in an instance of the [r] rule with C as the main premise. Now, let E =
{@jp} uC’' UD, where C' = C\ {@[r]o} and D' = D\ {@;(r)k}, be the consequent of the inference.
Ic [~ E follows from:

1. Ic = Cimplies Ic = C',

2. C > D implies I¢ [~ D' (using Corollary 1), and

3. Ic ): @]k and Ic b& @k(p, 1mphes Ic l# @J(p

Lemma A7 If C # {}, Ic £~ C and dist (C) = @;—p is in reduced form, then there exists a productive
clause D such that C and D may be the premises of an instance of the RES rule whose consequent is false
under I¢ too.

Proof Since I¢ [~ C, we have I¢ = @;—p and, since it is in reduced form, it must be the case that @;p € Ic.
This implies that there must exist some clause D such that C = D and &y = {@;p} which can be, along
with C, a premise of the RES rule. Since I¢ (= C' and, by Corollary 1, Ic = D' where D' = D\ {@;p}, the
consequent of such inference must be false under /¢ too.
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Lemma 8 (Upwards preservation for R}~ [Z""F(@,|,A)]) Let D be the consequent of an inference rule
whose main premise is C. If Iy < C and Ic = D, then Iy = D.

Proof The structure of the proof is similar to that of the Lemma 4: from the Main premise reduction lemma
we know max™ (C) = ¢ for all ¢ € D and from the hypothesis, Iy [ max™ (C); therefore it will suffice to
show that for all @ (not necessary in D), if max™ (C) = ¢ and I¢ |& ¢ then Iy [ @. Again, let E be the least
clause such that I ¢ ¢ but I k @. Of the three possible cases, &g = {@;p} is handled exactly as in the case
of RS [7#™F(@, |, A)], so we only have to show how to handle the other two.

First, suppose &g = {@,b} with a,b € NOM, which implies a > b and acy, = a. In this case, ¢ would
have to be an equality, i.e. there exist nominals i and j such that i > j, and either ¢ = @;j or ¢ = @ i. In any
case, we can assume @ > @;j and, from Definition 14, I k ¢ iff I k @;; for all 1. Now, we will go through
a rather longish case analysis that will ultimately show that it cannot be the case a > i, nor i > a, nor a = i,
arriving, thus, to a contradiction.

1. Suppose a > i. Since IZ k= @, it must be the case I |= @}, thus, either Iz |= @,i and Ig |= @y ], or
Ig = @,j and Ig = @,i. In any case, because a > i and a - j, there must exist some k such @,k € I
(and I |= @yi or I |= @, j). But this would contradict the fact that acy, = a.

2. Suppose, now, i > a. We have again two possibilities, and this time we analyze them separately.

(a) Suppose Ig = @ i and Ig = @, ). Since i > a, there must exist some ¢ = a such that @;c € Ig and
Iz = @_a. This means that for some E’ such that E = E’, ggr = {@;c}. Now, we know, ¢ = a > b
and this implies @;c > @,b, which means @,b = max™ (E) = max™ (E') = @;c = @,b

(b) Let us assume, now, Iz |= @, j and Ig |= @i. We shall verify that it can neither be a > j nor j > a.

i. If a > j were the case, then for some k such that a = k, @4k € Ig and Ig |= @y should hold.
But now again, this would contradict acy, = a.

ii. If, on the other hand, j = a, since a > b, we would have @;j > @,b=max™ (E) = max™ (C) =
Q= @;j.

3. Finally, assume i = a, which means gg = {@;b}. We consider, separately, the cases j = b and b > j.

(a) If j = b, then @;j = @;b =max" (E) = max™ (C) = ¢ = @;].

(b) Now suppose b > j. We have not used, so far, Condition 3 of Definition 14, but we are about to do.
Since I¥ k= @;j, it must be the case I |= @, j. Now, from this and @;b € IX, we get IF |= @ b, but
since b = j, @;b = @; and, thus, we get the contradiction IZ = @;j

We get to the second case. Suppose €g = {@;(r)k}; it is clear that in this case (r)y would have to be
a formula of @. If y ¢ NOM, then (r)y > (r)k and, thus, ¢ > @;{r)k = max(C) > ¢. Now suppose ¥ = j
for some nominal j. If @ is of the form @;(r); and I* k= @;(r)j because of @;(r)k, then it must be the case
that I E@l, £ = @ jk and, because of Definition 14, j = k. But since E is in weak reduced form we know
loy, =1 and, thus, oy, = I, which implies i > [. But then ¢ = @;(r)j = @;(r)k > max™ (C) > ¢. Finally, ¢
cannot be of the form @;y’ with (r)j a proper formula of y’ because, by Condition A4 of Definition 7, we
would have y' = (r)k and, thus, @ = @;(r}k = max™ (C) = ¢.

Theorem 2 R}~ [5Z7™"™F(@,],A)] has the reduction property for counterexamples and is, therefore, refuta-
tionally complete.

Proof Completeness follows directly from Lemmas 7 and 8 together with Lemma A8 below.

Lemma A8 Ler C € N be such that C # {} and I¢ e C. If C is not productive, then there exists an inference
in Ry [N (@, ], A)] such that

1. C is the main premise
2. the side premise (if present) is productive, and
3. some consequent E is such that Ic < E

Proof We just need to repeat the analysis done for the proof of Lemma 5. Let ¢ = dist>” (C) and let us
consider every possibility:

— If ¢ ¢ SIMP, we can trivially adapt the proof of Lemma A4.
— Otherwise, if ¢ € SIMP,
— If ¢ is not in weak reduced form, then it is not in reduced form either, and Lemma A5 can be very
easily imported to this setting.
— If, on the other hand, ¢ is in weak reduced form,
e ¢ cannot be of in PLIT for, in that case, S(C) = {} and, thus, C would have to be productive;
o the case where ¢ is of the form @;—i is trivial by using the REF rule;
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o if ¢ is of the form @;—; with j a nominal other than 7, then it cannot be the case thati >~ j, for,
otherwise, I¢ [k @;—j would imply Ic = @;j which is only possible if for some k, @;k € I¢
and that would contradict the fact that ¢ is in weak reduced form;

o if 9 = @;—j withi > j, a trivial counterexample is obtained using the SYM ™ rule;

e we can trivially adapt Lemma A7 for the case where ¢ is of the form @;—p;

e finally, Lemma A®6, trivially adapted, handles the case where ¢ is of the form @;[r]y.

Theorem 6 If ¢ € (@) then:

) implies level(l) +d(y) < d(¢)

- @y occurs in ClSetg, (¢
(@) implies level(m) < d(o).

- @m occurs in ClSets,

Proof First, let us define, for convenience, d'(@,;y) = level(/) 4+ d(y), where d(y) is the modal depth of @.
Now, we will proceed by induction on the number of rule applications required to derive @,y from the initial
set ClSet() and we will consider separately the case where v is a label m, in order to verify that the second
condition holds. The base case is trivially true. For the inductive step, we consider the last rule used to derive
@;y. Observe that since ¢ € (@), we don’t have to consider rules A, E¢, | nor PARC,?(f; (to see why the
last one is not required, refer to the proof of Lemma 9).

Rule A) Suppose @, is generated from @;(y A y’) by way of the A rule. Then d’'(@,y) < d'(@,(y Ay’)
and, by inductive hypothesis, d’'(@;(y A y')) < d(@). Furthermore, if y = m, because of Lemma 9, m
cannot be an e-term and, thus, level(m) = 0.

Rule V) Analogous to the the A rule.

Rule [r]) Let @ [r]y and @ (r)l be the premises of an inference using the [r] rule that generates @;y.
Using the inductive hypothesis, we get &' (@ [r]y) = level(l') +d([r]y) = level(I') + 1 +d(y) < d(@).
Now, by Lemma 9 we have two cases to consider:

1. level(l) = 0 and, thus, d'(@,y) = level(l) +d(y) = d(y) < d' (@, [r]y) < d(¢), or
2. level(l) =level(!') + 1, consequently, d' (@, y) = level(I') + 1 +d(y) = d' (@ [r]y) < d(¢).
Finally, if y = m, by Lemma 9, level(m) = 0.

Rule (r)¢) Here we have two sub-cases to consider. First, suppose from @ (r)y we obtain, by the (r)e
rule, @, y. It follows, by inductive hypothesis, that &' (@ (r)y) = level(I') +d({(r) y) = level(I') + 1+
d(y) <d(@). Now, since [ = &(I',r, ), we have level(l) = level(!') + 1, hence, d'(@,y) = level(l) +
d(y) =level(l') + 1 +d(y) = d' (@, (r)y) < d(¢). Observe that the side condition of the (r) guar-
antees that ¥ ¢ LAB. For the second case, suppose that from @;(r)0, we derive, using (r)e rule,
@,(r)e(l,r,0) (i.e. we are considering the case ¥ = (r)&(l,r,0)). Now we have d'(@,(r)e(l,r,0)) =
level(l) +d((r)e(l,r,0)) =level(l) + 1 < d'(@;(r)0) < d(9).

Rule @) Suppose @,,@;y is the formula by which, using the @ rule we obtain @;y. By Lemma 9, / €
NOM and, thus, by inductive hypothesis, d' (@, y) = d(y) < d(¢). Lemma 9 can be used again to show
that if y = m, then m € NOM and, thus, level(m) < d(¢).

Rule SYM) Suppose that y = m and, thus, @;m is derived from @,/ using the SYM rule. By inductive
hypothesis, level(/) < d(¢) and, thus d'(@;m) = level(l) < d(@). Also by inductive hypothesis we have
level(m) =d'(@,,1) < d(¢).

Rule SYM ™) Analogous to the SYM rule.

Rule PAR®™?) Let @,y and @[ be the premises from which @,y is obtained by way of the PAR®"®.
We know d' (@ y) = level(I') +d(y) < d(¢) and, since from Definition 20 we have that /’ > [ implies
level(I') > level(1), we conclude d' (@, y) < d' (@ y) < d(¢). Furthermore, if = m, then by inductive
hypothesis, level(m) < d(¢).

Rule PARZ®) We have to consider two cases. First, suppose @,/ and @ (r)e(l’,r,0) are the premises
from which @, (r)&(l,r, 0) is derived. By inductive hypothesis we have d’' (@, (r)e{l',r,0)) = level(I') +
d((r)e(l',r,0)) < d(@). But since it is clear that d({r)e(l',r,0)) = d({r)e(l,r,0)), and I’ = I implies
level(l') > level(l), we conclude d'(@,(r)e(l,r,0)) < d(@). For the second case, suppose @[ and
@y (r)e(l',r,0) are the premises from which @y ,.6)&(l,1,0) is derived. On the one hand, we have
d'(@gpr g\ E(L,1,0)) = 1 +level(l') = d'(@u(r)e(l',8,)) < d(¢). On the other, since I = I implies
level(l') > level(l), we get level(e(l,r,0)) = 1 +1level(l) < 1 +level(!') < d(g).
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