
Modal Logics with Counting

Carlos Areces, Alexandre Denis, and Guillaume Hoffmann

INRIA Nancy Grand Est, Nancy, France,
{firstname.lastname}@loria.fr

Abstract. We present a modal language that includes explicit opera-
tors to count the number of elements that a model might include in the
extension of a formula, and we discuss how this logic has been previously
investigated under different guises. We show that the language is related
to graded modalities and to hybrid logics. We illustrate a possible appli-
cation of the language to the treatment of plural objects and queries in
natural language. We investigate the expressive power of this logic via
bisimulations, discuss the complexity of its satisfiability problem, define
a new reasoning task that retrieves the cardinality bound of the extension
of a given input formula, and provide an algorithm to solve it.

1 Counting, Modally

Suppose there are at least two apples (say, on the table, but we don’t care at
the moment where the apples are). First-order logic (FOL) with equality has
no problem expressing this fact1:

∃x.∃y.(x 6= y ∧Apple(x) ∧Apple(y)).

We can actually dispense with equality, if we introduce counting quanti-
fiers [1]

∃≥2x.Apple(x).

But suppose that we want to dispense with quantifiers instead, and count
in terms of a propositional (or a modal) language. The following representation
seems quite natural (arguably, even more natural than the first-order counter-
parts with or without counting quantifiers)

Apple ≥ 2.

In this paper we will investigate propositional and modal languages extended
with such counting operators. Let us be bold and introduce, already, the formal
syntax and semantics of the basic modal logic with counting MLC, the main
language we want to explore:

1 It is well known that FOL can express any finite counting quantifier.

Definition 1 (Syntax). Let Prop = {p1, p2, . . . } (the propositional symbols)
and Rel = {r1, r2, . . . } (the relational symbols) be disjoint, countable infinite
sets. The set Forms of formulas of MLC over signature 〈Prop,Rel〉 is defined as:

Forms ::= ⊥ | p | ¬ϕ | (ϕ1 ∧ ϕ2) | 〈r〉ϕ | (ϕ ≥ n) | (ϕ ≤ n),

for p ∈ Prop, r ∈ Rel, ϕ,ϕ1, ϕ2 ∈ Forms and n a natural number. Other Boolean
and modal operators are defined as usual, and we define (ϕ = n) as (ϕ ≥ n)∧(ϕ ≤
n), (ϕ > n) as (ϕ ≥ (n+1)) and (ϕ < n) as (ϕ ≤ (n−1)) if n > 0 or ⊥ otherwise.

We will call PLC the “propositional fragment,” i.e., the fragment obtained
by dropping 〈r〉ϕ. Let us now introduce the semantics.

Definition 2 (Semantics). Given a signature S = 〈Prop,Rel〉, a model for
S is a tuple 〈W, (Rr)r∈Rel, V 〉, satisfying the following conditions: (i) W 6= ∅
(elements in W are called states); (ii) each Rr is a binary relation on W (usually
called accessibility relations); (iii) V : Prop→ 2W is a labeling function.

Given the model M = 〈W, (Rr)r∈Rel, V 〉 and w ∈ W , the semantics for the
different operators is defined as follows:

M, w |= p ⇐⇒ w ∈ V (p), p ∈ Prop
M, w |= ¬ϕ ⇐⇒ M, w 6|= ϕ
M, w |= ϕ ∧ ψ ⇐⇒ M, w |= ϕ and M, w |= ψ
M, w |= 〈r〉ϕ ⇐⇒ there is w′ such that Rr(w,w

′) and M, w′ |= ϕ
M, w |= (ϕ ≥ n) ⇐⇒ |{w | M, w |= ϕ}| ≥ n
M, w |= (ϕ ≤ n) ⇐⇒ |{w | M, w |= ϕ}| ≤ n.

We will say that a formula ϕ is satisfiable, if there is a model M and a state w
in its domain such that M, w |= ϕ. For a set of formulas Γ ∪ {ϕ} we say that
Γ |= ϕ if and only if for any model M and any w in its domain M, w |= Γ
implies M, w |= ϕ (this relation is sometimes called local entailment). The
extension ||ϕ||M of a formula ϕ in a model M is the set {w | M, w |= ϕ}, and
the theory of w in M, notation ThM(w), is the set {ϕ | M, w |= ϕ}. When
the model M is clear from context we will drop the super-indexes. We will write

M, w ≡MLC M′, w′ if ThM(w) = ThM
′
(w′).

It should be clear from Definitions 1 and 2 that MLC is indeed the basic
modal logic ML [2] extended with the counting operators. We will be mainly
discussing extensions of ML for simplicity. We could have naturally added the
counting operators to any modal logic, e.g., temporal logic with counting.

TheMLC language and, in particular, its sublanguage PLC have been inves-
tigated under different guises. PLC is introduced as the logic S5n by Fine in [3]
where the, by now well studied, notion of graded modalities was introduced. The
semantic definition of the graded modality 〈r〉nϕ is given by the condition

M, w |= 〈r〉nϕ ⇐⇒ |{w′ | Rr(w,w′) and M, w′ |= ϕ}| ≥ n.

S5n is the logic obtained when the 〈r〉n operator is restricted to models
where Rr is interpreted as an equivalence relation. Now, if Rr is the universal

relation, then 〈r〉nϕ is trivially equivalent to (ϕ ≥ n). But a well known result
(see, e.g. [2]) establishes that the modal logic of the universal relation coincides
with the modal logic obtained when we only require the accessibility relation to
be an equivalence relation. The main contribution of [3] is to provide sound and
complete axiomatizations for these languages. The original results of Fine were
extended by van der Hoek and de Rijke in [4, 5]. In addition to providing further
axiomatizations, investigating normal forms, and establishing the complexity of
the satisfiability problem for different logics with graded modalities, the authors
propose these languages as a modal framework where some ideas from the Theory
of Generalized Quantifiers [6] could be investigated by means of modal tools.

The relation betweenMLC and graded modalities was also discovered in the
field of description logics. In this area, graded modalities are called cardinality
restrictions and Baader et al. investigate in [7] concept cardinality restrictions
which coincide exactly with the counting operators we defined. Interestingly,
they decide to add concept cardinality restrictions not as operators of the con-
cept language, but as a more expressive kind of terminological axioms, and they
remark that they can express classical terminological axioms of the form ϕ v ψ.
ϕ v ψ is satisfied in the model if the interpretation of ϕ is a subset of the inter-
pretation of ψ, and indeed this is the case exactly when ((ϕ∧¬ψ) ≤ 0). The main
contribution of [7] is the definition of sound, complete and terminating tableaux
calculus for these languages. A detailed complexity analysis of the satisfiability
problem for the language and an optimal tableaux calculus is given in [8].

Another way of explaining why counting operators can express terminological
axioms is realizing that they can express the universal modality Aϕ [9]:

M, w |= Aϕ ⇐⇒ for all w′,M, w′ |= ϕ.

Aϕ is equivalent to ((¬ϕ) ≤ 0), and ϕ v ψ is equivalent to A(ϕ → ψ). Ac-
tually, counting modalities can also express nominals (i.e., special propositional
symbol whose interpretations are restricted to singleton subsets of the domain)
by just stating (p = 1) for p a propositional symbol, and hence they can be
considered also as hybrid logics [10].

In this article, we provide new results about the MLC language. Our first
contribution is conceptual, rather than technical, and it can be simple put as
follows. The counting operators (ϕ ≥ n) and (ϕ ≤ n) are interesting on their own,
independently of their relation with graded modalities. They are global operators
(with a behavior similar to the universal modality or satisfiability operators), and
they can be naturally combined with local operators (as is commonly done in
hybrid languages). They are also modular, and they can naturally be added to
any modal language. In a slogan: counting operators are the modal counterpart
of first-order counting quantifiers.

In Section 2 we show howMLC can be used as representation language in a
natural language application modeling queries including plurals. In Section 3 we
will investigate the expressive power of MLC using a suitable notion of bisimu-
lation. In Section 4 we first discuss the complexity of the satisfiability problem,
drawing from previously known results, we then introduce a new reasoning task
and devise an algorithm to solve it.

2 Representing Plurals in Natural Language

We discuss here a possible representation of plurals and references in MLC,
intended to be used in natural language processing tasks such as reference res-
olution or generation as is done in, e.g., [11]. The idea is to represent the infor-
mation introduced in a discourse as a set ofMLC formulas Γ , and being able to
express and answer queries of the form “how many of a certain kind of objects
are there?” in this context2.

As we saw in the previous section,MLC enables us to assert the cardinality
of a proposition in the model. For example, Γ = {(Apple∧Red) = 2} represents
“there are two red apples”, and the query “how many (Apple ∧ Red)?” should
return “2”. But suppose that we want to refer to “two red apples” (i.e., we
don’t know how many red apples are there in total, but we want to refer to
two of them). For the representation of this kind of reference we need to be
able to name the referred group of object by, for example, introducing a new
propositional symbol a1 and adding to Γ the formula3:

“two red apples”: (a1 = 2) ∧ (a1 v (Apple ∧Red))

In this case, a query “how many (Apple ∧ Red)?” cannot be answered (i.e.,
is undefined) since the total number of apples in the model is not known. But
the query “how many a1?” should return “2.”

If now we add that there are also two green apples and want to refer to that
group, we need to introduce another propositional symbol a2 and add to Γ :

“two green apples”: (a2 = 2) ∧ (a2 v (Apple ∧Green))

Now, the number of apples that are in the group formed by a1 and a2 (i.e., a1∨
a2) is also undefined because nothing prevents those two sets from overlapping.
If we explicitly say that the group are disjoint (a1 v ¬a2) or that the colors are
mutually exclusive (Green v ¬Red) for that we should be able to answer “4”.

Suppose that now we learn that “three of the apples are rotten.” This refer-
ence creates a new group containing all the apples mentioned up to now:

(a3 v (a1 ∨ a2)) ∧ ((a1 ∨ a2) v a3)

And then assert that three of them are rotten by adding to Γ (a3∧Rotten) =
3). If we further discover that all the red apples are rotten (a1 v Rotten),
querying for “how many green apples are rotten,” i.e., “how many (a2∧Rotten)”
will returns “1”.

In Section 4 we introduce the inference task of counting that corresponds to
the finite cardinality queries we just discussed. But first, in the next section, we
investigate in detail the expressive power of MLC.
2 This representation does not aim to solve all the issues concerning the use of plurals in

natural language (e.g., the distributive versus collective readings of certain adjectives
when applied to sets of objects), which are known to be difficult to model [12]. For
further details see, for example, [13].

3 Remember that ϕ v ψ as a short hand for A(ϕ→ ψ) or, equivalently, (ϕ∧¬ψ) ≤ 0.

3 The Expressive Power of MLC

To get more familiar with the language, let us start with some examples of what
can be expressed inMLC. We can, for example, fix the size of the model to any
finite cardinality by setting

(> = n)

for n a natural number. The formula also shows that, if numbers are coded in
binary, then neither MLC nor PLC has the polysize model property.

Proposition 1. If numbers are coded in binary, then there are formulas in PLC
(and hence also in MLC) whose only models are exponentially larger.

Notice that counting operators can be nested. For example ((p ≥ 1) ≥ 1)
is a well formed formula, which it is actually equivalent to (p ≥ 1). But, as
it is discussed in [4], every formula in MLC is equivalent to a formula where
each counting operators appears under the scope of neither modal nor counting
operators. The proof uses the fact that for any counting subformula σ appearing
in a formula ϕ we have that the following is valid

ϕ[σ]↔ (σ → ϕ[σ/>]) ∧ (¬σ → ϕ[σ/⊥])

Other operators with a global semantics, like the universal modality A or sat-
isfiability operators @i, have the same property. Notice though, that the formula
we obtain after extracting all counting operators can be exponentially larger. If
we only require equi-satisfiability (and not equivalence), we can use the method
of [14] to obtain a formula which is only polynomially larger. We will return to
this issue in Section 4.

As we mentioned in the introduction, the hybrid logic H(A) (the basic modal
logic extended with nominals and the universal modality [10]) is a sublogic of
MLC, as the language can express nominals and the universal modality. It can
even express the difference modality Dϕ [15] with semantics

M, w |= Dϕ ⇐⇒ there is w′ 6= w and M, w′ |= ϕ

as Dϕ is equivalent to (ϕ → (ϕ ≥ 2)) ∧ (¬ϕ → (ϕ ≥ 1)). On the other hand,
the expressive power of counting and graded modalities is incomparable. We will
establish this in Theorem 3 using a suitable notion of bisimulation forMLC that
we now introduce

Definition 3 (Bisimulation). A bisimulation between two models M = 〈W,
(Rr)r∈Rel, V 〉 and M′ = 〈W ′, (R′r)r∈Rel, V

′〉 is a non-empty binary relation E
between their domains (that is, E ⊆W×W ′) such that whenever wEw′ we have:

Atomic harmony: w and w′ satisfy the same propositional symbols.
Zig: if Rrwv then there exists a point v′ ∈W ′ such that vEv′ and R′rw

′v′.
Zag: if R′rw

′v′ then there exists a point v ∈W such that vEv′ and Rrwv.
Bijectivity: E contains a bijection between W and W ′.

For two models M and M′ and two elements w and w′ in their respective
domains, we write M, w′ -M′, w′ if there exists a bisimulation between M, w′

and M′, w′ linking w and w′.

Theorem 1. If M, w -M′, w′ then M, w and M′, w′ satisfy the same formu-
las of MLC.

Proof. Assume there is a bisimulation E betweenM andM′. Because of Atomic
harmony, Zig and Zag, we now that E preserves all formulas of the basic modal
language [2]. We only need to consider the counting operators.

Suppose then that ϕ = (ψ ≥ n) and let f be one bijection that by defini-
tion is contained in the bisimulation linking M and M′. Assume that M, w |=
(ψ ≥ n). By inductive hypothesis f(||ψ||M) ⊆ ||ψM′ || and because f is a injec-
tive |f(||ψ||M)| ≥ n, hence M′, w′ |= (ψ ≥ n). For the other direction, assume
M′, w′ |= (ψ ≥ n). Because f is a bijection we can consider f−1(||ψ||M′

) which
has size greater than n , and by inductive hypothesis we know that it is a subset
of ||ψ||M. Hence M, w |= (ψ ≥ n). The case for ϕ = (ψ ≤ n) is similar.

As usual, the converse is not necessarily true but it holds on finite models.

Theorem 2. Let M = 〈W,R, V 〉 and M′ = 〈W ′, R′, V ′〉 be two finite models
and (w,w′) ∈W ×W ′, M, w -M′, w′ if and only if M, w ≡MLC M′, w′.

Proof. The implication from left to right is given by Theorem 1. For the other
implication, we have to prove that ≡MLC is a bisimulation between M and M′
that links w and w′. Atomic harmony, Zig and Zag are proved in the standard
way (see [2]). To prove that ≡MLC contains a bijection reason as follows.

Consider every pair of subsets (C,C ′), C ⊆ W , C ′ ⊆ W ′ such that for all
(a, b) ∈ C×C ′,M, a ≡MLC M′, b. There is at least one such pair by hypothesis.
Enumerate these pairs as (C1, C

′
1), . . . , (Cn, C

′
n) (as the model is finite there is

only a finite number of them), and let Σ1, . . . , Σn be such that Σi = Th(a) for
some a ∈ Ci∪C ′i (by construction all elements in Ci∪C ′i satisfy the same formulas
ofMLC). Now choose for each i, ϕi ∈ Σi such that for all j 6= i, ϕi 6∈ Σj . Notice

that |Ci| = |||ϕi||M| and that |C ′i| = |||ϕi||M
′ |, we want to prove that |Ci| = |C ′i|.

But by hypothesis M, w ≡MLC M′, w′, and then M, w |= ϕi = n if and only if
M′, w′ |= ϕi = n.

As Ci and C ′i have the same cardinality we can define an injective function
f :
⋃
Ci →

⋃
C ′i, such that for a ∈ Ci, f(a) ∈ C ′i. It only rests to prove that f

is total and surjective.
Suppose there is a ∈ W such that a 6∈

⋃
Ci, then there is no element a′

in W ′ such that M, a ≡MLC M′, a′. For each a′i ∈ W ′, let ϕi be a formula
such that ϕi ∈ Th(a) but ϕi 6∈ Th(a′). But then M, w |= (

∧
ϕi ≥ 1) while

M, w′ 6|= (
∧
ϕi ≥ 1) contradicting hypothesis. In a similar way we can prove

that f is surjective.

Notice that MLC-bisimulations are not isomorphisms. The following two
models, for example, are MLC-bisimilar but not isomorphic.

M M′

M andM′ can be differentiated by the first order sentences ∃x.∀y.(¬R(x, y)∧
¬R(y, x)). But there is noMLC formula which is globally true in one model but
false in the other. On the other hand, [6] proves that every sentence of first-order
logic with equality and only monadic propositional symbols is equivalent to the
translation of a formula in PLC.

We now return to the comparison of MLC and graded modalities.

Theorem 3. The expressive power of counting modalities and graded modalities
is incomparable (when interpreted on the set of all possible models).

Proof. Consider the following two modelsM andM′. It is not difficult to verify
that the dotted arrows defines a MLC-bisimulation.

w

M

w′

M′

M, w 6|= 〈r〉2> while M′, w′ |= 〈r〉2> while no formula of MLC can differ-
entiate w and w′4. For the other direction, just consider a model with one state
and another model with two states. Clearly, the models cannot be distinguished
using graded modalities (as they can only count the number of successors) but
the counting forma formula (> ≤ 1) differentiates them.

4 Inference in MLC

The complexity of the satisfiability problem forMLC and PLC have been studied
in the literature. As we mention in Section 3, when dealing with complexity
we should take care of whether numbers are coded in unary or binary. Let us
call Lu and Lb the unary and binary coding, respectively. Then, the previously
established results are as follows.

4 The proof goes through using the same models even if we add past operators to the
language, as the bisimulation shown also satisfies the standard conditions Zig−1 and
Zag−1 which preserve past operators [2].

Theorem 4. 1. PLCu-SAT is NP-complete [5].
2. MLCu-SAT is ExpTime-complete [16, 8].
3. PLCb-SAT is NP-hard and in PSpace [4].
4. MLCb-SAT is ExpTime-hard and in 2-NExpTime [8].

Proof. Hardness in all cases is clear, we only comment on the upper bounds.
The proof of 1) is via the polysize model property. The proof of 2) is by a linear
satisfiability preserving translation into H(A) as we will show below. The proof
of 3) is by a direct algorithm that solves satisfiability. The proof of 4) is by a
linear satisfiability preserving translation into C2, first order logic with only two
variables and counting quantifiers.

We will not deal with the satisfiability problem in this paper, instead we will
introduce the following inference task “exactly how many ϕ states are implied
by the theory Γ?” Formally

Definition 4. Let Γ ∪ {ϕ} be a finite set of formulas in MLC, we define the
function |ϕ| in Γ as follows

|ϕ| in Γ =

{
n if Γ |= ϕ = n and Γ consistent
undefined otherwise

We will show an algorithm that solves this task using any model building
algorithm. In particular we will show how model building algorithms for H(A)
like those proposed in [17, 18] can be used. We introduce first the notion of
negation normal form for MLC.

Definition 5. Given ϕ ∈ Forms the negation normal form of ϕ is obtained
applying the following rules

¬¬ϕ; ϕ ¬(ϕ ≥ 0) ; ⊥
¬(ϕ1 ∧ ϕ2) ; (¬ϕ1) ∨ (¬ϕ2) ¬(ϕ ≥ n) ; ϕ ≤ (n− 1) for n > 0
¬(ϕ1 ∨ ϕ2) ; (¬ϕ1) ∧ (¬ϕ2) ¬(ϕ ≤ n) ; ϕ ≥ (n+ 1)

¬〈r〉ϕ; [r]¬ϕ
¬[r]ϕ; 〈r〉¬ϕ

As we mentioned in Section 3, every formula in MLC is equivalent to a for-
mula where each counting operators has been extracted and it appears under the
scope of neither modal nor counting operators. EachMLC formula is equivalent
to its extracted, negation normal form. LetMLCen be set of extracted formulas
of MLC in negation normal form. We now present a translation from MLCen
to H(A) formulas. Trπ works by traversing formulas and adding new nominals
so that counting claims are preserved (π is used to ensure that we always intro-
duce new nominals, initially π is set to the empty string; i:ϕ is a satisfiability
statement defined in H(A) as A(¬i ∨ ϕ)).

Trπ(p) = p Trπ(ϕ ∧ ψ) = Trπ0(ϕ) ∧ Trπ1(ψ)
Trπ(¬ϕ) = ¬Trπ(ϕ) Trπ(ϕ ∨ ψ) = Trπ0(ϕ) ∨ Trπ1(ψ)

Trπ(〈r〉ϕ) = 〈r〉Trπ(ϕ) Trπ(ϕ ≥ n) = (
∧

1≤i<j≤n x
π
i :¬xj) ∧ (

∧
1≤i≤n x

π
i :ϕ)

Trπ([r]ϕ) = [r]Trπ(ϕ) Trπ(ϕ ≤ n) = A(¬ϕ ∨
∨

1≤i≤n x
π
i)

in particular Trπ(ϕ ≥ 0) = > and Trπ(ϕ ≤ 0) = A(¬ϕ).

Let us call ϕHπ = Trπ(nnf(ext(ϕ))) the formula obtained from the MLC
formula ϕ by first extracting counting operators, transforming into negation
normal form, and applying Trπ; we write ϕH when π is the empty prefix.

Suppose now thatM is a model satisfying ϕH returned by the model builder.
We will show that counting has not been affected by the translation.

Definition 6. We call a model M′ a naming extension of M if it is a conser-
vative extension of M for an extended language that only adds nominals.

Theorem 5. Let ϕ ∈ MLC, and π an arbitrary prefix. Then M, w |= ϕ if and
only if M′, w |= ϕHπ for M′ a naming extension of M.

Proof. We can disregard the extraction and negation normal form steps of the
transformation since they are equivalence preserving.

[⇒] The atomic, negation and modal connectors cases are immediate. For any
model M let us represent as M+N any naming extension of M where N is
the function that assigns nominals to elements of the domain of M. Assume
M, w |= ϕ1 ∧ ϕ2, i.e., M, w |= ϕ1 and M, w |= ϕ2. By induction hypothesis
M+N1, w |= ϕHπ0

1 andM+N2, w |= ϕHπ1
2 . AsN1 andN2 are defined on different

nominals we can obtain N = N1 ∪ N2 and we have M+N,w |= ϕHπ0
1 ∧ ϕHπ1

2 ,
and hence M+N,w |= (ϕ1 ∧ ϕ2)Hπ . The case for ϕ1 ∨ ϕ2 is handled similarly.

Assume M, w |= ϕ ≥ n, i.e., there exist n different states v1 to vn such that
for all 1 ≤ i ≤ n, M, vi |= ϕ. For any π, choose N =

⋃
1≤i≤n(xπi , vi) to obtain

M+N,w |= (
∧

1≤i<j≤n x
π
i :¬xπj) ∧ (

∧
1≤i≤n x

π
i :ϕ) as needed.

Now, assume M, w |= ϕ ≤ n. Let v1 to vm (m ≤ n) be all the states of
M satisfying ϕ. For any π, introduce n nominals xπ1 to xπn and a mapping N
such that for 1 ≤ i ≤ n there exists j, 1 ≤ j ≤ m such that (xπi , vj) ∈ N (two
nominals can be true in the same state). Then M+N, u |= ¬ϕ ∨

∨
1≤i≤n xi for

u an arbitrary state, and M+N,w |= ϕH.

[⇐] Let ϕ ∈MLC and π an arbitrary prefix, and M′ a naming extension of M
such that M′, w |= ϕHπ . If ϕ is a modal formula the implication is trivial.

Assume M′, w |= (ϕ ≥ n)Hπ . By definition M′, w |= (
∧

1≤i<j≤n x
π
i :¬xπj)∧

(
∧

1≤i≤n x
π
i :ϕ). Since xπ1 to xπn are all true at different states M, w |= ϕ ≥ n.

Assume M′, w |= (ϕ ≤ n)H(π), i.e., M′, w |= A(¬ϕ ∨
∨

1≤i≤n x
π
i). Then an

arbitrary u of M′, M′, u |= ¬ϕ ∨
∨

1≤i<n x
π
i . Hence, either M′, u |= ¬ϕ or

M′, u |= xπi for a given i ∈ [[1..m]], ie {u} = V (xπi) for i ∈ [[1..m]]. So there can
not be more than n distinct states satisfying ϕ in M′ and M, w |= ϕ ≤ n. ut

Thus we can say that for a givenMLC formula ϕ, a model of ϕH is a model
of ϕ. We can now present the algorithm that carries out the reasoning task of
counting. Given P a decision procedure for H(A), Γ a finite set ofMLC formulas
and ϕ a MLC formula:

1: if P (ΓH) returns UNSAT then
2: return ‘undefined’
3: else
4: let n = |||ϕ||M| for M a model returned by P
5: if P ((Γ ∧¬(ϕ = n))H) returns UNSAT then
6: return n
7: else
8: return ‘undefined’
9: end if

10: end if

Intuitively, our counting algorithm uses a model of the theory Γ to have a
candidate answer n to the question “how many ϕ are implied by Γ?”. We then
test satisfiability of (Γ ∧ ¬(ϕ = n))H to get the answer.

Theorem 6. The algorithm above computes |ϕ| in Γ .

5 Conclusions

In this paper we investigated various aspects of modal logics containing the
counting quantifiers (ϕ ≥ n) and (ϕ ≤ n), motivated by the natural language
application of representing and querying plural objects in a discourse.

These quantifiers have been introduced before in different areas (generalized
quantifiers, modal logics, and description logics), and some of their previously
known properties have been outlined (existence of extracted normal forms, com-
plexity of the satisfiability problem, etc.). In this article we investigate expressive
power and inference.

With respect to the former, we introduce the notion of MLC bisimulations,
prove that it preservesMLC formulas and that it characterizesMLC-equivalent
finite models. A natural next step would be to investigate “van Benthem char-
acterization” results [19]. I.e., to verify whether any formula of the first-order
language with equality (in the appropriate signature) invariant under MLC
bisimulations is equivalent to the translation of an MLC formula. We strongly
conjecture that this is the case.

With respect to inference, we defined a new task that given a theory Γ and
a formula ϕ returns the cardinality of the extension of ϕ in any model of Γ if
such cardinality is fixed to be a finite natural number. We show that this task
can be solved in terms of a calculus for the hybrid logic H(A) that can return
a model for any satisfiable formula (e.g., tableaux based calculi as those defined
by [17, 18]). The proposed algorithm involves a translation into H(A) that might
return an exponentially larger formula even when numbers are coded in unary.
We conjecture that the polynomial satisfiability preserving translation of [14]
could be used instead (but assuming, again, that numbers are coded in unary).
The complexity of the problem when numbers are coded in binary is open. As we
mentioned in Section 4, the complexity of satisfiability forMLC and PLC when
numbers are coded in unary has been established [5, 16, 8]. On the other hand,
to our knowledge the problem is still open when numbers are given in binary.

References

1. Mostowski, A.: On a generalization of quantifiers. Fundamenta Mathematicae 44
(1957) 12–36

2. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University
Press (2001)

3. Fine, K.: In so many possible worlds. Notre Dame Journal of Formal Logics 13(4)
(1972) 516–520

4. van der Hoek, W., de Rijke, M.: Generalized quantifiers and modal logic. Journal
of Logic, Language and Information 2(1) (1993) 19–58

5. van der Hoek, W., de Rijke, M.: Counting objects. Journal of Logic and Compu-
tation 5(3) (1995) 325–345

6. Westerst̊ahl, D.: Quantifiers in formal and natural languages. In Gabbay, D.,
Guenthner, F., eds.: Handbook of Philosophical Logic, Vol. IV. Dordrecht: Reidel
(1989) 1–1331

7. Baader, F., Buchheit, M., Hollunder, B.: Cardinality restrictions on concepts.
Artificial Intelligence 88(1–2) (1996) 195–213

8. Tobies, S.: Complexity results and practical algorithms for logics in Knowledge
Representation. PhD thesis, LuFG Theoretical Computer Science, RWTH-Aachen
(2001)

9. Goranko, V., Passy, S.: Using the universal modality: Gains and questions. Journal
of Logic and Computation 2(1) (1992) 5–30

10. Areces, C., ten Cate, B.: Hybrid logics. In Blackburn, P., Wolter, F., van Benthem,
J., eds.: Handbook of Modal Logics. Elsevier (2006) 821–868

11. Varges, S., Deemter, K.V.: Generating referring expressions containing quantifiers.
In: In Proceedings of the 6th International Worskhop on Computational Semantics.
(2005)

12. Asher, N., Wang, L.: Ambiguity and anaphora with plurals in discourse. In: Pro-
ceedings of: Semantics and Linguistic Theory 13 (SALT 13), University of Wash-
ington, Seattle, Washington (2003)

13. Franconi, E.: A treatment of plurals and plural quantifications based on a theory
of collections. In: Minds and Machines. (1993) 453–474

14. Areces, C., Goŕın, D.: Coinductive models and normal forms for modal logics.
Logic Journal of the IGPL (2010) To appear.

15. de Rijke, M.: The modal logic of inequality. The Journal of Symbolic Logic 57(2)
(1992) 566–584

16. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid
temporal logics. Logic Journal of the IGPL 8(5) (2000) 653–679

17. Bolander, T., Blackburn, P.: Termination for hybrid tableaus. Journal of Logic
and Computation 17(3) (2007) 517–554

18. Kaminski, M., Schneider, S., Smolka, G.: Terminating tableaux for graded hybrid
logic with global modalities and role hierarchies. In Giese, M., Waaler, A., eds.:
TABLEAUX 2009. Volume 5607 of LNCS (LNAI)., Springer (2009) 235–249

19. van Benthem, J.: Modal correspondence theory. In Gabbay, D., Guenthner, F.,
eds.: Handbook of Philosophical Logic. Volume 2. Springer (1984) 167–247

