
PROGR AMMING L ANGUAGES/SPARK

Learning Spark

ISBN: 978-1-449-35862-4

US $39.99 CAN $ 45.99

“	Learning Spark	is	at	the	
top	of	my	list	for	anyone	
needing	a	gentle	guide	
to	the	most	popular	
framework	for	building	
big	data	applications.”

—Ben Lorica
Chief Data Scientist, O’Reilly Media

Twitter: @oreillymedia
facebook.com/oreilly

Data in all domains is getting bigger. How can you work with it efficiently?
This book introduces Apache Spark, the open source cluster computing
system that makes data analytics fast to write and fast to run. With Spark,
you can tackle big datasets quickly through simple APIs in Python, Java,
and Scala.

Written by the developers of Spark, this book will have data scientists and
engineers up and running in no time. You’ll learn how to express parallel
jobs with just a few lines of code, and cover applications from simple batch
jobs to stream processing and machine learning.

 ■ Quickly dive into Spark capabilities such as distributed
datasets, in-memory caching, and the interactive shell

 ■ Leverage Spark’s powerful built-in libraries, including Spark
SQL, Spark Streaming, and MLlib

 ■ Use one programming paradigm instead of mixing and
matching tools like Hive, Hadoop, Mahout, and Storm

 ■ Learn how to deploy interactive, batch, and streaming
applications

 ■ Connect to data sources including HDFS, Hive, JSON, and S3

 ■ Master advanced topics like data partitioning and shared
variables

Holden Karau, a software development engineer at Databricks, is active in open
source and the author of Fast Data Processing with Spark (Packt Publishing).

Andy Konwinski, co-founder of Databricks, is a committer on Apache Spark and
co-creator of the Apache Mesos project.

Patrick Wendell is a co-founder of Databricks and a committer on Apache Spark.
He also maintains several subsystems of Spark’s core engine.

Matei Zaharia, CTO at Databricks, is the creator of Apache Spark and serves as
its Vice President at Apache.

Learning Spark
Karau, Konw

inski,
W

endell &
 Zaharia

Holden Karau, Andy Konwinski,
Patrick Wendell & Matei Zaharia

 Learning

 Spark
LIGHTNING-FAST DATA ANALYSIS

PROGR AMMING L ANGUAGES/SPARK

Learning Spark

ISBN: 978-1-449-35862-4

US $39.99 CAN $45.99

“	Learning Spark	is	at	the	
top	of	my	list	for	anyone	
needing	a	gentle	guide	
to	the	most	popular	
framework	for	building	
big	data	applications.”

—Ben Lorica
Chief Data Scientist, O’Reilly Media

Twitter: @oreillymedia
facebook.com/oreilly

Data in all domains is getting bigger. How can you work with it efficiently?
This book introduces Apache Spark, the open source cluster computing
system that makes data analytics fast to write and fast to run. With Spark,
you can tackle big datasets quickly through simple APIs in Python, Java,
and Scala.

Written by the developers of Spark, this book will have data scientists and
engineers up and running in no time. You’ll learn how to express parallel
jobs with just a few lines of code, and cover applications from simple batch
jobs to stream processing and machine learning.

 ■ Quickly dive into Spark capabilities such as distributed
datasets, in-memory caching, and the interactive shell

 ■ Leverage Spark’s powerful built-in libraries, including Spark
SQL, Spark Streaming, and MLlib

 ■ Use one programming paradigm instead of mixing and
matching tools like Hive, Hadoop, Mahout, and Storm

 ■ Learn how to deploy interactive, batch, and streaming
applications

 ■ Connect to data sources including HDFS, Hive, JSON, and S3

 ■ Master advanced topics like data partitioning and shared
variables

Holden Karau, a software development engineer at Databricks, is active in open
source and the author of Fast Data Processing with Spark (Packt Publishing).

Andy Konwinski, co-founder of Databricks, is a committer on Apache Spark and
co-creator of the Apache Mesos project.

Patrick Wendell is a co-founder of Databricks and a committer on Apache Spark.
He also maintains several subsystems of Spark’s core engine.

Matei Zaharia, CTO at Databricks, is the creator of Apache Spark and serves as
its Vice President at Apache.

Learning Spark
Karau, Konw

inski,
W

endell &
 Zaharia

Holden Karau, Andy Konwinski,
Patrick Wendell & Matei Zaharia

 Learning

 Spark
LIGHTNING-FAST DATA ANALYSIS

Holden Karau, Andy Konwinski, Patrick Wendell, and
Matei Zaharia

Learning Spark

978-1-449-35862-4

[LSI]

Learning Spark
by Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia

Copyright © 2015 Databricks. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Ann Spencer and Marie Beaugureau
Production Editor: Kara Ebrahim
Copyeditor: Rachel Monaghan

Proofreader: Charles Roumeliotis
Indexer: Ellen Troutman
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

February 2015: First Edition

Revision History for the First Edition
2015-01-26: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781449358624 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Spark, the cover image of a
small-spotted catshark, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781449358624

Table of Contents

Foreword. ix

Preface. xi

1. Introduction to Data Analysis with Spark. 1
What Is Apache Spark? 1
A Unified Stack 2

Spark Core 3
Spark SQL 3
Spark Streaming 3
MLlib 4
GraphX 4
Cluster Managers 4

Who Uses Spark, and for What? 4
Data Science Tasks 5
Data Processing Applications 6

A Brief History of Spark 6
Spark Versions and Releases 7
Storage Layers for Spark 7

2. Downloading Spark and Getting Started. 9
Downloading Spark 9
Introduction to Spark’s Python and Scala Shells 11
Introduction to Core Spark Concepts 14
Standalone Applications 17

Initializing a SparkContext 17
Building Standalone Applications 18

Conclusion 21

iii

3. Programming with RDDs. 23
RDD Basics 23
Creating RDDs 25
RDD Operations 26

Transformations 27
Actions 28
Lazy Evaluation 29

Passing Functions to Spark 30
Python 30
Scala 31
Java 32

Common Transformations and Actions 34
Basic RDDs 34
Converting Between RDD Types 42

Persistence (Caching) 44
Conclusion 46

4. Working with Key/Value Pairs. 47
Motivation 47
Creating Pair RDDs 48
Transformations on Pair RDDs 49

Aggregations 51
Grouping Data 57
Joins 58
Sorting Data 59

Actions Available on Pair RDDs 60
Data Partitioning (Advanced) 61

Determining an RDD’s Partitioner 64
Operations That Benefit from Partitioning 65
Operations That Affect Partitioning 65
Example: PageRank 66
Custom Partitioners 68

Conclusion 70

5. Loading and Saving Your Data. 71
Motivation 71
File Formats 72

Text Files 73
JSON 74
Comma-Separated Values and Tab-Separated Values 77
SequenceFiles 80
Object Files 83

iv | Table of Contents

Hadoop Input and Output Formats 84
File Compression 87

Filesystems 89
Local/“Regular” FS 89
Amazon S3 90
HDFS 90

Structured Data with Spark SQL 91
Apache Hive 91
JSON 92

Databases 93
Java Database Connectivity 93
Cassandra 94
HBase 96
Elasticsearch 97

Conclusion 98

6. Advanced Spark Programming. 99
Introduction 99
Accumulators 100

Accumulators and Fault Tolerance 103
Custom Accumulators 103

Broadcast Variables 104
Optimizing Broadcasts 106

Working on a Per-Partition Basis 107
Piping to External Programs 109
Numeric RDD Operations 113
Conclusion 115

7. Running on a Cluster. 117
Introduction 117
Spark Runtime Architecture 117

The Driver 118
Executors 119
Cluster Manager 119
Launching a Program 120
Summary 120

Deploying Applications with spark-submit 121
Packaging Your Code and Dependencies 123

A Java Spark Application Built with Maven 124
A Scala Spark Application Built with sbt 126
Dependency Conflicts 128

Scheduling Within and Between Spark Applications 128

Table of Contents | v

Cluster Managers 129
Standalone Cluster Manager 129
Hadoop YARN 133
Apache Mesos 134
Amazon EC2 135

Which Cluster Manager to Use? 138
Conclusion 139

8. Tuning and Debugging Spark. 141
Configuring Spark with SparkConf 141
Components of Execution: Jobs, Tasks, and Stages 145
Finding Information 150

Spark Web UI 150
Driver and Executor Logs 154

Key Performance Considerations 155
Level of Parallelism 155
Serialization Format 156
Memory Management 157
Hardware Provisioning 158

Conclusion 160

9. Spark SQL. 161
Linking with Spark SQL 162
Using Spark SQL in Applications 164

Initializing Spark SQL 164
Basic Query Example 165
SchemaRDDs 166
Caching 169

Loading and Saving Data 170
Apache Hive 170
Parquet 171
JSON 172
From RDDs 174

JDBC/ODBC Server 175
Working with Beeline 177
Long-Lived Tables and Queries 178

User-Defined Functions 178
Spark SQL UDFs 178
Hive UDFs 179

Spark SQL Performance 180
Performance Tuning Options 180

Conclusion 182

vi | Table of Contents

10. Spark Streaming. 183
A Simple Example 184
Architecture and Abstraction 186
Transformations 189

Stateless Transformations 190
Stateful Transformations 192

Output Operations 197
Input Sources 199

Core Sources 199
Additional Sources 200
Multiple Sources and Cluster Sizing 204

24/7 Operation 205
Checkpointing 205
Driver Fault Tolerance 206
Worker Fault Tolerance 207
Receiver Fault Tolerance 207
Processing Guarantees 208

Streaming UI 208
Performance Considerations 209

Batch and Window Sizes 209
Level of Parallelism 210
Garbage Collection and Memory Usage 210

Conclusion 211

11. Machine Learning with MLlib. 213
Overview 213
System Requirements 214
Machine Learning Basics 215

Example: Spam Classification 216
Data Types 218

Working with Vectors 219
Algorithms 220

Feature Extraction 221
Statistics 223
Classification and Regression 224
Clustering 229
Collaborative Filtering and Recommendation 230
Dimensionality Reduction 232
Model Evaluation 234

Tips and Performance Considerations 234
Preparing Features 234
Configuring Algorithms 235

Table of Contents | vii

Caching RDDs to Reuse 235
Recognizing Sparsity 235
Level of Parallelism 236

Pipeline API 236
Conclusion 237

Index. 239

viii | Table of Contents

Foreword

In a very short time, Apache Spark has emerged as the next generation big data pro‐
cessing engine, and is being applied throughout the industry faster than ever. Spark
improves over Hadoop MapReduce, which helped ignite the big data revolution, in
several key dimensions: it is much faster, much easier to use due to its rich APIs, and
it goes far beyond batch applications to support a variety of workloads, including
interactive queries, streaming, machine learning, and graph processing.

I have been privileged to be closely involved with the development of Spark all the
way from the drawing board to what has become the most active big data open
source project today, and one of the most active Apache projects! As such, I’m partic‐
ularly delighted to see Matei Zaharia, the creator of Spark, teaming up with other
longtime Spark developers Patrick Wendell, Andy Konwinski, and Holden Karau to
write this book.

With Spark’s rapid rise in popularity, a major concern has been lack of good refer‐
ence material. This book goes a long way to address this concern, with 11 chapters
and dozens of detailed examples designed for data scientists, students, and developers
looking to learn Spark. It is written to be approachable by readers with no back‐
ground in big data, making it a great place to start learning about the field in general.
I hope that many years from now, you and other readers will fondly remember this as
the book that introduced you to this exciting new field.

—Ion Stoica, CEO of Databricks and Co-director, AMPlab, UC Berkeley

ix

Preface

As parallel data analysis has grown common, practitioners in many fields have sought
easier tools for this task. Apache Spark has quickly emerged as one of the most popu‐
lar, extending and generalizing MapReduce. Spark offers three main benefits. First, it
is easy to use—you can develop applications on your laptop, using a high-level API
that lets you focus on the content of your computation. Second, Spark is fast, ena‐
bling interactive use and complex algorithms. And third, Spark is a general engine,
letting you combine multiple types of computations (e.g., SQL queries, text process‐
ing, and machine learning) that might previously have required different engines.
These features make Spark an excellent starting point to learn about Big Data in
general.

This introductory book is meant to get you up and running with Spark quickly.
You’ll learn how to download and run Spark on your laptop and use it interactively
to learn the API. Once there, we’ll cover the details of available operations and dis‐
tributed execution. Finally, you’ll get a tour of the higher-level libraries built into
Spark, including libraries for machine learning, stream processing, and SQL. We
hope that this book gives you the tools to quickly tackle data analysis problems,
whether you do so on one machine or hundreds.

Audience
This book targets data scientists and engineers. We chose these two groups because
they have the most to gain from using Spark to expand the scope of problems they
can solve. Spark’s rich collection of data-focused libraries (like MLlib) makes it easy
for data scientists to go beyond problems that fit on a single machine while using
their statistical background. Engineers, meanwhile, will learn how to write general-
purpose distributed programs in Spark and operate production applications. Engi‐
neers and data scientists will both learn different details from this book, but will both
be able to apply Spark to solve large distributed problems in their respective fields.

xi

Data scientists focus on answering questions or building models from data. They
often have a statistical or math background and some familiarity with tools like
Python, R, and SQL. We have made sure to include Python and, where relevant, SQL
examples for all our material, as well as an overview of the machine learning and
library in Spark. If you are a data scientist, we hope that after reading this book you
will be able to use the same mathematical approaches to solve problems, except much
faster and on a much larger scale.

The second group this book targets is software engineers who have some experience
with Java, Python, or another programming language. If you are an engineer, we
hope that this book will show you how to set up a Spark cluster, use the Spark shell,
and write Spark applications to solve parallel processing problems. If you are familiar
with Hadoop, you have a bit of a head start on figuring out how to interact with
HDFS and how to manage a cluster, but either way, we will cover basic distributed
execution concepts.

Regardless of whether you are a data scientist or engineer, to get the most out of this
book you should have some familiarity with one of Python, Java, Scala, or a similar
language. We assume that you already have a storage solution for your data and we
cover how to load and save data from many common ones, but not how to set them
up. If you don’t have experience with one of those languages, don’t worry: there are
excellent resources available to learn these. We call out some of the books available in
“Supporting Books” on page xii.

How This Book Is Organized
The chapters of this book are laid out in such a way that you should be able to go
through the material front to back. At the start of each chapter, we will mention
which sections we think are most relevant to data scientists and which sections we
think are most relevant for engineers. That said, we hope that all the material is acces‐
sible to readers of either background.

The first two chapters will get you started with getting a basic Spark installation on
your laptop and give you an idea of what you can accomplish with Spark. Once we’ve
got the motivation and setup out of the way, we will dive into the Spark shell, a very
useful tool for development and prototyping. Subsequent chapters then cover the
Spark programming interface in detail, how applications execute on a cluster, and
higher-level libraries available on Spark (such as Spark SQL and MLlib).

Supporting Books
If you are a data scientist and don’t have much experience with Python, the books
Learning Python and Head First Python (both O’Reilly) are excellent introductions. If

xii | Preface

http://shop.oreilly.com/product/0636920028154.do

you have some Python experience and want more, Dive into Python (Apress) is a
great book to help you get a deeper understanding of Python.

If you are an engineer and after reading this book you would like to expand your data
analysis skills, Machine Learning for Hackers and Doing Data Science are excellent
books (both O’Reilly).

This book is intended to be accessible to beginners. We do intend to release a deep-
dive follow-up for those looking to gain a more thorough understanding of Spark’s
internals.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element indicates a warning or caution.

Code Examples
All of the code examples found in this book are on GitHub. You can examine them
and check them out from https://github.com/databricks/learning-spark. Code exam‐
ples are provided in Java, Scala, and Python.

Preface | xiii

http://www.diveintopython.net/
https://github.com/databricks/learning-spark

Our Java examples are written to work with Java version 6 and
higher. Java 8 introduces a new syntax called lambdas that makes
writing inline functions much easier, which can simplify Spark
code. We have chosen not to take advantage of this syntax in most
of our examples, as most organizations are not yet using Java 8. If
you would like to try Java 8 syntax, you can see the Databricks blog
post on this topic. Some of the examples will also be ported to Java
8 and posted to the book’s GitHub site.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning Spark by Holden Karau,
Andy Konwinski, Patrick Wendell, and Matei Zaharia (O’Reilly). Copyright 2015
Databricks, 978-1-449-35862-4.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams,
Que, Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan

xiv | Preface

http://bit.ly/1ywZBs4
http://bit.ly/1ywZBs4
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For
more information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/learning-spark.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
The authors would like to thank the reviewers who offered feedback on this book:
Joseph Bradley, Dave Bridgeland, Chaz Chandler, Mick Davies, Sam DeHority, Vida
Ha, Andrew Gal, Michael Gregson, Jan Joeppen, Stephan Jou, Jeff Martinez, Josh
Mahonin, Andrew Or, Mike Patterson, Josh Rosen, Bruce Szalwinski, Xiangrui
Meng, and Reza Zadeh.

The authors would like to extend a special thanks to David Andrzejewski, David But‐
tler, Juliet Hougland, Marek Kolodziej, Taka Shinagawa, Deborah Siegel, Dr. Normen
Müller, Ali Ghodsi, and Sameer Farooqui. They provided detailed feedback on the
majority of the chapters and helped point out many significant improvements.

We would also like to thank the subject matter experts who took time to edit and
write parts of their own chapters. Tathagata Das worked with us on a very tight
schedule to finish Chapter 10. Tathagata went above and beyond with clarifying

Preface | xv

https://www.safaribooksonline.com/our-library/
http://bit.ly/learning-spark
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

examples, answering many questions, and improving the flow of the text in addition
to his technical contributions. Michael Armbrust helped us check the Spark SQL
chapter for correctness. Joseph Bradley provided the introductory example for MLlib
in Chapter 11. Reza Zadeh provided text and code examples for dimensionality
reduction. Xiangrui Meng, Joseph Bradley, and Reza Zadeh also provided editing and
technical feedback for the MLlib chapter.

xvi | Preface

CHAPTER 1

Introduction to Data Analysis with Spark

This chapter provides a high-level overview of what Apache Spark is. If you are
already familiar with Apache Spark and its components, feel free to jump ahead to
Chapter 2.

What Is Apache Spark?
Apache Spark is a cluster computing platform designed to be fast and general-
purpose.

On the speed side, Spark extends the popular MapReduce model to efficiently sup‐
port more types of computations, including interactive queries and stream process‐
ing. Speed is important in processing large datasets, as it means the difference
between exploring data interactively and waiting minutes or hours. One of the main
features Spark offers for speed is the ability to run computations in memory, but the
system is also more efficient than MapReduce for complex applications running on
disk.

On the generality side, Spark is designed to cover a wide range of workloads that pre‐
viously required separate distributed systems, including batch applications, iterative
algorithms, interactive queries, and streaming. By supporting these workloads in the
same engine, Spark makes it easy and inexpensive to combine different processing
types, which is often necessary in production data analysis pipelines. In addition, it
reduces the management burden of maintaining separate tools.

Spark is designed to be highly accessible, offering simple APIs in Python, Java, Scala,
and SQL, and rich built-in libraries. It also integrates closely with other Big Data
tools. In particular, Spark can run in Hadoop clusters and access any Hadoop data
source, including Cassandra.

1

A Unified Stack
The Spark project contains multiple closely integrated components. At its core, Spark
is a “computational engine” that is responsible for scheduling, distributing, and mon‐
itoring applications consisting of many computational tasks across many worker
machines, or a computing cluster. Because the core engine of Spark is both fast and
general-purpose, it powers multiple higher-level components specialized for various
workloads, such as SQL or machine learning. These components are designed to
interoperate closely, letting you combine them like libraries in a software project.

A philosophy of tight integration has several benefits. First, all libraries and higher-
level components in the stack benefit from improvements at the lower layers. For
example, when Spark’s core engine adds an optimization, SQL and machine learning
libraries automatically speed up as well. Second, the costs associated with running the
stack are minimized, because instead of running 5–10 independent software systems,
an organization needs to run only one. These costs include deployment, mainte‐
nance, testing, support, and others. This also means that each time a new component
is added to the Spark stack, every organization that uses Spark will immediately be
able to try this new component. This changes the cost of trying out a new type of data
analysis from downloading, deploying, and learning a new software project to
upgrading Spark.

Finally, one of the largest advantages of tight integration is the ability to build appli‐
cations that seamlessly combine different processing models. For example, in Spark
you can write one application that uses machine learning to classify data in real time
as it is ingested from streaming sources. Simultaneously, analysts can query the
resulting data, also in real time, via SQL (e.g., to join the data with unstructured log‐
files). In addition, more sophisticated data engineers and data scientists can access
the same data via the Python shell for ad hoc analysis. Others might access the data in
standalone batch applications. All the while, the IT team has to maintain only one
system.

Here we will briefly introduce each of Spark’s components, shown in Figure 1-1.

2 | Chapter 1: Introduction to Data Analysis with Spark

Figure 1-1. The Spark stack

Spark Core
Spark Core contains the basic functionality of Spark, including components for task
scheduling, memory management, fault recovery, interacting with storage systems,
and more. Spark Core is also home to the API that defines resilient distributed data‐
sets (RDDs), which are Spark’s main programming abstraction. RDDs represent a
collection of items distributed across many compute nodes that can be manipulated
in parallel. Spark Core provides many APIs for building and manipulating these
collections.

Spark SQL
Spark SQL is Spark’s package for working with structured data. It allows querying
data via SQL as well as the Apache Hive variant of SQL—called the Hive Query Lan‐
guage (HQL)—and it supports many sources of data, including Hive tables, Parquet,
and JSON. Beyond providing a SQL interface to Spark, Spark SQL allows developers
to intermix SQL queries with the programmatic data manipulations supported by
RDDs in Python, Java, and Scala, all within a single application, thus combining SQL
with complex analytics. This tight integration with the rich computing environment
provided by Spark makes Spark SQL unlike any other open source data warehouse
tool. Spark SQL was added to Spark in version 1.0.

Shark was an older SQL-on-Spark project out of the University of California, Berke‐
ley, that modified Apache Hive to run on Spark. It has now been replaced by Spark
SQL to provide better integration with the Spark engine and language APIs.

Spark Streaming
Spark Streaming is a Spark component that enables processing of live streams of data.
Examples of data streams include logfiles generated by production web servers, or
queues of messages containing status updates posted by users of a web service. Spark

A Unified Stack | 3

Streaming provides an API for manipulating data streams that closely matches the
Spark Core’s RDD API, making it easy for programmers to learn the project and
move between applications that manipulate data stored in memory, on disk, or arriv‐
ing in real time. Underneath its API, Spark Streaming was designed to provide the
same degree of fault tolerance, throughput, and scalability as Spark Core.

MLlib
Spark comes with a library containing common machine learning (ML) functionality,
called MLlib. MLlib provides multiple types of machine learning algorithms, includ‐
ing classification, regression, clustering, and collaborative filtering, as well as sup‐
porting functionality such as model evaluation and data import. It also provides
some lower-level ML primitives, including a generic gradient descent optimization
algorithm. All of these methods are designed to scale out across a cluster.

GraphX
GraphX is a library for manipulating graphs (e.g., a social network’s friend graph)
and performing graph-parallel computations. Like Spark Streaming and Spark SQL,
GraphX extends the Spark RDD API, allowing us to create a directed graph with arbi‐
trary properties attached to each vertex and edge. GraphX also provides various oper‐
ators for manipulating graphs (e.g., subgraph and mapVertices) and a library of
common graph algorithms (e.g., PageRank and triangle counting).

Cluster Managers
Under the hood, Spark is designed to efficiently scale up from one to many thousands
of compute nodes. To achieve this while maximizing flexibility, Spark can run over a
variety of cluster managers, including Hadoop YARN, Apache Mesos, and a simple
cluster manager included in Spark itself called the Standalone Scheduler. If you are
just installing Spark on an empty set of machines, the Standalone Scheduler provides
an easy way to get started; if you already have a Hadoop YARN or Mesos cluster,
however, Spark’s support for these cluster managers allows your applications to also
run on them. Chapter 7 explores the different options and how to choose the correct
cluster manager.

Who Uses Spark, and for What?
Because Spark is a general-purpose framework for cluster computing, it is used for a
diverse range of applications. In the Preface we outlined two groups of readers that
this book targets: data scientists and engineers. Let’s take a closer look at each group
and how it uses Spark. Unsurprisingly, the typical use cases differ between the two,

4 | Chapter 1: Introduction to Data Analysis with Spark

but we can roughly classify them into two categories, data science and data
applications.

Of course, these are imprecise disciplines and usage patterns, and many folks have
skills from both, sometimes playing the role of the investigating data scientist, and
then “changing hats” and writing a hardened data processing application. Nonethe‐
less, it can be illuminating to consider the two groups and their respective use cases
separately.

Data Science Tasks
Data science, a discipline that has been emerging over the past few years, centers on
analyzing data. While there is no standard definition, for our purposes a data scientist
is somebody whose main task is to analyze and model data. Data scientists may have
experience with SQL, statistics, predictive modeling (machine learning), and pro‐
gramming, usually in Python, Matlab, or R. Data scientists also have experience with
techniques necessary to transform data into formats that can be analyzed for insights
(sometimes referred to as data wrangling).

Data scientists use their skills to analyze data with the goal of answering a question or
discovering insights. Oftentimes, their workflow involves ad hoc analysis, so they use
interactive shells (versus building complex applications) that let them see results of
queries and snippets of code in the least amount of time. Spark’s speed and simple
APIs shine for this purpose, and its built-in libraries mean that many algorithms are
available out of the box.

Spark supports the different tasks of data science with a number of components. The
Spark shell makes it easy to do interactive data analysis using Python or Scala. Spark
SQL also has a separate SQL shell that can be used to do data exploration using SQL,
or Spark SQL can be used as part of a regular Spark program or in the Spark shell.
Machine learning and data analysis is supported through the MLLib libraries. In
addition, there is support for calling out to external programs in Matlab or R. Spark
enables data scientists to tackle problems with larger data sizes than they could before
with tools like R or Pandas.

Sometimes, after the initial exploration phase, the work of a data scientist will be
“productized,” or extended, hardened (i.e., made fault-tolerant), and tuned to
become a production data processing application, which itself is a component of a
business application. For example, the initial investigation of a data scientist might
lead to the creation of a production recommender system that is integrated into a
web application and used to generate product suggestions to users. Often it is a dif‐
ferent person or team that leads the process of productizing the work of the data sci‐
entists, and that person is often an engineer.

Who Uses Spark, and for What? | 5

Data Processing Applications
The other main use case of Spark can be described in the context of the engineer per‐
sona. For our purposes here, we think of engineers as a large class of software devel‐
opers who use Spark to build production data processing applications. These
developers usually have an understanding of the principles of software engineering,
such as encapsulation, interface design, and object-oriented programming. They fre‐
quently have a degree in computer science. They use their engineering skills to design
and build software systems that implement a business use case.

For engineers, Spark provides a simple way to parallelize these applications across
clusters, and hides the complexity of distributed systems programming, network
communication, and fault tolerance. The system gives them enough control to moni‐
tor, inspect, and tune applications while allowing them to implement common tasks
quickly. The modular nature of the API (based on passing distributed collections of
objects) makes it easy to factor work into reusable libraries and test it locally.

Spark’s users choose to use it for their data processing applications because it pro‐
vides a wide variety of functionality, is easy to learn and use, and is mature and
reliable.

A Brief History of Spark
Spark is an open source project that has been built and is maintained by a thriving
and diverse community of developers. If you or your organization are trying Spark
for the first time, you might be interested in the history of the project. Spark started
in 2009 as a research project in the UC Berkeley RAD Lab, later to become the
AMPLab. The researchers in the lab had previously been working on Hadoop Map‐
Reduce, and observed that MapReduce was inefficient for iterative and interactive
computing jobs. Thus, from the beginning, Spark was designed to be fast for interac‐
tive queries and iterative algorithms, bringing in ideas like support for in-memory
storage and efficient fault recovery.

Research papers were published about Spark at academic conferences and soon after
its creation in 2009, it was already 10–20× faster than MapReduce for certain jobs.

Some of Spark’s first users were other groups inside UC Berkeley, including machine
learning researchers such as the Mobile Millennium project, which used Spark to
monitor and predict traffic congestion in the San Francisco Bay Area. In a very short
time, however, many external organizations began using Spark, and today, over 50
organizations list themselves on the Spark PoweredBy page, and dozens speak about
their use cases at Spark community events such as Spark Meetups and the Spark
Summit. In addition to UC Berkeley, major contributors to Spark include Databricks,
Yahoo!, and Intel.

6 | Chapter 1: Introduction to Data Analysis with Spark

http://bit.ly/1yx195p
http://www.meetup.com/spark-users/
http://spark-summit.org
http://spark-summit.org

1 Shark has been replaced by Spark SQL.

In 2011, the AMPLab started to develop higher-level components on Spark, such as
Shark (Hive on Spark)1 and Spark Streaming. These and other components are some‐
times referred to as the Berkeley Data Analytics Stack (BDAS).

Spark was first open sourced in March 2010, and was transferred to the Apache Soft‐
ware Foundation in June 2013, where it is now a top-level project.

Spark Versions and Releases
Since its creation, Spark has been a very active project and community, with the
number of contributors growing with each release. Spark 1.0 had over 100 individual
contributors. Though the level of activity has rapidly grown, the community contin‐
ues to release updated versions of Spark on a regular schedule. Spark 1.0 was released
in May 2014. This book focuses primarily on Spark 1.1.0 and beyond, though most of
the concepts and examples also work in earlier versions.

Storage Layers for Spark
Spark can create distributed datasets from any file stored in the Hadoop distributed
filesystem (HDFS) or other storage systems supported by the Hadoop APIs (includ‐
ing your local filesystem, Amazon S3, Cassandra, Hive, HBase, etc.). It’s important to
remember that Spark does not require Hadoop; it simply has support for storage sys‐
tems implementing the Hadoop APIs. Spark supports text files, SequenceFiles, Avro,
Parquet, and any other Hadoop InputFormat. We will look at interacting with these
data sources in Chapter 5.

Spark Versions and Releases | 7

https://amplab.cs.berkeley.edu/software/

CHAPTER 2

Downloading Spark and Getting Started

In this chapter we will walk through the process of downloading and running Spark
in local mode on a single computer. This chapter was written for anybody who is new
to Spark, including both data scientists and engineers.

Spark can be used from Python, Java, or Scala. To benefit from this book, you don’t
need to be an expert programmer, but we do assume that you are comfortable with
the basic syntax of at least one of these languages. We will include examples in all
languages wherever possible.

Spark itself is written in Scala, and runs on the Java Virtual Machine (JVM). To run
Spark on either your laptop or a cluster, all you need is an installation of Java 6 or
newer. If you wish to use the Python API you will also need a Python interpreter
(version 2.6 or newer). Spark does not yet work with Python 3.

Downloading Spark
The first step to using Spark is to download and unpack it. Let’s start by downloading
a recent precompiled released version of Spark. Visit http://spark.apache.org/down
loads.html, select the package type of “Pre-built for Hadoop 2.4 and later,” and click
“Direct Download.” This will download a compressed TAR file, or tarball, called
spark-1.2.0-bin-hadoop2.4.tgz.

Windows users may run into issues installing Spark into a direc‐
tory with a space in the name. Instead, install Spark in a directory
with no space (e.g., C:\spark).

9

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html

You don’t need to have Hadoop, but if you have an existing Hadoop cluster or HDFS
installation, download the matching version. You can do so from http://
spark.apache.org/downloads.html by selecting a different package type, but they will
have slightly different filenames. Building from source is also possible; you can find
the latest source code on GitHub or select the package type of “Source Code” when
downloading.

Most Unix and Linux variants, including Mac OS X, come with a
command-line tool called tar that can be used to unpack TAR
files. If your operating system does not have the tar command
installed, try searching the Internet for a free TAR extractor—for
example, on Windows, you may wish to try 7-Zip.

Now that we have downloaded Spark, let’s unpack it and take a look at what comes
with the default Spark distribution. To do that, open a terminal, change to the direc‐
tory where you downloaded Spark, and untar the file. This will create a new directory
with the same name but without the final .tgz suffix. Change into that directory and
see what’s inside. You can use the following commands to accomplish all of that:

cd ~
tar -xf spark-1.2.0-bin-hadoop2.4.tgz
cd spark-1.2.0-bin-hadoop2.4
ls

In the line containing the tar command, the x flag tells tar we are extracting files,
and the f flag specifies the name of the tarball. The ls command lists the contents of
the Spark directory. Let’s briefly consider the names and purposes of some of the
more important files and directories you see here that come with Spark:

README.md
Contains short instructions for getting started with Spark.

bin
Contains executable files that can be used to interact with Spark in various ways
(e.g., the Spark shell, which we will cover later in this chapter).

core, streaming, python, …
Contains the source code of major components of the Spark project.

examples
Contains some helpful Spark standalone jobs that you can look at and run to
learn about the Spark API.

Don’t worry about the large number of directories and files the Spark project comes
with; we will cover most of these in the rest of this book. For now, let’s dive right in
and try out Spark’s Python and Scala shells. We will start by running some of the

10 | Chapter 2: Downloading Spark and Getting Started

http://spark.apache.org/downloads.html
http://spark.apache.org/downloads.html
http://github.com/apache/spark

examples that come with Spark. Then we will write, compile, and run a simple Spark
job of our own.

All of the work we will do in this chapter will be with Spark running in local mode;
that is, nondistributed mode, which uses only a single machine. Spark can run in a
variety of different modes, or environments. Beyond local mode, Spark can also be
run on Mesos, YARN, or the Standalone Scheduler included in the Spark distribu‐
tion. We will cover the various deployment modes in detail in Chapter 7.

Introduction to Spark’s Python and Scala Shells
Spark comes with interactive shells that enable ad hoc data analysis. Spark’s shells will
feel familiar if you have used other shells such as those in R, Python, and Scala, or
operating system shells like Bash or the Windows command prompt.

Unlike most other shells, however, which let you manipulate data using the disk and
memory on a single machine, Spark’s shells allow you to interact with data that is dis‐
tributed on disk or in memory across many machines, and Spark takes care of auto‐
matically distributing this processing.

Because Spark can load data into memory on the worker nodes, many distributed
computations, even ones that process terabytes of data across dozens of machines,
can run in a few seconds. This makes the sort of iterative, ad hoc, and exploratory
analysis commonly done in shells a good fit for Spark. Spark provides both Python
and Scala shells that have been augmented to support connecting to a cluster.

Most of this book includes code in all of Spark’s languages, but
interactive shells are available only in Python and Scala. Because a
shell is very useful for learning the API, we recommend using one
of these languages for these examples even if you are a Java devel‐
oper. The API is similar in every language.

The easiest way to demonstrate the power of Spark’s shells is to start using one of
them for some simple data analysis. Let’s walk through the example from the Quick
Start Guide in the official Spark documentation.

The first step is to open up one of Spark’s shells. To open the Python version of the
Spark shell, which we also refer to as the PySpark Shell, go into your Spark directory
and type:

bin/pyspark

(Or bin\pyspark in Windows.) To open the Scala version of the shell, type:

bin/spark-shell

Introduction to Spark’s Python and Scala Shells | 11

http://spark.apache.org/docs/latest/quick-start.html
http://spark.apache.org/docs/latest/quick-start.html

The shell prompt should appear within a few seconds. When the shell starts, you will
notice a lot of log messages. You may need to press Enter once to clear the log output
and get to a shell prompt. Figure 2-1 shows what the PySpark shell looks like when
you open it.

Figure 2-1. The PySpark shell with default logging output

You may find the logging statements that get printed in the shell distracting. You can
control the verbosity of the logging. To do this, you can create a file in the conf direc‐
tory called log4j.properties. The Spark developers already include a template for this
file called log4j.properties.template. To make the logging less verbose, make a copy of
conf/log4j.properties.template called conf/log4j.properties and find the following line:

log4j.rootCategory=INFO, console

Then lower the log level so that we show only the WARN messages, and above by
changing it to the following:

log4j.rootCategory=WARN, console

When you reopen the shell, you should see less output (Figure 2-2).

12 | Chapter 2: Downloading Spark and Getting Started

Figure 2-2. The PySpark shell with less logging output

Using IPython

IPython is an enhanced Python shell that many Python users pre‐
fer, offering features such as tab completion. You can find instruc‐
tions for installing it at http://ipython.org. You can use IPython
with Spark by setting the IPYTHON environment variable to 1:

IPYTHON=1 ./bin/pyspark

To use the IPython Notebook, which is a web-browser-based ver‐
sion of IPython, use:

IPYTHON_OPTS="notebook" ./bin/pyspark

On Windows, set the variable and run the shell as follows:
set IPYTHON=1
bin\pyspark

In Spark, we express our computation through operations on distributed collections
that are automatically parallelized across the cluster. These collections are called resil‐
ient distributed datasets, or RDDs. RDDs are Spark’s fundamental abstraction for dis‐
tributed data and computation.

Before we say more about RDDs, let’s create one in the shell from a local text file and
do some very simple ad hoc analysis by following Example 2-1 for Python or
Example 2-2 for Scala.

Introduction to Spark’s Python and Scala Shells | 13

http://ipython.org

Example 2-1. Python line count

>>> lines = sc.textFile("README.md") # Create an RDD called lines

>>> lines.count() # Count the number of items in this RDD
127
>>> lines.first() # First item in this RDD, i.e. first line of README.md
u'# Apache Spark'

Example 2-2. Scala line count

scala> val lines = sc.textFile("README.md") // Create an RDD called lines
lines: spark.RDD[String] = MappedRDD[...]

scala> lines.count() // Count the number of items in this RDD
res0: Long = 127

scala> lines.first() // First item in this RDD, i.e. first line of README.md
res1: String = # Apache Spark

To exit either shell, press Ctrl-D.

We will discuss it more in Chapter 7, but one of the messages you
may have noticed is INFO SparkUI: Started SparkUI at

http://[ipaddress]:4040. You can access the Spark UI there and
see all sorts of information about your tasks and cluster.

In Examples 2-1 and 2-2, the variable called lines is an RDD, created here from a
text file on our local machine. We can run various parallel operations on the RDD,
such as counting the number of elements in the dataset (here, lines of text in the file)
or printing the first one. We will discuss RDDs in great depth in later chapters, but
before we go any further, let’s take a moment now to introduce basic Spark concepts.

Introduction to Core Spark Concepts
Now that you have run your first Spark code using the shell, it’s time to learn about
programming in it in more detail.

At a high level, every Spark application consists of a driver program that launches
various parallel operations on a cluster. The driver program contains your applica‐
tion’s main function and defines distributed datasets on the cluster, then applies oper‐
ations to them. In the preceding examples, the driver program was the Spark shell
itself, and you could just type in the operations you wanted to run.

Driver programs access Spark through a SparkContext object, which represents a
connection to a computing cluster. In the shell, a SparkContext is automatically

14 | Chapter 2: Downloading Spark and Getting Started

created for you as the variable called sc. Try printing out sc to see its type, as shown
in Example 2-3.

Example 2-3. Examining the sc variable

>>> sc
<pyspark.context.SparkContext object at 0x1025b8f90>

Once you have a SparkContext, you can use it to build RDDs. In Examples 2-1 and
2-2, we called sc.textFile() to create an RDD representing the lines of text in a file.
We can then run various operations on these lines, such as count().

To run these operations, driver programs typically manage a number of nodes called
executors. For example, if we were running the count() operation on a cluster, differ‐
ent machines might count lines in different ranges of the file. Because we just ran the
Spark shell locally, it executed all its work on a single machine—but you can connect
the same shell to a cluster to analyze data in parallel. Figure 2-3 shows how Spark
executes on a cluster.

Figure 2-3. Components for distributed execution in Spark

Finally, a lot of Spark’s API revolves around passing functions to its operators to run
them on the cluster. For example, we could extend our README example by filtering
the lines in the file that contain a word, such as Python, as shown in Example 2-4 (for
Python) and Example 2-5 (for Scala).

Example 2-4. Python filtering example

>>> lines = sc.textFile("README.md")

>>> pythonLines = lines.filter(lambda line: "Python" in line)

Introduction to Core Spark Concepts | 15

>>> pythonLines.first()
u'## Interactive Python Shell'

Example 2-5. Scala filtering example

scala> val lines = sc.textFile("README.md") // Create an RDD called lines
lines: spark.RDD[String] = MappedRDD[...]

scala> val pythonLines = lines.filter(line => line.contains("Python"))
pythonLines: spark.RDD[String] = FilteredRDD[...]

scala> pythonLines.first()
res0: String = ## Interactive Python Shell

Passing Functions to Spark
If you are unfamiliar with the lambda or => syntax in Examples 2-4 and 2-5, it is a
shorthand way to define functions inline in Python and Scala. When using Spark in
these languages, you can also define a function separately and then pass its name to
Spark. For example, in Python:

def hasPython(line):
 return "Python" in line

pythonLines = lines.filter(hasPython)

Passing functions to Spark is also possible in Java, but in this case they are defined as
classes, implementing an interface called Function. For example:

JavaRDD<String> pythonLines = lines.filter(
 new Function<String, Boolean>() {
 Boolean call(String line) { return line.contains("Python"); }
 }
);

Java 8 introduces shorthand syntax called lambdas that looks similar to Python and
Scala. Here is how the code would look with this syntax:

JavaRDD<String> pythonLines = lines.filter(line -> line.contains("Python"));

We discuss passing functions further in “Passing Functions to Spark” on page 30.

While we will cover the Spark API in more detail later, a lot of its magic is that
function-based operations like filter also parallelize across the cluster. That is,
Spark automatically takes your function (e.g., line.contains("Python")) and ships
it to executor nodes. Thus, you can write code in a single driver program and auto‐
matically have parts of it run on multiple nodes. Chapter 3 covers the RDD API in
detail.

16 | Chapter 2: Downloading Spark and Getting Started

Standalone Applications
The final piece missing in this quick tour of Spark is how to use it in standalone pro‐
grams. Apart from running interactively, Spark can be linked into standalone appli‐
cations in either Java, Scala, or Python. The main difference from using it in the shell
is that you need to initialize your own SparkContext. After that, the API is the same.

The process of linking to Spark varies by language. In Java and Scala, you give your
application a Maven dependency on the spark-core artifact. As of the time of writ‐
ing, the latest Spark version is 1.2.0, and the Maven coordinates for that are:

groupId = org.apache.spark
artifactId = spark-core_2.10
version = 1.2.0

Maven is a popular package management tool for Java-based languages that lets you
link to libraries in public repositories. You can use Maven itself to build your project,
or use other tools that can talk to the Maven repositories, including Scala’s sbt tool or
Gradle. Popular integrated development environments like Eclipse also allow you to
directly add a Maven dependency to a project.

In Python, you simply write applications as Python scripts, but you must run them
using the bin/spark-submit script included in Spark. The spark-submit script
includes the Spark dependencies for us in Python. This script sets up the environ‐
ment for Spark’s Python API to function. Simply run your script with the line given
in Example 2-6.

Example 2-6. Running a Python script

bin/spark-submit my_script.py

(Note that you will have to use backslashes instead of forward slashes on Windows.)

Initializing a SparkContext
Once you have linked an application to Spark, you need to import the Spark packages
in your program and create a SparkContext. You do so by first creating a SparkConf
object to configure your application, and then building a SparkContext for it. Exam‐
ples 2-7 through 2-9 demonstrate this in each supported language.

Example 2-7. Initializing Spark in Python

from pyspark import SparkConf, SparkContext

conf = SparkConf().setMaster("local").setAppName("My App")
sc = SparkContext(conf = conf)

Standalone Applications | 17

Example 2-8. Initializing Spark in Scala

import org.apache.spark.SparkConf
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._

val conf = new SparkConf().setMaster("local").setAppName("My App")
val sc = new SparkContext(conf)

Example 2-9. Initializing Spark in Java

import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaSparkContext;

SparkConf conf = new SparkConf().setMaster("local").setAppName("My App");
JavaSparkContext sc = new JavaSparkContext(conf);

These examples show the minimal way to initialize a SparkContext, where you pass
two parameters:

• A cluster URL, namely local in these examples, which tells Spark how to connect
to a cluster. local is a special value that runs Spark on one thread on the local
machine, without connecting to a cluster.

• An application name, namely My App in these examples. This will identify your
application on the cluster manager’s UI if you connect to a cluster.

Additional parameters exist for configuring how your application executes or adding
code to be shipped to the cluster, but we will cover these in later chapters of the book.

After you have initialized a SparkContext, you can use all the methods we showed
before to create RDDs (e.g., from a text file) and manipulate them.

Finally, to shut down Spark, you can either call the stop() method on your Spark‐
Context, or simply exit the application (e.g., with System.exit(0) or sys.exit()).

This quick overview should be enough to let you run a standalone Spark application
on your laptop. For more advanced configuration, Chapter 7 will cover how to con‐
nect your application to a cluster, including packaging your application so that its
code is automatically shipped to worker nodes. For now, please refer to the Quick
Start Guide in the official Spark documentation.

Building Standalone Applications
This wouldn’t be a complete introductory chapter of a Big Data book if we didn’t
have a word count example. On a single machine, implementing word count is sim‐
ple, but in distributed frameworks it is a common example because it involves read‐
ing and combining data from many worker nodes. We will look at building and

18 | Chapter 2: Downloading Spark and Getting Started

http://bit.ly/1upkhfx
http://bit.ly/1upkhfx

packaging a simple word count example with both sbt and Maven. All of our exam‐
ples can be built together, but to illustrate a stripped-down build with minimal
dependencies we have a separate smaller project underneath the learning-spark-
examples/mini-complete-example directory, as you can see in Examples 2-10 (Java)
and 2-11 (Scala).

Example 2-10. Word count Java application—don’t worry about the details yet

// Create a Java Spark Context
SparkConf conf = new SparkConf().setAppName("wordCount");
JavaSparkContext sc = new JavaSparkContext(conf);
// Load our input data.
JavaRDD<String> input = sc.textFile(inputFile);
// Split up into words.
JavaRDD<String> words = input.flatMap(
 new FlatMapFunction<String, String>() {
 public Iterable<String> call(String x) {
 return Arrays.asList(x.split(" "));
 }});
// Transform into pairs and count.
JavaPairRDD<String, Integer> counts = words.mapToPair(
 new PairFunction<String, String, Integer>(){
 public Tuple2<String, Integer> call(String x){
 return new Tuple2(x, 1);
 }}).reduceByKey(new Function2<Integer, Integer, Integer>(){
 public Integer call(Integer x, Integer y){ return x + y;}});
// Save the word count back out to a text file, causing evaluation.
counts.saveAsTextFile(outputFile);

Example 2-11. Word count Scala application—don’t worry about the details yet

// Create a Scala Spark Context.
val conf = new SparkConf().setAppName("wordCount")
val sc = new SparkContext(conf)
// Load our input data.
val input = sc.textFile(inputFile)
// Split it up into words.
val words = input.flatMap(line => line.split(" "))
// Transform into pairs and count.
val counts = words.map(word => (word, 1)).reduceByKey{case (x, y) => x + y}
// Save the word count back out to a text file, causing evaluation.
counts.saveAsTextFile(outputFile)

We can build these applications using very simple build files with both sbt
(Example 2-12) and Maven (Example 2-13). We’ve marked the Spark Core depend‐
ency as provided so that, later on, when we use an assembly JAR we don’t include the
spark-core JAR, which is already on the classpath of the workers.

Standalone Applications | 19

Example 2-12. sbt build file

name := "learning-spark-mini-example"

version := "0.0.1"

scalaVersion := "2.10.4"

// additional libraries
libraryDependencies ++= Seq(
 "org.apache.spark" %% "spark-core" % "1.2.0" % "provided"
)

Example 2-13. Maven build file

<project>
 <groupId>com.oreilly.learningsparkexamples.mini</groupId>
 <artifactId>learning-spark-mini-example</artifactId>
 <modelVersion>4.0.0</modelVersion>
 <name>example</name>
 <packaging>jar</packaging>
 <version>0.0.1</version>
 <dependencies>
 <dependency> <!-- Spark dependency -->
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.10</artifactId>
 <version>1.2.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
 <properties>
 <java.version>1.6</java.version>
 </properties>
 <build>
 <pluginManagement>
 <plugins>
 <plugin> <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>${java.version}</source>
 <target>${java.version}</target>
 </configuration> </plugin> </plugin>
 </plugins>
 </pluginManagement>
 </build>
</project>

20 | Chapter 2: Downloading Spark and Getting Started

The spark-core package is marked as provided in case we package
our application into an assembly JAR. This is covered in more
detail in Chapter 7.

Once we have our build defined, we can easily package and run our application using
the bin/spark-submit script. The spark-submit script sets up a number of environ‐
ment variables used by Spark. From the mini-complete-example directory we can
build in both Scala (Example 2-14) and Java (Example 2-15).

Example 2-14. Scala build and run

sbt clean package
$SPARK_HOME/bin/spark-submit \
 --class com.oreilly.learningsparkexamples.mini.scala.WordCount \
 ./target/...(as above) \
 ./README.md ./wordcounts

Example 2-15. Maven build and run

mvn clean && mvn compile && mvn package
$SPARK_HOME/bin/spark-submit \
 --class com.oreilly.learningsparkexamples.mini.java.WordCount \
 ./target/learning-spark-mini-example-0.0.1.jar \
 ./README.md ./wordcounts

For even more detailed examples of linking applications to Spark, refer to the Quick
Start Guide in the official Spark documentation. Chapter 7 covers packaging Spark
applications in more detail.

Conclusion
In this chapter, we have covered downloading Spark, running it locally on your lap‐
top, and using it either interactively or from a standalone application. We gave a
quick overview of the core concepts involved in programming with Spark: a driver
program creates a SparkContext and RDDs, and then runs parallel operations on
them. In the next chapter, we will dive more deeply into how RDDs operate.

Conclusion | 21

http://spark.apache.org/docs/latest/quick-start.html
http://spark.apache.org/docs/latest/quick-start.html

CHAPTER 3

Programming with RDDs

This chapter introduces Spark’s core abstraction for working with data, the resilient
distributed dataset (RDD). An RDD is simply a distributed collection of elements. In
Spark all work is expressed as either creating new RDDs, transforming existing
RDDs, or calling operations on RDDs to compute a result. Under the hood, Spark
automatically distributes the data contained in RDDs across your cluster and parallel‐
izes the operations you perform on them.

Both data scientists and engineers should read this chapter, as RDDs are the core
concept in Spark. We highly recommend that you try some of these examples in an
interactive shell (see “Introduction to Spark’s Python and Scala Shells” on page 11).
In addition, all code in this chapter is available in the book’s GitHub repository.

RDD Basics
An RDD in Spark is simply an immutable distributed collection of objects. Each RDD
is split into multiple partitions, which may be computed on different nodes of the
cluster. RDDs can contain any type of Python, Java, or Scala objects, including user-
defined classes.

Users create RDDs in two ways: by loading an external dataset, or by distributing a
collection of objects (e.g., a list or set) in their driver program. We have already seen
loading a text file as an RDD of strings using SparkContext.textFile(), as shown in
Example 3-1.

Example 3-1. Creating an RDD of strings with textFile() in Python

>>> lines = sc.textFile("README.md")

23

https://github.com/databricks/learning-spark

Once created, RDDs offer two types of operations: transformations and actions.
Transformations construct a new RDD from a previous one. For example, one com‐
mon transformation is filtering data that matches a predicate. In our text file exam‐
ple, we can use this to create a new RDD holding just the strings that contain the
word Python, as shown in Example 3-2.

Example 3-2. Calling the filter() transformation

>>> pythonLines = lines.filter(lambda line: "Python" in line)

Actions, on the other hand, compute a result based on an RDD, and either return it to
the driver program or save it to an external storage system (e.g., HDFS). One example
of an action we called earlier is first(), which returns the first element in an RDD
and is demonstrated in Example 3-3.

Example 3-3. Calling the first() action

>>> pythonLines.first()
u'## Interactive Python Shell'

Transformations and actions are different because of the way Spark computes RDDs.
Although you can define new RDDs any time, Spark computes them only in a lazy
fashion—that is, the first time they are used in an action. This approach might seem
unusual at first, but makes a lot of sense when you are working with Big Data. For
instance, consider Example 3-2 and Example 3-3, where we defined a text file and
then filtered the lines that include Python. If Spark were to load and store all the lines
in the file as soon as we wrote lines = sc.textFile(...), it would waste a lot of
storage space, given that we then immediately filter out many lines. Instead, once
Spark sees the whole chain of transformations, it can compute just the data needed
for its result. In fact, for the first() action, Spark scans the file only until it finds the
first matching line; it doesn’t even read the whole file.

Finally, Spark’s RDDs are by default recomputed each time you run an action on
them. If you would like to reuse an RDD in multiple actions, you can ask Spark to
persist it using RDD.persist(). We can ask Spark to persist our data in a number of
different places, which will be covered in Table 3-6. After computing it the first time,
Spark will store the RDD contents in memory (partitioned across the machines in
your cluster), and reuse them in future actions. Persisting RDDs on disk instead of
memory is also possible. The behavior of not persisting by default may again seem
unusual, but it makes a lot of sense for big datasets: if you will not reuse the RDD,

24 | Chapter 3: Programming with RDDs

1 The ability to always recompute an RDD is actually why RDDs are called “resilient.” When a machine holding
RDD data fails, Spark uses this ability to recompute the missing partitions, transparent to the user.

there’s no reason to waste storage space when Spark could instead stream through the
data once and just compute the result.1

In practice, you will often use persist() to load a subset of your data into memory
and query it repeatedly. For example, if we knew that we wanted to compute multiple
results about the README lines that contain Python, we could write the script
shown in Example 3-4.

Example 3-4. Persisting an RDD in memory

>>> pythonLines.persist

>>> pythonLines.count()
2

>>> pythonLines.first()
u'## Interactive Python Shell'

To summarize, every Spark program and shell session will work as follows:

1. Create some input RDDs from external data.
2. Transform them to define new RDDs using transformations like filter().
3. Ask Spark to persist() any intermediate RDDs that will need to be reused.
4. Launch actions such as count() and first() to kick off a parallel computation,

which is then optimized and executed by Spark.

cache() is the same as calling persist() with the default storage
level.

In the rest of this chapter, we’ll go through each of these steps in detail, and cover
some of the most common RDD operations in Spark.

Creating RDDs
Spark provides two ways to create RDDs: loading an external dataset and paralleliz‐
ing a collection in your driver program.

Creating RDDs | 25

The simplest way to create RDDs is to take an existing collection in your program
and pass it to SparkContext’s parallelize() method, as shown in Examples 3-5
through 3-7. This approach is very useful when you are learning Spark, since you can
quickly create your own RDDs in the shell and perform operations on them. Keep in
mind, however, that outside of prototyping and testing, this is not widely used since
it requires that you have your entire dataset in memory on one machine.

Example 3-5. parallelize() method in Python

lines = sc.parallelize(["pandas", "i like pandas"])

Example 3-6. parallelize() method in Scala

val lines = sc.parallelize(List("pandas", "i like pandas"))

Example 3-7. parallelize() method in Java

JavaRDD<String> lines = sc.parallelize(Arrays.asList("pandas", "i like pandas"));

A more common way to create RDDs is to load data from external storage. Loading
external datasets is covered in detail in Chapter 5. However, we already saw one
method that loads a text file as an RDD of strings, SparkContext.textFile(), which
is shown in Examples 3-8 through 3-10.

Example 3-8. textFile() method in Python

lines = sc.textFile("/path/to/README.md")

Example 3-9. textFile() method in Scala

val lines = sc.textFile("/path/to/README.md")

Example 3-10. textFile() method in Java

JavaRDD<String> lines = sc.textFile("/path/to/README.md");

RDD Operations
As we’ve discussed, RDDs support two types of operations: transformations and
actions. Transformations are operations on RDDs that return a new RDD, such as
map() and filter(). Actions are operations that return a result to the driver pro‐
gram or write it to storage, and kick off a computation, such as count() and first().
Spark treats transformations and actions very differently, so understanding which
type of operation you are performing will be important. If you are ever confused

26 | Chapter 3: Programming with RDDs

whether a given function is a transformation or an action, you can look at its return
type: transformations return RDDs, whereas actions return some other data type.

Transformations
Transformations are operations on RDDs that return a new RDD. As discussed in
“Lazy Evaluation” on page 29, transformed RDDs are computed lazily, only when you
use them in an action. Many transformations are element-wise; that is, they work on
one element at a time; but this is not true for all transformations.

As an example, suppose that we have a logfile, log.txt, with a number of messages,
and we want to select only the error messages. We can use the filter() transforma‐
tion seen before. This time, though, we’ll show a filter in all three of Spark’s language
APIs (Examples 3-11 through 3-13).

Example 3-11. filter() transformation in Python

inputRDD = sc.textFile("log.txt")
errorsRDD = inputRDD.filter(lambda x: "error" in x)

Example 3-12. filter() transformation in Scala

val inputRDD = sc.textFile("log.txt")
val errorsRDD = inputRDD.filter(line => line.contains("error"))

Example 3-13. filter() transformation in Java

JavaRDD<String> inputRDD = sc.textFile("log.txt");
JavaRDD<String> errorsRDD = inputRDD.filter(
 new Function<String, Boolean>() {
 public Boolean call(String x) { return x.contains("error"); }
 }
});

Note that the filter() operation does not mutate the existing inputRDD. Instead, it
returns a pointer to an entirely new RDD. inputRDD can still be reused later in the
program—for instance, to search for other words. In fact, let’s use inputRDD again to
search for lines with the word warning in them. Then, we’ll use another transforma‐
tion, union(), to print out the number of lines that contained either error or warning.
We show Python in Example 3-14, but the union() function is identical in all three
languages.

RDD Operations | 27

Example 3-14. union() transformation in Python

errorsRDD = inputRDD.filter(lambda x: "error" in x)
warningsRDD = inputRDD.filter(lambda x: "warning" in x)
badLinesRDD = errorsRDD.union(warningsRDD)

union() is a bit different than filter(), in that it operates on two RDDs instead of
one. Transformations can actually operate on any number of input RDDs.

A better way to accomplish the same result as in Example 3-14
would be to simply filter the inputRDD once, looking for either
error or warning.

Finally, as you derive new RDDs from each other using transformations, Spark keeps
track of the set of dependencies between different RDDs, called the lineage graph. It
uses this information to compute each RDD on demand and to recover lost data if
part of a persistent RDD is lost. Figure 3-1 shows a lineage graph for Example 3-14.

Figure 3-1. RDD lineage graph created during log analysis

Actions
We’ve seen how to create RDDs from each other with transformations, but at some
point, we’ll want to actually do something with our dataset. Actions are the second
type of RDD operation. They are the operations that return a final value to the driver
program or write data to an external storage system. Actions force the evaluation of
the transformations required for the RDD they were called on, since they need to
actually produce output.

Continuing the log example from the previous section, we might want to print out
some information about the badLinesRDD. To do that, we’ll use two actions, count(),
which returns the count as a number, and take(), which collects a number of ele‐
ments from the RDD, as shown in Examples 3-15 through 3-17.

28 | Chapter 3: Programming with RDDs

Example 3-15. Python error count using actions

print "Input had " + badLinesRDD.count() + " concerning lines"
print "Here are 10 examples:"
for line in badLinesRDD.take(10):
 print line

Example 3-16. Scala error count using actions

println("Input had " + badLinesRDD.count() + " concerning lines")
println("Here are 10 examples:")
badLinesRDD.take(10).foreach(println)

Example 3-17. Java error count using actions

System.out.println("Input had " + badLinesRDD.count() + " concerning lines")
System.out.println("Here are 10 examples:")
for (String line: badLinesRDD.take(10)) {
 System.out.println(line);
}

In this example, we used take() to retrieve a small number of elements in the RDD
at the driver program. We then iterate over them locally to print out information at
the driver. RDDs also have a collect() function to retrieve the entire RDD. This can
be useful if your program filters RDDs down to a very small size and you’d like to
deal with it locally. Keep in mind that your entire dataset must fit in memory on a
single machine to use collect() on it, so collect() shouldn’t be used on large
datasets.

In most cases RDDs can’t just be collect()ed to the driver because they are too
large. In these cases, it’s common to write data out to a distributed storage system
such as HDFS or Amazon S3. You can save the contents of an RDD using the
saveAsTextFile() action, saveAsSequenceFile(), or any of a number of actions for
various built-in formats. We will cover the different options for exporting data in
Chapter 5.

It is important to note that each time we call a new action, the entire RDD must be
computed “from scratch.” To avoid this inefficiency, users can persist intermediate
results, as we will cover in “Persistence (Caching)” on page 44.

Lazy Evaluation
As you read earlier, transformations on RDDs are lazily evaluated, meaning that
Spark will not begin to execute until it sees an action. This can be somewhat counter‐
intuitive for new users, but may be familiar for those who have used functional lan‐
guages such as Haskell or LINQ-like data processing frameworks.

RDD Operations | 29

Lazy evaluation means that when we call a transformation on an RDD (for instance,
calling map()), the operation is not immediately performed. Instead, Spark internally
records metadata to indicate that this operation has been requested. Rather than
thinking of an RDD as containing specific data, it is best to think of each RDD as
consisting of instructions on how to compute the data that we build up through
transformations. Loading data into an RDD is lazily evaluated in the same way trans‐
formations are. So, when we call sc.textFile(), the data is not loaded until it is nec‐
essary. As with transformations, the operation (in this case, reading the data) can
occur multiple times.

Although transformations are lazy, you can force Spark to execute
them at any time by running an action, such as count(). This is an
easy way to test out just part of your program.

Spark uses lazy evaluation to reduce the number of passes it has to take over our data
by grouping operations together. In systems like Hadoop MapReduce, developers
often have to spend a lot of time considering how to group together operations to
minimize the number of MapReduce passes. In Spark, there is no substantial benefit
to writing a single complex map instead of chaining together many simple opera‐
tions. Thus, users are free to organize their program into smaller, more manageable
operations.

Passing Functions to Spark
Most of Spark’s transformations, and some of its actions, depend on passing in func‐
tions that are used by Spark to compute data. Each of the core languages has a slightly
different mechanism for passing functions to Spark.

Python
In Python, we have three options for passing functions into Spark. For shorter func‐
tions, we can pass in lambda expressions, as we did in Example 3-2, and as
Example 3-18 demonstrates. Alternatively, we can pass in top-level functions, or
locally defined functions.

Example 3-18. Passing functions in Python

word = rdd.filter(lambda s: "error" in s)

def containsError(s):
 return "error" in s
word = rdd.filter(containsError)

30 | Chapter 3: Programming with RDDs

One issue to watch out for when passing functions is inadvertently serializing the
object containing the function. When you pass a function that is the member of an
object, or contains references to fields in an object (e.g., self.field), Spark sends the
entire object to worker nodes, which can be much larger than the bit of information
you need (see Example 3-19). Sometimes this can also cause your program to fail, if
your class contains objects that Python can’t figure out how to pickle.

Example 3-19. Passing a function with field references (don’t do this!)

class SearchFunctions(object):
 def __init__(self, query):
 self.query = query
 def isMatch(self, s):
 return self.query in s
 def getMatchesFunctionReference(self, rdd):
 # Problem: references all of "self" in "self.isMatch"
 return rdd.filter(self.isMatch)
 def getMatchesMemberReference(self, rdd):
 # Problem: references all of "self" in "self.query"
 return rdd.filter(lambda x: self.query in x)

Instead, just extract the fields you need from your object into a local variable and pass
that in, like we do in Example 3-20.

Example 3-20. Python function passing without field references

class WordFunctions(object):
 ...
 def getMatchesNoReference(self, rdd):
 # Safe: extract only the field we need into a local variable
 query = self.query
 return rdd.filter(lambda x: query in x)

Scala
In Scala, we can pass in functions defined inline, references to methods, or static
functions as we do for Scala’s other functional APIs. Some other considerations come
into play, though—namely that the function we pass and the data referenced in it
needs to be serializable (implementing Java’s Serializable interface). Furthermore, as
in Python, passing a method or field of an object includes a reference to that whole
object, though this is less obvious because we are not forced to write these references
with self. As we did with Python in Example 3-20, we can instead extract the fields
we need as local variables and avoid needing to pass the whole object containing
them, as shown in Example 3-21.

Passing Functions to Spark | 31

Example 3-21. Scala function passing

class SearchFunctions(val query: String) {
 def isMatch(s: String): Boolean = {
 s.contains(query)
 }
 def getMatchesFunctionReference(rdd: RDD[String]): RDD[String] = {
 // Problem: "isMatch" means "this.isMatch", so we pass all of "this"
 rdd.map(isMatch)
 }
 def getMatchesFieldReference(rdd: RDD[String]): RDD[String] = {
 // Problem: "query" means "this.query", so we pass all of "this"
 rdd.map(x => x.split(query))
 }
 def getMatchesNoReference(rdd: RDD[String]): RDD[String] = {
 // Safe: extract just the field we need into a local variable
 val query_ = this.query
 rdd.map(x => x.split(query_))
 }
}

If NotSerializableException occurs in Scala, a reference to a method or field in a
nonserializable class is usually the problem. Note that passing in local serializable
variables or functions that are members of a top-level object is always safe.

Java
In Java, functions are specified as objects that implement one of Spark’s function
interfaces from the org.apache.spark.api.java.function package. There are a
number of different interfaces based on the return type of the function. We show the
most basic function interfaces in Table 3-1, and cover a number of other function
interfaces for when we need to return special types of data, like key/value data, in
“Java” on page 43.

Table 3-1. Standard Java function interfaces

Function name Method to implement Usage

Function<T, R> R call(T) Take in one input and return one output, for use with
operations like map() and filter().

Function2<T1, T2, R> R call(T1, T2) Take in two inputs and return one output, for use with
operations like aggregate() or fold().

FlatMapFunction<T,

R>

Iterable<R>

call(T)

Take in one input and return zero or more outputs, for use with
operations like flatMap().

32 | Chapter 3: Programming with RDDs

We can either define our function classes inline as anonymous inner classes
(Example 3-22), or create a named class (Example 3-23).

Example 3-22. Java function passing with anonymous inner class

RDD<String> errors = lines.filter(new Function<String, Boolean>() {
 public Boolean call(String x) { return x.contains("error"); }
});

Example 3-23. Java function passing with named class

class ContainsError implements Function<String, Boolean>() {
 public Boolean call(String x) { return x.contains("error"); }
}

RDD<String> errors = lines.filter(new ContainsError());

The style to choose is a personal preference, but we find that top-level named func‐
tions are often cleaner for organizing large programs. One other benefit of top-level
functions is that you can give them constructor parameters, as shown in
Example 3-24.

Example 3-24. Java function class with parameters

class Contains implements Function<String, Boolean>() {
 private String query;
 public Contains(String query) { this.query = query; }
 public Boolean call(String x) { return x.contains(query); }
}

RDD<String> errors = lines.filter(new Contains("error"));

In Java 8, you can also use lambda expressions to concisely implement the function
interfaces. Since Java 8 is still relatively new as of this writing, our examples use the
more verbose syntax for defining classes in previous versions of Java. However, with
lambda expressions, our search example would look like Example 3-25.

Example 3-25. Java function passing with lambda expression in Java 8

RDD<String> errors = lines.filter(s -> s.contains("error"));

If you are interested in using Java 8’s lambda expression, refer to Oracle’s documen‐
tation and the Databricks blog post on how to use lambdas with Spark.

Passing Functions to Spark | 33

http://bit.ly/1oHnAAt
http://bit.ly/1oHnAAt
http://bit.ly/1ywZBs4

Both anonymous inner classes and lambda expressions can refer‐
ence any final variables in the method enclosing them, so you can
pass these variables to Spark just as in Python and Scala.

Common Transformations and Actions
In this chapter, we tour the most common transformations and actions in Spark.
Additional operations are available on RDDs containing certain types of data—for
example, statistical functions on RDDs of numbers, and key/value operations such as
aggregating data by key on RDDs of key/value pairs. We cover converting between
RDD types and these special operations in later sections.

Basic RDDs
We will begin by describing what transformations and actions we can perform on all
RDDs regardless of the data.

Element-wise transformations

The two most common transformations you will likely be using are map() and fil
ter() (see Figure 3-2). The map() transformation takes in a function and applies it to
each element in the RDD with the result of the function being the new value of each
element in the resulting RDD. The filter() transformation takes in a function and
returns an RDD that only has elements that pass the filter() function.

Figure 3-2. Mapped and filtered RDD from an input RDD

We can use map() to do any number of things, from fetching the website associated
with each URL in our collection to just squaring the numbers. It is useful to note that
map()’s return type does not have to be the same as its input type, so if we had an
RDD String and our map() function were to parse the strings and return a Double,
our input RDD type would be RDD[String] and the resulting RDD type would be
RDD[Double].

34 | Chapter 3: Programming with RDDs

Let’s look at a basic example of map() that squares all of the numbers in an RDD
(Examples 3-26 through 3-28).

Example 3-26. Python squaring the values in an RDD

nums = sc.parallelize([1, 2, 3, 4])
squared = nums.map(lambda x: x * x).collect()
for num in squared:
 print "%i " % (num)

Example 3-27. Scala squaring the values in an RDD

val input = sc.parallelize(List(1, 2, 3, 4))
val result = input.map(x => x * x)
println(result.collect().mkString(","))

Example 3-28. Java squaring the values in an RDD

JavaRDD<Integer> rdd = sc.parallelize(Arrays.asList(1, 2, 3, 4));
JavaRDD<Integer> result = rdd.map(new Function<Integer, Integer>() {
 public Integer call(Integer x) { return x*x; }
});
System.out.println(StringUtils.join(result.collect(), ","));

Sometimes we want to produce multiple output elements for each input element. The
operation to do this is called flatMap(). As with map(), the function we provide to
flatMap() is called individually for each element in our input RDD. Instead of
returning a single element, we return an iterator with our return values. Rather than
producing an RDD of iterators, we get back an RDD that consists of the elements
from all of the iterators. A simple usage of flatMap() is splitting up an input string
into words, as shown in Examples 3-29 through 3-31.

Example 3-29. flatMap() in Python, splitting lines into words

lines = sc.parallelize(["hello world", "hi"])
words = lines.flatMap(lambda line: line.split(" "))
words.first() # returns "hello"

Example 3-30. flatMap() in Scala, splitting lines into multiple words

val lines = sc.parallelize(List("hello world", "hi"))
val words = lines.flatMap(line => line.split(" "))
words.first() // returns "hello"

Common Transformations and Actions | 35

Example 3-31. flatMap() in Java, splitting lines into multiple words

JavaRDD<String> lines = sc.parallelize(Arrays.asList("hello world", "hi"));
JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
 public Iterable<String> call(String line) {
 return Arrays.asList(line.split(" "));
 }
});
words.first(); // returns "hello"

We illustrate the difference between flatMap() and map() in Figure 3-3. You can
think of flatMap() as “flattening” the iterators returned to it, so that instead of end‐
ing up with an RDD of lists we have an RDD of the elements in those lists.

Figure 3-3. Difference between flatMap() and map() on an RDD

Pseudo set operations
RDDs support many of the operations of mathematical sets, such as union and inter‐
section, even when the RDDs themselves are not properly sets. Four operations are
shown in Figure 3-4. It’s important to note that all of these operations require that
the RDDs being operated on are of the same type.

Figure 3-4. Some simple set operations

36 | Chapter 3: Programming with RDDs

The set property most frequently missing from our RDDs is the uniqueness of ele‐
ments, as we often have duplicates. If we want only unique elements we can use the
RDD.distinct() transformation to produce a new RDD with only distinct items.
Note that distinct() is expensive, however, as it requires shuffling all the data over
the network to ensure that we receive only one copy of each element. Shuffling, and
how to avoid it, is discussed in more detail in Chapter 4.

The simplest set operation is union(other), which gives back an RDD consisting of
the data from both sources. This can be useful in a number of use cases, such as pro‐
cessing logfiles from many sources. Unlike the mathematical union(), if there are
duplicates in the input RDDs, the result of Spark’s union() will contain duplicates
(which we can fix if desired with distinct()).

Spark also provides an intersection(other) method, which returns only elements
in both RDDs. intersection() also removes all duplicates (including duplicates
from a single RDD) while running. While intersection() and union() are two sim‐
ilar concepts, the performance of intersection() is much worse since it requires a
shuffle over the network to identify common elements.

Sometimes we need to remove some data from consideration. The subtract(other)
function takes in another RDD and returns an RDD that has only values present in
the first RDD and not the second RDD. Like intersection(), it performs a shuffle.

We can also compute a Cartesian product between two RDDs, as shown in
Figure 3-5. The cartesian(other) transformation returns all possible pairs of (a,
b) where a is in the source RDD and b is in the other RDD. The Cartesian product
can be useful when we wish to consider the similarity between all possible pairs, such
as computing every user’s expected interest in each offer. We can also take the Carte‐
sian product of an RDD with itself, which can be useful for tasks like user similarity.
Be warned, however, that the Cartesian product is very expensive for large RDDs.

Figure 3-5. Cartesian product between two RDDs

Tables 3-2 and 3-3 summarize these and other common RDD transformations.

Common Transformations and Actions | 37

Table 3-2. Basic RDD transformations on an RDD containing {1, 2, 3, 3}

Function name Purpose Example Result

map() Apply a function to each
element in the RDD and return
an RDD of the result.

rdd.map(x => x + 1) {2, 3, 4, 4}

flatMap() Apply a function to each
element in the RDD and return
an RDD of the contents of the
iterators returned. Often used to
extract words.

rdd.flatMap(x => x.to(3)) {1, 2, 3, 2,

3, 3, 3}

filter() Return an RDD consisting of only
elements that pass the condition
passed to filter().

rdd.filter(x => x != 1) {2, 3, 3}

distinct() Remove duplicates. rdd.distinct() {1, 2, 3}

sample(withRe

placement, frac

tion, [seed])

Sample an RDD, with or without
replacement.

rdd.sample(false, 0.5) Nondeterministic

Table 3-3. Two-RDD transformations on RDDs containing {1, 2, 3} and {3, 4, 5}

Function name Purpose Example Result

union() Produce an RDD containing elements
from both RDDs.

rdd.union(other) {1, 2, 3, 3,

4, 5}

intersec

tion()

RDD containing only elements found in
both RDDs.

rdd.intersection(other) {3}

subtract() Remove the contents of one RDD (e.g.,
remove training data).

rdd.subtract(other) {1, 2}

cartesian() Cartesian product with the other RDD. rdd.cartesian(other) {(1, 3), (1,

4), … (3,5)}

Actions

The most common action on basic RDDs you will likely use is reduce(), which takes
a function that operates on two elements of the type in your RDD and returns a new
element of the same type. A simple example of such a function is +, which we can use
to sum our RDD. With reduce(), we can easily sum the elements of our RDD, count
the number of elements, and perform other types of aggregations (see Examples 3-32
through 3-34).

38 | Chapter 3: Programming with RDDs

Example 3-32. reduce() in Python

sum = rdd.reduce(lambda x, y: x + y)

Example 3-33. reduce() in Scala

val sum = rdd.reduce((x, y) => x + y)

Example 3-34. reduce() in Java

Integer sum = rdd.reduce(new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer x, Integer y) { return x + y; }
});

Similar to reduce() is fold(), which also takes a function with the same signature as
needed for reduce(), but in addition takes a “zero value” to be used for the initial call
on each partition. The zero value you provide should be the identity element for your
operation; that is, applying it multiple times with your function should not change
the value (e.g., 0 for +, 1 for *, or an empty list for concatenation).

You can minimize object creation in fold() by modifying and
returning the first of the two parameters in place. However, you
should not modify the second parameter.

Both fold() and reduce() require that the return type of our result be the same type
as that of the elements in the RDD we are operating over. This works well for opera‐
tions like sum, but sometimes we want to return a different type. For example, when
computing a running average, we need to keep track of both the count so far and the
number of elements, which requires us to return a pair. We could work around this
by first using map() where we transform every element into the element and the
number 1, which is the type we want to return, so that the reduce() function can
work on pairs.

The aggregate() function frees us from the constraint of having the return be the
same type as the RDD we are working on. With aggregate(), like fold(), we supply
an initial zero value of the type we want to return. We then supply a function to com‐
bine the elements from our RDD with the accumulator. Finally, we need to supply a
second function to merge two accumulators, given that each node accumulates its
own results locally.

We can use aggregate() to compute the average of an RDD, avoiding a map() before
the fold(), as shown in Examples 3-35 through 3-37.

Common Transformations and Actions | 39

Example 3-35. aggregate() in Python

sumCount = nums.aggregate((0, 0),
 (lambda acc, value: (acc[0] + value, acc[1] + 1),
 (lambda acc1, acc2: (acc1[0] + acc2[0], acc1[1] + acc2[1]))))
return sumCount[0] / float(sumCount[1])

Example 3-36. aggregate() in Scala

val result = input.aggregate((0, 0))(
 (acc, value) => (acc._1 + value, acc._2 + 1),
 (acc1, acc2) => (acc1._1 + acc2._1, acc1._2 + acc2._2))
val avg = result._1 / result._2.toDouble

Example 3-37. aggregate() in Java

class AvgCount implements Serializable {
 public AvgCount(int total, int num) {
 this.total = total;
 this.num = num;
 }
 public int total;
 public int num;
 public double avg() {
 return total / (double) num;
 }
}
Function2<AvgCount, Integer, AvgCount> addAndCount =
 new Function2<AvgCount, Integer, AvgCount>() {
 public AvgCount call(AvgCount a, Integer x) {
 a.total += x;
 a.num += 1;
 return a;
 }
};
Function2<AvgCount, AvgCount, AvgCount> combine =
 new Function2<AvgCount, AvgCount, AvgCount>() {
 public AvgCount call(AvgCount a, AvgCount b) {
 a.total += b.total;
 a.num += b.num;
 return a;
 }
};
AvgCount initial = new AvgCount(0, 0);
AvgCount result = rdd.aggregate(initial, addAndCount, combine);
System.out.println(result.avg());

Some actions on RDDs return some or all of the data to our driver program in the
form of a regular collection or value.

40 | Chapter 3: Programming with RDDs

The simplest and most common operation that returns data to our driver program is
collect(), which returns the entire RDD’s contents. collect() is commonly used in
unit tests where the entire contents of the RDD are expected to fit in memory, as that
makes it easy to compare the value of our RDD with our expected result. collect()
suffers from the restriction that all of your data must fit on a single machine, as it all
needs to be copied to the driver.

take(n) returns n elements from the RDD and attempts to minimize the number of
partitions it accesses, so it may represent a biased collection. It’s important to note
that these operations do not return the elements in the order you might expect.

These operations are useful for unit tests and quick debugging, but may introduce
bottlenecks when you’re dealing with large amounts of data.

If there is an ordering defined on our data, we can also extract the top elements from
an RDD using top(). top() will use the default ordering on the data, but we can sup‐
ply our own comparison function to extract the top elements.

Sometimes we need a sample of our data in our driver program. The takeSam
ple(withReplacement, num, seed) function allows us to take a sample of our data
either with or without replacement.

Sometimes it is useful to perform an action on all of the elements in the RDD, but
without returning any result to the driver program. A good example of this would be
posting JSON to a webserver or inserting records into a database. In either case, the
foreach() action lets us perform computations on each element in the RDD without
bringing it back locally.

The further standard operations on a basic RDD all behave pretty much exactly as
you would imagine from their name. count() returns a count of the elements, and
countByValue() returns a map of each unique value to its count. Table 3-4 summari‐
zes these and other actions.

Table 3-4. Basic actions on an RDD containing {1, 2, 3, 3}

Function name Purpose Example Result

collect() Return all elements
from the RDD.

rdd.collect() {1, 2, 3, 3}

count() Number of
elements in the
RDD.

rdd.count() 4

countByValue() Number of times
each element
occurs in the RDD.

rdd.countByValue() {(1, 1),

(2, 1),

(3, 2)}

Common Transformations and Actions | 41

Function name Purpose Example Result

take(num) Return num
elements from the
RDD.

rdd.take(2) {1, 2}

top(num) Return the top num
elements the RDD.

rdd.top(2) {3, 3}

takeOrdered(num)(order

ing)

Return num
elements based on
provided ordering.

rdd.takeOrdered(2)

(myOrdering)

{3, 3}

takeSample(withReplace

ment, num, [seed])

Return num
elements at
random.

rdd.takeSample(false, 1) Nondeterministic

reduce(func) Combine the
elements of the
RDD together in
parallel (e.g., sum).

rdd.reduce((x, y) => x + y) 9

fold(zero)(func) Same as
reduce() but
with the provided
zero value.

rdd.fold(0)((x, y) => x + y) 9

aggregate(zeroValue)

(seqOp, combOp)

Similar to
reduce() but
used to return a
different type.

rdd.aggregate((0, 0))

((x, y) =>

(x._1 + y, x._2 + 1),

(x, y) =>

(x._1 + y._1, x._2 + y._2))

(9, 4)

foreach(func) Apply the provided
function to each
element of the
RDD.

rdd.foreach(func) Nothing

Converting Between RDD Types
Some functions are available only on certain types of RDDs, such as mean() and var
iance() on numeric RDDs or join() on key/value pair RDDs. We will cover these
special functions for numeric data in Chapter 6 and pair RDDs in Chapter 4. In Scala
and Java, these methods aren’t defined on the standard RDD class, so to access this
additional functionality we have to make sure we get the correct specialized class.

42 | Chapter 3: Programming with RDDs

Scala
In Scala the conversion to RDDs with special functions (e.g., to expose numeric func‐
tions on an RDD[Double]) is handled automatically using implicit conversions. As
mentioned in “Initializing a SparkContext” on page 17, we need to add import
org.apache.spark.SparkContext._ for these conversions to work. You can see the
implicit conversions listed in the SparkContext object’s ScalaDoc. These implicits
turn an RDD into various wrapper classes, such as DoubleRDDFunctions (for RDDs
of numeric data) and PairRDDFunctions (for key/value pairs), to expose additional
functions such as mean() and variance().

Implicits, while quite powerful, can sometimes be confusing. If you call a function
like mean() on an RDD, you might look at the Scaladocs for the RDD class and notice
there is no mean() function. The call manages to succeed because of implicit conver‐
sions between RDD[Double] and DoubleRDDFunctions. When searching for functions
on your RDD in Scaladoc, make sure to look at functions that are available in these
wrapper classes.

Java
In Java the conversion between the specialized types of RDDs is a bit more explicit. In
particular, there are special classes called JavaDoubleRDD and JavaPairRDD for RDDs
of these types, with extra methods for these types of data. This has the benefit of giv‐
ing you a greater understanding of what exactly is going on, but can be a bit more
cumbersome.

To construct RDDs of these special types, instead of always using the Function class
we will need to use specialized versions. If we want to create a DoubleRDD from an
RDD of type T, rather than using Function<T, Double> we use DoubleFunction<T>.
Table 3-5 shows the specialized functions and their uses.

We also need to call different functions on our RDD (so we can’t just create a Double
Function and pass it to map()). When we want a DoubleRDD back, instead of calling
map(), we need to call mapToDouble() with the same pattern all of the other functions
follow.

Table 3-5. Java interfaces for type-specific functions

Function name Equivalent function*<A, B,…> Usage

DoubleFlatMapFunction<T> Function<T, Iterable<Double>> DoubleRDD from a
flatMapToDouble

DoubleFunction<T> Function<T, double> DoubleRDD from map
ToDouble

Common Transformations and Actions | 43

http://bit.ly/1Bc4fNt
http://bit.ly/1KiC7uO

Function name Equivalent function*<A, B,…> Usage

PairFlatMapFunction<T, K, V> Function<T, Iterable<Tuple2<K, V>>> PairRDD<K, V>

from a
flatMapToPair

PairFunction<T, K, V> Function<T, Tuple2<K, V>> PairRDD<K, V>

from a mapToPair

We can modify Example 3-28, where we squared an RDD of numbers, to produce a
JavaDoubleRDD, as shown in Example 3-38. This gives us access to the additional Dou
bleRDD specific functions like mean() and variance().

Example 3-38. Creating DoubleRDD in Java

JavaDoubleRDD result = rdd.mapToDouble(
 new DoubleFunction<Integer>() {
 public double call(Integer x) {
 return (double) x * x;
 }
});
System.out.println(result.mean());

Python
The Python API is structured differently than Java and Scala. In Python all of the
functions are implemented on the base RDD class but will fail at runtime if the type
of data in the RDD is incorrect.

Persistence (Caching)
As discussed earlier, Spark RDDs are lazily evaluated, and sometimes we may wish to
use the same RDD multiple times. If we do this naively, Spark will recompute the
RDD and all of its dependencies each time we call an action on the RDD. This can be
especially expensive for iterative algorithms, which look at the data many times.
Another trivial example would be doing a count and then writing out the same RDD,
as shown in Example 3-39.

Example 3-39. Double execution in Scala

val result = input.map(x => x*x)
println(result.count())
println(result.collect().mkString(","))

To avoid computing an RDD multiple times, we can ask Spark to persist the data.
When we ask Spark to persist an RDD, the nodes that compute the RDD store their

44 | Chapter 3: Programming with RDDs

partitions. If a node that has data persisted on it fails, Spark will recompute the lost
partitions of the data when needed. We can also replicate our data on multiple nodes
if we want to be able to handle node failure without slowdown.

Spark has many levels of persistence to choose from based on what our goals are, as
you can see in Table 3-6. In Scala (Example 3-40) and Java, the default persist() will
store the data in the JVM heap as unserialized objects. In Python, we always serialize
the data that persist stores, so the default is instead stored in the JVM heap as pickled
objects. When we write data out to disk or off-heap storage, that data is also always
serialized.

Table 3-6. Persistence levels from org.apache.spark.storage.StorageLevel and
pyspark.StorageLevel; if desired we can replicate the data on two machines by adding _2 to
the end of the storage level

Level Space used CPU time In memory On disk Comments

MEMORY_ONLY High Low Y N

MEMORY_ONLY_SER Low High Y N

MEMORY_AND_DISK High Medium Some Some Spills to disk if there is too much data to fit in
memory.

MEMORY_AND_DISK_SER Low High Some Some Spills to disk if there is too much data to fit in
memory. Stores serialized representation in
memory.

DISK_ONLY Low High N Y

Off-heap caching is experimental and uses Tachyon. If you are
interested in off-heap caching with Spark, take a look at the Run‐
ning Spark on Tachyon guide.

Example 3-40. persist() in Scala

val result = input.map(x => x * x)
result.persist(StorageLevel.DISK_ONLY)
println(result.count())
println(result.collect().mkString(","))

Notice that we called persist() on the RDD before the first action. The persist()
call on its own doesn’t force evaluation.

Persistence (Caching) | 45

http://Tachyon-project.org/
http://Tachyon-project.org/Running-Spark-on-Tachyon.html
http://Tachyon-project.org/Running-Spark-on-Tachyon.html

If you attempt to cache too much data to fit in memory, Spark will automatically
evict old partitions using a Least Recently Used (LRU) cache policy. For the memory-
only storage levels, it will recompute these partitions the next time they are accessed,
while for the memory-and-disk ones, it will write them out to disk. In either case, this
means that you don’t have to worry about your job breaking if you ask Spark to cache
too much data. However, caching unnecessary data can lead to eviction of useful data
and more recomputation time.

Finally, RDDs come with a method called unpersist() that lets you manually
remove them from the cache.

Conclusion
In this chapter, we have covered the RDD execution model and a large number of
common operations on RDDs. If you have gotten here, congratulations—you’ve
learned all the core concepts of working in Spark. In the next chapter, we’ll cover a
special set of operations available on RDDs of key/value pairs, which are the most
common way to aggregate or group together data in parallel. After that, we discuss
input and output from a variety of data sources, and more advanced topics in work‐
ing with SparkContext.

46 | Chapter 3: Programming with RDDs

CHAPTER 4

Working with Key/Value Pairs

This chapter covers how to work with RDDs of key/value pairs, which are a common
data type required for many operations in Spark. Key/value RDDs are commonly
used to perform aggregations, and often we will do some initial ETL (extract, trans‐
form, and load) to get our data into a key/value format. Key/value RDDs expose new
operations (e.g., counting up reviews for each product, grouping together data with
the same key, and grouping together two different RDDs).

We also discuss an advanced feature that lets users control the layout of pair RDDs
across nodes: partitioning. Using controllable partitioning, applications can some‐
times greatly reduce communication costs by ensuring that data will be accessed
together and will be on the same node. This can provide significant speedups. We
illustrate partitioning using the PageRank algorithm as an example. Choosing the
right partitioning for a distributed dataset is similar to choosing the right data struc‐
ture for a local one—in both cases, data layout can greatly affect performance.

Motivation
Spark provides special operations on RDDs containing key/value pairs. These RDDs
are called pair RDDs. Pair RDDs are a useful building block in many programs, as
they expose operations that allow you to act on each key in parallel or regroup data
across the network. For example, pair RDDs have a reduceByKey() method that can
aggregate data separately for each key, and a join() method that can merge two
RDDs together by grouping elements with the same key. It is common to extract
fields from an RDD (representing, for instance, an event time, customer ID, or other
identifier) and use those fields as keys in pair RDD operations.

47

Creating Pair RDDs
There are a number of ways to get pair RDDs in Spark. Many formats we explore
loading from in Chapter 5 will directly return pair RDDs for their key/value data. In
other cases we have a regular RDD that we want to turn into a pair RDD. We can do
this by running a map() function that returns key/value pairs. To illustrate, we show
code that starts with an RDD of lines of text and keys the data by the first word in
each line.

The way to build key-value RDDs differs by language. In Python, for the functions on
keyed data to work we need to return an RDD composed of tuples (see Example 4-1).

Example 4-1. Creating a pair RDD using the first word as the key in Python

pairs = lines.map(lambda x: (x.split(" ")[0], x))

In Scala, for the functions on keyed data to be available, we also need to return tuples
(see Example 4-2). An implicit conversion on RDDs of tuples exists to provide the
additional key/value functions.

Example 4-2. Creating a pair RDD using the first word as the key in Scala

val pairs = lines.map(x => (x.split(" ")(0), x))

Java doesn’t have a built-in tuple type, so Spark’s Java API has users create tuples
using the scala.Tuple2 class. This class is very simple: Java users can construct a
new tuple by writing new Tuple2(elem1, elem2) and can then access its elements
with the ._1() and ._2() methods.

Java users also need to call special versions of Spark’s functions when creating pair
RDDs. For instance, the mapToPair() function should be used in place of the basic
map() function. This is discussed in more detail in “Java” on page 43, but let’s look at
a simple case in Example 4-3.

Example 4-3. Creating a pair RDD using the first word as the key in Java

PairFunction<String, String, String> keyData =
 new PairFunction<String, String, String>() {
 public Tuple2<String, String> call(String x) {
 return new Tuple2(x.split(" ")[0], x);
 }
};
JavaPairRDD<String, String> pairs = lines.mapToPair(keyData);

When creating a pair RDD from an in-memory collection in Scala and Python, we
only need to call SparkContext.parallelize() on a collection of pairs. To create a

48 | Chapter 4: Working with Key/Value Pairs

pair RDD in Java from an in-memory collection, we instead use SparkContext.paral
lelizePairs().

Transformations on Pair RDDs
Pair RDDs are allowed to use all the transformations available to standard RDDs. The
same rules apply from “Passing Functions to Spark” on page 30. Since pair RDDs
contain tuples, we need to pass functions that operate on tuples rather than on indi‐
vidual elements. Tables 4-1 and 4-2 summarize transformations on pair RDDs, and
we will dive into the transformations in detail later in the chapter.

Table 4-1. Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)})

Function name Purpose Example Result

reduceByKey(func) Combine values with
the same key.

rdd.reduceByKey(

(x, y) => x + y)

{(1,

2), (3,

10)}

groupByKey() Group values with the
same key.

rdd.groupByKey() {(1,

[2]),

(3, [4,

6])}

combineBy

Key(createCombiner,
mergeValue,

mergeCombiners,

partitioner)

Combine values with
the same key using a
different result type.

See Examples 4-12 through 4-14.

mapValues(func) Apply a function to
each value of a pair
RDD without
changing the key.

rdd.mapValues(x => x+1) {(1,

3), (3,

5), (3,

7)}

flatMapValues(func) Apply a function that
returns an iterator to
each value of a pair
RDD, and for each
element returned,
produce a key/value
entry with the old
key. Often used for
tokenization.

rdd.flatMapValues(x => (x to 5) {(1,

2), (1,

3), (1,

4), (1,

5), (3,

4), (3,

5)}

keys() Return an RDD of just
the keys.

rdd.keys() {1, 3,

3}

Transformations on Pair RDDs | 49

Function name Purpose Example Result

values() Return an RDD of just
the values.

rdd.values() {2, 4,

6}

sortByKey() Return an RDD sorted
by the key.

rdd.sortByKey() {(1,

2), (3,

4), (3,

6)}

Table 4-2. Transformations on two pair RDDs (rdd = {(1, 2), (3, 4), (3, 6)} other = {(3, 9)})

Function name Purpose Example Result

subtractByKey Remove elements with a
key present in the other
RDD.

rdd.subtractByKey(other) {(1, 2)}

join Perform an inner join
between two RDDs.

rdd.join(other) {(3, (4, 9)), (3,

(6, 9))}

rightOuterJoin Perform a join between two
RDDs where the key must
be present in the first RDD.

rdd.rightOuterJoin(other) {(3,(Some(4),9)),

(3,(Some(6),9))}

leftOuterJoin Perform a join between two
RDDs where the key must
be present in the other RDD.

rdd.leftOuterJoin(other) {(1,(2,None)), (3,

(4,Some(9))), (3,

(6,Some(9)))}

cogroup Group data from both RDDs
sharing the same key.

rdd.cogroup(other) {(1,([2],[])), (3,

([4, 6],[9]))}

We discuss each of these families of pair RDD functions in more detail in the upcom‐
ing sections.

Pair RDDs are also still RDDs (of Tuple2 objects in Java/Scala or of Python tuples),
and thus support the same functions as RDDs. For instance, we can take our pair
RDD from the previous section and filter out lines longer than 20 characters, as
shown in Examples 4-4 through 4-6 and Figure 4-1.

Example 4-4. Simple filter on second element in Python

result = pairs.filter(lambda keyValue: len(keyValue[1]) < 20)

Example 4-5. Simple filter on second element in Scala

pairs.filter{case (key, value) => value.length < 20}

50 | Chapter 4: Working with Key/Value Pairs

Example 4-6. Simple filter on second element in Java

Function<Tuple2<String, String>, Boolean> longWordFilter =
 new Function<Tuple2<String, String>, Boolean>() {
 public Boolean call(Tuple2<String, String> keyValue) {
 return (keyValue._2().length() < 20);
 }
 };
JavaPairRDD<String, String> result = pairs.filter(longWordFilter);

Figure 4-1. Filter on value

Sometimes working with pairs can be awkward if we want to access only the value
part of our pair RDD. Since this is a common pattern, Spark provides the mapVal
ues(func) function, which is the same as map{case (x, y): (x, func(y))}. We
will use this function in many of our examples.

We now discuss each of the families of pair RDD functions, starting with
aggregations.

Aggregations
When datasets are described in terms of key/value pairs, it is common to want to
aggregate statistics across all elements with the same key. We have looked at the
fold(), combine(), and reduce() actions on basic RDDs, and similar per-key trans‐
formations exist on pair RDDs. Spark has a similar set of operations that combines
values that have the same key. These operations return RDDs and thus are transfor‐
mations rather than actions.

reduceByKey() is quite similar to reduce(); both take a function and use it to com‐
bine values. reduceByKey() runs several parallel reduce operations, one for each key
in the dataset, where each operation combines values that have the same key. Because
datasets can have very large numbers of keys, reduceByKey() is not implemented as
an action that returns a value to the user program. Instead, it returns a new RDD
consisting of each key and the reduced value for that key.

foldByKey() is quite similar to fold(); both use a zero value of the same type of the
data in our RDD and combination function. As with fold(), the provided zero value

Transformations on Pair RDDs | 51

for foldByKey() should have no impact when added with your combination function
to another element.

As Examples 4-7 and 4-8 demonstrate, we can use reduceByKey() along with mapVal
ues() to compute the per-key average in a very similar manner to how fold() and
map() can be used to compute the entire RDD average (see Figure 4-2). As with aver‐
aging, we can achieve the same result using a more specialized function, which we
will cover next.

Example 4-7. Per-key average with reduceByKey() and mapValues() in Python

rdd.mapValues(lambda x: (x, 1)).reduceByKey(lambda x, y: (x[0] + y[0], x[1] + y[1]))

Example 4-8. Per-key average with reduceByKey() and mapValues() in Scala

rdd.mapValues(x => (x, 1)).reduceByKey((x, y) => (x._1 + y._1, x._2 + y._2))

Figure 4-2. Per-key average data flow

Those familiar with the combiner concept from MapReduce
should note that calling reduceByKey() and foldByKey() will
automatically perform combining locally on each machine before
computing global totals for each key. The user does not need to
specify a combiner. The more general combineByKey() interface
allows you to customize combining behavior.

52 | Chapter 4: Working with Key/Value Pairs

We can use a similar approach in Examples 4-9 through 4-11 to also implement the
classic distributed word count problem. We will use flatMap() from the previous
chapter so that we can produce a pair RDD of words and the number 1 and then sum
together all of the words using reduceByKey() as in Examples 4-7 and 4-8.

Example 4-9. Word count in Python

rdd = sc.textFile("s3://...")
words = rdd.flatMap(lambda x: x.split(" "))
result = words.map(lambda x: (x, 1)).reduceByKey(lambda x, y: x + y)

Example 4-10. Word count in Scala

val input = sc.textFile("s3://...")
val words = input.flatMap(x => x.split(" "))
val result = words.map(x => (x, 1)).reduceByKey((x, y) => x + y)

Example 4-11. Word count in Java

JavaRDD<String> input = sc.textFile("s3://...")
JavaRDD<String> words = rdd.flatMap(new FlatMapFunction<String, String>() {
 public Iterable<String> call(String x) { return Arrays.asList(x.split(" ")); }
});
JavaPairRDD<String, Integer> result = words.mapToPair(
 new PairFunction<String, String, Integer>() {
 public Tuple2<String, Integer> call(String x) { return new Tuple2(x, 1); }
}).reduceByKey(
 new Function2<Integer, Integer, Integer>() {
 public Integer call(Integer a, Integer b) { return a + b; }
});

We can actually implement word count even faster by using the
countByValue() function on the first RDD: input.flatMap(x =>
x.split(" ")).countByValue().

combineByKey() is the most general of the per-key aggregation functions. Most of the
other per-key combiners are implemented using it. Like aggregate(), combineBy
Key() allows the user to return values that are not the same type as our input data.

To understand combineByKey(), it’s useful to think of how it handles each element it
processes. As combineByKey() goes through the elements in a partition, each element
either has a key it hasn’t seen before or has the same key as a previous element.

If it’s a new element, combineByKey() uses a function we provide, called create
Combiner(), to create the initial value for the accumulator on that key. It’s important

Transformations on Pair RDDs | 53

to note that this happens the first time a key is found in each partition, rather than
only the first time the key is found in the RDD.

If it is a value we have seen before while processing that partition, it will instead use
the provided function, mergeValue(), with the current value for the accumulator for
that key and the new value.

Since each partition is processed independently, we can have multiple accumulators
for the same key. When we are merging the results from each partition, if two or
more partitions have an accumulator for the same key we merge the accumulators
using the user-supplied mergeCombiners() function.

We can disable map-side aggregation in combineByKey() if we
know that our data won’t benefit from it. For example, groupBy
Key() disables map-side aggregation as the aggregation function
(appending to a list) does not save any space. If we want to disable
map-side combines, we need to specify the partitioner; for now you
can just use the partitioner on the source RDD by passing rdd.par
titioner.

Since combineByKey() has a lot of different parameters it is a great candidate for an
explanatory example. To better illustrate how combineByKey() works, we will look at
computing the average value for each key, as shown in Examples 4-12 through 4-14
and illustrated in Figure 4-3.

Example 4-12. Per-key average using combineByKey() in Python

sumCount = nums.combineByKey((lambda x: (x,1)),
 (lambda x, y: (x[0] + y, x[1] + 1)),
 (lambda x, y: (x[0] + y[0], x[1] + y[1])))
sumCount.map(lambda key, xy: (key, xy[0]/xy[1])).collectAsMap()

Example 4-13. Per-key average using combineByKey() in Scala

val result = input.combineByKey(
 (v) => (v, 1),
 (acc: (Int, Int), v) => (acc._1 + v, acc._2 + 1),
 (acc1: (Int, Int), acc2: (Int, Int)) => (acc1._1 + acc2._1, acc1._2 + acc2._2)
).map{ case (key, value) => (key, value._1 / value._2.toFloat) }
 result.collectAsMap().map(println(_))

Example 4-14. Per-key average using combineByKey() in Java

public static class AvgCount implements Serializable {
 public AvgCount(int total, int num) { total_ = total; num_ = num; }
 public int total_;

54 | Chapter 4: Working with Key/Value Pairs

 public int num_;
 public float avg() { return total_ / (float) num_; }
}

Function<Integer, AvgCount> createAcc = new Function<Integer, AvgCount>() {
 public AvgCount call(Integer x) {
 return new AvgCount(x, 1);
 }
};
Function2<AvgCount, Integer, AvgCount> addAndCount =
 new Function2<AvgCount, Integer, AvgCount>() {
 public AvgCount call(AvgCount a, Integer x) {
 a.total_ += x;
 a.num_ += 1;
 return a;
 }
};
Function2<AvgCount, AvgCount, AvgCount> combine =
 new Function2<AvgCount, AvgCount, AvgCount>() {
 public AvgCount call(AvgCount a, AvgCount b) {
 a.total_ += b.total_;
 a.num_ += b.num_;
 return a;
 }
};
AvgCount initial = new AvgCount(0,0);
JavaPairRDD<String, AvgCount> avgCounts =
 nums.combineByKey(createAcc, addAndCount, combine);
Map<String, AvgCount> countMap = avgCounts.collectAsMap();
for (Entry<String, AvgCount> entry : countMap.entrySet()) {
 System.out.println(entry.getKey() + ":" + entry.getValue().avg());
}

Transformations on Pair RDDs | 55

Figure 4-3. combineByKey() sample data flow

There are many options for combining our data by key. Most of them are imple‐
mented on top of combineByKey() but provide a simpler interface. In any case, using
one of the specialized aggregation functions in Spark can be much faster than the
naive approach of grouping our data and then reducing it.

Tuning the level of parallelism
So far we have talked about how all of our transformations are distributed, but we
have not really looked at how Spark decides how to split up the work. Every RDD has
a fixed number of partitions that determine the degree of parallelism to use when exe‐
cuting operations on the RDD.

When performing aggregations or grouping operations, we can ask Spark to use a
specific number of partitions. Spark will always try to infer a sensible default value
based on the size of your cluster, but in some cases you will want to tune the level of
parallelism for better performance.

Most of the operators discussed in this chapter accept a second parameter giving the
number of partitions to use when creating the grouped or aggregated RDD, as shown
in Examples 4-15 and 4-16.

56 | Chapter 4: Working with Key/Value Pairs

Example 4-15. reduceByKey() with custom parallelism in Python

data = [("a", 3), ("b", 4), ("a", 1)]
sc.parallelize(data).reduceByKey(lambda x, y: x + y) # Default parallelism
sc.parallelize(data).reduceByKey(lambda x, y: x + y, 10) # Custom parallelism

Example 4-16. reduceByKey() with custom parallelism in Scala

val data = Seq(("a", 3), ("b", 4), ("a", 1))
sc.parallelize(data).reduceByKey((x, y) => x + y) // Default parallelism
sc.parallelize(data).reduceByKey((x, y) => x + y) // Custom parallelism

Sometimes, we want to change the partitioning of an RDD outside the context of
grouping and aggregation operations. For those cases, Spark provides the reparti
tion() function, which shuffles the data across the network to create a new set of
partitions. Keep in mind that repartitioning your data is a fairly expensive operation.
Spark also has an optimized version of repartition() called coalesce() that allows
avoiding data movement, but only if you are decreasing the number of RDD parti‐
tions. To know whether you can safely call coalesce(), you can check the size of the
RDD using rdd.partitions.size() in Java/Scala and rdd.getNumPartitions() in
Python and make sure that you are coalescing it to fewer partitions than it currently
has.

Grouping Data
With keyed data a common use case is grouping our data by key—for example, view‐
ing all of a customer’s orders together.

If our data is already keyed in the way we want, groupByKey() will group our data
using the key in our RDD. On an RDD consisting of keys of type K and values of type
V, we get back an RDD of type [K, Iterable[V]].

groupBy() works on unpaired data or data where we want to use a different condi‐
tion besides equality on the current key. It takes a function that it applies to every
element in the source RDD and uses the result to determine the key.

If you find yourself writing code where you groupByKey() and
then use a reduce() or fold() on the values, you can probably
achieve the same result more efficiently by using one of the per-key
aggregation functions. Rather than reducing the RDD to an in-
memory value, we reduce the data per key and get back an RDD
with the reduced values corresponding to each key. For example,
rdd.reduceByKey(func) produces the same RDD as rdd.groupBy
Key().mapValues(value => value.reduce(func)) but is more
efficient as it avoids the step of creating a list of values for each key.

Transformations on Pair RDDs | 57

1 “Join” is a database term for combining fields from two tables using common values.

In addition to grouping data from a single RDD, we can group data sharing the same
key from multiple RDDs using a function called cogroup(). cogroup() over two
RDDs sharing the same key type, K, with the respective value types V and W gives us
back RDD[(K, (Iterable[V], Iterable[W]))]. If one of the RDDs doesn’t have ele‐
ments for a given key that is present in the other RDD, the corresponding Iterable
is simply empty. cogroup() gives us the power to group data from multiple RDDs.

cogroup() is used as a building block for the joins we discuss in the next section.

cogroup() can be used for much more than just implementing
joins. We can also use it to implement intersect by key. Addition‐
ally, cogroup() can work on three or more RDDs at once.

Joins
Some of the most useful operations we get with keyed data comes from using it
together with other keyed data. Joining data together is probably one of the most
common operations on a pair RDD, and we have a full range of options including
right and left outer joins, cross joins, and inner joins.

The simple join operator is an inner join.1 Only keys that are present in both pair
RDDs are output. When there are multiple values for the same key in one of the
inputs, the resulting pair RDD will have an entry for every possible pair of values
with that key from the two input RDDs. A simple way to understand this is by look‐
ing at Example 4-17.

Example 4-17. Scala shell inner join

storeAddress = {
 (Store("Ritual"), "1026 Valencia St"), (Store("Philz"), "748 Van Ness Ave"),
 (Store("Philz"), "3101 24th St"), (Store("Starbucks"), "Seattle")}

storeRating = {
 (Store("Ritual"), 4.9), (Store("Philz"), 4.8))}

storeAddress.join(storeRating) == {
 (Store("Ritual"), ("1026 Valencia St", 4.9)),
 (Store("Philz"), ("748 Van Ness Ave", 4.8)),
 (Store("Philz"), ("3101 24th St", 4.8))}

58 | Chapter 4: Working with Key/Value Pairs

http://en.wikipedia.org/wiki/Join_(SQL)

Sometimes we don’t need the key to be present in both RDDs to want it in our result.
For example, if we were joining customer information with recommendations we
might not want to drop customers if there were not any recommendations yet. left
OuterJoin(other) and rightOuterJoin(other) both join pair RDDs together by
key, where one of the pair RDDs can be missing the key.

With leftOuterJoin() the resulting pair RDD has entries for each key in the source
RDD. The value associated with each key in the result is a tuple of the value from the
source RDD and an Option (or Optional in Java) for the value from the other pair
RDD. In Python, if a value isn’t present None is used; and if the value is present the
regular value, without any wrapper, is used. As with join(), we can have multiple
entries for each key; when this occurs, we get the Cartesian product between the two
lists of values.

Optional is part of Google’s Guava library and represents a possi‐
bly missing value. We can check isPresent() to see if it’s set, and
get() will return the contained instance provided data is present.

rightOuterJoin() is almost identical to leftOuterJoin() except the key must be
present in the other RDD and the tuple has an option for the source rather than the
other RDD.

We can revisit Example 4-17 and do a leftOuterJoin() and a rightOuterJoin()
between the two pair RDDs we used to illustrate join() in Example 4-18.

Example 4-18. leftOuterJoin() and rightOuterJoin()

storeAddress.leftOuterJoin(storeRating) ==
{(Store("Ritual"),("1026 Valencia St",Some(4.9))),
 (Store("Starbucks"),("Seattle",None)),
 (Store("Philz"),("748 Van Ness Ave",Some(4.8))),
 (Store("Philz"),("3101 24th St",Some(4.8)))}

storeAddress.rightOuterJoin(storeRating) ==
{(Store("Ritual"),(Some("1026 Valencia St"),4.9)),
 (Store("Philz"),(Some("748 Van Ness Ave"),4.8)),
 (Store("Philz"), (Some("3101 24th St"),4.8))}

Sorting Data
Having sorted data is quite useful in many cases, especially when you’re producing
downstream output. We can sort an RDD with key/value pairs provided that there is
an ordering defined on the key. Once we have sorted our data, any subsequent call on
the sorted data to collect() or save() will result in ordered data.

Transformations on Pair RDDs | 59

https://github.com/google/guava

Since we often want our RDDs in the reverse order, the sortByKey() function takes a
parameter called ascending indicating whether we want it in ascending order (it
defaults to true). Sometimes we want a different sort order entirely, and to support
this we can provide our own comparison function. In Examples 4-19 through 4-21,
we will sort our RDD by converting the integers to strings and using the string com‐
parison functions.

Example 4-19. Custom sort order in Python, sorting integers as if strings

rdd.sortByKey(ascending=True, numPartitions=None, keyfunc = lambda x: str(x))

Example 4-20. Custom sort order in Scala, sorting integers as if strings

val input: RDD[(Int, Venue)] = ...
implicit val sortIntegersByString = new Ordering[Int] {
 override def compare(a: Int, b: Int) = a.toString.compare(b.toString)
}
rdd.sortByKey()

Example 4-21. Custom sort order in Java, sorting integers as if strings

class IntegerComparator implements Comparator<Integer> {
 public int compare(Integer a, Integer b) {
 return String.valueOf(a).compareTo(String.valueOf(b))
 }
}
rdd.sortByKey(comp)

Actions Available on Pair RDDs
As with the transformations, all of the traditional actions available on the base RDD
are also available on pair RDDs. Some additional actions are available on pair RDDs
to take advantage of the key/value nature of the data; these are listed in Table 4-3.

Table 4-3. Actions on pair RDDs (example ({(1, 2), (3, 4), (3, 6)}))

Function Description Example Result

countByKey() Count the number of elements for each
key.

rdd.countByKey() {(1, 1), (3, 2)}

collectAsMap() Collect the result as a map to provide easy
lookup.

rdd.collectAsMap() Map{(1, 2), (3,

4), (3, 6)}

lookup(key) Return all values associated with the
provided key.

rdd.lookup(3) [4, 6]

60 | Chapter 4: Working with Key/Value Pairs

There are also multiple other actions on pair RDDs that save the RDD, which we will
describe in Chapter 5.

Data Partitioning (Advanced)
The final Spark feature we will discuss in this chapter is how to control datasets’ par‐
titioning across nodes. In a distributed program, communication is very expensive,
so laying out data to minimize network traffic can greatly improve performance.
Much like how a single-node program needs to choose the right data structure for a
collection of records, Spark programs can choose to control their RDDs’ partitioning
to reduce communication. Partitioning will not be helpful in all applications—for
example, if a given RDD is scanned only once, there is no point in partitioning it in
advance. It is useful only when a dataset is reused multiple times in key-oriented
operations such as joins. We will give some examples shortly.

Spark’s partitioning is available on all RDDs of key/value pairs, and causes the system
to group elements based on a function of each key. Although Spark does not give
explicit control of which worker node each key goes to (partly because the system is
designed to work even if specific nodes fail), it lets the program ensure that a set of
keys will appear together on some node. For example, you might choose to hash-
partition an RDD into 100 partitions so that keys that have the same hash value mod‐
ulo 100 appear on the same node. Or you might range-partition the RDD into sorted
ranges of keys so that elements with keys in the same range appear on the same node.

As a simple example, consider an application that keeps a large table of user informa‐
tion in memory—say, an RDD of (UserID, UserInfo) pairs, where UserInfo con‐
tains a list of topics the user is subscribed to. The application periodically combines
this table with a smaller file representing events that happened in the past five
minutes—say, a table of (UserID, LinkInfo) pairs for users who have clicked a link
on a website in those five minutes. For example, we may wish to count how many
users visited a link that was not to one of their subscribed topics. We can perform this
combination with Spark’s join() operation, which can be used to group the User
Info and LinkInfo pairs for each UserID by key. Our application would look like
Example 4-22.

Example 4-22. Scala simple application

// Initialization code; we load the user info from a Hadoop SequenceFile on HDFS.
// This distributes elements of userData by the HDFS block where they are found,
// and doesn't provide Spark with any way of knowing in which partition a
// particular UserID is located.
val sc = new SparkContext(...)
val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...").persist()

// Function called periodically to process a logfile of events in the past 5 minutes;

Data Partitioning (Advanced) | 61

// we assume that this is a SequenceFile containing (UserID, LinkInfo) pairs.
def processNewLogs(logFileName: String) {
 val events = sc.sequenceFile[UserID, LinkInfo](logFileName)
 val joined = userData.join(events)// RDD of (UserID, (UserInfo, LinkInfo)) pairs
 val offTopicVisits = joined.filter {
 case (userId, (userInfo, linkInfo)) => // Expand the tuple into its components
 !userInfo.topics.contains(linkInfo.topic)
 }.count()
 println("Number of visits to non-subscribed topics: " + offTopicVisits)
}

This code will run fine as is, but it will be inefficient. This is because the join() oper‐
ation, called each time processNewLogs() is invoked, does not know anything about
how the keys are partitioned in the datasets. By default, this operation will hash all
the keys of both datasets, sending elements with the same key hash across the net‐
work to the same machine, and then join together the elements with the same key on
that machine (see Figure 4-4). Because we expect the userData table to be much
larger than the small log of events seen every five minutes, this wastes a lot of work:
the userData table is hashed and shuffled across the network on every call, even
though it doesn’t change.

Figure 4-4. Each join of userData and events without using partitionBy()

Fixing this is simple: just use the partitionBy() transformation on userData to
hash-partition it at the start of the program. We do this by passing a spark.HashPar
titioner object to partitionBy, as shown in Example 4-23.

62 | Chapter 4: Working with Key/Value Pairs

Example 4-23. Scala custom partitioner

val sc = new SparkContext(...)
val userData = sc.sequenceFile[UserID, UserInfo]("hdfs://...")
 .partitionBy(new HashPartitioner(100)) // Create 100 partitions
 .persist()

The processNewLogs() method can remain unchanged: the events RDD is local to
processNewLogs(), and is used only once within this method, so there is no advan‐
tage in specifying a partitioner for events. Because we called partitionBy() when
building userData, Spark will now know that it is hash-partitioned, and calls to
join() on it will take advantage of this information. In particular, when we call user
Data.join(events), Spark will shuffle only the events RDD, sending events with
each particular UserID to the machine that contains the corresponding hash partition
of userData (see Figure 4-5). The result is that a lot less data is communicated over
the network, and the program runs significantly faster.

Figure 4-5. Each join of userData and events using partitionBy()

Note that partitionBy() is a transformation, so it always returns a new RDD—it
does not change the original RDD in place. RDDs can never be modified once cre‐
ated. Therefore it is important to persist and save as userData the result of parti
tionBy(), not the original sequenceFile(). Also, the 100 passed to partitionBy()
represents the number of partitions, which will control how many parallel tasks per‐
form further operations on the RDD (e.g., joins); in general, make this at least as large
as the number of cores in your cluster.

Data Partitioning (Advanced) | 63

2 The Python API does not yet offer a way to query partitioners, though it still uses them internally.

Failure to persist an RDD after it has been transformed with parti
tionBy() will cause subsequent uses of the RDD to repeat the par‐
titioning of the data. Without persistence, use of the partitioned
RDD will cause reevaluation of the RDDs complete lineage. That
would negate the advantage of partitionBy(), resulting in
repeated partitioning and shuffling of data across the network,
similar to what occurs without any specified partitioner.

In fact, many other Spark operations automatically result in an RDD with known
partitioning information, and many operations other than join() will take advantage
of this information. For example, sortByKey() and groupByKey() will result in
range-partitioned and hash-partitioned RDDs, respectively. On the other hand, oper‐
ations like map() cause the new RDD to forget the parent’s partitioning information,
because such operations could theoretically modify the key of each record. The next
few sections describe how to determine how an RDD is partitioned, and exactly how
partitioning affects the various Spark operations.

Partitioning in Java and Python

Spark’s Java and Python APIs benefit from partitioning in the same
way as the Scala API. However, in Python, you cannot pass a Hash
Partitioner object to partitionBy; instead, you just pass the
number of partitions desired (e.g., rdd.partitionBy(100)).

Determining an RDD’s Partitioner
In Scala and Java, you can determine how an RDD is partitioned using its parti
tioner property (or partitioner() method in Java).2 This returns a scala.Option
object, which is a Scala class for a container that may or may not contain one item.
You can call isDefined() on the Option to check whether it has a value, and get() to
get this value. If present, the value will be a spark.Partitioner object. This is essen‐
tially a function telling the RDD which partition each key goes into; we’ll talk more
about this later.

The partitioner property is a great way to test in the Spark shell how different
Spark operations affect partitioning, and to check that the operations you want to do
in your program will yield the right result (see Example 4-24).

64 | Chapter 4: Working with Key/Value Pairs

Example 4-24. Determining partitioner of an RDD

scala> val pairs = sc.parallelize(List((1, 1), (2, 2), (3, 3)))
pairs: spark.RDD[(Int, Int)] = ParallelCollectionRDD[0] at parallelize at <console>:12

scala> pairs.partitioner
res0: Option[spark.Partitioner] = None

scala> val partitioned = pairs.partitionBy(new spark.HashPartitioner(2))
partitioned: spark.RDD[(Int, Int)] = ShuffledRDD[1] at partitionBy at <console>:14

scala> partitioned.partitioner
res1: Option[spark.Partitioner] = Some(spark.HashPartitioner@5147788d)

In this short session, we created an RDD of (Int, Int) pairs, which initially have no
partitioning information (an Option with value None). We then created a second
RDD by hash-partitioning the first. If we actually wanted to use partitioned in fur‐
ther operations, then we should have appended persist() to the third line of input,
in which partitioned is defined. This is for the same reason that we needed per
sist() for userData in the previous example: without persist(), subsequent RDD
actions will evaluate the entire lineage of partitioned, which will cause pairs to be
hash-partitioned over and over.

Operations That Benefit from Partitioning
Many of Spark’s operations involve shuffling data by key across the network. All of
these will benefit from partitioning. As of Spark 1.0, the operations that benefit from
partitioning are cogroup(), groupWith(), join(), leftOuterJoin(), rightOuter
Join(), groupByKey(), reduceByKey(), combineByKey(), and lookup().

For operations that act on a single RDD, such as reduceByKey(), running on a pre-
partitioned RDD will cause all the values for each key to be computed locally on a
single machine, requiring only the final, locally reduced value to be sent from each
worker node back to the master. For binary operations, such as cogroup() and
join(), pre-partitioning will cause at least one of the RDDs (the one with the known
partitioner) to not be shuffled. If both RDDs have the same partitioner, and if they
are cached on the same machines (e.g., one was created using mapValues() on the
other, which preserves keys and partitioning) or if one of them has not yet been com‐
puted, then no shuffling across the network will occur.

Operations That Affect Partitioning
Spark knows internally how each of its operations affects partitioning, and automati‐
cally sets the partitioner on RDDs created by operations that partition the data. For
example, suppose you called join() to join two RDDs; because the elements with the
same key have been hashed to the same machine, Spark knows that the result is

Data Partitioning (Advanced) | 65

hash-partitioned, and operations like reduceByKey() on the join result are going to
be significantly faster.

The flipside, however, is that for transformations that cannot be guaranteed to pro‐
duce a known partitioning, the output RDD will not have a partitioner set. For
example, if you call map() on a hash-partitioned RDD of key/value pairs, the function
passed to map() can in theory change the key of each element, so the result will not
have a partitioner. Spark does not analyze your functions to check whether they
retain the key. Instead, it provides two other operations, mapValues() and flatMap
Values(), which guarantee that each tuple’s key remains the same.

All that said, here are all the operations that result in a partitioner being set on the
output RDD: cogroup(), groupWith(), join(), leftOuterJoin(), rightOuter
Join(), groupByKey(), reduceByKey(), combineByKey(), partitionBy(), sort(),
mapValues() (if the parent RDD has a partitioner), flatMapValues() (if parent has a
partitioner), and filter() (if parent has a partitioner). All other operations will pro‐
duce a result with no partitioner.

Finally, for binary operations, which partitioner is set on the output depends on the
parent RDDs’ partitioners. By default, it is a hash partitioner, with the number of par‐
titions set to the level of parallelism of the operation. However, if one of the parents
has a partitioner set, it will be that partitioner; and if both parents have a parti
tioner set, it will be the partitioner of the first parent.

Example: PageRank
As an example of a more involved algorithm that can benefit from RDD partitioning,
we consider PageRank. The PageRank algorithm, named after Google’s Larry Page,
aims to assign a measure of importance (a “rank”) to each document in a set based on
how many documents have links to it. It can be used to rank web pages, of course,
but also scientific articles, or influential users in a social network.

PageRank is an iterative algorithm that performs many joins, so it is a good use case
for RDD partitioning. The algorithm maintains two datasets: one of (pageID, link
List) elements containing the list of neighbors of each page, and one of (pageID,
rank) elements containing the current rank for each page. It proceeds as follows:

1. Initialize each page’s rank to 1.0.
2. On each iteration, have page p send a contribution of rank(p)/numNeighbors(p)

to its neighbors (the pages it has links to).
3. Set each page’s rank to 0.15 + 0.85 * contributionsReceived.

66 | Chapter 4: Working with Key/Value Pairs

The last two steps repeat for several iterations, during which the algorithm will con‐
verge to the correct PageRank value for each page. In practice, it’s typical to run
about 10 iterations.

Example 4-25 gives the code to implement PageRank in Spark.

Example 4-25. Scala PageRank

// Assume that our neighbor list was saved as a Spark objectFile
val links = sc.objectFile[(String, Seq[String])]("links")
 .partitionBy(new HashPartitioner(100))
 .persist()

// Initialize each page's rank to 1.0; since we use mapValues, the resulting RDD
// will have the same partitioner as links
var ranks = links.mapValues(v => 1.0)

// Run 10 iterations of PageRank
for (i <- 0 until 10) {
 val contributions = links.join(ranks).flatMap {
 case (pageId, (links, rank)) =>
 links.map(dest => (dest, rank / links.size))
 }
 ranks = contributions.reduceByKey((x, y) => x + y).mapValues(v => 0.15 + 0.85*v)
}

// Write out the final ranks
ranks.saveAsTextFile("ranks")

That’s it! The algorithm starts with a ranks RDD initialized at 1.0 for each element,
and keeps updating the ranks variable on each iteration. The body of PageRank is
pretty simple to express in Spark: it first does a join() between the current ranks
RDD and the static links one, in order to obtain the link list and rank for each page
ID together, then uses this in a flatMap to create “contribution” values to send to
each of the page’s neighbors. We then add up these values by page ID (i.e., by the
page receiving the contribution) and set that page’s rank to 0.15 + 0.85 * contribu
tionsReceived.

Although the code itself is simple, the example does several things to ensure that the
RDDs are partitioned in an efficient way, and to minimize communication:

1. Notice that the links RDD is joined against ranks on each iteration. Since links
is a static dataset, we partition it at the start with partitionBy(), so that it does
not need to be shuffled across the network. In practice, the links RDD is also
likely to be much larger in terms of bytes than ranks, since it contains a list of
neighbors for each page ID instead of just a Double, so this optimization saves

Data Partitioning (Advanced) | 67

considerable network traffic over a simple implementation of PageRank (e.g., in
plain MapReduce).

2. For the same reason, we call persist() on links to keep it in RAM across
iterations.

3. When we first create ranks, we use mapValues() instead of map() to preserve the
partitioning of the parent RDD (links), so that our first join against it is cheap.

4. In the loop body, we follow our reduceByKey() with mapValues(); because the
result of reduceByKey() is already hash-partitioned, this will make it more effi‐
cient to join the mapped result against links on the next iteration.

To maximize the potential for partitioning-related optimizations,
you should use mapValues() or flatMapValues() whenever you
are not changing an element’s key.

Custom Partitioners
While Spark’s HashPartitioner and RangePartitioner are well suited to many use
cases, Spark also allows you to tune how an RDD is partitioned by providing a cus‐
tom Partitioner object. This can help you further reduce communication by taking
advantage of domain-specific knowledge.

For example, suppose we wanted to run the PageRank algorithm in the previous sec‐
tion on a set of web pages. Here each page’s ID (the key in our RDD) will be its URL.
Using a simple hash function to do the partitioning, pages with similar URLs (e.g.,
http://www.cnn.com/WORLD and http://www.cnn.com/US) might be hashed to com‐
pletely different nodes. However, we know that web pages within the same domain
tend to link to each other a lot. Because PageRank needs to send a message from each
page to each of its neighbors on each iteration, it helps to group these pages into the
same partition. We can do this with a custom Partitioner that looks at just the
domain name instead of the whole URL.

68 | Chapter 4: Working with Key/Value Pairs

http://www.cnn.com/WORLD
http://www.cnn.com/US

To implement a custom partitioner, you need to subclass the org.apache.spark.Par
titioner class and implement three methods:

• numPartitions: Int, which returns the number of partitions you will create.
• getPartition(key: Any): Int, which returns the partition ID (0 to
numPartitions-1) for a given key.

• equals(), the standard Java equality method. This is important to implement
because Spark will need to test your Partitioner object against other instances
of itself when it decides whether two of your RDDs are partitioned the same way!

One gotcha is that if you rely on Java’s hashCode() method in your algorithm, it can
return negative numbers. You need to be careful to ensure that getPartition()
always returns a nonnegative result.

Example 4-26 shows how we would write the domain-name-based partitioner
sketched previously, which hashes only the domain name of each URL.

Example 4-26. Scala custom partitioner

class DomainNamePartitioner(numParts: Int) extends Partitioner {
 override def numPartitions: Int = numParts
 override def getPartition(key: Any): Int = {
 val domain = new Java.net.URL(key.toString).getHost()
 val code = (domain.hashCode % numPartitions)
 if (code < 0) {
 code + numPartitions // Make it non-negative
 } else {
 code
 }
 }
 // Java equals method to let Spark compare our Partitioner objects
 override def equals(other: Any): Boolean = other match {
 case dnp: DomainNamePartitioner =>
 dnp.numPartitions == numPartitions
 case _ =>
 false
 }
}

Note that in the equals() method, we used Scala’s pattern matching operator
(match) to test whether other is a DomainNamePartitioner, and cast it if so; this is the
same as using instanceof() in Java.

Using a custom Partitioner is easy: just pass it to the partitionBy() method. Many
of the shuffle-based methods in Spark, such as join() and groupByKey(), can also
take an optional Partitioner object to control the partitioning of the output.

Data Partitioning (Advanced) | 69

Creating a custom Partitioner in Java is very similar to Scala: just extend the
spark.Partitioner class and implement the required methods.

In Python, you do not extend a Partitioner class, but instead pass a hash function as
an additional argument to RDD.partitionBy(). Example 4-27 demonstrates.

Example 4-27. Python custom partitioner

import urlparse

def hash_domain(url):
 return hash(urlparse.urlparse(url).netloc)

rdd.partitionBy(20, hash_domain) # Create 20 partitions

Note that the hash function you pass will be compared by identity to that of other
RDDs. If you want to partition multiple RDDs with the same partitioner, pass the
same function object (e.g., a global function) instead of creating a new lambda for
each one!

Conclusion
In this chapter, we have seen how to work with key/value data using the specialized
functions available in Spark. The techniques from Chapter 3 also still work on our
pair RDDs. In the next chapter, we will look at how to load and save data.

70 | Chapter 4: Working with Key/Value Pairs

1 InputFormat and OutputFormat are Java APIs used to connect a data source with MapReduce.

CHAPTER 5

Loading and Saving Your Data

Both engineers and data scientists will find parts of this chapter useful. Engineers
may wish to explore more output formats to see if there is something well suited to
their intended downstream consumer. Data scientists can likely focus on the format
that their data is already in.

Motivation
We’ve looked at a number of operations we can perform on our data once we have it
distributed in Spark. So far our examples have loaded and saved all of their data from
a native collection and regular files, but odds are that your data doesn’t fit on a single
machine, so it’s time to explore our options for loading and saving.

Spark supports a wide range of input and output sources, partly because it builds on
the ecosystem available for Hadoop. In particular, Spark can access data through the
InputFormat and OutputFormat interfaces used by Hadoop MapReduce, which are
available for many common file formats and storage systems (e.g., S3, HDFS, Cassan‐
dra, HBase, etc.).1 The section “Hadoop Input and Output Formats” on page 84 shows
how to use these formats directly.

More commonly, though, you will want to use higher-level APIs built on top of these
raw interfaces. Luckily, Spark and its ecosystem provide many options here. In this
chapter, we will cover three common sets of data sources:

File formats and filesystems
For data stored in a local or distributed filesystem, such as NFS, HDFS, or Ama‐
zon S3, Spark can access a variety of file formats including text, JSON,

71

SequenceFiles, and protocol buffers. We will show how to use several common
formats, as well as how to point Spark to different filesystems and configure
compression.

Structured data sources through Spark SQL
The Spark SQL module, covered in Chapter 9, provides a nicer and often more
efficient API for structured data sources, including JSON and Apache Hive. We
will briefly sketch how to use Spark SQL, but leave the bulk of the details to
Chapter 9.

Databases and key/value stores
We will sketch built-in and third-party libraries for connecting to Cassandra,
HBase, Elasticsearch, and JDBC databases.

We chose most of the methods here to be available in all of Spark’s languages, but
some libraries are still Java and Scala only. We will point out when that is the case.

File Formats
Spark makes it very simple to load and save data in a large number of file formats.
Formats range from unstructured, like text, to semistructured, like JSON, to struc‐
tured, like SequenceFiles (see Table 5-1). The input formats that Spark wraps all
transparently handle compressed formats based on the file extension.

Table 5-1. Common supported file formats

Format name Structured Comments

Text files No Plain old text files. Records are assumed to be one per line.

JSON Semi Common text-based format, semistructured; most libraries require one record per line.

CSV Yes Very common text-based format, often used with spreadsheet applications.

SequenceFiles Yes A common Hadoop file format used for key/value data.

Protocol buffers Yes A fast, space-efficient multilanguage format.

Object files Yes Useful for saving data from a Spark job to be consumed by shared code. Breaks if you change
your classes, as it relies on Java Serialization.

In addition to the output mechanisms supported directly in Spark, we can use both
Hadoop’s new and old file APIs for keyed (or paired) data. We can use these only
with key/value data, because the Hadoop interfaces require key/value data, even
though some formats ignore the key. In cases where the format ignores the key, it is
common to use a dummy key (such as null).

72 | Chapter 5: Loading and Saving Your Data

Text Files
Text files are very simple to load from and save to with Spark. When we load a single
text file as an RDD, each input line becomes an element in the RDD. We can also
load multiple whole text files at the same time into a pair RDD, with the key being the
name and the value being the contents of each file.

Loading text files

Loading a single text file is as simple as calling the textFile() function on our
SparkContext with the path to the file, as you can see in Examples 5-1 through 5-3. If
we want to control the number of partitions we can also specify minPartitions.

Example 5-1. Loading a text file in Python

input = sc.textFile("file:///home/holden/repos/spark/README.md")

Example 5-2. Loading a text file in Scala

val input = sc.textFile("file:///home/holden/repos/spark/README.md")

Example 5-3. Loading a text file in Java

JavaRDD<String> input = sc.textFile("file:///home/holden/repos/spark/README.md")

Multipart inputs in the form of a directory containing all of the parts can be handled
in two ways. We can just use the same textFile method and pass it a directory and it
will load all of the parts into our RDD. Sometimes it’s important to know which file
which piece of input came from (such as time data with the key in the file) or we need
to process an entire file at a time. If our files are small enough, then we can use the
SparkContext.wholeTextFiles() method and get back a pair RDD where the key is
the name of the input file.

wholeTextFiles() can be very useful when each file represents a certain time
period’s data. If we had files representing sales data from different periods, we could
easily compute the average for each period, as shown in Example 5-4.

Example 5-4. Average value per file in Scala

val input = sc.wholeTextFiles("file://home/holden/salesFiles")
val result = input.mapValues{y =>
 val nums = y.split(" ").map(x => x.toDouble)
 nums.sum / nums.size.toDouble
}

File Formats | 73

Spark supports reading all the files in a given directory and doing
wildcard expansion on the input (e.g., part-*.txt). This is useful
since large datasets are often spread across multiple files, especially
if other files (like success markers) may be in the same directory.

Saving text files

Outputting text files is also quite simple. The method saveAsTextFile(), demon‐
strated in Example 5-5, takes a path and will output the contents of the RDD to that
file. The path is treated as a directory and Spark will output multiple files underneath
that directory. This allows Spark to write the output from multiple nodes. With this
method we don’t get to control which files end up with which segments of our data,
but there are other output formats that do allow this.

Example 5-5. Saving as a text file in Python

result.saveAsTextFile(outputFile)

JSON
JSON is a popular semistructured data format. The simplest way to load JSON data is
by loading the data as a text file and then mapping over the values with a JSON
parser. Likewise, we can use our preferred JSON serialization library to write out the
values to strings, which we can then write out. In Java and Scala we can also work
with JSON data using a custom Hadoop format. “JSON” on page 172 also shows how to
load JSON data with Spark SQL.

Loading JSON
Loading the data as a text file and then parsing the JSON data is an approach that we
can use in all of the supported languages. This works assuming that you have one
JSON record per row; if you have multiline JSON files, you will instead have to load
the whole file and then parse each file. If constructing a JSON parser is expensive in
your language, you can use mapPartitions() to reuse the parser; see “Working on a
Per-Partition Basis” on page 107 for details.

There are a wide variety of JSON libraries available for the three languages we are
looking at, but for simplicity’s sake we are considering only one library per language.
In Python we will use the built-in library (Example 5-6), and in Java and Scala we will
use Jackson (Examples 5-7 and 5-8). These libraries have been chosen because they
perform reasonably well and are also relatively simple. If you spend a lot of time in
the parsing stage, look at other JSON libraries for Scala or for Java.

74 | Chapter 5: Loading and Saving Your Data

http://bit.ly/1upkGOV
http://bit.ly/17k6vli
http://bit.ly/1xP8JFK
http://bit.ly/1upkJu1

Example 5-6. Loading unstructured JSON in Python

import json
data = input.map(lambda x: json.loads(x))

In Scala and Java, it is common to load records into a class representing their sche‐
mas. At this stage, we may also want to skip invalid records. We show an example of
loading records as instances of a Person class.

Example 5-7. Loading JSON in Scala

import com.fasterxml.jackson.module.scala.DefaultScalaModule
import com.fasterxml.jackson.module.scala.experimental.ScalaObjectMapper
import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.databind.DeserializationFeature
...
case class Person(name: String, lovesPandas: Boolean) // Must be a top-level class
...
// Parse it into a specific case class. We use flatMap to handle errors
// by returning an empty list (None) if we encounter an issue and a
// list with one element if everything is ok (Some(_)).
val result = input.flatMap(record => {
 try {
 Some(mapper.readValue(record, classOf[Person]))
 } catch {
 case e: Exception => None
 }})

Example 5-8. Loading JSON in Java

class ParseJson implements FlatMapFunction<Iterator<String>, Person> {
 public Iterable<Person> call(Iterator<String> lines) throws Exception {
 ArrayList<Person> people = new ArrayList<Person>();
 ObjectMapper mapper = new ObjectMapper();
 while (lines.hasNext()) {
 String line = lines.next();
 try {
 people.add(mapper.readValue(line, Person.class));
 } catch (Exception e) {
 // skip records on failure
 }
 }
 return people;
 }
}
JavaRDD<String> input = sc.textFile("file.json");
JavaRDD<Person> result = input.mapPartitions(new ParseJson());

File Formats | 75

Handling incorrectly formatted records can be a big problem, espe‐
cially with semistructured data like JSON. With small datasets it
can be acceptable to stop the world (i.e., fail the program) on mal‐
formed input, but often with large datasets malformed input is
simply a part of life. If you do choose to skip incorrectly formatted
data, you may wish to look at using accumulators to keep track of
the number of errors.

Saving JSON
Writing out JSON files is much simpler compared to loading it, because we don’t
have to worry about incorrectly formatted data and we know the type of the data that
we are writing out. We can use the same libraries we used to convert our RDD of
strings into parsed JSON data and instead take our RDD of structured data and con‐
vert it into an RDD of strings, which we can then write out using Spark’s text file API.

Let’s say we were running a promotion for people who love pandas. We can take our
input from the first step and filter it for the people who love pandas, as shown in
Examples 5-9 through 5-11.

Example 5-9. Saving JSON in Python

(data.filter(lambda x: x['lovesPandas']).map(lambda x: json.dumps(x))
 .saveAsTextFile(outputFile))

Example 5-10. Saving JSON in Scala

result.filter(p => P.lovesPandas).map(mapper.writeValueAsString(_))
 .saveAsTextFile(outputFile)

Example 5-11. Saving JSON in Java

class WriteJson implements FlatMapFunction<Iterator<Person>, String> {
 public Iterable<String> call(Iterator<Person> people) throws Exception {
 ArrayList<String> text = new ArrayList<String>();
 ObjectMapper mapper = new ObjectMapper();
 while (people.hasNext()) {
 Person person = people.next();
 text.add(mapper.writeValueAsString(person));
 }
 return text;
 }
}

JavaRDD<Person> result = input.mapPartitions(new ParseJson()).filter(
 new LikesPandas());
JavaRDD<String> formatted = result.mapPartitions(new WriteJson());
formatted.saveAsTextFile(outfile);

76 | Chapter 5: Loading and Saving Your Data

We can thus easily load and save JSON data with Spark by using the existing mecha‐
nism for working with text and adding JSON libraries.

Comma-Separated Values and Tab-Separated Values
Comma-separated value (CSV) files are supposed to contain a fixed number of fields
per line, and the fields are separated by a comma (or a tab in the case of tab-separated
value, or TSV, files). Records are often stored one per line, but this is not always the
case as records can sometimes span lines. CSV and TSV files can sometimes be
inconsistent, most frequently with respect to handling newlines, escaping, and ren‐
dering non-ASCII characters, or noninteger numbers. CSVs cannot handle nested
field types natively, so we have to unpack and pack to specific fields manually.

Unlike with JSON fields, each record doesn’t have field names associated with it;
instead we get back row numbers. It is common practice in single CSV files to make
the first row’s column values the names of each field.

Loading CSV
Loading CSV/TSV data is similar to loading JSON data in that we can first load it as
text and then process it. The lack of standardization of format leads to different ver‐
sions of the same library sometimes handling input in different ways.

As with JSON, there are many different CSV libraries, but we will use only one for
each language. Once again, in Python we use the included csv library. In both Scala
and Java we use opencsv.

There is also a Hadoop InputFormat, CSVInputFormat, that we can
use to load CSV data in Scala and Java, although it does not sup‐
port records containing newlines.

If your CSV data happens to not contain newlines in any of the fields, you can load
your data with textFile() and parse it, as shown in Examples 5-12 through 5-14.

Example 5-12. Loading CSV with textFile() in Python

import csv
import StringIO
...
def loadRecord(line):
 """Parse a CSV line"""
 input = StringIO.StringIO(line)
 reader = csv.DictReader(input, fieldnames=["name", "favouriteAnimal"])
 return reader.next()
input = sc.textFile(inputFile).map(loadRecord)

File Formats | 77

https://docs.python.org/2/library/csv.html
http://opencsv.sourceforge.net/
http://bit.ly/1FigUkq

Example 5-13. Loading CSV with textFile() in Scala

import Java.io.StringReader
import au.com.bytecode.opencsv.CSVReader
...
val input = sc.textFile(inputFile)
val result = input.map{ line =>
 val reader = new CSVReader(new StringReader(line));
 reader.readNext();
}

Example 5-14. Loading CSV with textFile() in Java

import au.com.bytecode.opencsv.CSVReader;
import Java.io.StringReader;
...
public static class ParseLine implements Function<String, String[]> {
 public String[] call(String line) throws Exception {
 CSVReader reader = new CSVReader(new StringReader(line));
 return reader.readNext();
 }
}
JavaRDD<String> csvFile1 = sc.textFile(inputFile);
JavaPairRDD<String[]> csvData = csvFile1.map(new ParseLine());

If there are embedded newlines in fields, we will need to load each file in full and
parse the entire segment, as shown in Examples 5-15 through 5-17. This is unfortu‐
nate because if each file is large it can introduce bottlenecks in loading and parsing.
The different text file loading methods are described “Loading text files” on page 73.

Example 5-15. Loading CSV in full in Python

def loadRecords(fileNameContents):
 """Load all the records in a given file"""
 input = StringIO.StringIO(fileNameContents[1])
 reader = csv.DictReader(input, fieldnames=["name", "favoriteAnimal"])
 return reader
fullFileData = sc.wholeTextFiles(inputFile).flatMap(loadRecords)

Example 5-16. Loading CSV in full in Scala

case class Person(name: String, favoriteAnimal: String)

val input = sc.wholeTextFiles(inputFile)
val result = input.flatMap{ case (_, txt) =>
 val reader = new CSVReader(new StringReader(txt));
 reader.readAll().map(x => Person(x(0), x(1)))
}

78 | Chapter 5: Loading and Saving Your Data

Example 5-17. Loading CSV in full in Java

public static class ParseLine
 implements FlatMapFunction<Tuple2<String, String>, String[]> {
 public Iterable<String[]> call(Tuple2<String, String> file) throws Exception {
 CSVReader reader = new CSVReader(new StringReader(file._2()));
 return reader.readAll();
 }
}
JavaPairRDD<String, String> csvData = sc.wholeTextFiles(inputFile);
JavaRDD<String[]> keyedRDD = csvData.flatMap(new ParseLine());

If there are only a few input files, and you need to use the whole
File() method, you may want to repartition your input to allow
Spark to effectively parallelize your future operations.

Saving CSV
As with JSON data, writing out CSV/TSV data is quite simple and we can benefit
from reusing the output encoding object. Since in CSV we don’t output the field
name with each record, to have a consistent output we need to create a mapping. One
of the easy ways to do this is to just write a function that converts the fields to given
positions in an array. In Python, if we are outputting dictionaries the CSV writer can
do this for us based on the order in which we provide the fieldnames when con‐
structing the writer.

The CSV libraries we are using output to files/writers so we can use StringWriter/
StringIO to allow us to put the result in our RDD, as you can see in Examples 5-18
and 5-19.

Example 5-18. Writing CSV in Python

def writeRecords(records):
 """Write out CSV lines"""
 output = StringIO.StringIO()
 writer = csv.DictWriter(output, fieldnames=["name", "favoriteAnimal"])
 for record in records:
 writer.writerow(record)
 return [output.getvalue()]

pandaLovers.mapPartitions(writeRecords).saveAsTextFile(outputFile)

Example 5-19. Writing CSV in Scala

pandaLovers.map(person => List(person.name, person.favoriteAnimal).toArray)
.mapPartitions{people =>
 val stringWriter = new StringWriter();

File Formats | 79

 val csvWriter = new CSVWriter(stringWriter);
 csvWriter.writeAll(people.toList)
 Iterator(stringWriter.toString)
}.saveAsTextFile(outFile)

As you may have noticed, the preceding examples work only provided that we know
all of the fields that we will be outputting. However, if some of the field names are
determined at runtime from user input, we need to take a different approach. The
simplest approach is going over all of our data and extracting the distinct keys and
then taking another pass for output.

SequenceFiles
SequenceFiles are a popular Hadoop format composed of flat files with key/value
pairs. SequenceFiles have sync markers that allow Spark to seek to a point in the file
and then resynchronize with the record boundaries. This allows Spark to efficiently
read SequenceFiles in parallel from multiple nodes. SequenceFiles are a common
input/output format for Hadoop MapReduce jobs as well, so if you are working with
an existing Hadoop system there is a good chance your data will be available as a
SequenceFile.

SequenceFiles consist of elements that implement Hadoop’s Writable interface, as
Hadoop uses a custom serialization framework. Table 5-2 lists some common types
and their corresponding Writable class. The standard rule of thumb is to try adding
the word Writable to the end of your class name and see if it is a known subclass of
org.apache.hadoop.io.Writable. If you can’t find a Writable for the data you are
trying to write out (for example, a custom case class), you can go ahead and imple‐
ment your own Writable class by overriding readFields and write from
org.apache.hadoop.io.Writable.

Hadoop’s RecordReader reuses the same object for each record, so
directly calling cache on an RDD you read in like this can fail;
instead, add a simple map() operation and cache its result. Further‐
more, many Hadoop Writable classes do not implement
java.io.Serializable, so for them to work in RDDs we need to
convert them with a map() anyway.

80 | Chapter 5: Loading and Saving Your Data

http://bit.ly/1FilfEu

2 ints and longs are often stored as a fixed size. Storing the number 12 takes the same amount of space as
storing the number 2**30. If you might have a large number of small numbers use the variable sized types,
VIntWritable and VLongWritable, which will use fewer bits to store smaller numbers.

3 The templated type must also be a Writable type.

Table 5-2. Corresponding Hadoop Writable types

Scala type Java type Hadoop Writable

Int Integer IntWritable or VIntWritable2

Long Long LongWritable or VLongWritable2

Float Float FloatWritable

Double Double DoubleWritable

Boolean Boolean BooleanWritable

Array[Byte] byte[] BytesWritable

String String Text

Array[T] T[] ArrayWritable<TW>3

List[T] List<T> ArrayWritable<TW>3

Map[A, B] Map<A, B> MapWritable<AW, BW>3

In Spark 1.0 and earlier, SequenceFiles were available only in Java and Scala, but
Spark 1.1 added the ability to load and save them in Python as well. Note that you
will need to use Java and Scala to define custom Writable types, however. The Python
Spark API knows only how to convert the basic Writables available in Hadoop to
Python, and makes a best effort for other classes based on their available getter
methods.

Loading SequenceFiles
Spark has a specialized API for reading in SequenceFiles. On the SparkContext we
can call sequenceFile(path, keyClass, valueClass, minPartitions). As men‐
tioned earlier, SequenceFiles work with Writable classes, so our keyClass and value
Class will both have to be the correct Writable class. Let’s consider loading people
and the number of pandas they have seen from a SequenceFile. In this case our key

File Formats | 81

Class would be Text, and our valueClass would be IntWritable or VIntWritable,
but for simplicity we’ll work with IntWritable in Examples 5-20 through 5-22.

Example 5-20. Loading a SequenceFile in Python

val data = sc.sequenceFile(inFile,
 "org.apache.hadoop.io.Text", "org.apache.hadoop.io.IntWritable")

Example 5-21. Loading a SequenceFile in Scala

val data = sc.sequenceFile(inFile, classOf[Text], classOf[IntWritable]).
 map{case (x, y) => (x.toString, y.get())}

Example 5-22. Loading a SequenceFile in Java

public static class ConvertToNativeTypes implements
 PairFunction<Tuple2<Text, IntWritable>, String, Integer> {
 public Tuple2<String, Integer> call(Tuple2<Text, IntWritable> record) {
 return new Tuple2(record._1.toString(), record._2.get());
 }
}

JavaPairRDD<Text, IntWritable> input = sc.sequenceFile(fileName, Text.class,
 IntWritable.class);
JavaPairRDD<String, Integer> result = input.mapToPair(
 new ConvertToNativeTypes());

In Scala there is a convenience function that can automatically
convert Writables to their corresponding Scala type. Instead of
specifying the keyClass and valueClass, we can call sequence
File[Key, Value](path, minPartitions) and get back an RDD
of native Scala types.

Saving SequenceFiles
Writing the data out to a SequenceFile is fairly similar in Scala. First, because Sequen‐
ceFiles are key/value pairs, we need a PairRDD with types that our SequenceFile can
write out. Implicit conversions between Scala types and Hadoop Writables exist for
many native types, so if you are writing out a native type you can just save your
PairRDD by calling saveAsSequenceFile(path), and it will write out the data for you.
If there isn’t an automatic conversion from our key and value to Writable, or we want
to use variable-length types (e.g., VIntWritable), we can just map over the data and
convert it before saving. Let’s consider writing out the data that we loaded in the pre‐
vious example (people and how many pandas they have seen), as shown in
Example 5-23.

82 | Chapter 5: Loading and Saving Your Data

Example 5-23. Saving a SequenceFile in Scala

val data = sc.parallelize(List(("Panda", 3), ("Kay", 6), ("Snail", 2)))
data.saveAsSequenceFile(outputFile)

In Java saving a SequenceFile is slightly more involved, due to the lack of a saveAsSe
quenceFile() method on the JavaPairRDD. Instead, we use Spark’s ability to save to
custom Hadoop formats, and we will show how to save to a SequenceFile in Java in
“Hadoop Input and Output Formats” on page 84.

Object Files
Object files are a deceptively simple wrapper around SequenceFiles that allows us to
save our RDDs containing just values. Unlike with SequenceFiles, with object files the
values are written out using Java Serialization.

If you change your classes—for example, to add and remove fields
—old object files may no longer be readable. Object files use Java
Serialization, which has some support for managing compatibility
across class versions but requires programmer effort to do so.

Using Java Serialization for object files has a number of implications. Unlike with
normal SequenceFiles, the output will be different than Hadoop outputting the same
objects. Unlike the other formats, object files are mostly intended to be used for
Spark jobs communicating with other Spark jobs. Java Serialization can also be quite
slow.

Saving an object file is as simple as calling saveAsObjectFile on an RDD. Reading
an object file back is also quite simple: the function objectFile() on the SparkCon‐
text takes in a path and returns an RDD.

With all of these warnings about object files, you might wonder why anyone would
use them. The primary reason to use object files is that they require almost no work
to save almost arbitrary objects.

Object files are not available in Python, but the Python RDDs and SparkContext sup‐
port methods called saveAsPickleFile() and pickleFile() instead. These use
Python’s pickle serialization library. The same caveats for object files apply to pickle
files, however: the pickle library can be slow, and old files may not be readable if you
change your classes.

File Formats | 83

4 Hadoop added a new MapReduce API early in its lifetime, but some libraries still use the old one.

Hadoop Input and Output Formats
In addition to the formats Spark has wrappers for, we can also interact with any
Hadoop-supported formats. Spark supports both the “old” and “new” Hadoop file
APIs, providing a great amount of flexibility.4

Loading with other Hadoop input formats
To read in a file using the new Hadoop API we need to tell Spark a few things. The
newAPIHadoopFile takes a path, and three classes. The first class is the “format” class,
which is the class representing our input format. A similar function, hadoopFile(),
exists for working with Hadoop input formats implemented with the older API. The
next class is the class for our key, and the final class is the class of our value. If we
need to specify additional Hadoop configuration properties, we can also pass in a
conf object.

One of the simplest Hadoop input formats is the KeyValueTextInputFormat, which
can be used for reading in key/value data from text files (see Example 5-24). Each line
is processed individually, with the key and value separated by a tab character. This
format ships with Hadoop so we don’t have to add any extra dependencies to our
project to use it.

Example 5-24. Loading KeyValueTextInputFormat() with old-style API in Scala

val input = sc.hadoopFile[Text, Text, KeyValueTextInputFormat](inputFile).map{
 case (x, y) => (x.toString, y.toString)
}

We looked at loading JSON data by loading the data as a text file and then parsing it,
but we can also load JSON data using a custom Hadoop input format. This example
requires setting up some extra bits for compression, so feel free to skip it. Twitter’s
Elephant Bird package supports a large number of data formats, including JSON,
Lucene, Protocol Buffer–related formats, and others. The package also works with
both the new and old Hadoop file APIs. To illustrate how to work with the new-style
Hadoop APIs from Spark, we’ll look at loading LZO-compressed JSON data with Lzo
JsonInputFormat in Example 5-25.

Example 5-25. Loading LZO-compressed JSON with Elephant Bird in Scala

val input = sc.newAPIHadoopFile(inputFile, classOf[LzoJsonInputFormat],
 classOf[LongWritable], classOf[MapWritable], conf)
// Each MapWritable in "input" represents a JSON object

84 | Chapter 5: Loading and Saving Your Data

https://github.com/kevinweil/elephant-bird

LZO support requires you to install the hadoop-lzo package and
point Spark to its native libraries. If you install the Debian package,
adding --driver-library-path /usr/lib/hadoop/lib/native/

--driver-class-path /usr/lib/hadoop/lib/ to your spark-

submit invocation should do the trick.

Reading a file using the old Hadoop API is pretty much the same from a usage point
of view, except we provide an old-style InputFormat class. Many of Spark’s built-in
convenience functions (like sequenceFile()) are implemented using the old-style
Hadoop API.

Saving with Hadoop output formats
We already examined SequenceFiles to some extent, but in Java we don’t have the
same convenience function for saving from a pair RDD. We will use this as a way to
illustrate how to use the old Hadoop format APIs (see Example 5-26); the call for the
new one (saveAsNewAPIHadoopFile) is similar.

Example 5-26. Saving a SequenceFile in Java

public static class ConvertToWritableTypes implements
 PairFunction<Tuple2<String, Integer>, Text, IntWritable> {
 public Tuple2<Text, IntWritable> call(Tuple2<String, Integer> record) {
 return new Tuple2(new Text(record._1), new IntWritable(record._2));
 }
}

JavaPairRDD<String, Integer> rdd = sc.parallelizePairs(input);
JavaPairRDD<Text, IntWritable> result = rdd.mapToPair(new ConvertToWritableTypes());
result.saveAsHadoopFile(fileName, Text.class, IntWritable.class,
 SequenceFileOutputFormat.class);

Non-filesystem data sources

In addition to the hadoopFile() and saveAsHadoopFile() family of functions, you
can use hadoopDataset/saveAsHadoopDataSet and newAPIHadoopDataset/saveAsNe
wAPIHadoopDataset to access Hadoop-supported storage formats that are not filesys‐
tems. For example, many key/value stores, such as HBase and MongoDB, provide
Hadoop input formats that read directly from the key/value store. You can easily use
any such format in Spark.

The hadoopDataset() family of functions just take a Configuration object on which
you set the Hadoop properties needed to access your data source. You do the config‐
uration the same way as you would configure a Hadoop MapReduce job, so you can
follow the instructions for accessing one of these data sources in MapReduce and

File Formats | 85

5 Sometimes called pbs or protobufs.

then pass the object to Spark. For example, “HBase” on page 96 shows how to use newA
PIHadoopDataset to load data from HBase.

Example: Protocol buffers
Protocol buffers5 were first developed at Google for internal remote procedure calls
(RPCs) and have since been open sourced. Protocol buffers (PBs) are structured data,
with the fields and types of fields being clearly defined. They are optimized to be fast
for encoding and decoding and also take up the minimum amount of space.
Compared to XML, PBs are 3× to 10× smaller and can be 20× to 100× faster to
encode and decode. While a PB has a consistent encoding, there are multiple ways to
create a file consisting of many PB messages.

Protocol buffers are defined using a domain-specific language, and then the protocol
buffer compiler can be used to generate accessor methods in a variety of languages
(including all those supported by Spark). Since PBs aim to take up a minimal amount
of space they are not “self-describing,” as encoding the description of the data would
take up additional space. This means that to parse data that is formatted as PB, we
need the protocol buffer definition to make sense of it.

PBs consist of fields that can be either optional, required, or repeated. When you’re
parsing data, a missing optional field does not result in a failure, but a missing
required field results in failing to parse the data. Therefore, when you’re adding new
fields to existing protocol buffers it is good practice to make the new fields optional,
as not everyone will upgrade at the same time (and even if they do, you might want to
read your old data).

PB fields can be many predefined types, or another PB message. These types include
string, int32, enums, and more. This is by no means a complete introduction to pro‐
tocol buffers, so if you are interested you should consult the Protocol Buffers website.

In Example 5-27 we will look at loading many VenueResponse objects from a simple
protocol buffer format. The sample VenueResponse is a simple format with one
repeated field, containing another message with required, optional, and enumeration
fields.

Example 5-27. Sample protocol buffer definition

message Venue {
 required int32 id = 1;
 required string name = 2;
 required VenueType type = 3;
 optional string address = 4;

86 | Chapter 5: Loading and Saving Your Data

https://code.google.com/p/protobuf/
https://developers.google.com/protocol-buffers

 enum VenueType {
 COFFEESHOP = 0;
 WORKPLACE = 1;
 CLUB = 2;
 OMNOMNOM = 3;
 OTHER = 4;
 }
}

message VenueResponse {
 repeated Venue results = 1;
}

Twitter’s Elephant Bird library, which we used in the previous section to load JSON
data, also supports loading and saving data from protocol buffers. Let’s look at writ‐
ing out some Venues in Example 5-28.

Example 5-28. Elephant Bird protocol buffer writeout in Scala

val job = new Job()
val conf = job.getConfiguration
LzoProtobufBlockOutputFormat.setClassConf(classOf[Places.Venue], conf);
val dnaLounge = Places.Venue.newBuilder()
dnaLounge.setId(1);
dnaLounge.setName("DNA Lounge")
dnaLounge.setType(Places.Venue.VenueType.CLUB)
val data = sc.parallelize(List(dnaLounge.build()))
val outputData = data.map{ pb =>
 val protoWritable = ProtobufWritable.newInstance(classOf[Places.Venue]);
 protoWritable.set(pb)
 (null, protoWritable)
}
outputData.saveAsNewAPIHadoopFile(outputFile, classOf[Text],
 classOf[ProtobufWritable[Places.Venue]],
 classOf[LzoProtobufBlockOutputFormat[ProtobufWritable[Places.Venue]]], conf)

A full version of this example is available in the source code for this book.

When building your project, make sure to use the same protocol
buffer library version as Spark. As of this writing, that is version
2.5.

File Compression
Frequently when working with Big Data, we find ourselves needing to use com‐
pressed data to save storage space and network overhead. With most Hadoop output

File Formats | 87

6 Depends on the library used

formats, we can specify a compression codec that will compress the data. As we have
already seen, Spark’s native input formats (textFile and sequenceFile) can auto‐
matically handle some types of compression for us. When you’re reading in com‐
pressed data, there are some compression codecs that can be used to automatically
guess the compression type.

These compression options apply only to the Hadoop formats that support compres‐
sion, namely those that are written out to a filesystem. The database Hadoop formats
generally do not implement support for compression, or if they have compressed
records that is configured in the database itself.

Choosing an output compression codec can have a big impact on future users of the
data. With distributed systems such as Spark, we normally try to read our data in
from multiple different machines. To make this possible, each worker needs to be
able to find the start of a new record. Some compression formats make this impossi‐
ble, which requires a single node to read in all of the data and thus can easily lead to a
bottleneck. Formats that can be easily read from multiple machines are called “split‐
table.” Table 5-3 lists the available compression options.

Table 5-3. Compression options

Format Splittable Average
compression
speed

Effectiveness
on text

Hadoop compression codec Pure
Java

Native Comments

gzip N Fast High org.apache.hadoop.io.com

press.GzipCodec

Y Y

lzo Y 6 Very fast Medium com.hadoop.compres

sion.lzo.LzoCodec

Y Y LZO requires
installation
on every
worker node

bzip2 Y Slow Very high org.apache.hadoop.io.com

press.BZip2Codec

Y Y Uses pure
Java for
splittable
version

zlib N Slow Medium org.apache.hadoop.io.com

press.DefaultCodec

Y Y Default
compression
codec for
Hadoop

88 | Chapter 5: Loading and Saving Your Data

Format Splittable Average
compression
speed

Effectiveness
on text

Hadoop compression codec Pure
Java

Native Comments

Snappy N Very Fast Low org.apache.hadoop.io.com

press.SnappyCodec

N Y There is a
pure Java
port of
Snappy but it
is not yet
available in
Spark/
Hadoop

While Spark’s textFile() method can handle compressed input, it
automatically disables splittable even if the input is compressed
such that it could be read in a splittable way. If you find yourself
needing to read in a large single-file compressed input, consider
skipping Spark’s wrapper and instead use either newAPIHadoopFile
or hadoopFile and specify the correct compression codec.

Some input formats (like SequenceFiles) allow us to compress only the values in key/
value data, which can be useful for doing lookups. Other input formats have their
own compression control: for example, many of the formats in Twitter’s Elephant
Bird package work with LZO compressed data.

Filesystems
Spark supports a large number of filesystems for reading and writing to, which we
can use with any of the file formats we want.

Local/“Regular” FS
While Spark supports loading files from the local filesystem, it requires that the files
are available at the same path on all nodes in your cluster.

Some network filesystems, like NFS, AFS, and MapR’s NFS layer, are exposed to the
user as a regular filesystem. If your data is already in one of these systems, then you
can use it as an input by just specifying a file:// path; Spark will handle it as long as
the filesystem is mounted at the same path on each node (see Example 5-29).

Example 5-29. Loading a compressed text file from the local filesystem in Scala

val rdd = sc.textFile("file:///home/holden/happypandas.gz")

Filesystems | 89

If your file isn’t already on all nodes in the cluster, you can load it locally on the
driver without going through Spark and then call parallelize to distribute the con‐
tents to workers. This approach can be slow, however, so we recommend putting
your files in a shared filesystem like HDFS, NFS, or S3.

Amazon S3
Amazon S3 is an increasingly popular option for storing large amounts of data. S3 is
especially fast when your compute nodes are located inside of Amazon EC2, but can
easily have much worse performance if you have to go over the public Internet.

To access S3 in Spark, you should first set the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables to your S3 credentials. You can cre‐
ate these credentials from the Amazon Web Services console. Then pass a path start‐
ing with s3n:// to Spark’s file input methods, of the form s3n://bucket/path-
within-bucket. As with all the other filesystems, Spark supports wildcard paths for
S3, such as s3n://bucket/my-files/*.txt.

If you get an S3 access permissions error from Amazon, make sure that the account
for which you specified an access key has both “read” and “list” permissions on the
bucket. Spark needs to be able to list the objects in the bucket to identify the ones you
want to read.

HDFS
The Hadoop Distributed File System (HDFS) is a popular distributed filesystem with
which Spark works well. HDFS is designed to work on commodity hardware and be
resilient to node failure while providing high data throughput. Spark and HDFS can
be collocated on the same machines, and Spark can take advantage of this data local‐
ity to avoid network overhead.

Using Spark with HDFS is as simple as specifying hdfs://master:port/path for
your input and output.

The HDFS protocol changes across Hadoop versions, so if you run
a version of Spark that is compiled for a different version it will fail.
By default Spark is built against Hadoop 1.0.4. If you build from
source, you can specify SPARK_HADOOP_VERSION= as a environment
variable to build against a different version; or you can download a
different precompiled version of Spark. You can determine the
value by running hadoop version.

90 | Chapter 5: Loading and Saving Your Data

Structured Data with Spark SQL
Spark SQL is a component added in Spark 1.0 that is quickly becoming Spark’s pre‐
ferred way to work with structured and semistructured data. By structured data, we
mean data that has a schema—that is, a consistent set of fields across data records.
Spark SQL supports multiple structured data sources as input, and because it under‐
stands their schema, it can efficiently read only the fields you require from these data
sources. We will cover Spark SQL in more detail in Chapter 9, but for now, we show
how to use it to load data from a few common sources.

In all cases, we give Spark SQL a SQL query to run on the data source (selecting some
fields or a function of the fields), and we get back an RDD of Row objects, one per
record. In Java and Scala, the Row objects allow access based on the column number.
Each Row has a get() method that gives back a general type we can cast, and specific
get() methods for common basic types (e.g., getFloat(), getInt(), getLong(), get
String(), getShort(), and getBoolean()). In Python we can just access the ele‐
ments with row[column_number] and row.column_name.

Apache Hive
One common structured data source on Hadoop is Apache Hive. Hive can store
tables in a variety of formats, from plain text to column-oriented formats, inside
HDFS or other storage systems. Spark SQL can load any table supported by Hive.

To connect Spark SQL to an existing Hive installation, you need to provide a Hive
configuration. You do so by copying your hive-site.xml file to Spark’s ./conf/ direc‐
tory. Once you have done this, you create a HiveContext object, which is the entry
point to Spark SQL, and you can write Hive Query Language (HQL) queries against
your tables to get data back as RDDs of rows. Examples 5-30 through 5-32
demonstrate.

Example 5-30. Creating a HiveContext and selecting data in Python

from pyspark.sql import HiveContext

hiveCtx = HiveContext(sc)
rows = hiveCtx.sql("SELECT name, age FROM users")
firstRow = rows.first()
print firstRow.name

Example 5-31. Creating a HiveContext and selecting data in Scala

import org.apache.spark.sql.hive.HiveContext

val hiveCtx = new org.apache.spark.sql.hive.HiveContext(sc)
val rows = hiveCtx.sql("SELECT name, age FROM users")

Structured Data with Spark SQL | 91

val firstRow = rows.first()
println(firstRow.getString(0)) // Field 0 is the name

Example 5-32. Creating a HiveContext and selecting data in Java

import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SchemaRDD;

HiveContext hiveCtx = new HiveContext(sc);
SchemaRDD rows = hiveCtx.sql("SELECT name, age FROM users");
Row firstRow = rows.first();
System.out.println(firstRow.getString(0)); // Field 0 is the name

We cover loading data from Hive in more detail in “Apache Hive” on page 170.

JSON
If you have JSON data with a consistent schema across records, Spark SQL can infer
their schema and load this data as rows as well, making it very simple to pull out the
fields you need. To load JSON data, first create a HiveContext as when using Hive.
(No installation of Hive is needed in this case, though—that is, you don’t need a hive-
site.xml file.) Then use the HiveContext.jsonFile method to get an RDD of Row
objects for the whole file. Apart from using the whole Row object, you can also register
this RDD as a table and select specific fields from it. For example, suppose that we
had a JSON file containing tweets in the format shown in Example 5-33, one per line.

Example 5-33. Sample tweets in JSON

{"user": {"name": "Holden", "location": "San Francisco"}, "text": "Nice day out today"}
{"user": {"name": "Matei", "location": "Berkeley"}, "text": "Even nicer here :)"}

We could load this data and select just the username and text fields as shown in
Examples 5-34 through 5-36.

Example 5-34. JSON loading with Spark SQL in Python

tweets = hiveCtx.jsonFile("tweets.json")
tweets.registerTempTable("tweets")
results = hiveCtx.sql("SELECT user.name, text FROM tweets")

Example 5-35. JSON loading with Spark SQL in Scala

val tweets = hiveCtx.jsonFile("tweets.json")
tweets.registerTempTable("tweets")
val results = hiveCtx.sql("SELECT user.name, text FROM tweets")

92 | Chapter 5: Loading and Saving Your Data

Example 5-36. JSON loading with Spark SQL in Java

SchemaRDD tweets = hiveCtx.jsonFile(jsonFile);
tweets.registerTempTable("tweets");
SchemaRDD results = hiveCtx.sql("SELECT user.name, text FROM tweets");

We discuss more about how to load JSON data with Spark SQL and access its schema
in “JSON” on page 172. In addition, Spark SQL supports quite a bit more than loading
data, including querying the data, combining it in more complex ways with RDDs,
and running custom functions over it, which we will cover in Chapter 9.

Databases
Spark can access several popular databases using either their Hadoop connectors or
custom Spark connectors. In this section, we will show four common connectors.

Java Database Connectivity
Spark can load data from any relational database that supports Java Database Con‐
nectivity (JDBC), including MySQL, Postgres, and other systems. To access this data,
we construct an org.apache.spark.rdd.JdbcRDD and provide it with our SparkCon‐
text and the other parameters. Example 5-37 walks you through using JdbcRDD for a
MySQL database.

Example 5-37. JdbcRDD in Scala

def createConnection() = {
 Class.forName("com.mysql.jdbc.Driver").newInstance();
 DriverManager.getConnection("jdbc:mysql://localhost/test?user=holden");
}

def extractValues(r: ResultSet) = {
 (r.getInt(1), r.getString(2))
}

val data = new JdbcRDD(sc,
 createConnection, "SELECT * FROM panda WHERE ? <= id AND id <= ?",
 lowerBound = 1, upperBound = 3, numPartitions = 2, mapRow = extractValues)
println(data.collect().toList)

JdbcRDD takes several parameters:

• First, we provide a function to establish a connection to our database. This lets
each node create its own connection to load data over, after performing any con‐
figuration required to connect.

Databases | 93

7 If you don’t know how many records there are, you can just do a count query manually first and use its result
to determine the upperBound and lowerBound.

• Next, we provide a query that can read a range of the data, as well as a lower
Bound and upperBound value for the parameter to this query. These parameters
allow Spark to query different ranges of the data on different machines, so we
don’t get bottlenecked trying to load all the data on a single node.7

• The last parameter is a function that converts each row of output from a
java.sql.ResultSet to a format that is useful for manipulating our data. In
Example 5-37, we will get (Int, String) pairs. If this parameter is left out, Spark
will automatically convert each row to an array of objects.

As with other data sources, when using JdbcRDD, make sure that your database can
handle the load of parallel reads from Spark. If you’d like to query the data offline
rather than the live database, you can always use your database’s export feature to
export a text file.

Cassandra
Spark’s Cassandra support has improved greatly with the introduction of the open
source Spark Cassandra connector from DataStax. Since the connector is not cur‐
rently part of Spark, you will need to add some further dependencies to your build
file. Cassandra doesn’t yet use Spark SQL, but it returns RDDs of CassandraRow
objects, which have some of the same methods as Spark SQL’s Row object, as shown in
Examples 5-38 and 5-39.The Spark Cassandra connector is currently only available in
Java and Scala.

Example 5-38. sbt requirements for Cassandra connector

"com.datastax.spark" %% "spark-cassandra-connector" % "1.0.0-rc5",
"com.datastax.spark" %% "spark-cassandra-connector-java" % "1.0.0-rc5"

Example 5-39. Maven requirements for Cassandra connector

<dependency> <!-- Cassandra -->
 <groupId>com.datastax.spark</groupId>
 <artifactId>spark-cassandra-connector</artifactId>
 <version>1.0.0-rc5</version>
</dependency>
<dependency> <!-- Cassandra -->
 <groupId>com.datastax.spark</groupId>
 <artifactId>spark-cassandra-connector-java</artifactId>
 <version>1.0.0-rc5</version>
</dependency>

94 | Chapter 5: Loading and Saving Your Data

http://bit.ly/1xSi5DQ
https://github.com/datastax/spark-cassandra-connector

Much like with Elasticsearch, the Cassandra connector reads a job property to deter‐
mine which cluster to connect to. We set the spark.cassandra.connection.host to
point to our Cassandra cluster and if we have a username and password we can set
them with spark.cassandra.auth.username and spark.cassandra.auth.password.
Assuming you have only a single Cassandra cluster to connect to, we can set this up
when we are creating our SparkContext as shown in Examples 5-40 and 5-41.

Example 5-40. Setting the Cassandra property in Scala

val conf = new SparkConf(true)
 .set("spark.cassandra.connection.host", "hostname")

val sc = new SparkContext(conf)

Example 5-41. Setting the Cassandra property in Java

SparkConf conf = new SparkConf(true)
 .set("spark.cassandra.connection.host", cassandraHost);
JavaSparkContext sc = new JavaSparkContext(
 sparkMaster, "basicquerycassandra", conf);

The Datastax Cassandra connector uses implicits in Scala to provide some additional
functions on top of the SparkContext and RDDs. Let’s import the implicit conver‐
sions and try loading some data (Example 5-42).

Example 5-42. Loading the entire table as an RDD with key/value data in Scala

// Implicits that add functions to the SparkContext & RDDs.
import com.datastax.spark.connector._

// Read entire table as an RDD. Assumes your table test was created as
// CREATE TABLE test.kv(key text PRIMARY KEY, value int);
val data = sc.cassandraTable("test" , "kv")
// Print some basic stats on the value field.
data.map(row => row.getInt("value")).stats()

In Java we don’t have implicit conversions, so we need to explicitly convert our
SparkContext and RDDs for this functionality (Example 5-43).

Example 5-43. Loading the entire table as an RDD with key/value data in Java

import com.datastax.spark.connector.CassandraRow;
import static com.datastax.spark.connector.CassandraJavaUtil.javaFunctions;

// Read entire table as an RDD. Assumes your table test was created as
// CREATE TABLE test.kv(key text PRIMARY KEY, value int);
JavaRDD<CassandraRow> data = javaFunctions(sc).cassandraTable("test" , "kv");
// Print some basic stats.

Databases | 95

System.out.println(data.mapToDouble(new DoubleFunction<CassandraRow>() {
 public double call(CassandraRow row) { return row.getInt("value"); }
}).stats());

In addition to loading an entire table, we can also query subsets of our data. We can
restrict our data by adding a where clause to the cassandraTable() call—for exam‐
ple, sc.cassandraTable(…).where("key=?", "panda").

The Cassandra connector supports saving to Cassandra from a variety of RDD types.
We can directly save RDDs of CassandraRow objects, which is useful for copying data
between tables. We can save RDDs that aren’t in row form as tuples and lists by spec‐
ifying the column mapping, as Example 5-44 shows.

Example 5-44. Saving to Cassandra in Scala

val rdd = sc.parallelize(List(Seq("moremagic", 1)))
rdd.saveToCassandra("test" , "kv", SomeColumns("key", "value"))

This section only briefly introduced the Cassandra connector. For more information,
check out the connector’s GitHub page.

HBase
Spark can access HBase through its Hadoop input format, implemented in the
org.apache.hadoop.hbase.mapreduce.TableInputFormat class. This input format
returns key/value pairs where the key is of type org.apache.hadoop.hbase.io.Immu
tableBytesWritable and the value is of type org.apache.hadoop.hbase.cli
ent.Result. The Result class includes various methods for getting values based on
their column family, as described in its API documentation.

To use Spark with HBase, you can call SparkContext.newAPIHadoopRDD with the cor‐
rect input format, as shown for Scala in Example 5-45.

Example 5-45. Scala example of reading from HBase

import org.apache.hadoop.hbase.HBaseConfiguration
import org.apache.hadoop.hbase.client.Result
import org.apache.hadoop.hbase.io.ImmutableBytesWritable
import org.apache.hadoop.hbase.mapreduce.TableInputFormat

val conf = HBaseConfiguration.create()
conf.set(TableInputFormat.INPUT_TABLE, "tablename") // which table to scan

val rdd = sc.newAPIHadoopRDD(
 conf, classOf[TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result])

96 | Chapter 5: Loading and Saving Your Data

https://github.com/datastax/spark-cassandra-connector
http://bit.ly/1xSllPI

To optimize reading from HBase, TableInputFormat includes multiple settings such
as limiting the scan to just one set of columns and limiting the time ranges scanned.
You can find these options in the TableInputFormat API documentation and set
them on your HBaseConfiguration before passing it to Spark.

Elasticsearch
Spark can both read and write data from Elasticsearch using Elasticsearch-Hadoop.
Elasticsearch is a new open source, Lucene-based search system.

The Elasticsearch connector is a bit different than the other connectors we have
examined, since it ignores the path information we provide and instead depends on
setting up configuration on our SparkContext. The Elasticsearch OutputFormat con‐
nector also doesn’t quite have the types to use Spark’s wrappers, so we instead use
saveAsHadoopDataSet, which means we need to set more properties by hand. Let’s
look at how to read/write some simple data to Elasticsearch in Examples 5-46 and
5-47.

The latest Elasticsearch Spark connector is even easier to use, sup‐
porting returning Spark SQL rows. This connector is still covered,
as the row conversion doesn’t yet support all of the native types in
Elasticsearch.

Example 5-46. Elasticsearch output in Scala

val jobConf = new JobConf(sc.hadoopConfiguration)
jobConf.set("mapred.output.format.class", "org.elasticsearch.hadoop.mr.EsOutputFormat")
jobConf.setOutputCommitter(classOf[FileOutputCommitter])
jobConf.set(ConfigurationOptions.ES_RESOURCE_WRITE, "twitter/tweets")
jobConf.set(ConfigurationOptions.ES_NODES, "localhost")
FileOutputFormat.setOutputPath(jobConf, new Path("-"))
output.saveAsHadoopDataset(jobConf)

Example 5-47. Elasticsearch input in Scala

def mapWritableToInput(in: MapWritable): Map[String, String] = {
 in.map{case (k, v) => (k.toString, v.toString)}.toMap
}

val jobConf = new JobConf(sc.hadoopConfiguration)
jobConf.set(ConfigurationOptions.ES_RESOURCE_READ, args(1))
jobConf.set(ConfigurationOptions.ES_NODES, args(2))
val currentTweets = sc.hadoopRDD(jobConf,
 classOf[EsInputFormat[Object, MapWritable]], classOf[Object],
 classOf[MapWritable])
// Extract only the map

Databases | 97

http://bit.ly/1xSlz9B
https://github.com/elasticsearch/elasticsearch-hadoop

// Convert the MapWritable[Text, Text] to Map[String, String]
val tweets = currentTweets.map{ case (key, value) => mapWritableToInput(value) }

Compared to some of our other connectors, this is a bit convoluted, but it serves as a
useful reference for how to work with these types of connectors.

On the write side, Elasticsearch can do mapping inference, but this
can occasionally infer the types incorrectly, so it can be a good idea
to explicitly set a mapping if you are storing data types other than
strings.

Conclusion
With the end of this chapter you should now be able to get your data into Spark to
work with and store the result of your computation in a format that is useful for you.
We have examined a number of different formats we can use for our data, as well as
compression options and their implications on how data can be consumed. Subse‐
quent chapters will examine ways to write more effective and powerful Spark pro‐
grams now that we can load and save large datasets.

98 | Chapter 5: Loading and Saving Your Data

http://bit.ly/1xSmeaS

CHAPTER 6

Advanced Spark Programming

Introduction
This chapter introduces a variety of advanced Spark programming features that we
didn’t get to cover in the previous chapters. We introduce two types of shared vari‐
ables: accumulators to aggregate information and broadcast variables to efficiently
distribute large values. Building on our existing transformations on RDDs, we intro‐
duce batch operations for tasks with high setup costs, like querying a database. To
expand the range of tools accessible to us, we cover Spark’s methods for interacting
with external programs, such as scripts written in R.

Throughout this chapter we build an example using ham radio operators’ call logs as
the input. These logs, at the minimum, include the call signs of the stations contacted.
Call signs are assigned by country, and each country has its own range of call signs so
we can look up the countries involved. Some call logs also include the physical loca‐
tion of the operators, which we can use to determine the distance involved. We
include a sample log entry in Example 6-1. The book’s sample repo includes a list of
call signs to look up the call logs for and process the results.

Example 6-1. Sample call log entry in JSON, with some fields removed

{"address":"address here", "band":"40m","callsign":"KK6JLK","city":"SUNNYVALE",
"contactlat":"37.384733","contactlong":"-122.032164",
"county":"Santa Clara","dxcc":"291","fullname":"MATTHEW McPherrin",
"id":57779,"mode":"FM","mylat":"37.751952821","mylong":"-122.4208688735",...}

The first set of Spark features we’ll look at are shared variables, which are a special
type of variable you can use in Spark tasks. In our example we use Spark’s shared
variables to count nonfatal error conditions and distribute a large lookup table.

99

When our task involves a large setup time, such as creating a database connection or
random-number generator, it is useful to share this setup work across multiple data
items. Using a remote call sign lookup database, we examine how to reuse setup work
by operating on a per-partition basis.

In addition to the languages directly supported by Spark, the system can call into pro‐
grams written in other languages. This chapter introduces how to use Spark’s
language-agnostic pipe() method to interact with other programs through standard
input and output. We will use the pipe() method to access an R library for comput‐
ing the distance of a ham radio operator’s contacts.

Finally, similar to its tools for working with key/value pairs, Spark has methods for
working with numeric data. We demonstrate these methods by removing outliers
from the distances computed with our ham radio call logs.

Accumulators
When we normally pass functions to Spark, such as a map() function or a condition
for filter(), they can use variables defined outside them in the driver program, but
each task running on the cluster gets a new copy of each variable, and updates from
these copies are not propagated back to the driver. Spark’s shared variables, accumu‐
lators and broadcast variables, relax this restriction for two common types of com‐
munication patterns: aggregation of results and broadcasts.

Our first type of shared variable, accumulators, provides a simple syntax for aggregat‐
ing values from worker nodes back to the driver program. One of the most common
uses of accumulators is to count events that occur during job execution for debugging
purposes. For example, say that we are loading a list of all of the call signs for which
we want to retrieve logs from a file, but we are also interested in how many lines of
the input file were blank (perhaps we do not expect to see many such lines in valid
input). Examples 6-2 through 6-4 demonstrate this scenario.

Example 6-2. Accumulator empty line count in Python

file = sc.textFile(inputFile)
Create Accumulator[Int] initialized to 0
blankLines = sc.accumulator(0)

def extractCallSigns(line):
 global blankLines # Make the global variable accessible
 if (line == ""):
 blankLines += 1
 return line.split(" ")

callSigns = file.flatMap(extractCallSigns)

100 | Chapter 6: Advanced Spark Programming

callSigns.saveAsTextFile(outputDir + "/callsigns")
print "Blank lines: %d" % blankLines.value

Example 6-3. Accumulator empty line count in Scala

val sc = new SparkContext(...)
val file = sc.textFile("file.txt")

val blankLines = sc.accumulator(0) // Create an Accumulator[Int] initialized to 0

val callSigns = file.flatMap(line => {
 if (line == "") {
 blankLines += 1 // Add to the accumulator
 }
 line.split(" ")
})

callSigns.saveAsTextFile("output.txt")
println("Blank lines: " + blankLines.value)

Example 6-4. Accumulator empty line count in Java

JavaRDD<String> rdd = sc.textFile(args[1]);

final Accumulator<Integer> blankLines = sc.accumulator(0);
JavaRDD<String> callSigns = rdd.flatMap(
 new FlatMapFunction<String, String>() { public Iterable<String> call(String line) {
 if (line.equals("")) {
 blankLines.add(1);
 }
 return Arrays.asList(line.split(" "));
 }});

callSigns.saveAsTextFile("output.txt")
System.out.println("Blank lines: "+ blankLines.value());

In these examples, we create an Accumulator[Int] called blankLines, and then add
1 to it whenever we see a blank line in the input. After evaluating the transformation,
we print the value of the counter. Note that we will see the right count only after we
run the saveAsTextFile() action, because the transformation above it, map(), is lazy,
so the side-effect incrementing of the accumulator will happen only when the lazy
map() transformation is forced to occur by the saveAsTextFile() action.

Of course, it is possible to aggregate values from an entire RDD back to the driver
program using actions like reduce(), but sometimes we need a simple way to aggre‐
gate values that, in the process of transforming an RDD, are generated at different
scale or granularity than that of the RDD itself. In the previous example, accumula‐
tors let us count errors as we load the data, without doing a separate filter() or
reduce().

Accumulators | 101

To summarize, accumulators work as follows:

• We create them in the driver by calling the SparkContext.accumulator(initial
Value) method, which produces an accumulator holding an initial value. The
return type is an org.apache.spark.Accumulator[T] object, where T is the type
of initialValue.

• Worker code in Spark closures can add to the accumulator with its += method
(or add in Java).

• The driver program can call the value property on the accumulator to access its
value (or call value() and setValue() in Java).

Note that tasks on worker nodes cannot access the accumulator’s value()—from the
point of view of these tasks, accumulators are write-only variables. This allows accu‐
mulators to be implemented efficiently, without having to communicate every
update.

The type of counting shown here becomes especially handy when there are multiple
values to keep track of, or when the same value needs to increase at multiple places in
the parallel program (for example, you might be counting calls to a JSON parsing
library throughout your program). For instance, often we expect some percentage of
our data to be corrupted, or allow for the backend to fail some number of times. To
prevent producing garbage output when there are too many errors, we can use a
counter for valid records and a counter for invalid records. The value of our accumu‐
lators is available only in the driver program, so that is where we place our checks.

Continuing from our last example, we can now validate the call signs and write the
output only if most of the input is valid. The ham radio call sign format is specified in
Article 19 by the International Telecommunication Union, from which we construct
a regular expression to verify conformance, shown in Example 6-5.

Example 6-5. Accumulator error count in Python

Create Accumulators for validating call signs
validSignCount = sc.accumulator(0)
invalidSignCount = sc.accumulator(0)

def validateSign(sign):
 global validSignCount, invalidSignCount
 if re.match(r"\A\d?[a-zA-Z]{1,2}\d{1,4}[a-zA-Z]{1,3}\Z", sign):
 validSignCount += 1
 return True
 else:
 invalidSignCount += 1
 return False

102 | Chapter 6: Advanced Spark Programming

Count the number of times we contacted each call sign
validSigns = callSigns.filter(validateSign)
contactCount = validSigns.map(lambda sign: (sign, 1)).reduceByKey(lambda (x, y): x + y)

Force evaluation so the counters are populated
contactCount.count()
if invalidSignCount.value < 0.1 * validSignCount.value:
 contactCount.saveAsTextFile(outputDir + "/contactCount")
else:
 print "Too many errors: %d in %d" % (invalidSignCount.value, validSignCount.value)

Accumulators and Fault Tolerance
Spark automatically deals with failed or slow machines by re-executing failed or slow
tasks. For example, if the node running a partition of a map() operation crashes,
Spark will rerun it on another node; and even if the node does not crash but is simply
much slower than other nodes, Spark can preemptively launch a “speculative” copy
of the task on another node, and take its result if that finishes. Even if no nodes fail,
Spark may have to rerun a task to rebuild a cached value that falls out of memory.
The net result is therefore that the same function may run multiple times on the same
data depending on what happens on the cluster.

How does this interact with accumulators? The end result is that for accumulators
used in actions, Spark applies each task’s update to each accumulator only once. Thus,
if we want a reliable absolute value counter, regardless of failures or multiple evalua‐
tions, we must put it inside an action like foreach().

For accumulators used in RDD transformations instead of actions, this guarantee does
not exist. An accumulator update within a transformation can occur more than once.
One such case of a probably unintended multiple update occurs when a cached but
infrequently used RDD is first evicted from the LRU cache and is then subsequently
needed. This forces the RDD to be recalculated from its lineage, with the unintended
side effect that calls to update an accumulator within the transformations in that line‐
age are sent again to the driver. Within transformations, accumulators should, conse‐
quently, be used only for debugging purposes.

While future versions of Spark may change this behavior to count the update only
once, the current version (1.2.0) does have the multiple update behavior, so accumu‐
lators in transformations are recommended only for debugging purposes.

Custom Accumulators
So far we’ve seen how to use one of Spark’s built-in accumulator types: integers (Accu
mulator[Int]) with addition. Out of the box, Spark supports accumulators of type
Double, Long, and Float. In addition to these, Spark also includes an API to define
custom accumulator types and custom aggregation operations (e.g., finding the

Accumulators | 103

maximum of the accumulated values instead of adding them). Custom accumulators
need to extend AccumulatorParam, which is covered in the Spark API documenta‐
tion. Beyond adding to a numeric value, we can use any operation for add, provided
that operation is commutative and associative. For example, instead of adding to
track the total we could keep track of the maximum value seen so far.

An operation op is commutative if a op b = b op a for all values a, b.
An operation op is associative if (a op b) op c = a op (b op c) for all
values a, b, and c.
For example, sum and max are commutative and associative opera‐
tions that are commonly used in Spark accumulators.

Broadcast Variables
Spark’s second type of shared variable, broadcast variables, allows the program to
efficiently send a large, read-only value to all the worker nodes for use in one or more
Spark operations. They come in handy, for example, if your application needs to send
a large, read-only lookup table to all the nodes, or even a large feature vector in a
machine learning algorithm.

Recall that Spark automatically sends all variables referenced in your closures to the
worker nodes. While this is convenient, it can also be inefficient because (1) the
default task launching mechanism is optimized for small task sizes, and (2) you
might, in fact, use the same variable in multiple parallel operations, but Spark will
send it separately for each operation. As an example, say that we wanted to write a
Spark program that looks up countries by their call signs by prefix matching in an
array. This is useful for ham radio call signs since each country gets its own prefix,
although the prefixes are not uniform in length. If we wrote this naively in Spark, the
code might look like Example 6-6.

Example 6-6. Country lookup in Python

Look up the locations of the call signs on the
RDD contactCounts. We load a list of call sign
prefixes to country code to support this lookup.
signPrefixes = loadCallSignTable()

def processSignCount(sign_count, signPrefixes):
 country = lookupCountry(sign_count[0], signPrefixes)
 count = sign_count[1]
 return (country, count)

countryContactCounts = (contactCounts
 .map(processSignCount)
 .reduceByKey((lambda x, y: x+ y)))

104 | Chapter 6: Advanced Spark Programming

http://bit.ly/1xSpy5N
http://bit.ly/1xSpy5N

This program would run, but if we had a larger table (say, with IP addresses instead
of call signs), the signPrefixes could easily be several megabytes in size, making it
expensive to send that Array from the master alongside each task. In addition, if we
used the same signPrefixes object later (maybe we next ran the same code on
file2.txt), it would be sent again to each node.

We can fix this by making signPrefixes a broadcast variable. A broadcast variable is
simply an object of type spark.broadcast.Broadcast[T], which wraps a value of
type T. We can access this value by calling value on the Broadcast object in our
tasks. The value is sent to each node only once, using an efficient, BitTorrent-like
communication mechanism.

Using broadcast variables, our previous example looks like Examples 6-7 through
6-9.

Example 6-7. Country lookup with Broadcast values in Python

Look up the locations of the call signs on the
RDD contactCounts. We load a list of call sign
prefixes to country code to support this lookup.
signPrefixes = sc.broadcast(loadCallSignTable())

def processSignCount(sign_count, signPrefixes):
 country = lookupCountry(sign_count[0], signPrefixes.value)
 count = sign_count[1]
 return (country, count)

countryContactCounts = (contactCounts
 .map(processSignCount)
 .reduceByKey((lambda x, y: x+ y)))

countryContactCounts.saveAsTextFile(outputDir + "/countries.txt")

Example 6-8. Country lookup with Broadcast values in Scala

// Look up the countries for each call sign for the
// contactCounts RDD. We load an array of call sign
// prefixes to country code to support this lookup.
val signPrefixes = sc.broadcast(loadCallSignTable())
val countryContactCounts = contactCounts.map{case (sign, count) =>
 val country = lookupInArray(sign, signPrefixes.value)
 (country, count)
}.reduceByKey((x, y) => x + y)
countryContactCounts.saveAsTextFile(outputDir + "/countries.txt")

Broadcast Variables | 105

Example 6-9. Country lookup with Broadcast values in Java

// Read in the call sign table
// Look up the countries for each call sign in the
// contactCounts RDD
final Broadcast<String[]> signPrefixes = sc.broadcast(loadCallSignTable());
JavaPairRDD<String, Integer> countryContactCounts = contactCounts.mapToPair(
 new PairFunction<Tuple2<String, Integer>, String, Integer> (){
 public Tuple2<String, Integer> call(Tuple2<String, Integer> callSignCount) {
 String sign = callSignCount._1();
 String country = lookupCountry(sign, callSignInfo.value());
 return new Tuple2(country, callSignCount._2());
 }}).reduceByKey(new SumInts());
countryContactCounts.saveAsTextFile(outputDir + "/countries.txt");

As shown in these examples, the process of using broadcast variables is simple:

1. Create a Broadcast[T] by calling SparkContext.broadcast on an object of type
T. Any type works as long as it is also Serializable.

2. Access its value with the value property (or value() method in Java).
3. The variable will be sent to each node only once, and should be treated as read-

only (updates will not be propagated to other nodes).

The easiest way to satisfy the read-only requirement is to broadcast a primitive value
or a reference to an immutable object. In such cases, you won’t be able to change the
value of the broadcast variable except within the driver code. However, sometimes it
can be more convenient or more efficient to broadcast a mutable object. If you do
that, it is up to you to maintain the read-only condition. As we did with our call sign
prefix table of Array[String], we must make sure that the code we run on our
worker nodes does not try to do something like val theArray = broadcastAr
ray.value; theArray(0) = newValue. When run in a worker node, that line will
assign newValue to the first array element only in the copy of the array local to the
worker node running the code; it will not change the contents of broadcastAr
ray.value on any of the other worker nodes.

Optimizing Broadcasts
When we are broadcasting large values, it is important to choose a data serialization
format that is both fast and compact, because the time to send the value over the net‐
work can quickly become a bottleneck if it takes a long time to either serialize a value
or to send the serialized value over the network. In particular, Java Serialization, the
default serialization library used in Spark’s Scala and Java APIs, can be very ineffi‐
cient out of the box for anything except arrays of primitive types. You can optimize
serialization by selecting a different serialization library using the spark.serializer
property (Chapter 8 will describe how to use Kryo, a faster serialization library), or by

106 | Chapter 6: Advanced Spark Programming

implementing your own serialization routines for your data types (e.g., using the
java.io.Externalizable interface for Java Serialization, or using the reduce()
method to define custom serialization for Python’s pickle library).

Working on a Per-Partition Basis
Working with data on a per-partition basis allows us to avoid redoing setup work for
each data item. Operations like opening a database connection or creating a random-
number generator are examples of setup steps that we wish to avoid doing for each
element. Spark has per-partition versions of map and foreach to help reduce the cost
of these operations by letting you run code only once for each partition of an RDD.

Going back to our example with call signs, there is an online database of ham radio
call signs we can query for a public list of their logged contacts. By using partition-
based operations, we can share a connection pool to this database to avoid setting up
many connections, and reuse our JSON parser. As Examples 6-10 through 6-12 show,
we use the mapPartitions() function, which gives us an iterator of the elements in
each partition of the input RDD and expects us to return an iterator of our results.

Example 6-10. Shared connection pool in Python

def processCallSigns(signs):
 """Lookup call signs using a connection pool"""
 # Create a connection pool
 http = urllib3.PoolManager()
 # the URL associated with each call sign record
 urls = map(lambda x: "http://73s.com/qsos/%s.json" % x, signs)
 # create the requests (non-blocking)
 requests = map(lambda x: (x, http.request('GET', x)), urls)
 # fetch the results
 result = map(lambda x: (x[0], json.loads(x[1].data)), requests)
 # remove any empty results and return
 return filter(lambda x: x[1] is not None, result)

def fetchCallSigns(input):
 """Fetch call signs"""
 return input.mapPartitions(lambda callSigns : processCallSigns(callSigns))

contactsContactList = fetchCallSigns(validSigns)

Example 6-11. Shared connection pool and JSON parser in Scala

val contactsContactLists = validSigns.distinct().mapPartitions{
 signs =>
 val mapper = createMapper()
 val client = new HttpClient()
 client.start()
 // create http request

Working on a Per-Partition Basis | 107

 signs.map {sign =>
 createExchangeForSign(sign)
 // fetch responses
 }.map{ case (sign, exchange) =>
 (sign, readExchangeCallLog(mapper, exchange))
 }.filter(x => x._2 != null) // Remove empty CallLogs
}

Example 6-12. Shared connection pool and JSON parser in Java

// Use mapPartitions to reuse setup work.
JavaPairRDD<String, CallLog[]> contactsContactLists =
 validCallSigns.mapPartitionsToPair(
 new PairFlatMapFunction<Iterator<String>, String, CallLog[]>() {
 public Iterable<Tuple2<String, CallLog[]>> call(Iterator<String> input) {
 // List for our results.
 ArrayList<Tuple2<String, CallLog[]>> callsignLogs = new ArrayList<>();
 ArrayList<Tuple2<String, ContentExchange>> requests = new ArrayList<>();
 ObjectMapper mapper = createMapper();
 HttpClient client = new HttpClient();
 try {
 client.start();
 while (input.hasNext()) {
 requests.add(createRequestForSign(input.next(), client));
 }
 for (Tuple2<String, ContentExchange> signExchange : requests) {
 callsignLogs.add(fetchResultFromRequest(mapper, signExchange));
 }
 } catch (Exception e) {
 }
 return callsignLogs;
 }});
System.out.println(StringUtils.join(contactsContactLists.collect(), ","));

When operating on a per-partition basis, Spark gives our function an Iterator of the
elements in that partition. To return values, we return an Iterable. In addition to
mapPartitions(), Spark has a number of other per-partition operators, listed in
Table 6-1.

Table 6-1. Per-partition operators

Function name We are called with We return Function signature on RDD[T]

mapPartitions() Iterator of the elements in
that partition

Iterator of our
return elements

f: (Iterator[T]) →

Iterator[U]

mapPartitionsWithIn

dex()

Integer of partition number,
and Iterator of the elements in
that partition

Iterator of our
return elements

f: (Int, Itera

tor[T]) → Itera

tor[U]

108 | Chapter 6: Advanced Spark Programming

Function name We are called with We return Function signature on RDD[T]

foreachPartition() Iterator of the elements Nothing f: (Iterator[T]) →

Unit

In addition to avoiding setup work, we can sometimes use mapPartitions() to avoid
object creation overhead. Sometimes we need to make an object for aggregating the
result that is of a different type. Thinking back to Chapter 3, where we computed the
average, one of the ways we did this was by converting our RDD of numbers to an
RDD of tuples so we could track the number of elements processed in our reduce
step. Instead of doing this for each element, we can instead create the tuple once per
partition, as shown in Examples 6-13 and 6-14.

Example 6-13. Average without mapPartitions() in Python

def combineCtrs(c1, c2):
 return (c1[0] + c2[0], c1[1] + c2[1])

def basicAvg(nums):
 """Compute the average"""
 nums.map(lambda num: (num, 1)).reduce(combineCtrs)

Example 6-14. Average with mapPartitions() in Python

def partitionCtr(nums):
 """Compute sumCounter for partition"""
 sumCount = [0, 0]
 for num in nums:
 sumCount[0] += num
 sumCount[1] += 1
 return [sumCount]

def fastAvg(nums):
 """Compute the avg"""
 sumCount = nums.mapPartitions(partitionCtr).reduce(combineCtrs)
 return sumCount[0] / float(sumCount[1])

Piping to External Programs
With three language bindings to choose from out of the box, you may have all the
options you need for writing Spark applications. However, if none of Scala, Java, or
Python does what you need, then Spark provides a general mechanism to pipe data to
programs in other languages, like R scripts.

Spark provides a pipe() method on RDDs. Spark’s pipe() lets us write parts of jobs
using any language we want as long as it can read and write to Unix standard
streams. With pipe(), you can write a transformation of an RDD that reads each

Piping to External Programs | 109

1 The SparkR project also provides a lightweight frontend to use Spark from within R.

RDD element from standard input as a String, manipulates that String however
you like, and then writes the result(s) as Strings to standard output. The interface
and programming model is restrictive and limited, but sometimes it’s just what you
need to do something like make use of a native code function within a map or filter
operation.

Most likely, you’d want to pipe an RDD’s content through some external program or
script because you’ve already got complicated software built and tested that you’d like
to reuse with Spark. A lot of data scientists have code in R,1 and we can interact with
R programs using pipe().

In Example 6-15 we use an R library to compute the distance for all of the contacts.
Each element in our RDD is written out by our program with newlines as separators,
and every line that the program outputs is a string element in the resulting RDD. To
make it easy for our R program to parse the input we will reformat our data to be
mylat, mylon, theirlat, theirlon. Here we have a comma as the separator.

Example 6-15. R distance program

#!/usr/bin/env Rscript
library("Imap")
f <- file("stdin")
open(f)
while(length(line <- readLines(f,n=1)) > 0) {
 # process line
 contents <- Map(as.numeric, strsplit(line, ","))
 mydist <- gdist(contents[[1]][1], contents[[1]][2],
 contents[[1]][3], contents[[1]][4],
 units="m", a=6378137.0, b=6356752.3142, verbose = FALSE)
 write(mydist, stdout())
}

If that is written to an executable file named ./src/R/finddistance.R, then it looks like
this in use:

$./src/R/finddistance.R
37.75889318222431,-122.42683635321838,37.7614213,-122.4240097
349.2602
coffee
NA
ctrl-d

So far, so good—we’ve now got a way to transform every line from stdin into output
on stdout. Now we need to make finddistance.R available to each of our worker

110 | Chapter 6: Advanced Spark Programming

http://amplab-extras.github.io/SparkR-pkg/

nodes and to actually transform our RDD with our shell script. Both tasks are easy to
accomplish in Spark, as you can see in Examples 6-16 through 6-18.

Example 6-16. Driver program using pipe() to call finddistance.R in Python

Compute the distance of each call using an external R program
distScript = "./src/R/finddistance.R"
distScriptName = "finddistance.R"
sc.addFile(distScript)
def hasDistInfo(call):
 """Verify that a call has the fields required to compute the distance"""
 requiredFields = ["mylat", "mylong", "contactlat", "contactlong"]
 return all(map(lambda f: call[f], requiredFields))
def formatCall(call):
 """Format a call so that it can be parsed by our R program"""
 return "{0},{1},{2},{3}".format(
 call["mylat"], call["mylong"],
 call["contactlat"], call["contactlong"])

pipeInputs = contactsContactList.values().flatMap(
 lambda calls: map(formatCall, filter(hasDistInfo, calls)))
distances = pipeInputs.pipe(SparkFiles.get(distScriptName))
print distances.collect()

Example 6-17. Driver program using pipe() to call finddistance.R in Scala

// Compute the distance of each call using an external R program
// adds our script to a list of files for each node to download with this job
val distScript = "./src/R/finddistance.R"
val distScriptName = "finddistance.R"
sc.addFile(distScript)
val distances = contactsContactLists.values.flatMap(x => x.map(y =>
 s"$y.contactlay,$y.contactlong,$y.mylat,$y.mylong")).pipe(Seq(
 SparkFiles.get(distScriptName)))
println(distances.collect().toList)

Example 6-18. Driver program using pipe() to call finddistance.R in Java

// Compute the distance of each call using an external R program
// adds our script to a list of files for each node to download with this job
String distScript = "./src/R/finddistance.R";
String distScriptName = "finddistance.R";
sc.addFile(distScript);
JavaRDD<String> pipeInputs = contactsContactLists.values()
 .map(new VerifyCallLogs()).flatMap(
 new FlatMapFunction<CallLog[], String>() {
 public Iterable<String> call(CallLog[] calls) {
 ArrayList<String> latLons = new ArrayList<String>();
 for (CallLog call: calls) {
 latLons.add(call.mylat + "," + call.mylong +

Piping to External Programs | 111

 "," + call.contactlat + "," + call.contactlong);
 }
 return latLons;
 }
 });
JavaRDD<String> distances = pipeInputs.pipe(SparkFiles.get(distScriptName));
System.out.println(StringUtils.join(distances.collect(), ","));

With SparkContext.addFile(path), we can build up a list of files for each of the
worker nodes to download with a Spark job. These files can come from the driver’s
local filesystem (as we did in these examples), from HDFS or other Hadoop-
supported filesystems, or from an HTTP, HTTPS, or FTP URI. When an action is
run in the job, the files will be downloaded by each of the nodes. The files can then be
found on the worker nodes in SparkFiles.getRootDirectory, or located with Spark
Files.get(filename). Of course, this is only one way to make sure that pipe() can
find a script on each worker node. You could use another remote copying tool to
place the script file in a knowable location on each node.

All the files added with SparkContext.addFile(path) are stored
in the same directory, so it’s important to use unique names.

Once the script is available, the pipe() method on RDDs makes it easy to pipe the
elements of an RDD through the script. Perhaps a smarter version of findDistance
would accept SEPARATOR as a command-line argument. In that case, either of these
would do the job, although the first is preferred:

• rdd.pipe(Seq(SparkFiles.get("finddistance.R"), ","))

• rdd.pipe(SparkFiles.get("finddistance.R") + " ,")

In the first option, we are passing the command invocation as a sequence of posi‐
tional arguments (with the command itself at the zero-offset position); in the second,
we’re passing it as a single command string that Spark will then break down into
positional arguments.

We can also specify shell environment variables with pipe() if we desire. Simply pass
in a map of environment variables to values as the second parameter to pipe(), and
Spark will set those values.

You should now at least have an understanding of how to use pipe() to process the
elements of an RDD through an external command, and of how to distribute such
command scripts to the cluster in a way that the worker nodes can find them.

112 | Chapter 6: Advanced Spark Programming

Numeric RDD Operations
Spark provides several descriptive statistics operations on RDDs containing numeric
data. These are in addition to the more complex statistical and machine learning
methods we will describe later in Chapter 11.

Spark’s numeric operations are implemented with a streaming algorithm that allows
for building up our model one element at a time. The descriptive statistics are all
computed in a single pass over the data and returned as a StatsCounter object by
calling stats(). Table 6-2 lists the methods available on the StatsCounter object.

Table 6-2. Summary statistics available from
StatsCounter

Method Meaning

count() Number of elements in the RDD

mean() Average of the elements

sum() Total

max() Maximum value

min() Minimum value

variance() Variance of the elements

sampleVariance() Variance of the elements, computed for a sample

stdev() Standard deviation

sampleStdev() Sample standard deviation

If you want to compute only one of these statistics, you can also call the correspond‐
ing method directly on an RDD—for example, rdd.mean() or rdd.sum().

In Examples 6-19 through 6-21, we will use summary statistics to remove some outli‐
ers from our data. Since we will be going over the same RDD twice (once to compute
the summary statistics and once to remove the outliers), we may wish to cache the
RDD. Going back to our call log example, we can remove the contact points from our
call log that are too far away.

Numeric RDD Operations | 113

Example 6-19. Removing outliers in Python

Convert our RDD of strings to numeric data so we can compute stats and
remove the outliers.
distanceNumerics = distances.map(lambda string: float(string))
stats = distanceNumerics.stats()
stddev = std.stdev()
mean = stats.mean()
reasonableDistances = distanceNumerics.filter(
 lambda x: math.fabs(x - mean) < 3 * stddev)
print reasonableDistances.collect()

Example 6-20. Removing outliers in Scala

// Now we can go ahead and remove outliers since those may have misreported locations
// first we need to take our RDD of strings and turn it into doubles.
val distanceDouble = distance.map(string => string.toDouble)
val stats = distanceDoubles.stats()
val stddev = stats.stdev
val mean = stats.mean
val reasonableDistances = distanceDoubles.filter(x => math.abs(x-mean) < 3 * stddev)
println(reasonableDistance.collect().toList)

Example 6-21. Removing outliers in Java

// First we need to convert our RDD of String to a DoubleRDD so we can
// access the stats function
JavaDoubleRDD distanceDoubles = distances.mapToDouble(new DoubleFunction<String>() {
 public double call(String value) {
 return Double.parseDouble(value);
 }});
final StatCounter stats = distanceDoubles.stats();
final Double stddev = stats.stdev();
final Double mean = stats.mean();
JavaDoubleRDD reasonableDistances =
 distanceDoubles.filter(new Function<Double, Boolean>() {
 public Boolean call(Double x) {
 return (Math.abs(x-mean) < 3 * stddev);}});
System.out.println(StringUtils.join(reasonableDistance.collect(), ","));

With that final piece we have completed our sample application, which uses accumu‐
lators and broadcast variables, per-partition processing, interfaces with external pro‐
grams, and summary statistics. The entire source code is available in src/python/
ChapterSixExample.py, src/main/scala/com/oreilly/learningsparkexamples/scala/
ChapterSixExample.scala, and src/main/java/com/oreilly/learningsparkexamples/java/
ChapterSixExample.java, respectively.

114 | Chapter 6: Advanced Spark Programming

Conclusion
In this chapter, you have been introduced to some of the more advanced Spark pro‐
gramming features that you can use to make your programs more efficient or expres‐
sive. Subsequent chapters cover deploying and tuning Spark applications, as well as
built-in libraries for SQL and streaming and machine learning. We’ll also start seeing
more complex and more complete sample applications that make use of much of the
functionality described so far, and that should help guide and inspire your own usage
of Spark.

Conclusion | 115

CHAPTER 7

Running on a Cluster

Introduction
Up to now, we’ve focused on learning Spark by using the Spark shell and examples
that run in Spark’s local mode. One benefit of writing applications on Spark is the
ability to scale computation by adding more machines and running in cluster mode.
The good news is that writing applications for parallel cluster execution uses the same
API you’ve already learned in this book. The examples and applications you’ve writ‐
ten so far will run on a cluster “out of the box.” This is one of the benefits of Spark’s
higher level API: users can rapidly prototype applications on smaller datasets locally,
then run unmodified code on even very large clusters.

This chapter first explains the runtime architecture of a distributed Spark application,
then discusses options for running Spark in distributed clusters. Spark can run on a
wide variety of cluster managers (Hadoop YARN, Apache Mesos, and Spark’s own
built-in Standalone cluster manager) in both on-premise and cloud deployments.
We’ll discuss the trade-offs and configurations required for running in each case.
Along the way we’ll also cover the “nuts and bolts” of scheduling, deploying, and
configuring a Spark application. After reading this chapter you’ll have everything you
need to run a distributed Spark program. The following chapter will cover tuning and
debugging applications.

Spark Runtime Architecture
Before we dive into the specifics of running Spark on a cluster, it’s helpful to under‐
stand the architecture of Spark in distributed mode (illustrated in Figure 7-1).

In distributed mode, Spark uses a master/slave architecture with one central coordi‐
nator and many distributed workers. The central coordinator is called the driver. The

117

driver communicates with a potentially large number of distributed workers called
executors. The driver runs in its own Java process and each executor is a separate Java
process. A driver and its executors are together termed a Spark application.

Figure 7-1. The components of a distributed Spark application

A Spark application is launched on a set of machines using an external service called
a cluster manager. As noted, Spark is packaged with a built-in cluster manager called
the Standalone cluster manager. Spark also works with Hadoop YARN and Apache
Mesos, two popular open source cluster managers.

The Driver
The driver is the process where the main() method of your program runs. It is the
process running the user code that creates a SparkContext, creates RDDs, and per‐
forms transformations and actions. When you launch a Spark shell, you’ve created a
driver program (if you remember, the Spark shell comes preloaded with a SparkCon‐
text called sc). Once the driver terminates, the application is finished.

When the driver runs, it performs two duties:

Converting a user program into tasks
The Spark driver is responsible for converting a user program into units of physi‐
cal execution called tasks. At a high level, all Spark programs follow the same
structure: they create RDDs from some input, derive new RDDs from those
using transformations, and perform actions to collect or save data. A Spark pro‐
gram implicitly creates a logical directed acyclic graph (DAG) of operations.
When the driver runs, it converts this logical graph into a physical execution
plan.

118 | Chapter 7: Running on a Cluster

Spark performs several optimizations, such as “pipelining” map transformations
together to merge them, and converts the execution graph into a set of stages.
Each stage, in turn, consists of multiple tasks. The tasks are bundled up and pre‐
pared to be sent to the cluster. Tasks are the smallest unit of work in Spark; a
typical user program can launch hundreds or thousands of individual tasks.

Scheduling tasks on executors
Given a physical execution plan, a Spark driver must coordinate the scheduling
of individual tasks on executors. When executors are started they register them‐
selves with the driver, so it has a complete view of the application’s executors at
all times. Each executor represents a process capable of running tasks and storing
RDD data.

The Spark driver will look at the current set of executors and try to schedule each
task in an appropriate location, based on data placement. When tasks execute,
they may have a side effect of storing cached data. The driver also tracks the loca‐
tion of cached data and uses it to schedule future tasks that access that data.

The driver exposes information about the running Spark application through a
web interface, which by default is available at port 4040. For instance, in local
mode, this UI is available at http://localhost:4040. We’ll cover Spark’s web UI and
its scheduling mechanisms in more detail in Chapter 8.

Executors
Spark executors are worker processes responsible for running the individual tasks in
a given Spark job. Executors are launched once at the beginning of a Spark applica‐
tion and typically run for the entire lifetime of an application, though Spark applica‐
tions can continue if executors fail. Executors have two roles. First, they run the tasks
that make up the application and return results to the driver. Second, they provide
in-memory storage for RDDs that are cached by user programs, through a service
called the Block Manager that lives within each executor. Because RDDs are cached
directly inside of executors, tasks can run alongside the cached data.

Drivers and Executors in Local Mode

For most of this book, you’ve run examples in Spark’s local mode.
In this mode, the Spark driver runs along with an executor in the
same Java process. This is a special case; executors typically each
run in a dedicated process.

Cluster Manager
So far we’ve discussed drivers and executors in somewhat abstract terms. But how do
drivers and executor processes initially get launched? Spark depends on a cluster

Spark Runtime Architecture | 119

http://localhost:4040

manager to launch executors and, in certain cases, to launch the driver. The cluster
manager is a pluggable component in Spark. This allows Spark to run on top of
different external managers, such as YARN and Mesos, as well as its built-in Stand‐
alone cluster manager.

Spark’s documentation consistently uses the terms driver and exec‐
utor when describing the processes that execute each Spark appli‐
cation. The terms master and worker are used to describe the
centralized and distributed portions of the cluster manager. It’s
easy to confuse these terms, so pay close attention. For instance,
Hadoop YARN runs a master daemon (called the Resource Man‐
ager) and several worker daemons called Node Managers. Spark
can run both drivers and executors on the YARN worker nodes.

Launching a Program
No matter which cluster manager you use, Spark provides a single script you can use
to submit your program to it called spark-submit. Through various options, spark-
submit can connect to different cluster managers and control how many resources
your application gets. For some cluster managers, spark-submit can run the driver
within the cluster (e.g., on a YARN worker node), while for others, it can run it only
on your local machine. We’ll cover spark-submit in more detail in the next section.

Summary
To summarize the concepts in this section, let’s walk through the exact steps that
occur when you run a Spark application on a cluster:

1. The user submits an application using spark-submit.
2. spark-submit launches the driver program and invokes the main() method

specified by the user.
3. The driver program contacts the cluster manager to ask for resources to launch

executors.
4. The cluster manager launches executors on behalf of the driver program.
5. The driver process runs through the user application. Based on the RDD actions

and transformations in the program, the driver sends work to executors in the
form of tasks.

6. Tasks are run on executor processes to compute and save results.
7. If the driver’s main() method exits or it calls SparkContext.stop(), it will termi‐

nate the executors and release resources from the cluster manager.

120 | Chapter 7: Running on a Cluster

Deploying Applications with spark-submit
As you’ve learned, Spark provides a single tool for submitting jobs across all cluster
managers, called spark-submit. In Chapter 2 you saw a simple example of submit‐
ting a Python program with spark-submit, repeated here in Example 7-1.

Example 7-1. Submitting a Python application

bin/spark-submit my_script.py

When spark-submit is called with nothing but the name of a script or JAR, it simply
runs the supplied Spark program locally. Let’s say we wanted to submit this program
to a Spark Standalone cluster. We can provide extra flags with the address of a Stand‐
alone cluster and a specific size of each executor process we’d like to launch, as shown
in Example 7-2.

Example 7-2. Submitting an application with extra arguments

bin/spark-submit --master spark://host:7077 --executor-memory 10g my_script.py

The --master flag specifies a cluster URL to connect to; in this case, the spark:// URL
means a cluster using Spark’s Standalone mode (see Table 7-1). We will discuss other
URL types later.

Table 7-1. Possible values for the --master flag in spark-submit

Value Explanation

spark://

host:port

Connect to a Spark Standalone cluster at the specified port. By default Spark Standalone masters use
port 7077.

mesos://

host:port

Connect to a Mesos cluster master at the specified port. By default Mesos masters listen on port 5050.

yarn Connect to a YARN cluster. When running on YARN you’ll need to set the HADOOP_CONF_DIR
environment variable to point the location of your Hadoop configuration directory, which contains
information about the cluster.

local Run in local mode with a single core.

local[N] Run in local mode with N cores.

local[*] Run in local mode and use as many cores as the machine has.

Apart from a cluster URL, spark-submit provides a variety of options that let you
control specific details about a particular run of your application. These options fall

Deploying Applications with spark-submit | 121

roughly into two categories. The first is scheduling information, such as the amount
of resources you’d like to request for your job (as shown in Example 7-2). The second
is information about the runtime dependencies of your application, such as libraries
or files you want to deploy to all worker machines.

The general format for spark-submit is shown in Example 7-3.

Example 7-3. General format for spark-submit

bin/spark-submit [options] <app jar | python file> [app options]

[options] are a list of flags for spark-submit. You can enumerate all possible flags
by running spark-submit --help. A list of common flags is enumerated in
Table 7-2.

<app jar | python file> refers to the JAR or Python script containing the entry
point into your application.

[app options] are options that will be passed onto your application. If the main()
method of your program parses its calling arguments, it will see only [app options]
and not the flags specific to spark-submit.

Table 7-2. Common flags for spark-submit

Flag Explanation

--master Indicates the cluster manager to connect to. The options for this flag are described in Table 7-1.

--deploy-mode Whether to launch the driver program locally (“client”) or on one of the worker machines inside the
cluster (“cluster”). In client mode spark-submit will run your driver on the same machine where
spark-submit is itself being invoked. In cluster mode, the driver will be shipped to execute on a
worker node in the cluster. The default is client mode.

--class The “main” class of your application if you’re running a Java or Scala program.

--name A human-readable name for your application. This will be displayed in Spark’s web UI.

--jars A list of JAR files to upload and place on the classpath of your application. If your application depends
on a small number of third-party JARs, you can add them here.

--files A list of files to be placed in the working directory of your application. This can be used for data files
that you want to distribute to each node.

--py-files A list of files to be added to the PYTHONPATH of your application. This can contain .py, .egg, or .zip
files.

122 | Chapter 7: Running on a Cluster

Flag Explanation

--executor-

memory

The amount of memory to use for executors, in bytes. Suffixes can be used to specify larger quantities
such as “512m” (512 megabytes) or “15g” (15 gigabytes).

--driver-

memory

The amount of memory to use for the driver process, in bytes. Suffixes can be used to specify larger
quantities such as “512m” (512 megabytes) or “15g” (15 gigabytes).

spark-submit also allows setting arbitrary SparkConf configuration options using
either the --conf prop=value flag or providing a properties file through --
properties-file that contains key/value pairs. Chapter 8 will discuss Spark’s config‐
uration system.

Example 7-4 shows a few longer-form invocations of spark-submit using various
options.

Example 7-4. Using spark-submit with various options

Submitting a Java application to Standalone cluster mode
$./bin/spark-submit \
 --master spark://hostname:7077 \
 --deploy-mode cluster \
 --class com.databricks.examples.SparkExample \
 --name "Example Program" \
 --jars dep1.jar,dep2.jar,dep3.jar \
 --total-executor-cores 300 \
 --executor-memory 10g \
 myApp.jar "options" "to your application" "go here"

Submitting a Python application in YARN client mode
$ export HADOP_CONF_DIR=/opt/hadoop/conf
$./bin/spark-submit \
 --master yarn \
 --py-files somelib-1.2.egg,otherlib-4.4.zip,other-file.py \
 --deploy-mode client \
 --name "Example Program" \
 --queue exampleQueue \
 --num-executors 40 \
 --executor-memory 10g \
 my_script.py "options" "to your application" "go here"

Packaging Your Code and Dependencies
Throughout most of this book we’ve provided example programs that are self-
contained and had no library dependencies outside of Spark. More often, user pro‐
grams depend on third-party libraries. If your program imports any libraries that are
not in the org.apache.spark package or part of the language library, you need to

Packaging Your Code and Dependencies | 123

ensure that all your dependencies are present at the runtime of your Spark
application.

For Python users, there are a few ways to install third-party libraries. Since PySpark
uses the existing Python installation on worker machines, you can install dependency
libraries directly on the cluster machines using standard Python package managers
(such as pip or easy_install), or via a manual installation into the site-packages/
directory of your Python installation. Alternatively, you can submit individual libra‐
ries using the --py-files argument to spark-submit and they will be added to the
Python interpreter’s path. Adding libraries manually is more convenient if you do
not have access to install packages on the cluster, but do keep in mind potential con‐
flicts with existing packages already installed on the machines.

What About Spark Itself?

When you are bundling an application, you should never include
Spark itself in the list of submitted dependencies. spark-submit
automatically ensures that Spark is present in the path of your
program.

For Java and Scala users, it is also possible to submit individual JAR files using the --
jars flag to spark-submit. This can work well if you have a very simple dependency
on one or two libraries and they themselves don’t have any other dependencies. It is
more common, however, for users to have Java or Scala projects that depend on sev‐
eral libraries. When you submit an application to Spark, it must ship with its entire
transitive dependency graph to the cluster. This includes not only the libraries you
directly depend on, but also their dependencies, their dependencies’ dependencies,
and so on. Manually tracking and submitting this set of JAR files would be extremely
cumbersome. Instead, it’s common practice to rely on a build tool to produce a single
large JAR containing the entire transitive dependency graph of an application. This is
often called an uber JAR or an assembly JAR, and most Java or Scala build tools can
produce this type of artifact.

The most popular build tools for Java and Scala are Maven and sbt (Scala build tool).
Either tool can be used with either language, but Maven is more often used for Java
projects and sbt for Scala projects. Here, we’ll give examples of Spark application
builds using both tools. You can use these as templates for your own Spark projects.

A Java Spark Application Built with Maven
Let’s look at an example Java project with multiple dependencies that produces an
uber JAR. Example 7-5 provides a Maven pom.xml file containing a build definition.
This example doesn’t show the actual Java code or project directory structure, but

124 | Chapter 7: Running on a Cluster

Maven expects user code to be in a src/main/java directory relative to the project root
(the root should contain the pom.xml file).

Example 7-5. pom.xml file for a Spark application built with Maven

<project>
 <modelVersion>4.0.0</modelVersion>

 <!-- Information about your project -->
 <groupId>com.databricks</groupId>
 <artifactId>example-build</artifactId>
 <name>Simple Project</name>
 <packaging>jar</packaging>
 <version>1.0</version>

 <dependencies>
 <!-- Spark dependency -->
 <dependency>
 <groupId>org.apache.spark</groupId>
 <artifactId>spark-core_2.10</artifactId>
 <version>1.2.0</version>
 <scope>provided</scope>
 </dependency>
 <!-- Third-party library -->
 <dependency>
 <groupId>net.sf.jopt-simple</groupId>
 <artifactId>jopt-simple</artifactId>
 <version>4.3</version>
 </dependency>
 <!-- Third-party library -->
 <dependency>
 <groupId>joda-time</groupId>
 <artifactId>joda-time</artifactId>
 <version>2.0</version>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <!-- Maven shade plug-in that creates uber JARs -->
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-shade-plugin</artifactId>
 <version>2.3</version>
 <executions>
 <execution>
 <phase>package</phase>
 <goals>
 <goal>shade</goal>
 </goals>
 </execution>

Packaging Your Code and Dependencies | 125

 </executions>
 </plugin>
 </plugins>
 </build>
</project>

This project declares two transitive dependencies: jopt-simple, a Java library to per‐
form option parsing, and joda-time, a library with utilities for time and date conver‐
sion. It also depends on Spark, but Spark is marked as provided to ensure that Spark
is never packaged with the application artifacts. The build includes the maven-shade-
plugin to create an uber JAR containing all of its dependencies. You enable this by
asking Maven to execute the shade goal of the plug-in every time a package phase
occurs. With this build configuration, an uber JAR is created automatically when mvn
package is run (see Example 7-6).

Example 7-6. Packaging a Spark application built with Maven

$ mvn package
In the target directory, we'll see an uber JAR and the original package JAR
$ ls target/
example-build-1.0.jar
original-example-build-1.0.jar
Listing the uber JAR will reveal classes from dependency libraries
$ jar tf target/example-build-1.0.jar
...
joptsimple/HelpFormatter.class
...
org/joda/time/tz/UTCProvider.class
...
An uber JAR can be passed directly to spark-submit
$ /path/to/spark/bin/spark-submit --master local ... target/example-build-1.0.jar

A Scala Spark Application Built with sbt
sbt is a newer build tool most often used for Scala projects. sbt assumes a similar
project layout to Maven. At the root of your project you create a build file called
build.sbt and your source code is expected to live in src/main/scala. sbt build files are
written in a configuration language where you assign values to specific keys in order
to define the build for your project. For instance, there is a key called name, which
contains the project name, and a key called libraryDependencies, which contains a
list of dependencies of your project. Example 7-7 gives a full sbt build file for a simple
application that depends on Spark along with a few other third-party libraries. This
build file works with sbt 0.13. Since sbt evolves quickly, you may want to read its
most recent documentation for any formatting changes in the build file format.

126 | Chapter 7: Running on a Cluster

Example 7-7. build.sbt file for a Spark application built with sbt 0.13

import AssemblyKeys._

name := "Simple Project"

version := "1.0"

organization := "com.databricks"

scalaVersion := "2.10.3"

libraryDependencies ++= Seq(
 // Spark dependency
 "org.apache.spark" % "spark-core_2.10" % "1.2.0" % "provided",
 // Third-party libraries
 "net.sf.jopt-simple" % "jopt-simple" % "4.3",
 "joda-time" % "joda-time" % "2.0"
)

// This statement includes the assembly plug-in capabilities
assemblySettings

// Configure JAR used with the assembly plug-in
jarName in assembly := "my-project-assembly.jar"

// A special option to exclude Scala itself form our assembly JAR, since Spark
// already bundles Scala.
assemblyOption in assembly :=
 (assemblyOption in assembly).value.copy(includeScala = false)

The first line in this build file imports some functionality from an sbt build plug-in
that supports creating project assembly JARs. To enable this plug-in we have to also
include a small file in a project/ directory that lists the dependency on the plug-in.
Simply create a file called project/assembly.sbt and add the following to it: addSbtPlu
gin("com.eed3si9n" % "sbt-assembly" % "0.11.2"). The exact version of sbt-
assembly you use might differ if you build with a newer version of sbt. Example 7-8
works with sbt 0.13.

Example 7-8. Adding the assembly plug-in to an sbt project build

Display contents of project/assembly.sbt
$ cat project/assembly.sbt
addSbtPlugin("com.eed3si9n" % "sbt-assembly" % "0.11.2")

Now that we have a well-defined build, we can create a fully assembled Spark applica‐
tion JAR (Example 7-9).

Packaging Your Code and Dependencies | 127

Example 7-9. Packaging a Spark application built with sbt

$ sbt assembly
In the target directory, we'll see an assembly JAR
$ ls target/scala-2.10/
my-project-assembly.jar
Listing the assembly JAR will reveal classes from dependency libraries
$ jar tf target/scala-2.10/my-project-assembly.jar
...
joptsimple/HelpFormatter.class
...
org/joda/time/tz/UTCProvider.class
...
An assembly JAR can be passed directly to spark-submit
$ /path/to/spark/bin/spark-submit --master local ...
 target/scala-2.10/my-project-assembly.jar

Dependency Conflicts
One occasionally disruptive issue is dealing with dependency conflicts in cases where
a user application and Spark itself both depend on the same library. This comes up
relatively rarely, but when it does, it can be vexing for users. Typically, this will mani‐
fest itself when a NoSuchMethodError, a ClassNotFoundException, or some other
JVM exception related to class loading is thrown during the execution of a Spark job.
There are two solutions to this problem. The first is to modify your application to
depend on the same version of the third-party library that Spark does. The second is
to modify the packaging of your application using a procedure that is often called
“shading.” The Maven build tool supports shading through advanced configuration
of the plug-in shown in Example 7-5 (in fact, the shading capability is why the plug-
in is named maven-shade-plugin). Shading allows you to make a second copy of the
conflicting package under a different namespace and rewrites your application’s code
to use the renamed version. This somewhat brute-force technique is quite effective at
resolving runtime dependency conflicts. For specific instructions on how to shade
dependencies, see the documentation for your build tool.

Scheduling Within and Between Spark Applications
The example we just walked through involves a single user submitting a job to a clus‐
ter. In reality, many clusters are shared between multiple users. Shared environments
have the challenge of scheduling: what happens if two users both launch Spark appli‐
cations that each want to use the entire cluster’s worth of resources? Scheduling poli‐
cies help ensure that resources are not overwhelmed and allow for prioritization of
workloads.

For scheduling in multitenant clusters, Spark primarily relies on the cluster manager
to share resources between Spark applications. When a Spark application asks for

128 | Chapter 7: Running on a Cluster

executors from the cluster manager, it may receive more or fewer executors depend‐
ing on availability and contention in the cluster. Many cluster managers offer the
ability to define queues with different priorities or capacity limits, and Spark will then
submit jobs to such queues. See the documentation of your specific cluster manager
for more details.

One special case of Spark applications are those that are long lived, meaning that they
are never intended to terminate. An example of a long-lived Spark application is the
JDBC server bundled with Spark SQL. When the JDBC server launches it acquires a
set of executors from the cluster manager, then acts as a permanent gateway for SQL
queries submitted by users. Since this single application is scheduling work for multi‐
ple users, it needs a finer-grained mechanism to enforce sharing policies. Spark pro‐
vides such a mechanism through configurable intra-application scheduling policies.
Spark’s internal Fair Scheduler lets long-lived applications define queues for prioritiz‐
ing scheduling of tasks. A detailed review of these is beyond the scope of this book;
the official documentation on the Fair Scheduler provides a good reference.

Cluster Managers
Spark can run over a variety of cluster managers to access the machines in a cluster. If
you only want to run Spark by itself on a set of machines, the built-in Standalone
mode is the easiest way to deploy it. However, if you have a cluster that you’d like to
share with other distributed applications (e.g., both Spark jobs and Hadoop MapRe‐
duce jobs), Spark can also run over two popular cluster managers: Hadoop YARN
and Apache Mesos. Finally, for deploying on Amazon EC2, Spark comes with built-
in scripts that launch a Standalone cluster and various supporting services. In this
section, we’ll cover how to run Spark in each of these environments.

Standalone Cluster Manager
Spark’s Standalone manager offers a simple way to run applications on a cluster. It
consists of a master and multiple workers, each with a configured amount of memory
and CPU cores. When you submit an application, you can choose how much mem‐
ory its executors will use, as well as the total number of cores across all executors.

Launching the Standalone cluster manager
You can start the Standalone cluster manager either by starting a master and workers
by hand, or by using launch scripts in Spark’s sbin directory. The launch scripts are
the simplest option to use, but require SSH access between your machines and are
currently (as of Spark 1.1) available only on Mac OS X and Linux. We will cover these
first, then show how to launch a cluster manually on other platforms.

To use the cluster launch scripts, follow these steps:

Cluster Managers | 129

http://spark.apache.org/docs/latest/job-scheduling.html

1. Copy a compiled version of Spark to the same location on all your machines—for
example, /home/yourname/spark.

2. Set up password-less SSH access from your master machine to the others. This
requires having the same user account on all the machines, creating a private
SSH key for it on the master via ssh-keygen, and adding this key to the .ssh/
authorized_keys file of all the workers. If you have not set this up before, you can
follow these commands:

On master: run ssh-keygen accepting default options
$ ssh-keygen -t dsa
Enter file in which to save the key (/home/you/.ssh/id_dsa): [ENTER]
Enter passphrase (empty for no passphrase): [EMPTY]
Enter same passphrase again: [EMPTY]

On workers:
copy ~/.ssh/id_dsa.pub from your master to the worker, then use:
$ cat ~/.ssh/id_dsa.pub >> ~/.ssh/authorized_keys
$ chmod 644 ~/.ssh/authorized_keys

3. Edit the conf/slaves file on your master and fill in the workers’ hostnames.
4. To start the cluster, run sbin/start-all.sh on your master (it is important to

run it there rather than on a worker). If everything started, you should get no
prompts for a password, and the cluster manager’s web UI should appear at
http://masternode:8080 and show all your workers.

5. To stop the cluster, run bin/stop-all.sh on your master node.

If you are not on a UNIX system or would like to launch the cluster manually, you
can also start the master and workers by hand, using the spark-class script in
Spark’s bin/ directory. On your master, type:

bin/spark-class org.apache.spark.deploy.master.Master

Then on workers:

bin/spark-class org.apache.spark.deploy.worker.Worker spark://masternode:7077

(where masternode is the hostname of your master). On Windows, use \ instead of /.

By default, the cluster manager will automatically allocate the amount of CPUs and
memory on each worker and pick a suitable default to use for Spark. More details on
configuring the Standalone cluster manager are available in Spark’s official
documentation.

Submitting applications

To submit an application to the Standalone cluster manager, pass spark://master
node:7077 as the master argument to spark-submit. For example:

130 | Chapter 7: Running on a Cluster

http://masternode:8080
http://spark.apache.org/docs/latest/spark-standalone.html
http://spark.apache.org/docs/latest/spark-standalone.html

spark-submit --master spark://masternode:7077 yourapp

This cluster URL is also shown in the Standalone cluster manager’s web UI, at http://
masternode:8080. Note that the hostname and port used during submission must
exactly match the URL present in the UI. This can trip up users who try to encode an
IP address, for instance, instead of a hostname. Even if the IP address is associated
with the same host, submission will fail if the naming doesn’t match exactly. Some
administrators might configure Spark to use a different port than 7077. To ensure
consistency of host and port components, one safe bet is to just copy and paste the
URL directly from the UI of the master node.

You can also launch spark-shell or pyspark against the cluster in the same way, by
passing the --master parameter:

spark-shell --master spark://masternode:7077
pyspark --master spark://masternode:7077

To check that your application or shell is running, look at the cluster manager’s web
UI http://masternode:8080 and make sure that (1) your application is connected (i.e.,
it appears under Running Applications) and (2) it is listed as having more than 0
cores and memory.

A common pitfall that might prevent your application from run‐
ning is requesting more memory for executors (with the --
executor-memory flag to spark-submit) than is available in the
cluster. In this case, the Standalone cluster manager will never allo‐
cate executors for the application. Make sure that the value your
application is requesting can be satisfied by the cluster.

Finally, the Standalone cluster manager supports two deploy modes for where the
driver program of your application runs. In client mode (the default), the driver runs
on the machine where you executed spark-submit, as part of the spark-submit com‐
mand. This means that you can directly see the output of your driver program, or
send input to it (e.g., for an interactive shell), but it requires the machine from which
your application was submitted to have fast connectivity to the workers and to stay
available for the duration of your application. In contrast, in cluster mode, the driver
is launched within the Standalone cluster, as another process on one of the worker
nodes, and then it connects back to request executors. In this mode spark-submit is
“fire-and-forget” in that you can close your laptop while the application is running.
You will still be able to access logs for the application through the cluster manager’s
web UI. You can switch to cluster mode by passing --deploy-mode cluster to
spark-submit.

Cluster Managers | 131

http://masternode:8080
http://masternode:8080
http://masternode:8080

Configuring resource usage
When sharing a Spark cluster among multiple applications, you will need to decide
how to allocate resources between the executors. The Standalone cluster manager has
a basic scheduling policy that allows capping the usage of each application so that
multiple ones may run concurrently. Apache Mesos supports more dynamic sharing
while an application is running, while YARN has a concept of queues that allows you
to cap usage for various sets of applications.

In the Standalone cluster manager, resource allocation is controlled by two settings:

Executor memory
You can configure this using the --executor-memory argument to spark-
submit. Each application will have at most one executor on each worker, so this
setting controls how much of that worker’s memory the application will claim.
By default, this setting is 1 GB—you will likely want to increase it on most
servers.

The maximum number of total cores
This is the total number of cores used across all executors for an application. By
default, this is unlimited; that is, the application will launch executors on every
available node in the cluster. For a multiuser workload, you should instead ask
users to cap their usage. You can set this value through the --total-executor-
cores argument to spark-submit, or by configuring spark.cores.max in your
Spark configuration file.

To verify the settings, you can always see the current resource allocation in the Stand‐
alone cluster manager’s web UI, http://masternode:8080.

Finally, the Standalone cluster manager works by spreading out each application
across the maximum number of executors by default. For example, suppose that you
have a 20-node cluster with 4-core machines, and you submit an application with --
executor-memory 1G and --total-executor-cores 8. Then Spark will launch eight
executors, each with 1 GB of RAM, on different machines. Spark does this by default
to give applications a chance to achieve data locality for distributed filesystems run‐
ning on the same machines (e.g., HDFS), because these systems typically have data
spread out across all nodes. If you prefer, you can instead ask Spark to consolidate
executors on as few nodes as possible, by setting the config property
spark.deploy.spreadOut to false in conf/spark-defaults.conf. In this case, the pre‐
ceding application would get only two executors, each with 1 GB RAM and four
cores. This setting affects all applications on the Standalone cluster and must be con‐
figured before you launch the Standalone cluster manager.

132 | Chapter 7: Running on a Cluster

http://masternode:8080

High availability
When running in production settings, you will want your Standalone cluster to be
available to accept applications even if individual nodes in your cluster go down. Out
of the box, the Standalone mode will gracefully support the failure of worker nodes. If
you also want the master of the cluster to be highly available, Spark supports using
Apache ZooKeeper (a distributed coordination system) to keep multiple standby
masters and switch to a new one when any of them fails. Configuring a Standalone
cluster with ZooKeeper is outside the scope of the book, but is described in the offi‐
cial Spark documentation.

Hadoop YARN
YARN is a cluster manager introduced in Hadoop 2.0 that allows diverse data pro‐
cessing frameworks to run on a shared resource pool, and is typically installed on the
same nodes as the Hadoop filesystem (HDFS). Running Spark on YARN in these
environments is useful because it lets Spark access HDFS data quickly, on the same
nodes where the data is stored.

Using YARN in Spark is straightforward: you set an environment variable that points
to your Hadoop configuration directory, then submit jobs to a special master URL
with spark-submit.

The first step is to figure out your Hadoop configuration directory, and set it as the
environment variable HADOOP_CONF_DIR. This is the directory that contains yarn-
site.xml and other config files; typically, it is HADOOP_HOME/conf if you installed
Hadoop in HADOOP_HOME, or a system path like /etc/hadoop/conf. Then, submit
your application as follows:

export HADOOP_CONF_DIR="..."
spark-submit --master yarn yourapp

As with the Standalone cluster manager, there are two modes to connect your appli‐
cation to the cluster: client mode, where the driver program for your application runs
on the machine that you submitted the application from (e.g., your laptop), and clus‐
ter mode, where the driver also runs inside a YARN container. You can set the mode
to use via the --deploy-mode argument to spark-submit.

Spark’s interactive shell and pyspark both work on YARN as well; simply set
HADOOP_CONF_DIR and pass --master yarn to these applications. Note that these will
run only in client mode since they need to obtain input from the user.

Configuring resource usage
When running on YARN, Spark applications use a fixed number of executors, which
you can set via the --num-executors flag to spark-submit, spark-shell, and so on.
By default, this is only two, so you will likely need to increase it. You can also set the

Cluster Managers | 133

http://bit.ly/1BQCEOO
http://bit.ly/1BQCEOO

memory used by each executor via --executor-memory and the number of cores it
claims from YARN via --executor-cores. On a given set of hardware resources,
Spark will usually run better with a smaller number of larger executors (with multiple
cores and more memory), since it can optimize communication within each execu‐
tor. Note, however, that some clusters have a limit on the maximum size of an execu‐
tor (8 GB by default), and will not let you launch larger ones.

Some YARN clusters are configured to schedule applications into multiple “queues”
for resource management purposes. Use the --queue option to select your queue
name.

Finally, further information on configuration options for YARN is available in the
official Spark documentation.

Apache Mesos
Apache Mesos is a general-purpose cluster manager that can run both analytics
workloads and long-running services (e.g., web applications or key/value stores) on a
cluster. To use Spark on Mesos, pass a mesos:// URI to spark-submit:

spark-submit --master mesos://masternode:5050 yourapp

You can also configure Mesos clusters to use ZooKeeper to elect a master when run‐
ning in multimaster node. In this case, use a mesos://zk:// URI pointing to a list of
ZooKeeper nodes. For example, if you have three ZooKeeper nodes (node1, node2,
and node3) on which ZooKeeper is running on port 2181, use the following URI:

mesos://zk://node1:2181/mesos,node2:2181/mesos,node3:2181/mesos

Mesos scheduling modes
Unlike the other cluster managers, Mesos offers two modes to share resources
between executors on the same cluster. In “fine-grained” mode, which is the default,
executors scale up and down the number of CPUs they claim from Mesos as they exe‐
cute tasks, and so a machine running multiple executors can dynamically share CPU
resources between them. In “coarse-grained” mode, Spark allocates a fixed number of
CPUs to each executor in advance and never releases them until the application ends,
even if the executor is not currently running tasks. You can enable coarse-grained
mode by passing --conf spark.mesos.coarse=true to spark-submit.

The fine-grained Mesos mode is attractive when multiple users share a cluster to run
interactive workloads such as shells, because applications will scale down their num‐
ber of cores when they’re not doing work and still allow other users’ programs to use
the cluster. The downside, however, is that scheduling tasks through fine-grained
mode adds more latency (so very low-latency applications like Spark Streaming may
suffer), and that applications may need to wait some amount of time for CPU cores

134 | Chapter 7: Running on a Cluster

http://bit.ly/1yCkxNf
http://bit.ly/1yCkxNf

to become free to “ramp up” again when the user types a new command. Note, how‐
ever, that you can use a mix of scheduling modes in the same Mesos cluster (i.e.,
some of your Spark applications might have spark.mesos.coarse set to true and
some might not).

Client and cluster mode
As of Spark 1.2, Spark on Mesos supports running applications only in the “client”
deploy mode—that is, with the driver running on the machine that submitted the
application. If you would like to run your driver in the Mesos cluster as well, frame‐
works like Aurora and Chronos allow you to submit arbitrary scripts to run on Mesos
and monitor them. You can use one of these to launch the driver for your
application.

Configuring resource usage

You can control resource usage on Mesos through two parameters to spark-submit:
--executor-memory, to set the memory for each executor, and --total-executor-
cores, to set the maximum number of CPU cores for the application to claim (across
all executors). By default, Spark will launch each executor with as many cores as pos‐
sible, consolidating the application to the smallest number of executors that give it
the desired number of cores. If you do not set --total-executor-cores, it will try to
use all available cores in the cluster.

Amazon EC2
Spark comes with a built-in script to launch clusters on Amazon EC2. This script
launches a set of nodes and then installs the Standalone cluster manager on them, so
once the cluster is up, you can use it according to the Standalone mode instructions
in the previous section. In addition, the EC2 script sets up supporting services such as
HDFS, Tachyon, and Ganglia to monitor your cluster.

The Spark EC2 script is called spark-ec2, and is located in the ec2 folder of your
Spark installation. It requires Python 2.6 or higher. You can download Spark and run
the EC2 script without compiling Spark beforehand.

The EC2 script can manage multiple named clusters, identifying them using EC2
security groups. For each cluster, the script will create a security group called
clustername-master for the master node, and clustername-slaves for the workers.

Launching a cluster
To launch a cluster, you should first create an Amazon Web Services (AWS) account
and obtain an access key ID and secret access key. Then export these as environment
variables:

Cluster Managers | 135

http://aurora.incubator.apache.org
http://airbnb.github.io/chronos

export AWS_ACCESS_KEY_ID="..."
export AWS_SECRET_ACCESS_KEY="..."

In addition, create an EC2 SSH key pair and download its private key file (usually
called keypair.pem) so that you can SSH into the machines.

Next, run the launch command of the spark-ec2 script, giving it your key pair name,
private key file, and a name for the cluster. By default, this will launch a cluster with
one master and one slave, using m1.xlarge EC2 instances:

cd /path/to/spark/ec2
./spark-ec2 -k mykeypair -i mykeypair.pem launch mycluster

You can also configure the instance types, number of slaves, EC2 region, and other
factors using options to spark-ec2. For example:

Launch a cluster with 5 slaves of type m3.xlarge
./spark-ec2 -k mykeypair -i mykeypair.pem -s 5 -t m3.xlarge launch mycluster

For a full list of options, run spark-ec2 --help. Some of the most common ones are
listed in Table 7-3.

Table 7-3. Common options to spark-ec2

Option Meaning

-k KEYPAIR Name of key pair to use

-i IDENTITY_FILE Private key file (ending in .pem)

-s NUM_SLAVES Number of slave nodes

-t INSTANCE_TYPE Amazon instance type to use

-r REGION Amazon region to use (e.g., us-west-1)

-z ZONE Availability zone (e.g., us-west-1b)

--spot-price=PRICE Use spot instances at the given spot price (in US dollars)

Once you launch the script, it usually takes about five minutes to launch the
machines, log in to them, and set up Spark.

Logging in to a cluster
You can log in to a cluster by SSHing into its master node with the .pem file for your
keypair. For convenience, spark-ec2 provides a login command for this purpose:

./spark-ec2 -k mykeypair -i mykeypair.pem login mycluster

136 | Chapter 7: Running on a Cluster

Alternatively, you can find the master’s hostname by running:

./spark-ec2 get-master mycluster

Then SSH into it yourself using ssh -i keypair.pem root@masternode.

Once you are in the cluster, you can use the Spark installation in /root/spark to run
programs. This is a Standalone cluster installation, with the master URL spark://
masternode:7077. If you launch an application with spark-submit, it will come cor‐
rectly configured to submit your application to this cluster automatically. You can
view the cluster’s web UI at http://masternode:8080.

Note that only programs launched from the cluster will be able to submit jobs to it
with spark-submit; the firewall rules will prevent external hosts from submitting
them for security reasons. To run a prepackaged application on the cluster, first copy
it over using SCP:

scp -i mykeypair.pem app.jar root@masternode:~

Destroying a cluster

To destroy a cluster launched by spark-ec2, run:

./spark-ec2 destroy mycluster

This will terminate all the instances associated with the cluster (i.e., all instances in its
two security groups, mycluster-master and mycluster-slaves).

Pausing and restarting clusters

In addition to outright terminating clusters, spark-ec2 lets you stop the Amazon
instances running your cluster and then start them again later. Stopping instances
shuts them down and makes them lose all data on the “ephemeral” disks, which are
configured with an installation of HDFS for spark-ec2 (see “Storage on the cluster”
on page 138). However, the stopped instances retain all data in their root directory (e.g.,
any files you uploaded there), so you’ll be able to quickly return to work.

To stop a cluster, use:

./spark-ec2 stop mycluster

Then, later, to start it up again:

./spark-ec2 -k mykeypair -i mykeypair.pem start mycluster

Cluster Managers | 137

http://masternode:8080

While the Spark EC2 script does not provide commands to resize
clusters, you can resize them by adding or removing machines to
the mycluster-slaves security group. To add machines, first stop
the cluster, then use the AWS management console to right-click
one of the slave nodes and select “Launch more like this.” This will
create more instances in the same security group. Then use spark-
ec2 start to start your cluster. To remove machines, simply ter‐
minate them from the AWS console (though beware that this
destroys data on the cluster’s HDFS installations).

Storage on the cluster
Spark EC2 clusters come configured with two installations of the Hadoop filesystem
that you can use for scratch space. This can be handy to save datasets in a medium
that’s faster to access than Amazon S3. The two installations are:

• An “ephemeral” HDFS installation using the ephemeral drives on the nodes.
Most Amazon instance types come with a substantial amount of local space
attached on “ephemeral” drives that go away if you stop the instance. This instal‐
lation of HDFS uses this space, giving you a significant amount of scratch space,
but it loses all data when you stop and restart the EC2 cluster. It is installed in
the /root/ephemeral-hdfs directory on the nodes, where you can use the bin/hdfs
command to access and list files. You can also view the web UI and HDFS URL
for it at http://masternode:50070.

• A “persistent” HDFS installation on the root volumes of the nodes. This instance
persists data even through cluster restarts, but is generally smaller and slower to
access than the ephemeral one. It is good for medium-sized datasets that you do
not wish to download multiple times. It is installed in /root/persistent-hdfs, and
you can view the web UI and HDFS URL for it at http://masternode:60070.

Apart from these, you will most likely be accessing data from Amazon S3, which you
can do using the s3n:// URI scheme in Spark. Refer to “Amazon S3” on page 90 for
details.

Which Cluster Manager to Use?
The cluster managers supported in Spark offer a variety of options for deploying
applications. If you are starting a new deployment and looking to choose a cluster
manager, we recommend the following guidelines:

• Start with a Standalone cluster if this is a new deployment. Standalone mode is
the easiest to set up and will provide almost all the same features as the other
cluster managers if you are running only Spark.

138 | Chapter 7: Running on a Cluster

http://masternode:50070
http://masternode:60070

• If you would like to run Spark alongside other applications, or to use richer
resource scheduling capabilities (e.g., queues), both YARN and Mesos provide
these features. Of these, YARN will likely be preinstalled in many Hadoop
distributions.

• One advantage of Mesos over both YARN and Standalone mode is its fine-
grained sharing option, which lets interactive applications such as the Spark shell
scale down their CPU allocation between commands. This makes it attractive in
environments where multiple users are running interactive shells.

• In all cases, it is best to run Spark on the same nodes as HDFS for fast access to
storage. You can install Mesos or the Standalone cluster manager on the same
nodes manually, or most Hadoop distributions already install YARN and HDFS
together.

Finally, keep in mind that cluster management is a fast-moving space—by the time
this book comes out, there might be more features available for Spark under the cur‐
rent cluster managers, as well as new cluster managers. The methods of submitting
applications described here will not change, but you can check the official documen‐
tation for your Spark release to see the latest options.

Conclusion
This chapter described the runtime architecture of a Spark application, composed of
a driver process and a distributed set of executor processes. We then covered how to
build, package, and submit Spark applications. Finally, we outlined the common
deployment environments for Spark, including its built-in cluster manager, running
Spark with YARN or Mesos, and running Spark on Amazon’s EC2 cloud. In the next
chapter we’ll dive into more advanced operational concerns, with a focus on tuning
and debugging production Spark applications.

Conclusion | 139

http://spark.apache.org/docs/latest/
http://spark.apache.org/docs/latest/

CHAPTER 8

Tuning and Debugging Spark

This chapter describes how to configure a Spark application and gives an overview of
how to tune and debug production Spark workloads. Spark is designed so that default
settings work “out of the box” in many cases; however, there are still some configura‐
tions users might want to modify. This chapter outlines Spark’s configuration mecha‐
nisms and highlights some options users might want to tweak. Configuration is also
useful for tuning an application’s performance; the second part of this chapter covers
the fundamentals necessary for understanding the performance of a Spark applica‐
tion, along with the associated configuration settings and design patterns for writing
high performance applications. We also cover information about Spark’s user inter‐
face, instrumentation, and logging mechanisms. These are all useful when you are
performance tuning or troubleshooting issues.

Configuring Spark with SparkConf
Tuning Spark often simply means changing the Spark application’s runtime configu‐
ration. The primary configuration mechanism in Spark is the SparkConf class. A
SparkConf instance is required when you are creating a new SparkContext, as shown
in Examples 8-1 through 8-3.

Example 8-1. Creating an application using a SparkConf in Python

Construct a conf
conf = new SparkConf()
conf.set("spark.app.name", "My Spark App")
conf.set("spark.master", "local[4]")
conf.set("spark.ui.port", "36000") # Override the default port

Create a SparkContext with this configuration
sc = SparkContext(conf)

141

Example 8-2. Creating an application using a SparkConf in Scala

// Construct a conf
val conf = new SparkConf()
conf.set("spark.app.name", "My Spark App")
conf.set("spark.master", "local[4]")
conf.set("spark.ui.port", "36000") // Override the default port

// Create a SparkContext with this configuration
val sc = new SparkContext(conf)

Example 8-3. Creating an application using a SparkConf in Java

// Construct a conf
SparkConf conf = new SparkConf();
conf.set("spark.app.name", "My Spark App");
conf.set("spark.master", "local[4]");
conf.set("spark.ui.port", "36000"); // Override the default port

// Create a SparkContext with this configuration
JavaSparkContext sc = JavaSparkContext(conf);

The SparkConf class is quite simple: a SparkConf instance contains key/value pairs of
configuration options the user would like to override. Every configuration option in
Spark is based on a string key and value. To use a SparkConf object you create one,
call set() to add configuration values, and then supply it to the SparkContext con‐
structor. In addition to set(), the SparkConf class includes a small number of utility
methods for setting common parameters. In the preceding three examples, you could
also call setAppName() and setMaster() to set the spark.app.name and the
spark.master configurations, respectively.

In these examples, the SparkConf values are set programmatically in the application
code. In many cases, it is more convenient to populate configurations dynamically for
a given application. Spark allows setting configurations dynamically through the
spark-submit tool. When an application is launched with spark-submit, it injects
configuration values into the environment. These are detected and automatically fil‐
led in when a new SparkConf is constructed. Therefore, user applications can simply
construct an “empty” SparkConf and pass it directly to the SparkContext constructor
if you are using spark-submit.

The spark-submit tool provides built-in flags for the most common Spark configura‐
tion parameters and a generic --conf flag that accepts any Spark configuration value.
These are demonstrated in Example 8-4.

142 | Chapter 8: Tuning and Debugging Spark

Example 8-4. Setting configuration values at runtime using flags

$ bin/spark-submit \
 --class com.example.MyApp \
 --master local[4] \
 --name "My Spark App" \
 --conf spark.ui.port=36000 \
 myApp.jar

spark-submit also supports loading configuration values from a file. This can be use‐
ful to set environmental configuration, which may be shared across multiple users,
such as a default master. By default, spark-submit will look for a file called conf/
spark-defaults.conf in the Spark directory and attempt to read whitespace-delimited
key/value pairs from this file. You can also customize the exact location of the file
using the --properties-file flag to spark-submit, as you can see in Example 8-5.

Example 8-5. Setting configuration values at runtime using a defaults file

$ bin/spark-submit \
 --class com.example.MyApp \
 --properties-file my-config.conf \
 myApp.jar

Contents of my-config.conf
spark.master local[4]
spark.app.name "My Spark App"
spark.ui.port 36000

The SparkConf associated with a given application is immutable
once it is passed to the SparkContext constructor. That means that
all configuration decisions must be made before a SparkContext is
instantiated.

In some cases, the same configuration property might be set in multiple places. For
instance, a user might call setAppName() directly on a SparkConf object and also pass
the --name flag to spark-submit. In these cases Spark has a specific precedence order.
The highest priority is given to configurations declared explicitly in the user’s code
using the set() function on a SparkConf object. Next are flags passed to spark-
submit, then values in the properties file, and finally default values. If you want to
know which configurations are in place for a given application, you can examine a list
of active configurations displayed through the application web UI discussed later in
this chapter.

Several common configurations were listed in Table 7-2. Table 8-1 outlines a few
additional configuration options that might be of interest. For the full list of configu‐
ration options, see the Spark documentation.

Configuring Spark with SparkConf | 143

http://bit.ly/1yClm8O

Table 8-1. Common Spark configuration values

Option(s) Default Explanation

spark.executor.memory

(--executor-memory)

512m Amount of memory to use per executor process, in
the same format as JVM memory strings (e.g.,
512m, 2g). See “Hardware Provisioning” on page 158
for more detail on this option.

spark.executor.cores(--

executor-cores)

spark.cores.max(--total-

executor-cores)

1

(none)

Configurations for bounding the number of cores
used by the application. In YARN mode
spark.executor.cores will assign a specific
number of cores to each executor. In standalone and
Mesos modes, you can upper-bound the total
number of cores across all executors using
spark.cores.max. Refer to “Hardware
Provisioning” on page 158 for more detail.

spark.speculation false Setting to true will enable speculative execution
of tasks. This means tasks that are running slowly
will have a second copy launched on another node.
Enabling this can help cut down on straggler tasks
in large clusters.

spark.storage.blockMana

gerTimeoutIntervalMs

45000 An internal timeout used for tracking the liveness of
executors. For jobs that have long garbage
collection pauses, tuning this to be 100 seconds (a
value of 100000) or higher can prevent thrashing.
In future versions of Spark this may be replaced
with a general timeout setting, so check current
documentation.

spark.executor.extraJa

vaOptions

spark.executor.extraC

lassPath

spark.executor.extraLi

braryPath

(empty) These three options allow you to customize the
launch behavior of executor JVMs. The three flags
add extra Java options, classpath entries, or path
entries for the JVM library path. These parameters
should be specified as strings (e.g.,
spark.executor.extraJavaOptions="-

XX:+PrintGCDetails-XX:+PrintGCTi

meStamps"). Note that while this allows you to
manually augment the executor classpath, the
recommended way to add dependencies is through
the --jars flag to spark-submit (not using
this option).

144 | Chapter 8: Tuning and Debugging Spark

Option(s) Default Explanation

spark.serializer org.apache.spark.seri

alizer.JavaSerializer

Class to use for serializing objects that will be sent
over the network or need to be cached in serialized
form. The default of Java Serialization works with
any serializable Java object but is quite slow, so we
recommend using org.apache.spark.seri
alizer.KryoSerializer and configuring
Kryo serialization when speed is necessary. Can be
any subclass of org.apache.spark.Serial
izer.

spark.[X].port (random) Allows setting integer port values to be used by a
running Spark applications. This is useful in clusters
where network access is secured. The possible
values of X are driver, fileserver, broad
cast, replClassServer, blockManager,
and executor.

spark.eventLog.enabled false Set to true to enable event logging, which allows
completed Spark jobs to be viewed using a history
server. For more information about Spark’s history
server, see the official documentation.

spark.eventLog.dir file:///tmp/spark-

events

The storage location used for event logging, if
enabled. This needs to be in a globally visible
filesystem such as HDFS.

Almost all Spark configurations occur through the SparkConf construct, but one
important option doesn’t. To set the local storage directories for Spark to use for
shuffle data (necessary for standalone and Mesos modes), you export the
SPARK_LOCAL_DIRS environment variable inside of conf/spark-env.sh to a comma-
separated list of storage locations. SPARK_LOCAL_DIRS is described in detail in “Hard‐
ware Provisioning” on page 158. This is specified differently from other Spark
configurations because its value may be different on different physical hosts.

Components of Execution: Jobs, Tasks, and Stages
A first step in tuning and debugging Spark is to have a deeper understanding of the
system’s internal design. In previous chapters you saw the “logical” representation of
RDDs and their partitions. When executing, Spark translates this logical representa‐
tion into a physical execution plan by merging multiple operations into tasks. Under‐
standing every aspect of Spark’s execution is beyond the scope of this book, but an
appreciation for the steps involved along with the relevant terminology can be helpful
when tuning and debugging jobs.

Components of Execution: Jobs, Tasks, and Stages | 145

To demonstrate Spark’s phases of execution, we’ll walk through an example applica‐
tion and see how user code compiles down to a lower-level execution plan. The appli‐
cation we’ll consider is a simple bit of log analysis in the Spark shell. For input data,
we’ll use a text file that consists of log messages of varying degrees of severity, along
with some blank lines interspersed (Example 8-6).

Example 8-6. input.txt, the source file for our example

input.txt
INFO This is a message with content
INFO This is some other content
(empty line)
INFO Here are more messages
WARN This is a warning
(empty line)
ERROR Something bad happened
WARN More details on the bad thing
INFO back to normal messages

We want to open this file in the Spark shell and compute how many log messages
appear at each level of severity. First let’s create a few RDDs that will help us answer
this question, as shown in Example 8-7.

Example 8-7. Processing text data in the Scala Spark shell

// Read input file
scala> val input = sc.textFile("input.txt")
// Split into words and remove empty lines
scala> val tokenized = input.
 | map(line => line.split(" ")).
 | filter(words => words.size > 0)
// Extract the first word from each line (the log level) and do a count
scala> val counts = tokenized.
 | map(words => (words(0), 1)).
 | reduceByKey{ (a, b) => a + b }

This sequence of commands results in an RDD, counts, that will contain the number
of log entries at each level of severity. After executing these lines in the shell, the pro‐
gram has not performed any actions. Instead, it has implicitly defined a directed acy‐
clic graph (DAG) of RDD objects that will be used later once an action occurs. Each
RDD maintains a pointer to one or more parents along with metadata about what
type of relationship they have. For instance, when you call val b = a.map() on an
RDD, the RDD b keeps a reference to its parent a. These pointers allow an RDD to be
traced to all of its ancestors.

To display the lineage of an RDD, Spark provides a toDebugString() method. In
Example 8-8, we’ll look at some of the RDDs we created in the preceding example.

146 | Chapter 8: Tuning and Debugging Spark

Example 8-8. Visualizing RDDs with toDebugString() in Scala

scala> input.toDebugString
res85: String =
(2) input.text MappedRDD[292] at textFile at <console>:13
 | input.text HadoopRDD[291] at textFile at <console>:13

scala> counts.toDebugString
res84: String =
(2) ShuffledRDD[296] at reduceByKey at <console>:17
 +-(2) MappedRDD[295] at map at <console>:17
 | FilteredRDD[294] at filter at <console>:15
 | MappedRDD[293] at map at <console>:15
 | input.text MappedRDD[292] at textFile at <console>:13
 | input.text HadoopRDD[291] at textFile at <console>:13

The first visualization shows the input RDD. We created this RDD by calling
sc.textFile(). The lineage gives us some clues as to what sc.textFile() does since
it reveals which RDDs were created in the textFile() function. We can see that it
creates a HadoopRDD and then performs a map on it to create the returned RDD. The
lineage of counts is more complicated. That RDD has several ancestors, since there
are other operations that were performed on top of the input RDD, such as addi‐
tional maps, filtering, and reduction. The lineage of counts shown here is also dis‐
played graphically on the left side of Figure 8-1.

Before we perform an action, these RDDs simply store metadata that will help us
compute them later. To trigger computation, let’s call an action on the counts RDD
and collect() it to the driver, as shown in Example 8-9.

Example 8-9. Collecting an RDD

scala> counts.collect()
res86: Array[(String, Int)] = Array((ERROR,1), (INFO,4), (WARN,2))

Spark’s scheduler creates a physical execution plan to compute the RDDs needed for
performing the action. Here when we call collect() on the RDD, every partition of
the RDD must be materialized and then transferred to the driver program. Spark’s
scheduler starts at the final RDD being computed (in this case, counts) and works
backward to find what it must compute. It visits that RDD’s parents, its parents’
parents, and so on, recursively to develop a physical plan necessary to compute all
ancestor RDDs. In the simplest case, the scheduler outputs a computation stage for
each RDD in this graph where the stage has tasks for each partition in that RDD.
Those stages are then executed in reverse order to compute the final required RDD.

In more complex cases, the physical set of stages will not be an exact 1:1 correspond‐
ence to the RDD graph. This can occur when the scheduler performs pipelining, or
collapsing of multiple RDDs into a single stage. Pipelining occurs when RDDs can be

Components of Execution: Jobs, Tasks, and Stages | 147

computed from their parents without data movement. The lineage output shown in
Example 8-8 uses indentation levels to show where RDDs are going to be pipelined
together into physical stages. RDDs that exist at the same level of indentation as their
parents will be pipelined during physical execution. For instance, when we are com‐
puting counts, even though there are a large number of parent RDDs, there are only
two levels of indentation shown. This indicates that the physical execution will
require only two stages. The pipelining in this case is because there are several filter
and map operations in sequence. The right half of Figure 8-1 shows the two stages of
execution that are required to compute the counts RDD.

Figure 8-1. RDD transformations pipelined into physical stages

If you visit the application’s web UI, you will see that two stages occur in order to
fulfill the collect() action. The Spark UI can be found at http://localhost:4040 if you
are running this example on your own machine. The UI is discussed in more detail
later in this chapter, but you can use it here to quickly see what stages are executing
during this program.

In addition to pipelining, Spark’s internal scheduler may truncate the lineage of the
RDD graph if an existing RDD has already been persisted in cluster memory or on
disk. Spark can “short-circuit” in this case and just begin computing based on the
persisted RDD. A second case in which this truncation can happen is when an RDD

148 | Chapter 8: Tuning and Debugging Spark

http://localhost:4040

is already materialized as a side effect of an earlier shuffle, even if it was not explicitly
persist()ed. This is an under-the-hood optimization that takes advantage of the fact
that Spark shuffle outputs are written to disk, and exploits the fact that many times
portions of the RDD graph are recomputed.

To see the effects of caching on physical execution, let’s cache the counts RDD and
see how that truncates the execution graph for future actions (Example 8-10). If you
revisit the UI, you should see that caching reduces the number of stages required
when executing future computations. Calling collect() a few more times will reveal
only one stage executing to perform the action.

Example 8-10. Computing an already cached RDD

// Cache the RDD
scala> counts.cache()
// The first subsequent execution will again require 2 stages
scala> counts.collect()
res87: Array[(String, Int)] = Array((ERROR,1), (INFO,4), (WARN,2), (##,1),
((empty,2))
// This execution will only require a single stage
scala> counts.collect()
res88: Array[(String, Int)] = Array((ERROR,1), (INFO,4), (WARN,2), (##,1),
((empty,2))

The set of stages produced for a particular action is termed a job. In each case when
we invoke actions such as count(), we are creating a job composed of one or more
stages.

Once the stage graph is defined, tasks are created and dispatched to an internal
scheduler, which varies depending on the deployment mode being used. Stages in the
physical plan can depend on each other, based on the RDD lineage, so they will be
executed in a specific order. For instance, a stage that outputs shuffle data must occur
before one that relies on that data being present.

A physical stage will launch tasks that each do the same thing but on specific parti‐
tions of data. Each task internally performs the same steps:

1. Fetching its input, either from data storage (if the RDD is an input RDD), an
existing RDD (if the stage is based on already cached data), or shuffle outputs.

2. Performing the operation necessary to compute RDD(s) that it represents. For
instance, executing filter() or map() functions on the input data, or perform‐
ing grouping or reduction.

3. Writing output to a shuffle, to external storage, or back to the driver (if it is the
final RDD of an action such as count()).

Components of Execution: Jobs, Tasks, and Stages | 149

Most logging and instrumentation in Spark is expressed in terms of stages, tasks, and
shuffles. Understanding how user code compiles down into the bits of physical exe‐
cution is an advanced concept, but one that will help you immensely in tuning and
debugging applications.

To summarize, the following phases occur during Spark execution:

User code defines a DAG (directed acyclic graph) of RDDs
Operations on RDDs create new RDDs that refer back to their parents, thereby
creating a graph.

Actions force translation of the DAG to an execution plan
When you call an action on an RDD it must be computed. This requires comput‐
ing its parent RDDs as well. Spark’s scheduler submits a job to compute all
needed RDDs. That job will have one or more stages, which are parallel waves of
computation composed of tasks. Each stage will correspond to one or more
RDDs in the DAG. A single stage can correspond to multiple RDDs due to
pipelining.

Tasks are scheduled and executed on a cluster
Stages are processed in order, with individual tasks launching to compute seg‐
ments of the RDD. Once the final stage is finished in a job, the action is com‐
plete.

In a given Spark application, this entire sequence of steps may occur many times in a
continuous fashion as new RDDs are created.

Finding Information
Spark records detailed progress information and performance metrics as applications
execute. These are presented to the user in two places: the Spark web UI and the log‐
files produced by the driver and executor processes.

Spark Web UI
The first stop for learning about the behavior and performance of a Spark application
is Spark’s built-in web UI. This is available on the machine where the driver is run‐
ning at port 4040 by default. One caveat is that in the case of the YARN cluster mode,
where the application driver runs inside the cluster, you should access the UI through
the YARN ResourceManager, which proxies requests directly to the driver.

The Spark UI contains several different pages, and the exact format may differ across
Spark versions. As of Spark 1.2, the UI is composed of four different sections, which
we’ll cover next.

150 | Chapter 8: Tuning and Debugging Spark

Jobs: Progress and metrics of stages, tasks, and more
The jobs page, shown in Figure 8-2, contains detailed execution information for
active and recently completed Spark jobs. One very useful piece of information on
this page is the progress of running jobs, stages, and tasks. Within each stage, this
page provides several metrics that you can use to better understand physical
execution.

The jobs page was only added in Spark 1.2, so you may not see it in
earlier versions of Spark.

Figure 8-2. The Spark application UI’s jobs index page

A common use for this page is to assess the performance of a job. A good first step is
to look through the stages that make up a job and see whether some are particularly
slow or vary significantly in response time across multiple runs of the same job. If

Finding Information | 151

you have an especially expensive stage, you can click through and better understand
what user code the stage is associated with.

Once you’ve narrowed down a stage of interest, the stage page, shown in Figure 8-3,
can help isolate performance issues. In data-parallel systems such as Spark, a com‐
mon source of performance issues is skew, which occurs when a small number of
tasks take a very large amount of time compared to others. The stage page can help
you identify skew by looking at the distribution of different metrics over all tasks. A
good starting point is the runtime of the task; do a few tasks take much more time
than others? If this is the case, you can dig deeper and see what is causing the tasks to
be slow. Do a small number of tasks read or write much more data than others? Are
tasks running on certain nodes very slow? These are useful first steps when you’re
debugging a job.

Figure 8-3. The Spark application UI’s stage detail page

In addition to looking at task skew, it can be helpful to identify how much time tasks
are spending in each of the phases of the task lifecycle: reading, computing, and writ‐
ing. If tasks spend very little time reading or writing data, but take a long time overall,
it might be the case that the user code itself is expensive (for an example of user code

152 | Chapter 8: Tuning and Debugging Spark

optimizations, see “Working on a Per-Partition Basis” on page 107). Some tasks may
spend almost all of their time reading data from an external storage system, and will
not benefit much from additional optimization in Spark since they are bottlenecked
on input read.

Storage: Information for RDDs that are persisted
The storage page contains information about persisted RDDs. An RDD is persisted if
someone called persist() on the RDD and it was later computed in some job. In
some cases, if many RDDs are cached, older ones will fall out of memory to make
space for newer ones. This page will tell you exactly what fraction of each RDD is
cached and the quantity of data cached in various storage media (disk, memory, etc.).
It can be helpful to scan this page and understand whether important datasets are fit‐
ting into memory or not.

Executors: A list of executors present in the application

This page lists the active executors in the application along with some metrics around
the processing and storage on each executor. One valuable use of this page is to con‐
firm that your application has the amount of resources you were expecting. A good
first step when debugging issues is to scan this page, since a misconfiguration result‐
ing in fewer executors than expected can, for obvious reasons, affect performance. It
can also be useful to look for executors with anomalous behaviors, such as a very
large ratio of failed to successful tasks. An executor with a high failure rate could
indicate a misconfiguration or failure on the physical host in question. Simply
removing that host from the cluster can improve performance.

Another feature in the executors page is the ability to collect a stack trace from execu‐
tors using the Thread Dump button (this feature was introduced in Spark 1.2). Visu‐
alizing the thread call stack of an executor can show exactly what code is executing at
an instant in time. If an executor is sampled several times in a short time period with
this feature, you can identify “hot spots,” or expensive sections, in user code. This
type of informal profiling can often detect inefficiencies in user code.

Environment: Debugging Spark’s configuration
This page enumerates the set of active properties in the environment of your Spark
application. The configuration here represents the “ground truth” of your applica‐
tion’s configuration. It can be helpful if you are debugging which configuration flags
are enabled, especially if you are using multiple configuration mechanisms. This page
will also enumerate JARs and files you’ve added to your application, which can be
useful when you’re tracking down issues such as missing dependencies.

Finding Information | 153

Driver and Executor Logs
In certain cases users can learn more information from Spark by inspecting the logs
produced directly by the driver program and executors. Logs contain more detailed
traces of anomalous events such as internal warnings or detailed exceptions from
user code. This data can help when you’re troubleshooting errors or unexpected
behavior.

The exact location of Spark’s logfiles depends on the deployment mode:

• In Spark’s Standalone mode, application logs are directly displayed in the stand‐
alone master’s web UI. They are stored by default in the work/ directory of the
Spark distribution on each worker.

• In Mesos, logs are stored in the work/ directory of a Mesos slave, and accessible
from the Mesos master UI.

• In YARN mode, the easiest way to collect logs is to use YARN’s log collection
tool (running yarn logs -applicationId <app ID>) to produce a report con‐
taining logs from your application. This will work only after an application has
fully finished, since YARN must first aggregate these logs together. For viewing
logs of a running application in YARN, you can click through the ResourceMan‐
ager UI to the Nodes page, then browse to a particular node, and from there, a
particular container. YARN will give you the logs associated with output pro‐
duced by Spark in that container. This process is likely to become less round‐
about in a future version of Spark with direct links to the relevant logs.

By default Spark outputs a healthy amount of logging information. It is also possible
to customize the logging behavior to change the logging level or log output to non-
standard locations. Spark’s logging subsystem is based on log4j, a widely used Java
logging library, and uses log4j’s configuration format. An example log4j configura‐
tion file is bundled with Spark at conf/log4j.properties.template. To customize Spark’s
logging, first copy the example to a file called log4j.properties. You can then modify
behavior such as the root logging level (the threshold level for logging output). By
default, it is INFO. For less log output, it can be set to WARN or ERROR. Once you’ve
tweaked the logging to match your desired level or format, you can add the
log4j.properties file using the --files flag of spark-submit. If you have trouble set‐
ting the log level in this way, make sure that you are not including any JARs that
themselves contain log4j.properties files with your application. Log4j works by scan‐
ning the classpath for the first properties file it finds, and will ignore your customiza‐
tion if it finds properties somewhere else first.

154 | Chapter 8: Tuning and Debugging Spark

Key Performance Considerations
At this point you know a bit about how Spark works internally, how to follow the
progress of a running Spark application, and where to go for metrics and log
information. This section takes the next step and discusses common performance
issues you might encounter in Spark applications along with tips for tuning your
application to get the best possible performance. The first three subsections cover
code-level changes you can make in order to improve performance, while the last
subsection discusses tuning the cluster and environment in which Spark runs.

Level of Parallelism
The logical representation of an RDD is a single collection of objects. During physical
execution, as discussed already a few times in this book, an RDD is divided into a set
of partitions with each partition containing some subset of the total data. When
Spark schedules and runs tasks, it creates a single task for data stored in one partition,
and that task will require, by default, a single core in the cluster to execute. Out of the
box, Spark will infer what it thinks is a good degree of parallelism for RDDs, and this
is sufficient for many use cases. Input RDDs typically choose parallelism based on the
underlying storage systems. For example, HDFS input RDDs have one partition for
each block of the underlying HDFS file. RDDs that are derived from shuffling other
RDDs will have parallelism set based on the size of their parent RDDs.

The degree of parallelism can affect performance in two ways. First, if there is too lit‐
tle parallelism, Spark might leave resources idle. For example, if your application has
1,000 cores allocated to it, and you are running a stage with only 30 tasks, you might
be able to increase the level of parallelism to utilize more cores. If there is too much
parallelism, small overheads associated with each partition can add up and become
significant. A sign of this is that you have tasks that complete almost instantly—in a
few milliseconds—or tasks that do not read or write any data.

Spark offers two ways to tune the degree of parallelism for operations. The first is
that, during operations that shuffle data, you can always give a degree of parallelism
for the produced RDD as a parameter. The second is that any existing RDD can be
redistributed to have more or fewer partitions. The repartition() operator will ran‐
domly shuffle an RDD into the desired number of partitions. If you know you are
shrinking the RDD, you can use the coalesce() operator; this is more efficient than
repartition() since it avoids a shuffle operation. If you think you have too much or
too little parallelism, it can help to redistribute your data with these operators.

As an example, let’s say we are reading a large amount of data from S3, but then
immediately performing a filter() operation that is likely to exclude all but a tiny
fraction of the dataset. By default the RDD returned by filter() will have the same
size as its parent and might have many empty or small partitions. In this case you can

Key Performance Considerations | 155

improve the application’s performance by coalescing down to a smaller RDD, as
shown in Example 8-11.

Example 8-11. Coalescing a large RDD in the PySpark shell

Wildcard input that may match thousands of files
>>> input = sc.textFile("s3n://log-files/2014/*.log")
>>> input.getNumPartitions()
35154
A filter that excludes almost all data
>>> lines = input.filter(lambda line: line.startswith("2014-10-17"))
>>> lines.getNumPartitions()
35154
We coalesce the lines RDD before caching
>>> lines = lines.coalesce(5).cache()
>>> lines.getNumPartitions()
4
Subsequent analysis can operate on the coalesced RDD...
>>> lines.count()

Serialization Format
When Spark is transferring data over the network or spilling data to disk, it needs to
serialize objects into a binary format. This comes into play during shuffle operations,
where potentially large amounts of data are transferred. By default Spark will use
Java’s built-in serializer. Spark also supports the use of Kryo, a third-party serializa‐
tion library that improves on Java’s serialization by offering both faster serialization
times and a more compact binary representation, but cannot serialize all types of
objects “out of the box.” Almost all applications will benefit from shifting to Kryo for
serialization.

To use Kryo serialization, you can set the spark.serializer setting to
org.apache.spark.serializer.KryoSerializer. For best performance, you’ll also
want to register classes with Kryo that you plan to serialize, as shown in
Example 8-12. Registering a class allows Kryo to avoid writing full class names with
individual objects, a space savings that can add up over thousands or millions of seri‐
alized records. If you want to force this type of registration, you can set
spark.kryo.registrationRequired to true, and Kryo will throw errors if it encoun‐
ters an unregistered class.

156 | Chapter 8: Tuning and Debugging Spark

https://github.com/EsotericSoftware/kryo

Example 8-12. Using the Kryo serializer and registering classes

val conf = new SparkConf()
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
// Be strict about class registration
conf.set("spark.kryo.registrationRequired", "true")
conf.registerKryoClasses(Array(classOf[MyClass], classOf[MyOtherClass]))

Whether using Kryo or Java’s serializer, you may encounter a NotSerializableExcep
tion if your code refers to a class that does not extend Java’s Serializable interface. It
can be difficult to track down which class is causing the problem in this case, since
many different classes can be referenced from user code. Many JVMs support a spe‐
cial option to help debug this situation: "-Dsun.io.serialization.extended Debu
gInfo=true". You can enable this option this using the --driver-java-options and
--executor-java-options flags to spark-submit. Once you’ve found the class in
question, the easiest solution is to simply modify it to implement Serializable. If you
cannot modify the class in question you’ll need to use more advanced workarounds,
such as creating a subclass of the type in question that implements Java’s Externaliza‐
ble interface or customizing the serialization behavior using Kryo.

Memory Management
Spark uses memory in different ways, so understanding and tuning Spark’s use of
memory can help optimize your application. Inside of each executor, memory is used
for a few purposes:

RDD storage
When you call persist() or cache() on an RDD, its partitions will be stored in
memory buffers. Spark will limit the amount of memory used when caching to a
certain fraction of the JVM’s overall heap, set by spark.storage.memoryFrac
tion. If this limit is exceeded, older partitions will be dropped from memory.

Shuffle and aggregation buffers
When performing shuffle operations, Spark will create intermediate buffers for
storing shuffle output data. These buffers are used to store intermediate results of
aggregations in addition to buffering data that is going to be directly output as
part of the shuffle. Spark will attempt to limit the total amount of memory used
in shuffle-related buffers to spark.shuffle.memoryFraction.

User code
Spark executes arbitrary user code, so user functions can themselves require sub‐
stantial memory. For instance, if a user application allocates large arrays or other
objects, these will contend for overall memory usage. User code has access to

Key Performance Considerations | 157

http://bit.ly/1yC15BJ
http://bit.ly/1yC15BJ

everything left in the JVM heap after the space for RDD storage and shuffle stor‐
age are allocated.

By default Spark will leave 60% of space for RDD storage, 20% for shuffle memory,
and the remaining 20% for user programs. In some cases users can tune these options
for better performance. If your user code is allocating very large objects, it might
make sense to decrease the storage and shuffle regions to avoid running out of
memory.

In addition to tweaking memory regions, you can improve certain elements of
Spark’s default caching behavior for some workloads. Spark’s default cache() opera‐
tion persists memory using the MEMORY_ONLY storage level. This means that if there is
not enough space to cache new RDD partitions, old ones will simply be deleted and,
if they are needed again, they will be recomputed. It is sometimes better to call per
sist() with the MEMORY_AND_DISK storage level, which instead drops RDD partitions
to disk and simply reads them back to memory from a local store if they are needed
again. This can be much cheaper than recomputing blocks and can lead to more pre‐
dictable performance. This is particularly useful if your RDD partitions are very
expensive to recompute (for instance, if you are reading data from a database). The
full list of possible storage levels is given in Table 3-6.

A second improvement on the default caching policy is to cache serialized objects
instead of raw Java objects, which you can accomplish using the MEMORY_ONLY_SER or
MEMORY_AND_DISK_SER storage levels. Caching serialized objects will slightly slow
down the cache operation due to the cost of serializing objects, but it can substan‐
tially reduce time spent on garbage collection in the JVM, since many individual
records can be stored as a single serialized buffer. This is because the cost of garbage
collection scales with the number of objects on the heap, not the number of bytes of
data, and this caching method will take many objects and serialize them into a single
giant buffer. Consider this option if you are caching large amounts of data (e.g., giga‐
bytes) as objects and/or seeing long garbage collection pauses. Such pauses would be
visible in the application UI under the GC Time column for each task.

Hardware Provisioning
The hardware resources you give to Spark will have a significant effect on the com‐
pletion time of your application. The main parameters that affect cluster sizing are
the amount of memory given to each executor, the number of cores for each execu‐
tor, the total number of executors, and the number of local disks to use for scratch
data.

In all deployment modes, executor memory is set with spark.executor.memory or
the --executor-memory flag to spark-submit. The options for number and cores of
executors differ depending on deployment mode. In YARN you can set spark.execu

158 | Chapter 8: Tuning and Debugging Spark

tor.cores or the --executor-cores flag and the --num-executors flag to determine
the total count. In Mesos and Standalone mode, Spark will greedily acquire as many
cores and executors as are offered by the scheduler. However, both Mesos and Stand‐
alone mode support setting spark.cores.max to limit the total number of cores
across all executors for an application. Local disks are used for scratch storage during
shuffle operations.

Broadly speaking, Spark applications will benefit from having more memory and
cores. Spark’s architecture allows for linear scaling; adding twice the resources will
often make your application run twice as fast. An additional consideration when siz‐
ing a Spark application is whether you plan to cache intermediate datasets as part of
your workload. If you do plan to use caching, the more of your cached data can fit in
memory, the better the performance will be. The Spark storage UI will give details
about what fraction of your cached data is in memory. One approach is to start by
caching a subset of your data on a smaller cluster and extrapolate the total memory
you will need to fit larger amounts of the data in memory.

In addition to memory and cores, Spark uses local disk volumes to store intermediate
data required during shuffle operations along with RDD partitions that are spilled to
disk. Using a larger number of local disks can help accelerate the performance of
Spark applications. In YARN mode, the configuration for local disks is read directly
from YARN, which provides its own mechanism for specifying scratch storage direc‐
tories. In Standalone mode, you can set the SPARK_LOCAL_DIRS environment variable
in spark-env.sh when deploying the Standalone cluster and Spark applications will
inherit this config when they are launched. In Mesos mode, or if you are running in
another mode and want to override the cluster’s default storage locations, you can set
the spark.local.dir option. In all cases you specify the local directories using a sin‐
gle comma-separated list. It is common to have one local directory for each disk vol‐
ume available to Spark. Writes will be evenly striped across all local directories
provided. Larger numbers of disks will provide higher overall throughput.

One caveat to the “more is better” guideline is when sizing memory for executors.
Using very large heap sizes can cause garbage collection pauses to hurt the through‐
put of a Spark job. It can sometimes be beneficial to request smaller executors (say, 64
GB or less) to mitigate this issue. Mesos and YARN can, out of the box, support pack‐
ing multiple, smaller executors onto the same physical host, so requesting smaller
executors doesn’t mean your application will have fewer overall resources. In Spark’s
Standalone mode, you need to launch multiple workers (determined using
SPARK_WORKER_INSTANCES) for a single application to run more than one executor on
a host. This limitation will likely be removed in a later version of Spark. In addition
to using smaller executors, storing data in serialized form (see “Memory Manage‐
ment” on page 157) can also help alleviate garbage collection.

Key Performance Considerations | 159

Conclusion
If you’ve made it through this chapter, you are well poised to tackle a production
Spark use case. We covered Spark’s configuration management, instrumentation and
metrics in Spark’s UI, and common tuning techniques for production workloads. To
dive deeper into tuning Spark, visit the tuning guide in the official documentation.

160 | Chapter 8: Tuning and Debugging Spark

http://spark.apache.org/docs/latest/tuning.html

CHAPTER 9

Spark SQL

This chapter introduces Spark SQL, Spark’s interface for working with structured and
semistructured data. Structured data is any data that has a schema—that is, a known
set of fields for each record. When you have this type of data, Spark SQL makes it
both easier and more efficient to load and query. In particular, Spark SQL provides
three main capabilities (illustrated in Figure 9-1):

1. It can load data from a variety of structured sources (e.g., JSON, Hive, and
Parquet).

2. It lets you query the data using SQL, both inside a Spark program and from
external tools that connect to Spark SQL through standard database connectors
(JDBC/ODBC), such as business intelligence tools like Tableau.

3. When used within a Spark program, Spark SQL provides rich integration
between SQL and regular Python/Java/Scala code, including the ability to join
RDDs and SQL tables, expose custom functions in SQL, and more. Many jobs are
easier to write using this combination.

To implement these capabilities, Spark SQL provides a special type of RDD called
SchemaRDD. A SchemaRDD is an RDD of Row objects, each representing a record. A
SchemaRDD also knows the schema (i.e., data fields) of its rows. While SchemaRDDs
look like regular RDDs, internally they store data in a more efficient manner, taking
advantage of their schema. In addition, they provide new operations not available on
RDDs, such as the ability to run SQL queries. SchemaRDDs can be created from
external data sources, from the results of queries, or from regular RDDs.

161

Figure 9-1. Spark SQL usage

In this chapter, we’ll start by showing how to use SchemaRDDs inside regular Spark
programs, to load and query structured data. We’ll then describe the Spark SQL
JDBC server, which lets you run Spark SQL on a shared server and connect either
SQL shells or visualization tools like Tableau to it. Finally, we’ll discuss some
advanced features. Spark SQL is a newer component of Spark and it will evolve sub‐
stantially in Spark 1.3 and future versions, so consult the most recent documentation
for the latest information on Spark SQL and SchemaRDDs.

As we move through this chapter, we’ll use Spark SQL to explore a JSON file with
tweets. If you don’t have any tweets on hand, you can use the Databricks reference
application to download some, or you can use files/testweet.json in the book’s Git
repo.

Linking with Spark SQL
As with the other Spark libraries, including Spark SQL in our application requires
some additional dependencies. This allows Spark Core to be built without depending
on a large number of additional packages.

Spark SQL can be built with or without Apache Hive, the Hadoop SQL engine. Spark
SQL with Hive support allows us to access Hive tables, UDFs (user-defined func‐
tions), SerDes (serialization and deserialization formats), and the Hive query lan‐
guage (HiveQL). Hive query language (HQL) It is important to note that including
the Hive libraries does not require an existing Hive installation. In general, it is best
to build Spark SQL with Hive support to access these features. If you download Spark
in binary form, it should already be built with Hive support. If you are building Spark
from source, you should run sbt/sbt -Phive assembly.

162 | Chapter 9: Spark SQL

http://bit.ly/1yC32hs
http://bit.ly/1yC32hs

If you have dependency conflicts with Hive that you cannot solve through exclusions
or shading, you can also build and link to Spark SQL without Hive. In that case you
link to a separate Maven artifact.

In Java and Scala, the Maven coordinates to link to Spark SQL with Hive are shown
in Example 9-1.

Example 9-1. Maven coordinates for Spark SQL with Hive support

groupId = org.apache.spark
artifactId = spark-hive_2.10
version = 1.2.0

If you can’t include the Hive dependencies, use the artifact ID spark-sql_2.10
instead of spark-hive_2.10.

As with the other Spark libraries, in Python no changes to your build are required.

When programming against Spark SQL we have two entry points depending on
whether we need Hive support. The recommended entry point is the HiveContext to
provide access to HiveQL and other Hive-dependent functionality. The more basic
SQLContext provides a subset of the Spark SQL support that does not depend on
Hive. The separation exists for users who might have conflicts with including all of
the Hive dependencies. Using a HiveContext does not require an existing Hive setup.

HiveQL is the recommended query language for working with Spark SQL. Many
resources have been written on HiveQL, including Programming Hive and the online
Hive Language Manual. In Spark 1.0 and 1.1, Spark SQL is based on Hive 0.12,
whereas in Spark 1.2 it also supports Hive 0.13. If you already know standard SQL,
using HiveQL should feel very similar.

Spark SQL is a newer and fast moving component of Spark. The set
of compatible Hive versions may change in the future, so consult
the most recent documentation for more details.

Finally, to connect Spark SQL to an existing Hive installation, you must copy your
hive-site.xml file to Spark’s configuration directory ($SPARK_HOME/conf). If you
don’t have an existing Hive installation, Spark SQL will still run.

Linking with Spark SQL | 163

http://shop.oreilly.com/product/0636920023555.do
http://bit.ly/1yC3goM

Note that if you don’t have an existing Hive installation, Spark SQL will create its
own Hive metastore (metadata DB) in your program’s work directory, called meta
store_db. In addition, if you attempt to create tables using HiveQL’s CREATE TABLE
statement (not CREATE EXTERNAL TABLE), they will be placed in the /user/hive/ware‐
house directory on your default filesystem (either your local filesystem, or HDFS if
you have a hdfs-site.xml on your classpath).

Using Spark SQL in Applications
The most powerful way to use Spark SQL is inside a Spark application. This gives us
the power to easily load data and query it with SQL while simultaneously combining
it with “regular” program code in Python, Java, or Scala.

To use Spark SQL this way, we construct a HiveContext (or SQLContext for those
wanting a stripped-down version) based on our SparkContext. This context provides
additional functions for querying and interacting with Spark SQL data. Using the
HiveContext, we can build SchemaRDDs, which represent our structure data, and
operate on them with SQL or with normal RDD operations like map().

Initializing Spark SQL
To get started with Spark SQL we need to add a few imports to our programs, as
shown in Example 9-2.

Example 9-2. Scala SQL imports

// Import Spark SQL
import org.apache.spark.sql.hive.HiveContext
// Or if you can't have the hive dependencies
import org.apache.spark.sql.SQLContext

Scala users should note that we don’t import HiveContext._, like we do with the
SparkContext, to get access to implicits. These implicits are used to convert RDDs
with the required type information into Spark SQL’s specialized RDDs for querying.
Instead, once we have constructed an instance of the HiveContext we can then
import the implicits by adding the code shown in Example 9-3. The imports for Java
and Python are shown in Examples 9-4 and 9-5, respectively.

Example 9-3. Scala SQL implicits

// Create a Spark SQL HiveContext
val hiveCtx = ...
// Import the implicit conversions
import hiveCtx._

164 | Chapter 9: Spark SQL

Example 9-4. Java SQL imports

// Import Spark SQL
import org.apache.spark.sql.hive.HiveContext;
// Or if you can't have the hive dependencies
import org.apache.spark.sql.SQLContext;
// Import the JavaSchemaRDD
import org.apache.spark.sql.SchemaRDD;
import org.apache.spark.sql.Row;

Example 9-5. Python SQL imports

Import Spark SQL
from pyspark.sql import HiveContext, Row
Or if you can't include the hive requirements
from pyspark.sql import SQLContext, Row

Once we’ve added our imports, we need to create a HiveContext, or a SQLContext if
we cannot bring in the Hive dependencies (see Examples 9-6 through 9-8). Both of
these classes take a SparkContext to run on.

Example 9-6. Constructing a SQL context in Scala

val sc = new SparkContext(...)
val hiveCtx = new HiveContext(sc)

Example 9-7. Constructing a SQL context in Java

JavaSparkContext ctx = new JavaSparkContext(...);
SQLContext sqlCtx = new HiveContext(ctx);

Example 9-8. Constructing a SQL context in Python

hiveCtx = HiveContext(sc)

Now that we have a HiveContext or SQLContext, we are ready to load our data and
query it.

Basic Query Example
To make a query against a table, we call the sql() method on the HiveContext or
SQLContext. The first thing we need to do is tell Spark SQL about some data to
query. In this case we will load some Twitter data from JSON, and give it a name by
registering it as a “temporary table” so we can query it with SQL. (We will go over
more details on loading in “Loading and Saving Data” on page 170.) Then we can select
the top tweets by retweetCount. See Examples 9-9 through 9-11.

Using Spark SQL in Applications | 165

Example 9-9. Loading and quering tweets in Scala

val input = hiveCtx.jsonFile(inputFile)
// Register the input schema RDD
input.registerTempTable("tweets")
// Select tweets based on the retweetCount
val topTweets = hiveCtx.sql("SELECT text, retweetCount FROM
 tweets ORDER BY retweetCount LIMIT 10")

Example 9-10. Loading and quering tweets in Java

SchemaRDD input = hiveCtx.jsonFile(inputFile);
// Register the input schema RDD
input.registerTempTable("tweets");
// Select tweets based on the retweetCount
SchemaRDD topTweets = hiveCtx.sql("SELECT text, retweetCount FROM
 tweets ORDER BY retweetCount LIMIT 10");

Example 9-11. Loading and quering tweets in Python

input = hiveCtx.jsonFile(inputFile)
Register the input schema RDD
input.registerTempTable("tweets")
Select tweets based on the retweetCount
topTweets = hiveCtx.sql("""SELECT text, retweetCount FROM
 tweets ORDER BY retweetCount LIMIT 10""")

If you have an existing Hive installation, and have copied your
hive-site.xml file to $SPARK_HOME/conf, you can also just run
hiveCtx.sql to query your existing Hive tables.

SchemaRDDs
Both loading data and executing queries return SchemaRDDs. SchemaRDDs are sim‐
ilar to tables in a traditional database. Under the hood, a SchemaRDD is an RDD
composed of Row objects with additional schema information of the types in each col‐
umn. Row objects are just wrappers around arrays of basic types (e.g., integers and
strings), and we’ll cover them in more detail in the next section.

One important note: in future versions of Spark, the name SchemaRDD may be
changed to DataFrame. This renaming was still under discussion as this book went to
print.

SchemaRDDs are also regular RDDs, so you can operate on them using existing RDD
transformations like map() and filter(). However, they provide several additional
capabilities. Most importantly, you can register any SchemaRDD as a temporary table

166 | Chapter 9: Spark SQL

to query it via HiveContext.sql or SQLContext.sql. You do so using the SchemaRDD’s
registerTempTable() method, as in Examples 9-9 through 9-11.

Temp tables are local to the HiveContext or SQLContext being
used, and go away when your application exits.

SchemaRDDs can store several basic types, as well as structures and arrays of these
types. They use the HiveQL syntax for type definitions. Table 9-1 shows the sup‐
ported types.

Table 9-1. Types stored by SchemaRDDs

Spark SQL/HiveQL type Scala type Java type Python

TINYINT Byte Byte/byte int/long (in range of –
128 to 127)

SMALLINT Short Short/short int/long (in range of –
32768 to 32767)

INT Int Int/int int or long

BIGINT Long Long/long long

FLOAT Float Float/float float

DOUBLE Double Double/double float

DECIMAL Scala.math.BigDeci

mal

Java.math.BigDeci

mal

decimal.Decimal

STRING String String string

BINARY Array[Byte] byte[] bytearray

BOOLEAN Boolean Boolean/boolean bool

TIMESTAMP java.sql.TimeStamp java.sql.TimeStamp datetime.datetime

ARRAY<DATA_TYPE> Seq List list, tuple, or array

MAP<KEY_TYPE,

VAL_TYPE>

Map Map dict

Using Spark SQL in Applications | 167

http://bit.ly/1yC5nJ7

Spark SQL/HiveQL type Scala type Java type Python

STRUCT<COL1:

COL1_TYPE, ...>

Row Row Row

The last type, structures, is simply represented as other Rows in Spark SQL. All of
these types can also be nested within each other; for example, you can have arrays of
structs, or maps that contain structs.

Working with Row objects

Row objects represent records inside SchemaRDDs, and are simply fixed-length arrays
of fields. In Scala/Java, Row objects have a number of getter functions to obtain the
value of each field given its index. The standard getter, get (or apply in Scala), takes a
column number and returns an Object type (or Any in Scala) that we are responsible
for casting to the correct type. For Boolean, Byte, Double, Float, Int, Long, Short,
and String, there is a getType() method, which returns that type. For example, get
String(0) would return field 0 as a string, as you can see in Examples 9-12 and 9-13.

Example 9-12. Accessing the text column (also first column) in the topTweets
SchemaRDD in Scala

val topTweetText = topTweets.map(row => row.getString(0))

Example 9-13. Accessing the text column (also first column) in the topTweets
SchemaRDD in Java

JavaRDD<String> topTweetText = topTweets.toJavaRDD().map(new Function<Row, String>() {
 public String call(Row row) {
 return row.getString(0);
 }});

In Python, Row objects are a bit different since we don’t have explicit typing. We just
access the ith element using row[i]. In addition, Python Rows support named access
to their fields, of the form row.column_name, as you can see in Example 9-14. If you
are uncertain of what the column names are, we illustrate printing the schema in
“JSON” on page 172.

Example 9-14. Accessing the text column in the topTweets SchemaRDD in Python

topTweetText = topTweets.map(lambda row: row.text)

168 | Chapter 9: Spark SQL

Caching
Caching in Spark SQL works a bit differently. Since we know the types of each col‐
umn, Spark is able to more efficiently store the data. To make sure that we cache
using the memory efficient representation, rather than the full objects, we should use
the special hiveCtx.cacheTable("tableName") method. When caching a table Spark
SQL represents the data in an in-memory columnar format. This cached table will
remain in memory only for the life of our driver program, so if it exits we will need to
recache our data. As with RDDs, we cache tables when we expect to run multiple
tasks or queries against the same data.

In Spark 1.2, the regular cache() method on RDDs also results in a
cacheTable().

You can also cache tables using HiveQL/SQL statements. To cache or uncache a table
simply run CACHE TABLE tableName or UNCACHE TABLE tableName. This is most
commonly used with command-line clients to the JDBC server.

Cached SchemaRDDs show up in the Spark application UI much like other RDDs, as
shown in Figure 9-2.

Figure 9-2. Spark SQL UI of SchemaRDD

We discuss more about how Spark SQL caching performance works in “Spark SQL
Performance” on page 180.

Using Spark SQL in Applications | 169

Loading and Saving Data
Spark SQL supports a number of structured data sources out of the box, letting you
get Row objects from them without any complicated loading process. These sources
include Hive tables, JSON, and Parquet files. In addition, if you query these sources
using SQL and select only a subset of the fields, Spark SQL can smartly scan only the
subset of the data for those fields, instead of scanning all the data like a naive Spark
Context.hadoopFile might.

Apart from these data sources, you can also convert regular RDDs in your program
to SchemaRDDs by assigning them a schema. This makes it easy to write SQL queries
even when your underlying data is Python or Java objects. Often, SQL queries are
more concise when you’re computing many quantities at once (e.g., if you wanted to
compute the average age, max age, and count of distinct user IDs in one pass). In
addition, you can easily join these RDDs with SchemaRDDs from any other Spark
SQL data source. In this section, we’ll cover the external sources as well as this way of
using RDDs.

Apache Hive
When loading data from Hive, Spark SQL supports any Hive-supported storage for‐
mats (SerDes), including text files, RCFiles, ORC, Parquet, Avro, and Protocol
Buffers.

To connect Spark SQL to an existing Hive installation, you need to provide a Hive
configuration. You do so by copying your hive-site.xml file to Spark’s ./conf/ direc‐
tory. If you just want to explore, a local Hive metastore will be used if no hive-site.xml
is set, and we can easily load data into a Hive table to query later on.

Examples 9-15 through 9-17 illustrate querying a Hive table. Our example Hive table
has two columns, key (which is an integer) and value (which is a string). We show
how to create such a table later in this chapter.

Example 9-15. Hive load in Python

from pyspark.sql import HiveContext

hiveCtx = HiveContext(sc)
rows = hiveCtx.sql("SELECT key, value FROM mytable")
keys = rows.map(lambda row: row[0])

Example 9-16. Hive load in Scala

import org.apache.spark.sql.hive.HiveContext

val hiveCtx = new HiveContext(sc)

170 | Chapter 9: Spark SQL

val rows = hiveCtx.sql("SELECT key, value FROM mytable")
val keys = rows.map(row => row.getInt(0))

Example 9-17. Hive load in Java

import org.apache.spark.sql.hive.HiveContext;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.SchemaRDD;

HiveContext hiveCtx = new HiveContext(sc);
SchemaRDD rows = hiveCtx.sql("SELECT key, value FROM mytable");
JavaRDD<Integer> keys = rdd.toJavaRDD().map(new Function<Row, Integer>() {
 public Integer call(Row row) { return row.getInt(0); }
});

Parquet
Parquet is a popular column-oriented storage format that can store records with nes‐
ted fields efficiently. It is often used with tools in the Hadoop ecosystem, and it sup‐
ports all of the data types in Spark SQL. Spark SQL provides methods for reading
data directly to and from Parquet files.

First, to load data, you can use HiveContext.parquetFile or SQLContext.parquet
File, as shown in Example 9-18.

Example 9-18. Parquet load in Python

Load some data in from a Parquet file with field's name and favouriteAnimal
rows = hiveCtx.parquetFile(parquetFile)
names = rows.map(lambda row: row.name)
print "Everyone"
print names.collect()

You can also register a Parquet file as a Spark SQL temp table and write queries
against it. Example 9-19 continues from Example 9-18 where we loaded the data.

Example 9-19. Parquet query in Python

Find the panda lovers
tbl = rows.registerTempTable("people")
pandaFriends = hiveCtx.sql("SELECT name FROM people WHERE favouriteAnimal = \"panda\"")
print "Panda friends"
print pandaFriends.map(lambda row: row.name).collect()

Finally, you can save the contents of a SchemaRDD to Parquet with saveAsParquet
File(), as shown in Example 9-20.

Loading and Saving Data | 171

http://parquet.incubator.apache.org

Example 9-20. Parquet file save in Python

pandaFriends.saveAsParquetFile("hdfs://...")

JSON
If you have a JSON file with records fitting the same schema, Spark SQL can infer the
schema by scanning the file and let you access fields by name (Example 9-21). If you
have ever found yourself staring at a huge directory of JSON records, Spark SQL’s
schema inference is a very effective way to start working with the data without writ‐
ing any special loading code.

To load our JSON data, all we need to do is call the jsonFile() function on our
hiveCtx, as shown in Examples 9-22 through 9-24. If you are curious about what the
inferred schema for your data is, you can call printSchema on the resulting Sche‐
maRDD (Example 9-25).

Example 9-21. Input records

{"name": "Holden"}
{"name":"Sparky The Bear", "lovesPandas":true, "knows":{"friends": ["holden"]}}

Example 9-22. Loading JSON with Spark SQL in Python

input = hiveCtx.jsonFile(inputFile)

Example 9-23. Loading JSON with Spark SQL in Scala

val input = hiveCtx.jsonFile(inputFile)

Example 9-24. Loading JSON with Spark SQL in Java

SchemaRDD input = hiveCtx.jsonFile(jsonFile);

Example 9-25. Resulting schema from printSchema()

root
 |-- knows: struct (nullable = true)
 | |-- friends: array (nullable = true)
 | | |-- element: string (containsNull = false)
 |-- lovesPandas: boolean (nullable = true)
 |-- name: string (nullable = true)

You can also look at the schema generated for some tweets, as in Example 9-26.

172 | Chapter 9: Spark SQL

Example 9-26. Partial schema of tweets

root
 |-- contributorsIDs: array (nullable = true)
 | |-- element: string (containsNull = false)
 |-- createdAt: string (nullable = true)
 |-- currentUserRetweetId: integer (nullable = true)
 |-- hashtagEntities: array (nullable = true)
 | |-- element: struct (containsNull = false)
 | | |-- end: integer (nullable = true)
 | | |-- start: integer (nullable = true)
 | | |-- text: string (nullable = true)
 |-- id: long (nullable = true)
 |-- inReplyToScreenName: string (nullable = true)
 |-- inReplyToStatusId: long (nullable = true)
 |-- inReplyToUserId: long (nullable = true)
 |-- isFavorited: boolean (nullable = true)
 |-- isPossiblySensitive: boolean (nullable = true)
 |-- isTruncated: boolean (nullable = true)
 |-- mediaEntities: array (nullable = true)
 | |-- element: struct (containsNull = false)
 | | |-- displayURL: string (nullable = true)
 | | |-- end: integer (nullable = true)
 | | |-- expandedURL: string (nullable = true)
 | | |-- id: long (nullable = true)
 | | |-- mediaURL: string (nullable = true)
 | | |-- mediaURLHttps: string (nullable = true)
 | | |-- sizes: struct (nullable = true)
 | | | |-- 0: struct (nullable = true)
 | | | | |-- height: integer (nullable = true)
 | | | | |-- resize: integer (nullable = true)
 | | | | |-- width: integer (nullable = true)
 | | | |-- 1: struct (nullable = true)
 | | | | |-- height: integer (nullable = true)
 | | | | |-- resize: integer (nullable = true)
 | | | | |-- width: integer (nullable = true)
 | | | |-- 2: struct (nullable = true)
 | | | | |-- height: integer (nullable = true)
 | | | | |-- resize: integer (nullable = true)
 | | | | |-- width: integer (nullable = true)
 | | | |-- 3: struct (nullable = true)
 | | | | |-- height: integer (nullable = true)
 | | | | |-- resize: integer (nullable = true)
 | | | | |-- width: integer (nullable = true)
 | | |-- start: integer (nullable = true)
 | | |-- type: string (nullable = true)
 | | |-- url: string (nullable = true)
 |-- retweetCount: integer (nullable = true)
...

As you look at these schemas, a natural question is how to access nested fields and
array fields. Both in Python and when we register a table, we can access nested

Loading and Saving Data | 173

elements by using the . for each level of nesting (e.g., toplevel.nextlevel). You can
access array elements in SQL by specifying the index with [element], as shown in
Example 9-27.

Example 9-27. SQL query nested and array elements

select hashtagEntities[0].text from tweets LIMIT 1;

From RDDs
In addition to loading data, we can also create a SchemaRDD from an RDD. In Scala,
RDDs with case classes are implicitly converted into SchemaRDDs.

For Python we create an RDD of Row objects and then call inferSchema(), as shown
in Example 9-28.

Example 9-28. Creating a SchemaRDD using Row and named tuple in Python

happyPeopleRDD = sc.parallelize([Row(name="holden", favouriteBeverage="coffee")])
happyPeopleSchemaRDD = hiveCtx.inferSchema(happyPeopleRDD)
happyPeopleSchemaRDD.registerTempTable("happy_people")

With Scala, our old friend implicit conversions handles the inference of the schema
for us (Example 9-29).

Example 9-29. Creating a SchemaRDD from case class in Scala

case class HappyPerson(handle: String, favouriteBeverage: String)
...
// Create a person and turn it into a Schema RDD
val happyPeopleRDD = sc.parallelize(List(HappyPerson("holden", "coffee")))
// Note: there is an implicit conversion
// that is equivalent to sqlCtx.createSchemaRDD(happyPeopleRDD)
happyPeopleRDD.registerTempTable("happy_people")

With Java, we can turn an RDD consisting of a serializable class with public getters
and setters into a schema RDD by calling applySchema(), as Example 9-30 shows.

Example 9-30. Creating a SchemaRDD from a JavaBean in Java

class HappyPerson implements Serializable {
 private String name;
 private String favouriteBeverage;
 public HappyPerson() {}
 public HappyPerson(String n, String b) {
 name = n; favouriteBeverage = b;
 }
 public String getName() { return name; }

174 | Chapter 9: Spark SQL

 public void setName(String n) { name = n; }
 public String getFavouriteBeverage() { return favouriteBeverage; }
 public void setFavouriteBeverage(String b) { favouriteBeverage = b; }
};
...
ArrayList<HappyPerson> peopleList = new ArrayList<HappyPerson>();
peopleList.add(new HappyPerson("holden", "coffee"));
JavaRDD<HappyPerson> happyPeopleRDD = sc.parallelize(peopleList);
SchemaRDD happyPeopleSchemaRDD = hiveCtx.applySchema(happyPeopleRDD,
 HappyPerson.class);
happyPeopleSchemaRDD.registerTempTable("happy_people");

JDBC/ODBC Server
Spark SQL also provides JDBC connectivity, which is useful for connecting business
intelligence (BI) tools to a Spark cluster and for sharing a cluster across multiple
users. The JDBC server runs as a standalone Spark driver program that can be shared
by multiple clients. Any client can cache tables in memory, query them, and so on,
and the cluster resources and cached data will be shared among all of them.

Spark SQL’s JDBC server corresponds to the HiveServer2 in Hive. It is also known as
the “Thrift server” since it uses the Thrift communication protocol. Note that the
JDBC server requires Spark be built with Hive support.

The server can be launched with sbin/start-thriftserver.sh in your Spark direc‐
tory (Example 9-31). This script takes many of the same options as spark-submit. By
default it listens on localhost:10000, but we can change these with either environ‐
ment variables (HIVE_SERVER2_THRIFT_PORT and HIVE_SERVER2_THRIFT_BIND_HOST),
or with Hive configuration properties (hive.server2.thrift.port and
hive.server2.thrift.bind.host). You can also specify Hive properties on the com‐
mand line with --hiveconf property=value.

Example 9-31. Launching the JDBC server

./sbin/start-thriftserver.sh --master sparkMaster

Spark also ships with the Beeline client program we can use to connect to our JDBC
server, as shown in Example 9-32 and Figure 9-3. This is a simple SQL shell that lets
us run commands on the server.

Example 9-32. Connecting to the JDBC server with Beeline

holden@hmbp2:~/repos/spark$./bin/beeline -u jdbc:hive2://localhost:10000
Spark assembly has been built with Hive, including Datanucleus jars on classpath
scan complete in 1ms
Connecting to jdbc:hive2://localhost:10000
Connected to: Spark SQL (version 1.2.0-SNAPSHOT)

JDBC/ODBC Server | 175

http://bit.ly/1BQmMvF

Driver: spark-assembly (version 1.2.0-SNAPSHOT)
Transaction isolation: TRANSACTION_REPEATABLE_READ
Beeline version 1.2.0-SNAPSHOT by Apache Hive
0: jdbc:hive2://localhost:10000> show tables;
+---------+
| result |
+---------+
| pokes |
+---------+
1 row selected (1.182 seconds)
0: jdbc:hive2://localhost:10000>

Figure 9-3. Launching the JDBC server and connecting a Beeline client

When we start the JDBC server, it goes into the background and
directs all of its output to a logfile. If you encounter issues with
queries you run against the JDBC server, check out the logs for
more complete error messages.

Many external tools can also connect to Spark SQL via its ODBC driver. The Spark
SQL ODBC driver is produced by Simba and can be downloaded from various Spark
vendors (e.g., Databricks Cloud, Datastax, and MapR). It is commonly used by busi‐
ness intelligence (BI) tools such as Microstrategy or Tableau; check with your tool
about how it can connect to Spark SQL. In addition, most BI tools that have

176 | Chapter 9: Spark SQL

http://www.simba.com

connectors to Hive can also connect to Spark SQL using their existing Hive connec‐
tor, because it uses the same query language and server.

Working with Beeline
Within the Beeline client, you can use standard HiveQL commands to create, list, and
query tables. You can find the full details of HiveQL in the Hive Language Manual,
but here, we show a few common operations.

First, to create a table from local data, we can use the CREATE TABLE command, fol‐
lowed by LOAD DATA. Hive easily supports loading text files with a fixed delimiter
such as CSVs, as well as other files, as shown in Example 9-33.

Example 9-33. Load table

> CREATE TABLE IF NOT EXISTS mytable (key INT, value STRING)
 ROW FORMAT DELIMITED FIELDS TERMINATED BY ',';
> LOAD DATA LOCAL INPATH 'learning-spark-examples/files/int_string.csv'
 INTO TABLE mytable;

To list tables, you can use the SHOW TABLES statement (Example 9-34). You can also
describe each table’s schema with DESCRIBE tableName.

Example 9-34. Show tables

> SHOW TABLES;
mytable
Time taken: 0.052 seconds

If you’d like to cache tables, use CACHE TABLE tableName. You can later uncache
tables with UNCACHE TABLE tableName. Note that the cached tables are shared across
all clients of this JDBC server, as explained earlier.

Finally, Beeline makes it easy to view query plans. You can run EXPLAIN on a given
query to see what the execution plan will be, as shown in Example 9-35.

Example 9-35. Spark SQL shell EXPLAIN

spark-sql> EXPLAIN SELECT * FROM mytable where key = 1;
== Physical Plan ==
Filter (key#16 = 1)
 HiveTableScan [key#16,value#17], (MetastoreRelation default, mytable, None), None
Time taken: 0.551 seconds

In this specific query plan, Spark SQL is applying a filter on top of a HiveTableScan.

JDBC/ODBC Server | 177

http://bit.ly/1yC3goM

From here you can also write SQL to query the data. The Beeline shell is great for
quick data exploration on cached tables shared by multiple users.

Long-Lived Tables and Queries
One of the advantages of using Spark SQL’s JDBC server is we can share cached
tables between multiple programs. This is possible since the JDBC Thrift server is a
single driver program. To do this, you only need to register the table and then run the
CACHE command on it, as shown in the previous section.

Standalone Spark SQL Shell

Apart from its JDBC server, Spark SQL also supports a simple shell
you can use as a single process, available through ./bin/spark-sql.
This shell connects to the Hive metastore you have set in conf/hive-
site.xml, if one exists, or creates one locally. It is most useful for
local development; in a shared cluster, you should instead use the
JDBC server and have users connect with beeline.

User-Defined Functions
User-defined functions, or UDFs, allow you to register custom functions in Python,
Java, and Scala to call within SQL. They are a very popular way to expose advanced
functionality to SQL users in an organization, so that these users can call into it
without writing code. Spark SQL makes it especially easy to write UDFs. It supports
both its own UDF interface and existing Apache Hive UDFs.

Spark SQL UDFs
Spark SQL offers a built-in method to easily register UDFs by passing in a function in
your programming language. In Scala and Python, we can use the native function
and lambda syntax of the language, and in Java we need only extend the appropriate
UDF class. Our UDFs can work on a variety of types, and we can return a different
type than the one we are called with.

In Python and Java we also need to specify the return type using one of the Sche‐
maRDD types, listed in Table 9-1. In Java these types are found in
org.apache.spark.sql.api.java.DataType and in Python we import the DataType.

In Examples 9-36 and 9-37, a very simple UDF computes the string length, which we
can use to find out the length of the tweets we’re using.

178 | Chapter 9: Spark SQL

Example 9-36. Python string length UDF

Make a UDF to tell us how long some text is
hiveCtx.registerFunction("strLenPython", lambda x: len(x), IntegerType())
lengthSchemaRDD = hiveCtx.sql("SELECT strLenPython('text') FROM tweets LIMIT 10")

Example 9-37. Scala string length UDF

registerFunction("strLenScala", (_: String).length)
val tweetLength = hiveCtx.sql("SELECT strLenScala('tweet') FROM tweets LIMIT 10")

There are some additional imports for Java to define UDFs. As with the functions we
defined for RDDs we extend a special class. Depending on the number of parameters
we extend UDF[N], as shown in Examples 9-38 and 9-39.

Example 9-38. Java UDF imports

// Import UDF function class and DataTypes
// Note: these import paths may change in a future release
import org.apache.spark.sql.api.java.UDF1;
import org.apache.spark.sql.types.DataTypes;

Example 9-39. Java string length UDF

hiveCtx.udf().register("stringLengthJava", new UDF1<String, Integer>() {
 @Override
 public Integer call(String str) throws Exception {
 return str.length();
 }
 }, DataTypes.IntegerType);
SchemaRDD tweetLength = hiveCtx.sql(
 "SELECT stringLengthJava('text') FROM tweets LIMIT 10");
List<Row> lengths = tweetLength.collect();
for (Row row : result) {
 System.out.println(row.get(0));
}

Hive UDFs
Spark SQL can also use existing Hive UDFs. The standard Hive UDFs are already
automatically included. If you have a custom UDF, it is important to make sure that
the JARs for your UDF are included with your application. If we run the JDBC server,
note that we can add this with the --jars command-line flag. Developing Hive UDFs
is beyond the scope of this book, so we will instead introduce how to use existing
Hive UDFs.

User-Defined Functions | 179

Using a Hive UDF requires that we use the HiveContext instead of a regular
SQLContext. To make a Hive UDF available, simply call hiveCtx.sql("CREATE TEM
PORARY FUNCTION name AS class.function").

Spark SQL Performance
As alluded to in the introduction, Spark SQL’s higher-level query language and addi‐
tional type information allows Spark SQL to be more efficient.

Spark SQL is for more than just users who are familiar with SQL. Spark SQL makes it
very easy to perform conditional aggregate operations, like counting the sum of mul‐
tiple columns (as shown in Example 9-40), without having to construct special
objects as we discussed in Chapter 6.

Example 9-40. Spark SQL multiple sums

SELECT SUM(user.favouritesCount), SUM(retweetCount), user.id FROM tweets
 GROUP BY user.id

Spark SQL is able to use the knowledge of types to more efficiently represent our
data. When caching data, Spark SQL uses an in-memory columnar storage. This not
only takes up less space when cached, but if our subsequent queries depend only on
subsets of the data, Spark SQL minimizes the data read.

Predicate push-down allows Spark SQL to move some parts of our query “down” to
the engine we are querying. If we wanted to read only certain records in Spark, the
standard way to handle this would be to read in the entire dataset and then execute a
filter on it. However, in Spark SQL, if the underlying data store supports retrieving
only subsets of the key range, or another restriction, Spark SQL is able to push the
restrictions in our query down to the data store, resulting in potentially much less
data being read.

Performance Tuning Options
There are a number of different performance tuning options with Spark SQL; they’re
listed in Table 9-2.

Table 9-2. Performance options in Spark SQL

Option Default Usage

spark.sql.codegen false When true, Spark SQL will compile each
query to Java bytecode on the fly. This can
improve performance for large queries, but
codegen can slow down very short queries.

180 | Chapter 9: Spark SQL

1 Note that the first few runs of codegen will be especially slow as it needs to initialize its compiler, so you
should run four to five queries before measuring its overhead.

Option Default Usage

spark.sql.inMemoryColumnarStorage.com

pressed

false Compress the in-memory columnar storage
automatically.

spark.sql.inMemoryColumnarStorage.batch

Size

1000 The batch size for columnar caching. Larger
values may cause out-of-memory problems

spark.sql.parquet.compression.codec snappy Which compression codec to use. Possible
options include uncompressed, snappy,
gzip, and lzo.

Using the JDBC connector, and the Beeline shell, we can set these performance
options, and other options, with the set command, as shown in Example 9-41.

Example 9-41. Beeline command for enabling codegen

beeline> set spark.sql.codegen=true;
SET spark.sql.codegen=true
spark.sql.codegen=true
Time taken: 1.196 seconds

In a traditional Spark SQL application we can set these Spark properties on our Spark
configuration instead, as shown in Example 9-42.

Example 9-42. Scala code for enabling codegen

conf.set("spark.sql.codegen", "true")

A few options warrant special attention. First is spark.sql.codegen, which causes
Spark SQL to compile each query to Java bytecode before running it. Codegen can
make long queries or frequently repeated queries substantially faster, because it gen‐
erates specialized code to run them. However, in a setting with very short (1–2 sec‐
onds) ad hoc queries, it may add overhead as it has to run a compiler for each query.1

Codegen is also still experimental, but we recommend trying it for any workload with
large queries, or with the same query repeated over and over.

The second option you may need to tune is spark.sql.inMemoryColumnarStor
age.batchSize. When caching SchemaRDDs, Spark SQL groups together the records
in the RDD in batches of the size given by this option (default: 1000), and compresses
each batch. Very small batch sizes lead to low compression, but on the other hand,

Spark SQL Performance | 181

very large sizes can also be problematic, as each batch might be too large to build up
in memory. If the rows in your tables are large (i.e., contain hundreds of fields or
contain string fields that can be very long, such as web pages), you may need to lower
the batch size to avoid out-of-memory errors. If not, the default batch size is likely
fine, as there are diminishing returns for extra compression when you go beyond
1,000 records.

Conclusion
With Spark SQL, we have seen how to use Spark with structured and semistructured
data. In addition to the queries explored here, it’s important to remember that our
previous tools from Chapter 3 through Chapter 6 can be used on the SchemaRDDs
Spark SQL provides. In many pipelines, it is convenient to combine SQL (for its con‐
ciseness) with code written in other programming languages (for their ability to
express more complex logic). When you use Spark SQL to do this, you also gain some
optimizations from the engine’s ability to leverage schemas.

182 | Chapter 9: Spark SQL

CHAPTER 10

Spark Streaming

Many applications benefit from acting on data as soon as it arrives. For example, an
application might track statistics about page views in real time, train a machine learn‐
ing model, or automatically detect anomalies. Spark Streaming is Spark’s module for
such applications. It lets users write streaming applications using a very similar API
to batch jobs, and thus reuse a lot of the skills and even code they built for those.

Much like Spark is built on the concept of RDDs, Spark Streaming provides an
abstraction called DStreams, or discretized streams. A DStream is a sequence of data
arriving over time. Internally, each DStream is represented as a sequence of RDDs
arriving at each time step (hence the name “discretized”). DStreams can be created
from various input sources, such as Flume, Kafka, or HDFS. Once built, they offer
two types of operations: transformations, which yield a new DStream, and output
operations, which write data to an external system. DStreams provide many of the
same operations available on RDDs, plus new operations related to time, such as slid‐
ing windows.

Unlike batch programs, Spark Streaming applications need additional setup in order
to operate 24/7. We will discuss checkpointing, the main mechanism Spark Streaming
provides for this purpose, which lets it store data in a reliable file system such as
HDFS. We will also discuss how to restart applications on failure or set them to be
automatically restarted.

Finally, as of Spark 1.1, Spark Streaming is available only in Java and Scala. Experi‐
mental Python support was added in Spark 1.2, though it supports only text data. We
will focus this chapter on Java and Scala to show the full API, but similar concepts
apply in Python.

183

A Simple Example
Before we dive into the details of Spark Streaming, let’s consider a simple example.
We will receive a stream of newline-delimited lines of text from a server running at
port 7777, filter only the lines that contain the word error, and print them.

Spark Streaming programs are best run as standalone applications built using Maven
or sbt. Spark Streaming, while part of Spark, ships as a separate Maven artifact and
has some additional imports you will want to add to your project. These are shown in
Examples 10-1 through 10-3.

Example 10-1. Maven coordinates for Spark Streaming

groupId = org.apache.spark
artifactId = spark-streaming_2.10
version = 1.2.0

Example 10-2. Scala streaming imports

import org.apache.spark.streaming.StreamingContext
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.dstream.DStream
import org.apache.spark.streaming.Duration
import org.apache.spark.streaming.Seconds

Example 10-3. Java streaming imports

import org.apache.spark.streaming.api.java.JavaStreamingContext;
import org.apache.spark.streaming.api.java.JavaDStream;
import org.apache.spark.streaming.api.java.JavaPairDStream;
import org.apache.spark.streaming.Duration;
import org.apache.spark.streaming.Durations;

We will start by creating a StreamingContext, which is the main entry point for
streaming functionality. This also sets up an underlying SparkContext that it will use
to process the data. It takes as input a batch interval specifying how often to process
new data, which we set to 1 second. Next, we use socketTextStream() to create a
DStream based on text data received on port 7777 of the local machine. Then we
transform the DStream with filter() to get only the lines that contain error. Finally,
we apply the output operation print() to print some of the filtered lines. (See Exam‐
ples 10-4 and 10-5.)

Example 10-4. Streaming filter for printing lines containing “error” in Scala

// Create a StreamingContext with a 1-second batch size from a SparkConf
val ssc = new StreamingContext(conf, Seconds(1))
// Create a DStream using data received after connecting to port 7777 on the

184 | Chapter 10: Spark Streaming

// local machine
val lines = ssc.socketTextStream("localhost", 7777)
// Filter our DStream for lines with "error"
val errorLines = lines.filter(_.contains("error"))
// Print out the lines with errors
errorLines.print()

Example 10-5. Streaming filter for printing lines containing “error” in Java

// Create a StreamingContext with a 1-second batch size from a SparkConf
JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(1));
// Create a DStream from all the input on port 7777
JavaDStream<String> lines = jssc.socketTextStream("localhost", 7777);
// Filter our DStream for lines with "error"
JavaDStream<String> errorLines = lines.filter(new Function<String, Boolean>() {
 public Boolean call(String line) {
 return line.contains("error");
 }});
// Print out the lines with errors
errorLines.print();

This sets up only the computation that will be done when the system receives data.
To start receiving data, we must explicitly call start() on the StreamingContext.
Then, Spark Streaming will start to schedule Spark jobs on the underlying SparkCon‐
text. This will occur in a separate thread, so to keep our application from exiting, we
also need to call awaitTermination to wait for the streaming computation to finish.
(See Examples 10-6 and 10-7.)

Example 10-6. Streaming filter for printing lines containing “error” in Scala

// Start our streaming context and wait for it to "finish"
ssc.start()
// Wait for the job to finish
ssc.awaitTermination()

Example 10-7. Streaming filter for printing lines containing “error” in Java

// Start our streaming context and wait for it to "finish"
jssc.start();
// Wait for the job to finish
jssc.awaitTermination();

Note that a streaming context can be started only once, and must be started after we
set up all the DStreams and output operations we want.

Now that we have our simple streaming application, we can go ahead and run it, as
shown in Example 10-8.

A Simple Example | 185

Example 10-8. Running the streaming app and providing data on Linux/Mac

$ spark-submit --class com.oreilly.learningsparkexamples.scala.StreamingLogInput \
$ASSEMBLY_JAR local[4]

$ nc localhost 7777 # Lets you type input lines to send to the server
<your input here>

Windows users can use the ncat command in place of the nc command. ncat is
available as part of nmap.

In the rest of this chapter, we’ll build on this example to process Apache logfiles. If
you’d like to generate some fake logs, you can run the script ./bin/fakelogs.sh
or ./bin/fakelogs.cmd in this book’s Git repository to send logs to port 7777.

Architecture and Abstraction
Spark Streaming uses a “micro-batch” architecture, where the streaming computa‐
tion is treated as a continuous series of batch computations on small batches of data.
Spark Streaming receives data from various input sources and groups it into small
batches. New batches are created at regular time intervals. At the beginning of each
time interval a new batch is created, and any data that arrives during that interval gets
added to that batch. At the end of the time interval the batch is done growing. The
size of the time intervals is determined by a parameter called the batch interval. The
batch interval is typically between 500 milliseconds and several seconds, as config‐
ured by the application developer. Each input batch forms an RDD, and is processed
using Spark jobs to create other RDDs. The processed results can then be pushed out
to external systems in batches. This high-level architecture is shown in Figure 10-1.

Figure 10-1. High-level architecture of Spark Streaming

As you’ve learned, the programming abstraction in Spark Streaming is a discretized
stream or a DStream (shown in Figure 10-2), which is a sequence of RDDs, where
each RDD has one time slice of the data in the stream.

186 | Chapter 10: Spark Streaming

http://nmap.org/ncat/
http://nmap.org/

Figure 10-2. DStream as a continuous series of RDDs

You can create DStreams either from external input sources, or by applying transfor‐
mations to other DStreams. DStreams support many of the transformations that you
saw on RDDs in Chapter 3. Additionally, DStreams also have new “stateful” transfor‐
mations that can aggregate data across time. We will discuss these in the next section.

In our simple example, we created a DStream from data received through a socket,
and then applied a filter() transformation to it. This internally creates RDDs as
shown in Figure 10-3.

Figure 10-3. DStreams and transformation of Examples 10-4 through 10-8

If you run Example 10-8, you should see something similar to the output in
Example 10-9.

Example 10-9. Log output from running Example 10-8

Time: 1413833674000 ms

71.19.157.174 - - [24/Sep/2014:22:26:12 +0000] "GET /error78978 HTTP/1.1" 404 505
...

Time: 1413833675000 ms

71.19.164.174 - - [24/Sep/2014:22:27:10 +0000] "GET /error78978 HTTP/1.1" 404 505
...

Architecture and Abstraction | 187

1 In Spark 1.2, receivers can also replicate data to HDFS. Also, some input sources, such as HDFS, are naturally
replicated, so Spark Streaming does not replicate those again.

This output nicely illustrates the micro-batch architecture of Spark Streaming. We
can see the filtered logs being printed every second, since we set the batch interval to
1 second when we created the StreamingContext. The Spark UI also shows that Spark
Streaming is running many small jobs, as you can see in Figure 10-4.

Figure 10-4. Spark application UI when running a streaming job

Apart from transformations, DStreams support output operations, such as the
print() used in our example. Output operations are similar to RDD actions in that
they write data to an external system, but in Spark Streaming they run periodically on
each time step, producing output in batches.

The execution of Spark Streaming within Spark’s driver-worker components is
shown in Figure 10-5 (see Figure 2-3 earlier in the book for the components of
Spark). For each input source, Spark Streaming launches receivers, which are tasks
running within the application’s executors that collect data from the input source and
save it as RDDs. These receive the input data and replicate it (by default) to another
executor for fault tolerance. This data is stored in the memory of the executors in the
same way as cached RDDs.1 The StreamingContext in the driver program then peri‐
odically runs Spark jobs to process this data and combine it with RDDs from previ‐
ous time steps.

188 | Chapter 10: Spark Streaming

Figure 10-5. Execution of Spark Streaming within Spark’s components

Spark Streaming offers the same fault-tolerance properties for DStreams as Spark has
for RDDs: as long as a copy of the input data is still available, it can recompute any
state derived from it using the lineage of the RDDs (i.e., by rerunning the operations
used to process it). By default, received data is replicated across two nodes, as men‐
tioned, so Spark Streaming can tolerate single worker failures. Using just lineage,
however, recomputation could take a long time for data that has been built up since
the beginning of the program. Thus, Spark Streaming also includes a mechanism
called checkpointing that saves state periodically to a reliable filesystem (e.g., HDFS or
S3). Typically, you might set up checkpointing every 5–10 batches of data. When
recovering lost data, Spark Streaming needs only to go back to the last checkpoint.

In the rest of this chapter, we will explore the transformations, output operations,
and input sources in Spark Streaming in detail. We will then return to fault tolerance
and checkpointing to explain how to configure programs for 24/7 operation.

Transformations
Transformations on DStreams can be grouped into either stateless or stateful:

• In stateless transformations the processing of each batch does not depend on the
data of its previous batches. They include the common RDD transformations we
have seen in Chapters 3 and 4, like map(), filter(), and reduceByKey().

• Stateful transformations, in contrast, use data or intermediate results from previ‐
ous batches to compute the results of the current batch. They include transfor‐
mations based on sliding windows and on tracking state across time.

Transformations | 189

Stateless Transformations
Stateless transformations, some of which are listed in Table 10-1, are simple RDD
transformations being applied on every batch—that is, every RDD in a DStream. We
have already seen filter() in Figure 10-3. Many of the RDD transformations dis‐
cussed in Chapters 3 and 4 are also available on DStreams. Note that key/value
DStream transformations like reduceByKey() are made available in Scala by import
StreamingContext._. In Java, as with RDDs, it is necessary to create a JavaPairD
Stream using mapToPair().

Table 10-1. Examples of stateless DStream transformations (incomplete list)

Function name Purpose Scala example Signature of user-
supplied function on
DStream[T]

map() Apply a function to each
element in the DStream and
return a DStream of the result.

ds.map(x => x + 1) f: (T) → U

flatMap() Apply a function to each
element in the DStream and
return a DStream of the
contents of the iterators
returned.

ds.flatMap(x => x.split(" ")) f: T → Itera

ble[U]

filter() Return a DStream consisting of
only elements that pass the
condition passed to filter.

ds.filter(x => x != 1) f: T → Boolean

reparti

tion()

Change the number of
partitions of the DStream.

ds.repartition(10) N/A

reduceBy

Key()

Combine values with the same
key in each batch.

ds.reduceByKey(

(x, y) => x + y)

f: T, T → T

groupBy

Key()

Group values with the same
key in each batch.

ds.groupByKey() N/A

Keep in mind that although these functions look like they’re applying to the whole
stream, internally each DStream is composed of multiple RDDs (batches), and each
stateless transformation applies separately to each RDD. For example, reduceByKey()
will reduce data within each time step, but not across time steps. The stateful trans‐
formations we cover later allow combining data across time.

190 | Chapter 10: Spark Streaming

As an example, in our log processing program from earlier, we could use map() and
reduceByKey() to count log events by IP address in each time step, as shown in
Examples 10-10 and 10-11.

Example 10-10. map() and reduceByKey() on DStream in Scala

// Assumes ApacheAccessLog is a utility class for parsing entries from Apache logs
val accessLogDStream = logData.map(line => ApacheAccessLog.parseFromLogLine(line))
val ipDStream = accessLogsDStream.map(entry => (entry.getIpAddress(), 1))
val ipCountsDStream = ipDStream.reduceByKey((x, y) => x + y)

Example 10-11. map() and reduceByKey() on DStream in Java

// Assumes ApacheAccessLog is a utility class for parsing entries from Apache logs
static final class IpTuple implements PairFunction<ApacheAccessLog, String, Long> {
 public Tuple2<String, Long> call(ApacheAccessLog log) {
 return new Tuple2<>(log.getIpAddress(), 1L);
 }
}

JavaDStream<ApacheAccessLog> accessLogsDStream =
 logData.map(new ParseFromLogLine());
JavaPairDStream<String, Long> ipDStream =
 accessLogsDStream.mapToPair(new IpTuple());
JavaPairDStream<String, Long> ipCountsDStream =
 ipDStream.reduceByKey(new LongSumReducer());

Stateless transformations can also combine data from multiple DStreams, again
within each time step. For example, key/value DStreams have the same join-related
transformations as RDDs—namely, cogroup(), join(), leftOuterJoin(), and so on
(see “Joins” on page 58). We can use these operations on DStreams to perform the
underlying RDD operations separately on each batch.

Let us consider a join between two DStreams. In Examples 10-12 and 10-13, we have
data keyed by IP address, and we join the request count against the bytes transferred.

Example 10-12. Joining two DStreams in Scala

val ipBytesDStream =
 accessLogsDStream.map(entry => (entry.getIpAddress(), entry.getContentSize()))
val ipBytesSumDStream =
 ipBytesDStream.reduceByKey((x, y) => x + y)
val ipBytesRequestCountDStream =
 ipCountsDStream.join(ipBytesSumDStream)

Transformations | 191

Example 10-13. Joining two DStreams in Java

JavaPairDStream<String, Long> ipBytesDStream =
 accessLogsDStream.mapToPair(new IpContentTuple());
JavaPairDStream<String, Long> ipBytesSumDStream =
 ipBytesDStream.reduceByKey(new LongSumReducer());
JavaPairDStream<String, Tuple2<Long, Long>> ipBytesRequestCountDStream =
 ipCountsDStream.join(ipBytesSumDStream);

We can also merge the contents of two different DStreams using the union() opera‐
tor as in regular Spark, or using StreamingContext.union() for multiple streams.

Finally, if these stateless transformations are insufficient, DStreams provide an
advanced operator called transform() that lets you operate directly on the RDDs
inside them. The transform() operation lets you provide any arbitrary RDD-to-
RDD function to act on the DStream. This function gets called on each batch of data
in the stream to produce a new stream. A common application of transform() is to
reuse batch processing code you had written on RDDs. For example, if you had a
function, extractOutliers(), that acted on an RDD of log lines to produce an RDD
of outliers (perhaps after running some statistics on the messages), you could reuse it
within a transform(), as shown in Examples 10-14 and 10-15.

Example 10-14. transform() on a DStream in Scala

val outlierDStream = accessLogsDStream.transform { rdd =>
 extractOutliers(rdd)
}

Example 10-15. transform() on a DStream in Java

JavaPairDStream<String, Long> ipRawDStream = accessLogsDStream.transform(
 new Function<JavaRDD<ApacheAccessLog>, JavaRDD<ApacheAccessLog>>() {
 public JavaPairRDD<ApacheAccessLog> call(JavaRDD<ApacheAccessLog> rdd) {
 return extractOutliers(rdd);
 }
});

You can also combine and transform data from multiple DStreams together using
StreamingContext.transform or DStream.transformWith(otherStream, func).

Stateful Transformations
Stateful transformations are operations on DStreams that track data across time; that
is, some data from previous batches is used to generate the results for a new batch.
The two main types are windowed operations, which act over a sliding window of
time periods, and updateStateByKey(), which is used to track state across events for
each key (e.g., to build up an object representing each user session).

192 | Chapter 10: Spark Streaming

Stateful transformations require checkpointing to be enabled in your StreamingCon‐
text for fault tolerance. We will discuss checkpointing in more detail in “24/7 Opera‐
tion” on page 205, but for now, you can enable it by passing a directory to
ssc.checkpoint(), as shown in Example 10-16.

Example 10-16. Setting up checkpointing

ssc.checkpoint("hdfs://...")

For local development, you can also use a local path (e.g., /tmp) instead of HDFS.

Windowed transformations
Windowed operations compute results across a longer time period than the Stream‐
ingContext’s batch interval, by combining results from multiple batches. In this sec‐
tion, we’ll show how to use them to keep track of the most common response codes,
content sizes, and clients in a web server access log.

All windowed operations need two parameters, window duration and sliding dura‐
tion, both of which must be a multiple of the StreamingContext’s batch interval. The
window duration controls how many previous batches of data are considered, namely
the last windowDuration/batchInterval. If we had a source DStream with a batch
interval of 10 seconds and wanted to create a sliding window of the last 30 seconds
(or last 3 batches) we would set the windowDuration to 30 seconds. The sliding dura‐
tion, which defaults to the batch interval, controls how frequently the new DStream
computes results. If we had the source DStream with a batch interval of 10 seconds
and wanted to compute our window only on every second batch, we would set our
sliding interval to 20 seconds. Figure 10-6 shows an example.

The simplest window operation we can do on a DStream is window(), which returns
a new DStream with the data for the requested window. In other words, each RDD in
the DStream resulting from window() will contain data from multiple batches, which
we can then process with count(), transform(), and so on. (See Examples 10-17 and
10-18.)

Transformations | 193

Figure 10-6. A windowed stream with a window duration of 3 batches and a slide
duration of 2 batches; every two time steps, we compute a result over the previous 3
time steps

Example 10-17. How to use window() to count data over a window in Scala

val accessLogsWindow = accessLogsDStream.window(Seconds(30), Seconds(10))
val windowCounts = accessLogsWindow.count()

Example 10-18. How to use window() to count data over a window in Java

JavaDStream<ApacheAccessLog> accessLogsWindow = accessLogsDStream.window(
 Durations.seconds(30), Durations.seconds(10));
JavaDStream<Integer> windowCounts = accessLogsWindow.count();

While we can build all other windowed operations on top of window(), Spark Stream‐
ing provides a number of other windowed operations for efficiency and convenience.
First, reduceByWindow() and reduceByKeyAndWindow() allow us to perform reduc‐
tions on each window more efficiently. They take a single reduce function to run on
the whole window, such as +. In addition, they have a special form that allows Spark
to compute the reduction incrementally, by considering only which data is coming
into the window and which data is going out. This special form requires an inverse of
the reduce function, such as - for +. It is much more efficient for large windows if
your function has an inverse (see Figure 10-7).

194 | Chapter 10: Spark Streaming

Figure 10-7. Difference between naive reduceByWindow() and incremental reduceBy‐
Window(), using an inverse function

In our log processing example, we can use these two functions to count visits by each
IP address more efficiently, as you can see in Examples 10-19 and 10-20.

Example 10-19. Scala visit counts per IP address

val ipDStream = accessLogsDStream.map(logEntry => (logEntry.getIpAddress(), 1))
val ipCountDStream = ipDStream.reduceByKeyAndWindow(
 {(x, y) => x + y}, // Adding elements in the new batches entering the window
 {(x, y) => x - y}, // Removing elements from the oldest batches exiting the window
 Seconds(30), // Window duration
 Seconds(10)) // Slide duration

Example 10-20. Java visit counts per IP address

class ExtractIp extends PairFunction<ApacheAccessLog, String, Long> {
 public Tuple2<String, Long> call(ApacheAccessLog entry) {
 return new Tuple2(entry.getIpAddress(), 1L);
 }
}
class AddLongs extends Function2<Long, Long, Long>() {
 public Long call(Long v1, Long v2) { return v1 + v2; }
}
class SubtractLongs extends Function2<Long, Long, Long>() {
 public Long call(Long v1, Long v2) { return v1 - v2; }
}

JavaPairDStream<String, Long> ipAddressPairDStream = accessLogsDStream.mapToPair(
 new ExtractIp());
JavaPairDStream<String, Long> ipCountDStream = ipAddressPairDStream.

Transformations | 195

 reduceByKeyAndWindow(
 new AddLongs(), // Adding elements in the new batches entering the window
 new SubtractLongs()
 // Removing elements from the oldest batches exiting the window
 Durations.seconds(30), // Window duration
 Durations.seconds(10)); // Slide duration

Finally, for counting data, DStreams offer countByWindow() and countByValueAnd
Window() as shorthands. countByWindow() gives us a DStream representing the num‐
ber of elements in each window. countByValueAndWindow() gives us a DStream with
the counts for each value. See Examples 10-21 and 10-22.

Example 10-21. Windowed count operations in Scala

val ipDStream = accessLogsDStream.map{entry => entry.getIpAddress()}
val ipAddressRequestCount = ipDStream.countByValueAndWindow(Seconds(30), Seconds(10))
val requestCount = accessLogsDStream.countByWindow(Seconds(30), Seconds(10))

Example 10-22. Windowed count operations in Java

JavaDStream<String> ip = accessLogsDStream.map(
 new Function<ApacheAccessLog, String>() {
 public String call(ApacheAccessLog entry) {
 return entry.getIpAddress();
 }});
JavaDStream<Long> requestCount = accessLogsDStream.countByWindow(
 Dirations.seconds(30), Durations.seconds(10));
JavaPairDStream<String, Long> ipAddressRequestCount = ip.countByValueAndWindow(
 Dirations.seconds(30), Durations.seconds(10));

UpdateStateByKey transformation
Sometimes it’s useful to maintain state across the batches in a DStream (e.g., to track
sessions as users visit a site). updateStateByKey() enables this by providing access to
a state variable for DStreams of key/value pairs. Given a DStream of (key, event)
pairs, it lets you construct a new DStream of (key, state) pairs by taking a function
that specifies how to update the state for each key given new events. For example, in a
web server log, our events might be visits to the site, where the key is the user ID.
Using updateStateByKey(), we could track the last 10 pages each user visited. This
list would be our “state” object, and we’d update it as each event arrives.

To use updateStateByKey(), we provide a function update(events, oldState) that
takes in the events that have arrived for a key and its previous state, and returns a
newState to store for it. This function’s signature is as follows:

• events is a list of events that arrived in the current batch (may be empty).

196 | Chapter 10: Spark Streaming

• oldState is an optional state object, stored within an Option; it might be missing
if there was no previous state for the key.

• newState, returned by the function, is also an Option; we can return an empty
Option to specify that we want to delete the state.

The result of updateStateByKey() will be a new DStream that contains an RDD of
(key, state) pairs on each time step.

As a simple example, we’ll use updateStateByKey() to keep a running count of the
number of log messages with each HTTP response code. Our keys here are the
response codes, our state is an integer representing each count, and our events are
page views. Note that unlike our window examples earlier, Examples 10-23 and 10-24
keep an “infinitely growing” count since the beginning of the program.

Example 10-23. Running count of response codes using updateStateByKey() in Scala

def updateRunningSum(values: Seq[Long], state: Option[Long]) = {
 Some(state.getOrElse(0L) + values.size)
}

val responseCodeDStream = accessLogsDStream.map(log => (log.getResponseCode(), 1L))
val responseCodeCountDStream = responseCodeDStream.updateStateByKey(updateRunningSum _)

Example 10-24. Running count of response codes using updateStateByKey() in Java

class UpdateRunningSum implements Function2<List<Long>,
 Optional<Long>, Optional<Long>> {
 public Optional<Long> call(List<Long> nums, Optional<Long> current) {
 long sum = current.or(0L);
 return Optional.of(sum + nums.size());
 }
};

JavaPairDStream<Integer, Long> responseCodeCountDStream = accessLogsDStream.mapToPair(
 new PairFunction<ApacheAccessLog, Integer, Long>() {
 public Tuple2<Integer, Long> call(ApacheAccessLog log) {
 return new Tuple2(log.getResponseCode(), 1L);
 }})
 .updateStateByKey(new UpdateRunningSum());

Output Operations
Output operations specify what needs to be done with the final transformed data in a
stream (e.g., pushing it to an external database or printing it to the screen).

Output Operations | 197

Much like lazy evaluation in RDDs, if no output operation is
applied on a DStream and any of its descendants, then those
DStreams will not be evaluated. And if there are no output opera‐
tions set in a StreamingContext, then the context will not start.

A common debugging output operation that we have used already is print(). This
grabs the first 10 elements from each batch of the DStream and prints the results.

Once we’ve debugged our program, we can also use output operations to save results.
Spark Streaming has similar save() operations for DStreams, each of which takes a
directory to save files into and an optional suffix. The results of each batch are saved
as subdirectories in the given directory, with the time and the suffix in the filename.
For instance, we can save our IP address counts as shown in Example 10-25.

Example 10-25. Saving DStream to text files in Scala

ipAddressRequestCount.saveAsTextFiles("outputDir", "txt")

The more general saveAsHadoopFiles() takes a Hadoop OutputFormat. For
instance, Spark Streaming doesn’t have a built-in saveAsSequenceFile() function,
but we can save SequenceFiles as shown in Examples 10-26 and 10-27.

Example 10-26. Saving SequenceFiles from a DStream in Scala

val writableIpAddressRequestCount = ipAddressRequestCount.map {
 (ip, count) => (new Text(ip), new LongWritable(count)) }
writableIpAddressRequestCount.saveAsHadoopFiles[
 SequenceFileOutputFormat[Text, LongWritable]]("outputDir", "txt")

Example 10-27. Saving SequenceFiles from a DStream in Java

JavaPairDStream<Text, LongWritable> writableDStream = ipDStream.mapToPair(
 new PairFunction<Tuple2<String, Long>, Text, LongWritable>() {
 public Tuple2<Text, LongWritable> call(Tuple2<String, Long> e) {
 return new Tuple2(new Text(e._1()), new LongWritable(e._2()));
 }});
class OutFormat extends SequenceFileOutputFormat<Text, LongWritable> {};
writableDStream.saveAsHadoopFiles(
 "outputDir", "txt", Text.class, LongWritable.class, OutFormat.class);

Finally, foreachRDD() is a generic output operation that lets us run arbitrary compu‐
tations on the RDDs on the DStream. It is similar to transform() in that it gives you
access to each RDD. Within foreachRDD(), we can reuse all the actions we have in
Spark. For example, a common use case is to write data to an external database such
as MySQL, where Spark may not have a saveAs() function, but we might use for
eachPartition() on the RDD to write it out. For convenience, foreachRDD() can

198 | Chapter 10: Spark Streaming

2 Atomically means that the entire operation happens at once. This is important here since if Spark Streaming
were to start processing the file and then more data were to appear, it wouldn’t notice the additional data. In
filesystems, the file rename operation is typically atomic.

also give us the time of the current batch, allowing us to output each time period to a
different location. See Example 10-28.

Example 10-28. Saving data to external systems with foreachRDD() in Scala

ipAddressRequestCount.foreachRDD { rdd =>
 rdd.foreachPartition { partition =>
 // Open connection to storage system (e.g. a database connection)
 partition.foreach { item =>
 // Use connection to push item to system
 }
 // Close connection
 }
}

Input Sources
Spark Streaming has built-in support for a number of different data sources. Some
“core” sources are built into the Spark Streaming Maven artifact, while others are
available through additional artifacts, such as spark-streaming-kafka.

This section walks through some of these sources. It assumes that you already have
each input source set up, and is not intended to introduce the non-Spark-specific
components of any of these systems. If you are designing a new application, we rec‐
ommend trying HDFS or Kafka as simple input sources to get started with.

Core Sources
The methods to create DStream from the core sources are all available on the Stream‐
ingContext. We have already explored one of these sources in the example: sockets.
Here we discuss two more, files and Akka actors.

Stream of files
Since Spark supports reading from any Hadoop-compatible filesystem, Spark Stream‐
ing naturally allows a stream to be created from files written in a directory of a
Hadoop-compatible filesystem. This is a popular option due to its support of a wide
variety of backends, especially for log data that we would copy to HDFS anyway. For
Spark Streaming to work with the data, it needs to have a consistent date format for
the directory names and the files have to be created atomically (e.g., by moving the
file into the directory Spark is monitoring).2 We can change Examples 10-4 and 10-5

Input Sources | 199

to handle new logfiles as they show up in a directory instead, as shown in Examples
10-29 and 10-30.

Example 10-29. Streaming text files written to a directory in Scala

val logData = ssc.textFileStream(logDirectory)

Example 10-30. Streaming text files written to a directory in Java

JavaDStream<String> logData = jssc.textFileStream(logsDirectory);

We can use the provided ./bin/fakelogs_directory.sh script to fake the logs, or if we
have real log data we could replace the rotator with an mv command to rotate the log‐
files into the directory we are monitoring.

In addition to text data, we can also read any Hadoop input format. As with “Hadoop
Input and Output Formats” on page 84, we simply need to provide Spark Streaming
with the Key, Value, and InputFormat classes. If, for example, we had a previous
streaming job process the logs and save the bytes transferred at each time as a
SequenceFile, we could read the data as shown in Example 10-31.

Example 10-31. Streaming SequenceFiles written to a directory in Scala

ssc.fileStream[LongWritable, IntWritable,
 SequenceFileInputFormat[LongWritable, IntWritable]](inputDirectory).map {
 case (x, y) => (x.get(), y.get())
}

Akka actor stream

The second core receiver is actorStream, which allows using Akka actors as a source
for streaming. To construct an actor stream we create an Akka actor and implement
the org.apache.spark.streaming.receiver.ActorHelper interface. To copy the
input from our actor into Spark Streaming, we need to call the store() function in
our actor when we receive new data. Akka actor streams are less common so we
won’t go into detail, but you can look at the streaming documentation and the Actor‐
WordCount example in Spark to see them in use.

Additional Sources
In addition to the core sources, additional receivers for well-known data ingestion
systems are packaged as separate components of Spark Streaming. These receivers are
still part of Spark, but require extra packages to be included in your build file. Some
current receivers include Twitter, Apache Kafka, Amazon Kinesis, Apache Flume,

200 | Chapter 10: Spark Streaming

http://akka.io
http://bit.ly/1BQzCdp
http://bit.ly/1BQzD0R
http://bit.ly/1BQzD0R

and ZeroMQ. We can include these additional receivers by adding the Maven artifact
spark-streaming-[projectname]_2.10 with the same version number as Spark.

Apache Kafka
Apache Kafka is popular input source due to its speed and resilience. Using the native
support for Kafka, we can easily process the messages for many topics. To use it, we
have to include the Maven artifact spark-streaming-kafka_2.10 to our project. The
provided KafkaUtils object works on StreamingContext and JavaStreamingContext
to create a DStream of your Kafka messages. Since it can subscribe to multiple topics,
the DStream it creates consists of pairs of topic and message. To create a stream, we
will call the createStream() method with our streaming context, a string containing
comma-separated ZooKeeper hosts, the name of our consumer group (a unique
name), and a map of topics to number of receiver threads to use for that topic (see
Examples 10-32 and 10-33).

Example 10-32. Apache Kafka subscribing to Panda’s topic in Scala

import org.apache.spark.streaming.kafka._
...
// Create a map of topics to number of receiver threads to use
val topics = List(("pandas", 1), ("logs", 1)).toMap
val topicLines = KafkaUtils.createStream(ssc, zkQuorum, group, topics)
StreamingLogInput.processLines(topicLines.map(_._2))

Example 10-33. Apache Kafka subscribing to Panda’s topic in Java

import org.apache.spark.streaming.kafka.*;
...
// Create a map of topics to number of receiver threads to use
Map<String, Integer> topics = new HashMap<String, Integer>();
topics.put("pandas", 1);
topics.put("logs", 1);
JavaPairDStream<String, String> input =
 KafkaUtils.createStream(jssc, zkQuorum, group, topics);
input.print();

Apache Flume
Spark has two different receivers for use with Apache Flume (see Figure 10-8). They
are as follows:

Push-based receiver
The receiver acts as an Avro sink that Flume pushes data to.

Pull-based receiver
The receiver can pull data from an intermediate custom sink, to which other pro‐
cesses are pushing data with Flume.

Input Sources | 201

http://kafka.apache.org/
http://bit.ly/1BQzJFL
http://flume.apache.org/

Both approaches require reconfiguring Flume and running the receiver on a node on
a configured port (not your existing Spark or Flume ports). To use either of them, we
have to include the Maven artifact spark-streaming-flume_2.10 in our project.

Figure 10-8. Flume receiver options

Push-based receiver
The push-based approach can be set up quickly but does not use transactions to
receive data. In this approach, the receiver acts as an Avro sink, and we need to con‐
figure Flume to send the data to the Avro sink (Example 10-34). The provided Flume
Utils object sets up the receiver to be started on a specific worker’s hostname and
port (Examples 10-35 and 10-36). These must match those in our Flume
configuration.

Example 10-34. Flume configuration for Avro sink

a1.sinks = avroSink
a1.sinks.avroSink.type = avro
a1.sinks.avroSink.channel = memoryChannel
a1.sinks.avroSink.hostname = receiver-hostname
a1.sinks.avroSink.port = port-used-for-avro-sink-not-spark-port

Example 10-35. FlumeUtils agent in Scala

val events = FlumeUtils.createStream(ssc, receiverHostname, receiverPort)

Example 10-36. FlumeUtils agent in Java

JavaDStream<SparkFlumeEvent> events = FlumeUtils.createStream(ssc, receiverHostname,
 receiverPort)

Despite its simplicity, the disadvantage of this approach is its lack of transactions.
This increases the chance of losing small amounts of data in case of the failure of the

202 | Chapter 10: Spark Streaming

worker node running the receiver. Furthermore, if the worker running the receiver
fails, the system will try to launch the receiver at a different location, and Flume will
need to be reconfigured to send to the new worker. This is often challenging to set
up.

Pull-based receiver
The newer pull-based approach (added in Spark 1.1) is to set up a specialized Flume
sink Spark Streaming will read from, and have the receiver pull the data from the
sink. This approach is preferred for resiliency, as the data remains in the sink until
Spark Streaming reads and replicates it and tells the sink via a transaction.

To get started, we will need to set up the custom sink as a third-party plug-in for
Flume. The latest directions on installing plug-ins are in the Flume documentation.
Since the plug-in is written in Scala we need to add both the plug-in and the Scala
library to Flume’s plug-ins. For Spark 1.1, the Maven coordinates are shown in
Example 10-37.

Example 10-37. Maven coordinates for Flume sink

groupId = org.apache.spark
artifactId = spark-streaming-flume-sink_2.10
version = 1.2.0

groupId = org.scala-lang
artifactId = scala-library
version = 2.10.4

Once you have the custom flume sink added to a node, we need to configure Flume
to push to the sink, as we do in Example 10-38.

Example 10-38. Flume configuration for custom sink

a1.sinks = spark
a1.sinks.spark.type = org.apache.spark.streaming.flume.sink.SparkSink
a1.sinks.spark.hostname = receiver-hostname
a1.sinks.spark.port = port-used-for-sync-not-spark-port
a1.sinks.spark.channel = memoryChannel

With the data being buffered in the sink we can now use FlumeUtils to read it, as
shown in Examples 10-39 and 10-40.

Example 10-39. FlumeUtils custom sink in Scala

val events = FlumeUtils.createPollingStream(ssc, receiverHostname, receiverPort)

Input Sources | 203

http://bit.ly/1BQASNt

Example 10-40. FlumeUtils custom sink in Java

JavaDStream<SparkFlumeEvent> events = FlumeUtils.createPollingStream(ssc,
 receiverHostname, receiverPort)

In either case, the DStream is composed of SparkFlumeEvents. We can access the
underlying AvroFlumeEvent through event. If our event body was UTF-8 strings we
could get the contents as shown in Example 10-41.

Example 10-41. SparkFlumeEvent in Scala

// Assuming that our flume events are UTF-8 log lines
 val lines = events.map{e => new String(e.event.getBody().array(), "UTF-8")}

Custom input sources
In addition to the provided sources, you can also implement your own receiver. This
is described in Spark’s documentation in the Streaming Custom Receivers guide.

Multiple Sources and Cluster Sizing
As covered earlier, we can combine multiple DStreams using operations like union().
Through these operators, we can combine data from multiple input DStreams. Some‐
times multiple receivers are necessary to increase the aggregate throughput of the
ingestion (if a single receiver becomes the bottleneck). Other times different receivers
are created on different sources to receive different kinds of data, which are then
combined using joins or cogroups.

It is important to understand how the receivers are executed in the Spark cluster to
use multiple ones. Each receiver runs as a long-running task within Spark’s executors,
and hence occupies CPU cores allocated to the application. In addition, there need to
be available cores for processing the data. This means that in order to run multiple
receivers, you should have at least as many cores as the number of receivers, plus
however many are needed to run your computation. For example, if we want to run
10 receivers in our streaming application, then we have to allocate at least 11 cores.

Do not run Spark Streaming programs locally with master config‐
ured as "local" or "local[1]". This allocates only one CPU for
tasks and if a receiver is running on it, there is no resource left to
process the received data. Use at least "local[2]" to have more
cores.

204 | Chapter 10: Spark Streaming

http://bit.ly/1BQBlzp
http://bit.ly/1BQzCdp

3 We do not cover how to set up one of these filesystems, but they come in many Hadoop or cloud environ‐
ments. When deploying on your own cluster, it is probably easiest to set up HDFS.

24/7 Operation
One of the main advantages of Spark Streaming is that it provides strong fault toler‐
ance guarantees. As long as the input data is stored reliably, Spark Streaming will
always compute the correct result from it, offering “exactly once” semantics (i.e., as if
all of the data was processed without any nodes failing), even if workers or the driver
fail.

To run Spark Streaming applications 24/7, you need some special setup. The first step
is setting up checkpointing to a reliable storage system, such as HDFS or Amazon S3.3

In addition, we need to worry about the fault tolerance of the driver program (which
requires special setup code) and of unreliable input sources. This section covers how
to perform this setup.

Checkpointing
Checkpointing is the main mechanism that needs to be set up for fault tolerance in
Spark Streaming. It allows Spark Streaming to periodically save data about the appli‐
cation to a reliable storage system, such as HDFS or Amazon S3, for use in recover‐
ing. Specifically, checkpointing serves two purposes:

• Limiting the state that must be recomputed on failure. As discussed in “Architec‐
ture and Abstraction” on page 186, Spark Streaming can recompute state using
the lineage graph of transformations, but checkpointing controls how far back it
must go.

• Providing fault tolerance for the driver. If the driver program in a streaming
application crashes, you can launch it again and tell it to recover from a check‐
point, in which case Spark Streaming will read how far the previous run of the
program got in processing the data and take over from there.

For these reasons, checkpointing is important to set up in any production streaming
application. You can set it by passing a path (either HDFS, S3, or local filesystem) to
the ssc.checkpoint() method, as shown in Example 10-42.

Example 10-42. Setting up checkpointing

ssc.checkpoint("hdfs://...")

Note that even in local mode, Spark Streaming will complain if you try to run a state‐
ful operation without checkpointing enabled. In that case, you can pass a local

24/7 Operation | 205

filesystem path for checkpointing. But in any production setting, you should use a
replicated system such as HDFS, S3, or an NFS filer.

Driver Fault Tolerance
Tolerating failures of the driver node requires a special way of creating our Stream‐
ingContext, which takes in the checkpoint directory. Instead of simply calling new
StreamingContext, we need to use the StreamingContext.getOrCreate() function.
From our initial example we would change our code as shown in Examples 10-43 and
10-44.

Example 10-43. Setting up a driver that can recover from failure in Scala

def createStreamingContext() = {
 ...
 val sc = new SparkContext(conf)
 // Create a StreamingContext with a 1 second batch size
 val ssc = new StreamingContext(sc, Seconds(1))
 ssc.checkpoint(checkpointDir)
}
...
val ssc = StreamingContext.getOrCreate(checkpointDir, createStreamingContext _)

Example 10-44. Setting up a driver that can recover from failure in Java

JavaStreamingContextFactory fact = new JavaStreamingContextFactory() {
 public JavaStreamingContext call() {
 ...
 JavaSparkContext sc = new JavaSparkContext(conf);
 // Create a StreamingContext with a 1 second batch size
 JavaStreamingContext jssc = new JavaStreamingContext(sc, Durations.seconds(1));
 jssc.checkpoint(checkpointDir);
 return jssc;
 }};
JavaStreamingContext jssc = JavaStreamingContext.getOrCreate(checkpointDir, fact);

When this code is run the first time, assuming that the checkpoint directory does not
yet exist, the StreamingContext will be created when you call the factory function
(createStreamingContext() for Scala, and JavaStreamingContextFactory() for
Java). In the factory, you should set the checkpoint directory. After the driver fails, if
you restart it and run this code again, getOrCreate() will reinitialize a Streaming‐
Context from the checkpoint directory and resume processing.

In addition to writing your initialization code using getOrCreate(), you will need to
actually restart your driver program when it crashes. On most cluster managers,
Spark does not automatically relaunch the driver if it crashes, so you need to monitor
it using a tool like monit and restart it. The best way to do this is probably specific to

206 | Chapter 10: Spark Streaming

your environment. One place where Spark provides more support is the Standalone
cluster manager, which supports a --supervise flag when submitting your driver
that lets Spark restart it. You will also need to pass --deploy-mode cluster to make
the driver run within the cluster and not on your local machine, as shown in
Example 10-45.

Example 10-45. Launching a driver in supervise mode

./bin/spark-submit --deploy-mode cluster --supervise --master spark://... App.jar

When using this option, you will also want the Spark Standalone master to be fault-
tolerant. You can configure this using ZooKeeper, as described in the Spark docu‐
mentation. With this setup, your application will have no single point of failure.

Finally, note that when the driver crashes, executors in Spark will also restart. This
may be changed in future Spark versions, but it is expected behavior in 1.2 and earlier
versions, as the executors are not able to continue processing data without a driver.
Your relaunched driver will start new executors to pick up where it left off.

Worker Fault Tolerance
For failure of a worker node, Spark Streaming uses the same techniques as Spark for
its fault tolerance. All the data received from external sources is replicated among the
Spark workers. All RDDs created through transformations of this replicated input
data are tolerant to failure of a worker node, as the RDD lineage allows the system to
recompute the lost data all the way from the surviving replica of the input data.

Receiver Fault Tolerance
The fault tolerance of the workers running the receivers is another important consid‐
eration. In such a failure, Spark Streaming restarts the failed receivers on other nodes
in the cluster. However, whether it loses any of the received data depends on the
nature of the source (whether the source can resend data or not) and the implemen‐
tation of the receiver (whether it updates the source about received data or not). For
example, with Flume, one of the main differences between the two receivers is the
data loss guarantees. With the receiver-pull-from-sink model, Spark removes the ele‐
ments only once they have been replicated inside Spark. For the push-to-receiver
model, if the receiver fails before the data is replicated some data can be lost. In gen‐
eral, for any receiver, you must also consider the fault-tolerance properties of the
upstream source (transactional, or not) for ensuring zero data loss.

In general, receivers provide the following guarantees:

• All data read from a reliable filesystem (e.g., with StreamingContext.hadoop
Files) is reliable, because the underlying filesystem is replicated. Spark

24/7 Operation | 207

http://bit.ly/1BQCEOO
http://bit.ly/1BQCEOO

Streaming will remember which data it processed in its checkpoints and will pick
up again where it left off if your application crashes.

• For unreliable sources such as Kafka, push-based Flume, or Twitter, Spark repli‐
cates the input data to other nodes, but it can briefly lose data if a receiver task is
down. In Spark 1.1 and earlier, received data was replicated in-memory only to
executors, so it could also be lost if the driver crashed (in which case all executors
disconnect). In Spark 1.2, received data can be logged to a reliable filesystem like
HDFS so that it is not lost on driver restart.

To summarize, therefore, the best way to ensure all data is processed is to use a relia‐
ble input source (e.g., HDFS or pull-based Flume). This is generally also a best prac‐
tice if you need to process the data later in batch jobs: it ensures that your batch jobs
and streaming jobs will see the same data and produce the same results.

Processing Guarantees
Due to Spark Streaming’s worker fault-tolerance guarantees, it can provide exactly-
once semantics for all transformations—even if a worker fails and some data gets
reprocessed, the final transformed result (that is, the transformed RDDs) will be the
same as if the data were processed exactly once.

However, when the transformed result is to be pushed to external systems using out‐
put operations, the task pushing the result may get executed multiple times due to
failures, and some data can get pushed multiple times. Since this involves external
systems, it is up to the system-specific code to handle this case. We can either use
transactions to push to external systems (that is, atomically push one RDD partition
at a time), or design updates to be idempotent operations (such that multiple runs of
an update still produce the same result). For example, Spark Streaming’s
saveAs...File operations automatically make sure only one copy of each output file
exists, by atomically moving a file to its final destination when it is complete.

Streaming UI
Spark Streaming provides a special UI page that lets us look at what applications are
doing. This is available in a Streaming tab on the normal Spark UI (typically http://
<driver>:4040). A sample screenshot is shown in Figure 10-9.

208 | Chapter 10: Spark Streaming

http://<driver>:4040
http://<driver>:4040

Figure 10-9. Streaming UI tab in the Spark UI

The Streaming UI exposes statistics for our batch processing and our receivers. In our
example we have one network receiver, and we can see the message processing rates.
If we were falling behind, we could see how many records each receiver is able to pro‐
cess. We can also see whether a receiver failed. The batch processing statistics show
us how long our batches take and also break out the delay in scheduling the job. If a
cluster experiences contention, then the scheduling delay may increase.

Performance Considerations
In addition to the existing performance considerations we have discussed in general
Spark, Spark Streaming applications have a few specialized tuning options.

Batch and Window Sizes
The most common question is what minimum batch size Spark Streaming can use. In
general, 500 milliseconds has proven to be a good minimum size for many applica‐
tions. The best approach is to start with a larger batch size (around 10 seconds) and
work your way down to a smaller batch size. If the processing times reported in the
Streaming UI remain consistent, then you can continue to decrease the batch size,
but if they are increasing you may have reached the limit for your application.

Performance Considerations | 209

In a similar way, for windowed operations, the interval at which you compute a result
(i.e., the slide interval) has a big impact on performance. Consider increasing this
interval for expensive computations if it is a bottleneck.

Level of Parallelism
A common way to reduce the processing time of batches is to increase the parallel‐
ism. There are three ways to increase the parallelism:

Increasing the number of receivers
Receivers can sometimes act as a bottleneck if there are too many records for a
single machine to read in and distribute. You can add more receivers by creating
multiple input DStreams (which creates multiple receivers), and then applying
union to merge them into a single stream.

Explicitly repartitioning received data
If receivers cannot be increased anymore, you can further redistribute the
received data by explicitly repartitioning the input stream (or the union of multi‐
ple streams) using DStream.repartition.

Increasing parallelism in aggregation
For operations like reduceByKey(), you can specify the parallelism as a second
parameter, as already discussed for RDDs.

Garbage Collection and Memory Usage
Another aspect that can cause problems is Java’s garbage collection. You can mini‐
mize unpredictably large pauses due to GC by enabling Java’s Concurrent Mark-
Sweep garbage collector. The Concurrent Mark-Sweep garbage collector does
consume more resources overall, but introduces fewer pauses.

We can control the GC by adding -XX:+UseConcMarkSweepGC to the spark.execu
tor.extraJavaOptions configuration parameter. Example 10-46 shows this with
spark-submit.

Example 10-46. Enable the Concurrent Mark-Sweep GC

spark-submit --conf spark.executor.extraJavaOptions=-XX:+UseConcMarkSweepGC App.jar

In addition to using a garbage collector less likely to introduce pauses, you can make
a big difference by reducing GC pressure. Caching RDDs in serialized form (instead
of as native objects) also reduces GC pressure, which is why, by default, RDDs gener‐
ated by Spark Streaming are stored in serialized form. Using Kryo serialization fur‐
ther reduces the memory required for the in-memory representation of cached data.

210 | Chapter 10: Spark Streaming

Spark also allows us to control how cached/persisted RDDs are evicted from the
cache. By default Spark uses an LRU cache. Spark will also explicitly evict RDDs older
than a certain time period if you set spark.cleaner.ttl. By preemptively evicting
RDDs that we are unlikely to need from the cache, we may be able to reduce the GC
pressure.

Conclusion
In this chapter, we have seen how to work with streaming data using DStreams. Since
DStreams are composed of RDDs, the techniques and knowledge you have gained
from the earlier chapters remains applicable for streaming and real-time applications.
In the next chapter, we will look at machine learning with Spark.

Conclusion | 211

1 Some examples from O’Reilly include Machine Learning with R and Machine Learning for Hackers.

CHAPTER 11

Machine Learning with MLlib

MLlib is Spark’s library of machine learning functions. Designed to run in parallel on
clusters, MLlib contains a variety of learning algorithms and is accessible from all of
Spark’s programming languages. This chapter will show you how to call it in your
own programs, and offer common usage tips.

Machine learning itself is a topic large enough to fill many books,1 so unfortunately,
in this chapter, we will not have the space to explain machine learning in detail. If
you are familiar with machine learning, however, this chapter will explain how to use
it in Spark; and even if you are new to it, you should be able to combine the material
here with other introductory material. This chapter is most relevant to data scientists
with a machine learning background looking to use Spark, as well as engineers work‐
ing with a machine learning expert.

Overview
MLlib’s design and philosophy are simple: it lets you invoke various algorithms on
distributed datasets, representing all data as RDDs. MLlib introduces a few data types
(e.g., labeled points and vectors), but at the end of the day, it is simply a set of func‐
tions to call on RDDs. For example, to use MLlib for a text classification task (e.g.,
identifying spammy emails), you might do the following:

1. Start with an RDD of strings representing your messages.
2. Run one of MLlib’s feature extraction algorithms to convert text into numerical

features (suitable for learning algorithms); this will give back an RDD of vectors.

213

http://shop.oreilly.com/product/9781782162148.do
http://shop.oreilly.com/product/0636920018483.do

3. Call a classification algorithm (e.g., logistic regression) on the RDD of vectors;
this will give back a model object that can be used to classify new points.

4. Evaluate the model on a test dataset using one of MLlib’s evaluation functions.

One important thing to note about MLlib is that it contains only parallel algorithms
that run well on clusters. Some classic ML algorithms are not included because they
were not designed for parallel platforms, but in contrast MLlib contains several
recent research algorithms for clusters, such as distributed random forests, K-
means||, and alternating least squares. This choice means that MLlib is best suited for
running each algorithm on a large dataset. If you instead have many small datasets on
which you want to train different learning models, it would be better to use a single-
node learning library (e.g., Weka or SciKit-Learn) on each node, perhaps calling it in
parallel across nodes using a Spark map(). Likewise, it is common for machine learn‐
ing pipelines to require training the same algorithm on a small dataset with many
configurations of parameters, in order to choose the best one. You can achieve this in
Spark by using parallelize() over your list of parameters to train different ones on
different nodes, again using a single-node learning library on each node. But MLlib
itself shines when you have a large, distributed dataset that you need to train a model
on.

Finally, in Spark 1.0 and 1.1, MLlib’s interface is relatively low-level, giving you the
functions to call for different tasks but not the higher-level workflow typically
required for a learning pipeline (e.g., splitting the input into training and test data, or
trying many combinations of parameters). In Spark 1.2, MLlib gains an additional
(and at the time of writing still experimental) pipeline API for building such pipe‐
lines. This API resembles higher-level libraries like SciKit-Learn, and will hopefully
make it easy to write complete, self-tuning pipelines. We include a preview of this
API at the end of this chapter, but focus primarily on the lower-level APIs.

System Requirements
MLlib requires some linear algebra libraries to be installed on your machines. First,
you will need the gfortran runtime library for your operating system. If MLlib warns
that gfortran is missing, follow the setup instructions on the MLlib website. Second,
to use MLlib in Python, you will need NumPy. If your Python installation does not
have it (i.e., you cannot import numpy), the easiest way to get it is by installing the
python-numpy or numpy package through your package manager on Linux, or by
using a third-party scientific Python installation like Anaconda.

MLlib’s supported algorithms have also evolved over time. The ones we discuss here
are all available as of Spark 1.2, but some of the algorithms may not be present in
earlier versions.

214 | Chapter 11: Machine Learning with MLlib

http://www.cs.waikato.ac.nz/ml/weka/
http://scikit-learn.org/
http://bit.ly/1yCoHox
http://www.numpy.org/
http://bit.ly/1yCoMIC

Machine Learning Basics
To put the functions in MLlib in context, we’ll start with a brief review of machine
learning concepts.

Machine learning algorithms attempt to make predictions or decisions based on
training data, often maximizing a mathematical objective about how the algorithm
should behave. There are multiple types of learning problems, including classifica‐
tion, regression, or clustering, which have different objectives. As a simple example,
we’ll consider classification, which involves identifying which of several categories an
item belongs to (e.g., whether an email is spam or non-spam), based on labeled
examples of other items (e.g., emails known to be spam or not).

All learning algorithms require defining a set of features for each item, which will be
fed into the learning function. For example, for an email, some features might
include the server it comes from, or the number of mentions of the word free, or the
color of the text. In many cases, defining the right features is the most challenging
part of using machine learning. For example, in a product recommendation task,
simply adding another feature (e.g., realizing that which book you should recom‐
mend to a user might also depend on which movies she’s watched) could give a large
improvement in results.

Most algorithms are defined only for numerical features (specifically, a vector of
numbers representing the value for each feature), so often an important step is fea‐
ture extraction and transformation to produce these feature vectors. For example, for
text classification (e.g., our spam versus non-spam case), there are several methods to
featurize text, such as counting the frequency of each word.

Once data is represented as feature vectors, most machine learning algorithms opti‐
mize a well-defined mathematical function based on these vectors. For example, one
classification algorithm might be to define the plane (in the space of feature vectors)
that “best” separates the spam versus non-spam examples, according to some defini‐
tion of “best” (e.g., the most points classified correctly by the plane). At the end, the
algorithm will return a model representing the learning decision (e.g., the plane
chosen). This model can now be used to make predictions on new points (e.g., see
which side of the plane the feature vector for a new email falls on, in order to decide
whether it’s spam). Figure 11-1 shows an example learning pipeline.

Machine Learning Basics | 215

Figure 11-1. Typical steps in a machine learning pipeline

Finally, most learning algorithms have multiple parameters that can affect results, so
real-world pipelines will train multiple versions of a model and evaluate each one. To
do this, it is common to separate the input data into “training” and “test” sets, and
train only on the former, so that the test set can be used to see whether the model
overfit the training data. MLlib provides several algorithms for model evaluation.

Example: Spam Classification
As a quick example of MLlib, we show a very simple program for building a spam
classifier (Examples 11-1 through 11-3). This program uses two MLlib algorithms:
HashingTF, which builds term frequency feature vectors from text data, and Logistic
RegressionWithSGD, which implements the logistic regression procedure using sto‐
chastic gradient descent (SGD). We assume that we start with two files, spam.txt and
normal.txt, each of which contains examples of spam and non-spam emails, one per
line. We then turn the text in each file into a feature vector with TF, and train a logis‐
tic regression model to separate the two types of messages. The code and data files are
available in the book’s Git repository.

Example 11-1. Spam classifier in Python

from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.feature import HashingTF
from pyspark.mllib.classification import LogisticRegressionWithSGD

spam = sc.textFile("spam.txt")
normal = sc.textFile("normal.txt")

Create a HashingTF instance to map email text to vectors of 10,000 features.
tf = HashingTF(numFeatures = 10000)
Each email is split into words, and each word is mapped to one feature.
spamFeatures = spam.map(lambda email: tf.transform(email.split(" ")))
normalFeatures = normal.map(lambda email: tf.transform(email.split(" ")))

Create LabeledPoint datasets for positive (spam) and negative (normal) examples.

216 | Chapter 11: Machine Learning with MLlib

positiveExamples = spamFeatures.map(lambda features: LabeledPoint(1, features))
negativeExamples = normalFeatures.map(lambda features: LabeledPoint(0, features))
trainingData = positiveExamples.union(negativeExamples)
trainingData.cache() # Cache since Logistic Regression is an iterative algorithm.

Run Logistic Regression using the SGD algorithm.
model = LogisticRegressionWithSGD.train(trainingData)

Test on a positive example (spam) and a negative one (normal). We first apply
the same HashingTF feature transformation to get vectors, then apply the model.
posTest = tf.transform("O M G GET cheap stuff by sending money to ...".split(" "))
negTest = tf.transform("Hi Dad, I started studying Spark the other ...".split(" "))
print "Prediction for positive test example: %g" % model.predict(posTest)
print "Prediction for negative test example: %g" % model.predict(negTest)

Example 11-2. Spam classifier in Scala

import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.feature.HashingTF
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD

val spam = sc.textFile("spam.txt")
val normal = sc.textFile("normal.txt")

// Create a HashingTF instance to map email text to vectors of 10,000 features.
val tf = new HashingTF(numFeatures = 10000)
// Each email is split into words, and each word is mapped to one feature.
val spamFeatures = spam.map(email => tf.transform(email.split(" ")))
val normalFeatures = normal.map(email => tf.transform(email.split(" ")))

// Create LabeledPoint datasets for positive (spam) and negative (normal) examples.
val positiveExamples = spamFeatures.map(features => LabeledPoint(1, features))
val negativeExamples = normalFeatures.map(features => LabeledPoint(0, features))
val trainingData = positiveExamples.union(negativeExamples)
trainingData.cache() // Cache since Logistic Regression is an iterative algorithm.

// Run Logistic Regression using the SGD algorithm.
val model = new LogisticRegressionWithSGD().run(trainingData)

// Test on a positive example (spam) and a negative one (normal).
val posTest = tf.transform(
 "O M G GET cheap stuff by sending money to ...".split(" "))
val negTest = tf.transform(
 "Hi Dad, I started studying Spark the other ...".split(" "))
println("Prediction for positive test example: " + model.predict(posTest))
println("Prediction for negative test example: " + model.predict(negTest))

Example 11-3. Spam classifier in Java

import org.apache.spark.mllib.classification.LogisticRegressionModel;
import org.apache.spark.mllib.classification.LogisticRegressionWithSGD;

Machine Learning Basics | 217

import org.apache.spark.mllib.feature.HashingTF;
import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.regression.LabeledPoint;

JavaRDD<String> spam = sc.textFile("spam.txt");
JavaRDD<String> normal = sc.textFile("normal.txt");

// Create a HashingTF instance to map email text to vectors of 10,000 features.
final HashingTF tf = new HashingTF(10000);

// Create LabeledPoint datasets for positive (spam) and negative (normal) examples.
JavaRDD<LabeledPoint> posExamples = spam.map(new Function<String, LabeledPoint>() {
 public LabeledPoint call(String email) {
 return new LabeledPoint(1, tf.transform(Arrays.asList(email.split(" "))));
 }
});
JavaRDD<LabeledPoint> negExamples = normal.map(new Function<String, LabeledPoint>() {
 public LabeledPoint call(String email) {
 return new LabeledPoint(0, tf.transform(Arrays.asList(email.split(" "))));
 }
});
JavaRDD<LabeledPoint> trainData = positiveExamples.union(negativeExamples);
trainData.cache(); // Cache since Logistic Regression is an iterative algorithm.

// Run Logistic Regression using the SGD algorithm.
LogisticRegressionModel model = new LogisticRegressionWithSGD().run(trainData.rdd());

// Test on a positive example (spam) and a negative one (normal).
Vector posTest = tf.transform(
 Arrays.asList("O M G GET cheap stuff by sending money to ...".split(" ")));
Vector negTest = tf.transform(
 Arrays.asList("Hi Dad, I started studying Spark the other ...".split(" ")));
System.out.println("Prediction for positive example: " + model.predict(posTest));
System.out.println("Prediction for negative example: " + model.predict(negTest));

As you can see, the code is fairly similar in all the languages. It operates directly on
RDDs—in this case, of strings (the original text) and LabeledPoints (an MLlib data
type for a vector of features together with a label).

Data Types
MLlib contains a few specific data types, located in the org.apache.spark.mllib
package (Java/Scala) or pyspark.mllib (Python). The main ones are:

Vector

A mathematical vector. MLlib supports both dense vectors, where every entry is
stored, and sparse vectors, where only the nonzero entries are stored to save
space. We will discuss the different types of vectors shortly. Vectors can be con‐
structed with the mllib.linalg.Vectors class.

218 | Chapter 11: Machine Learning with MLlib

2 If you use SciPy, Spark also recognizes scipy.sparse matrices of size N×1 as length-N vectors.

LabeledPoint

A labeled data point for supervised learning algorithms such as classification and
regression. Includes a feature vector and a label (which is a floating-point value).
Located in the mllib.regression package.

Rating

A rating of a product by a user, used in the mllib.recommendation package for
product recommendation.

Various Model classes
Each Model is the result of a training algorithm, and typically has a predict()
method for applying the model to a new data point or to an RDD of new data
points.

Most algorithms work directly on RDDs of Vectors, LabeledPoints, or Ratings. You
can construct these objects however you want, but typically you will build an RDD
through transformations on external data—for example, by loading a text file or run‐
ning a Spark SQL command—and then apply a map() to turn your data objects into
MLlib types.

Working with Vectors
There are a few points to note for the Vector class in MLlib, which will be the most
commonly used one.

First, vectors come in two flavors: dense and sparse. Dense vectors store all their
entries in an array of floating-point numbers. For example, a vector of size 100 will
contain 100 double values. In contrast, sparse vectors store only the nonzero values
and their indices. Sparse vectors are usually preferable (both in terms of memory use
and speed) if at most 10% of elements are nonzero. Many featurization techniques
yield very sparse vectors, so using this representation is often a key optimization.

Second, the ways to construct vectors vary a bit by language. In Python, you can sim‐
ply pass a NumPy array anywhere in MLlib to represent a dense vector, or use the
mllib.linalg.Vectors class to build vectors of other types (see Example 11-4).2 In
Java and Scala, use the mllib.linalg.Vectors class (see Examples 11-5 and 11-6).

Example 11-4. Creating vectors in Python

from numpy import array
from pyspark.mllib.linalg import Vectors

Create the dense vector <1.0, 2.0, 3.0>

Data Types | 219

denseVec1 = array([1.0, 2.0, 3.0]) # NumPy arrays can be passed directly to MLlib
denseVec2 = Vectors.dense([1.0, 2.0, 3.0]) # .. or you can use the Vectors class

Create the sparse vector <1.0, 0.0, 2.0, 0.0>; the methods for this take only
the size of the vector (4) and the positions and values of nonzero entries.
These can be passed as a dictionary or as two lists of indices and values.
sparseVec1 = Vectors.sparse(4, {0: 1.0, 2: 2.0})
sparseVec2 = Vectors.sparse(4, [0, 2], [1.0, 2.0])

Example 11-5. Creating vectors in Scala

import org.apache.spark.mllib.linalg.Vectors

// Create the dense vector <1.0, 2.0, 3.0>; Vectors.dense takes values or an array
val denseVec1 = Vectors.dense(1.0, 2.0, 3.0)
val denseVec2 = Vectors.dense(Array(1.0, 2.0, 3.0))

// Create the sparse vector <1.0, 0.0, 2.0, 0.0>; Vectors.sparse takes the size of
// the vector (here 4) and the positions and values of nonzero entries
val sparseVec1 = Vectors.sparse(4, Array(0, 2), Array(1.0, 2.0))

Example 11-6. Creating vectors in Java

import org.apache.spark.mllib.linalg.Vector;
import org.apache.spark.mllib.linalg.Vectors;

// Create the dense vector <1.0, 2.0, 3.0>; Vectors.dense takes values or an array
Vector denseVec1 = Vectors.dense(1.0, 2.0, 3.0);
Vector denseVec2 = Vectors.dense(new double[] {1.0, 2.0, 3.0});

// Create the sparse vector <1.0, 0.0, 2.0, 0.0>; Vectors.sparse takes the size of
// the vector (here 4) and the positions and values of nonzero entries
Vector sparseVec1 = Vectors.sparse(4, new int[] {0, 2}, new double[]{1.0, 2.0});

Finally, in Java and Scala, MLlib’s Vector classes are primarily meant for data repre‐
sentation, but do not provide arithmetic operations such as addition and subtraction
in the user API. (In Python, you can of course use NumPy to perform math on dense
vectors and pass those to MLlib.) This was done mainly to keep MLlib small, because
writing a complete linear algebra library is beyond the scope of the project. But if you
want to do vector math in your programs, you can use a third-party library like
Breeze in Scala or MTJ in Java, and convert the data from it to MLlib vectors.

Algorithms
In this section, we’ll cover the key algorithms available in MLlib, as well as their input
and output types. We do not have space to explain each algorithm mathematically,
but focus instead on how to call and configure these algorithms.

220 | Chapter 11: Machine Learning with MLlib

https://github.com/scalanlp/breeze
https://github.com/fommil/matrix-toolkits-java

Feature Extraction
The mllib.feature package contains several classes for common feature transforma‐
tions. These include algorithms to construct feature vectors from text (or from other
tokens), and ways to normalize and scale features.

TF-IDF
Term Frequency–Inverse Document Frequency, or TF-IDF, is a simple way to gener‐
ate feature vectors from text documents (e.g., web pages). It computes two statistics
for each term in each document: the term frequency (TF), which is the number of
times the term occurs in that document, and the inverse document frequency (IDF),
which measures how (in)frequently a term occurs across the whole document corpus.
The product of these values, TF × IDF, shows how relevant a term is to a specific
document (i.e., if it is common in that document but rare in the whole corpus).

MLlib has two algorithms that compute TF-IDF: HashingTF and IDF, both in the
mllib.feature package. HashingTF computes a term frequency vector of a given size
from a document. In order to map terms to vector indices, it uses a technique known
as the hashing trick. Within a language like English, there are hundreds of thousands
of words, so tracking a distinct mapping from each word to an index in the vector
would be expensive. Instead, HashingTF takes the hash code of each word modulo a
desired vector size, S, and thus maps each word to a number between 0 and S–1. This
always yields an S-dimensional vector, and in practice is quite robust even if multiple
words map to the same hash code. The MLlib developers recommend setting S
between 218 and 220.

HashingTF can run either on one document at a time or on a whole RDD. It requires
each “document” to be represented as an iterable sequence of objects—for instance, a
list in Python or a Collection in Java. Example 11-7 uses HashingTF in Python.

Example 11-7. Using HashingTF in Python

>>> from pyspark.mllib.feature import HashingTF

>>> sentence = "hello hello world"
>>> words = sentence.split() # Split sentence into a list of terms
>>> tf = HashingTF(10000) # Create vectors of size S = 10,000
>>> tf.transform(words)
SparseVector(10000, {3065: 1.0, 6861: 2.0})

>>> rdd = sc.wholeTextFiles("data").map(lambda (name, text): text.split())
>>> tfVectors = tf.transform(rdd) # Transforms an entire RDD

Algorithms | 221

In a real pipeline, you will likely need to preprocess and stem
words in a document before passing them to TF. For example, you
might convert all words to lowercase, drop punctuation characters,
and drop suffixes like ing. For best results you can call a single-
node natural language library like NLTK in a map().

Once you have built term frequency vectors, you can use IDF to compute the inverse
document frequencies, and multiply them with the term frequencies to compute the
TF-IDF. You first call fit() on an IDF object to obtain an IDFModel representing the
inverse document frequencies in the corpus, then call transform() on the model to
transform TF vectors into IDF vectors. Example 11-8 shows how you would compute
IDF starting with Example 11-7.

Example 11-8. Using TF-IDF in Python

from pyspark.mllib.feature import HashingTF, IDF

Read a set of text files as TF vectors
rdd = sc.wholeTextFiles("data").map(lambda (name, text): text.split())
tf = HashingTF()
tfVectors = tf.transform(rdd).cache()

Compute the IDF, then the TF-IDF vectors
idf = IDF()
idfModel = idf.fit(tfVectors)
tfIdfVectors = idfModel.transform(tfVectors)

Note that we called cache() on the tfVectors RDD because it is used twice (once to
train the IDF model, and once to multiply the TF vectors by the IDF).

Scaling
Most machine learning algorithms consider the magnitude of each element in the
feature vector, and thus work best when the features are scaled so they weigh equally
(e.g., all features have a mean of 0 and standard deviation of 1). Once you have built
feature vectors, you can use the StandardScaler class in MLlib to do this scaling,
both for the mean and the standard deviation. You create a StandardScaler, call
fit() on a dataset to obtain a StandardScalerModel (i.e., compute the mean and
variance of each column), and then call transform() on the model to scale a dataset.
Example 11-9 demonstrates.

Example 11-9. Scaling vectors in Python

from pyspark.mllib.feature import StandardScaler

vectors = [Vectors.dense([-2.0, 5.0, 1.0]), Vectors.dense([2.0, 0.0, 1.0])]

222 | Chapter 11: Machine Learning with MLlib

http://www.nltk.org

3 Introduced in Mikolov et al., “Efficient Estimation of Word Representations in Vector Space,” 2013.

dataset = sc.parallelize(vectors)
scaler = StandardScaler(withMean=True, withStd=True)
model = scaler.fit(dataset)
result = model.transform(dataset)

Result: {[-0.7071, 0.7071, 0.0], [0.7071, -0.7071, 0.0]}

Normalization
In some situations, normalizing vectors to length 1 is also useful to prepare input
data. The Normalizer class allows this. Simply use Normalizer().transform(rdd).
By default Normalizer uses the L 2 norm (i.e, Euclidean length), but you can also
pass a power p to Normalizer to use the L p norm.

Word2Vec
Word2Vec3 is a featurization algorithm for text based on neural networks that can be
used to feed data into many downstream algorithms. Spark includes an implementa‐
tion of it in the mllib.feature.Word2Vec class.

To train Word2Vec, you need to pass it a corpus of documents, represented as Itera
bles of Strings (one per word). Much like in “TF-IDF” on page 221, it is recom‐
mended to normalize your words (e.g., mapping them to lowercase and removing
punctuation and numbers). Once you have trained the model (with
Word2Vec.fit(rdd)), you will receive a Word2VecModel that can be used to trans
form() each word into a vector. Note that the size of the models in Word2Vec will be
equal to the number of words in your vocabulary times the size of a vector (by
default, 100). You may wish to filter out words that are not in a standard dictionary
to limit the size. In general, a good size for the vocabulary is 100,000 words.

Statistics
Basic statistics are an important part of data analysis, both in ad hoc exploration and
understanding data for machine learning. MLlib offers several widely used statistic
functions that work directly on RDDs, through methods in the mllib.stat.Statis
tics class. Some commonly used ones include:

Statistics.colStats(rdd)

Computes a statistical summary of an RDD of vectors, which stores the min,
max, mean, and variance for each column in the set of vectors. This can be used
to obtain a wide variety of statistics in one pass.

Algorithms | 223

https://code.google.com/p/word2vec/

Statistics.corr(rdd, method)

Computes the correlation matrix between columns in an RDD of vectors, using
either the Pearson or Spearman correlation (method must be one of pearson and
spearman).

Statistics.corr(rdd1, rdd2, method)

Computes the correlation between two RDDs of floating-point values, using
either the Pearson or Spearman correlation (method must be one of pearson and
spearman).

Statistics.chiSqTest(rdd)

Computes Pearson’s independence test for every feature with the label on an
RDD of LabeledPoint objects. Returns an array of ChiSqTestResult objects that
capture the p-value, test statistic, and degrees of freedom for each feature. Label
and feature values must be categorical (i.e., discrete values).

Apart from these methods, RDDs containing numeric data offer several basic statis‐
tics such as mean(), stdev(), and sum(), as described in “Numeric RDD Operations”
on page 113. In addition, RDDs support sample() and sampleByKey() to build sim‐
ple and stratified samples of data.

Classification and Regression
Classification and regression are two common forms of supervised learning, where
algorithms attempt to predict a variable from features of objects using labeled train‐
ing data (i.e., examples where we know the answer). The difference between them is
the type of variable predicted: in classification, the variable is discrete (i.e., it takes on
a finite set of values called classes); for example, classes might be spam or nonspam for
emails, or the language in which the text is written. In regression, the variable predic‐
ted is continuous (e.g., the height of a person given her age and weight).

Both classification and regression use the LabeledPoint class in MLlib, described in
“Data Types” on page 218, which resides in the mllib.regression package. A Label
edPoint consists simply of a label (which is always a Double value, but can be set to
discrete integers for classification) and a features vector.

For binary classification, MLlib expects the labels 0 and 1. In some
texts, –1 and 1 are used instead, but this will lead to incorrect
results. For multiclass classification, MLlib expects labels from 0 to
C–1, where C is the number of classes.

MLlib includes a variety of methods for classification and regression, including sim‐
ple linear methods and decision trees and forests.

224 | Chapter 11: Machine Learning with MLlib

Linear regression
Linear regression is one of the most common methods for regression, predicting the
output variable as a linear combination of the features. MLlib also supports L1 and L2

regularized regression, commonly known as Lasso and ridge regression.

The linear regression algorithms are available through the mllib.regression.Line
arRegressionWithSGD, LassoWithSGD, and RidgeRegressionWithSGD classes. These
follow a common naming pattern throughout MLlib, where problems involving mul‐
tiple algorithms have a “With” part in the class name to specify the algorithm used.
Here, SGD is Stochastic Gradient Descent.

These classes all have several parameters to tune the algorithm:

numIterations

Number of iterations to run (default: 100).

stepSize

Step size for gradient descent (default: 1.0).

intercept

Whether to add an intercept or bias feature to the data—that is, another feature
whose value is always 1 (default: false).

regParam

Regularization parameter for Lasso and ridge (default: 1.0).

The way to call the algorithms differs slightly by language. In Java and Scala, you cre‐
ate a LinearRegressionWithSGD object, call setter methods on it to set the parame‐
ters, and then call run() to train a model. In Python, you instead use the class
method LinearRegressionWithSGD.train(), to which you pass key/value parame‐
ters. In both cases, you pass in an RDD of LabeledPoints, as shown in Examples
11-10 through 11-12.

Example 11-10. Linear regression in Python

from pyspark.mllib.regression import LabeledPoint
from pyspark.mllib.regression import LinearRegressionWithSGD

points = # (create RDD of LabeledPoint)
model = LinearRegressionWithSGD.train(points, iterations=200, intercept=True)
print "weights: %s, intercept: %s" % (model.weights, model.intercept)

Example 11-11. Linear regression in Scala

import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.regression.LinearRegressionWithSGD

Algorithms | 225

4 LBFGS is an approximation to Newton’s method that converges in fewer iterations than stochastic gradient
descent. It is described at http://en.wikipedia.org/wiki/Limited-memory_BFGS.

val points: RDD[LabeledPoint] = // ...
val lr = new LinearRegressionWithSGD().setNumIterations(200).setIntercept(true)
val model = lr.run(points)
println("weights: %s, intercept: %s".format(model.weights, model.intercept))

Example 11-12. Linear regression in Java

import org.apache.spark.mllib.regression.LabeledPoint;
import org.apache.spark.mllib.regression.LinearRegressionWithSGD;
import org.apache.spark.mllib.regression.LinearRegressionModel;

JavaRDD<LabeledPoint> points = // ...
LinearRegressionWithSGD lr =
 new LinearRegressionWithSGD().setNumIterations(200).setIntercept(true);
LinearRegressionModel model = lr.run(points.rdd());
System.out.printf("weights: %s, intercept: %s\n",
 model.weights(), model.intercept());

Note that in Java, we need to convert our JavaRDD to the Scala RDD class by call‐
ing .rdd() on it. This is a common pattern throughout MLlib because the MLlib
methods are designed to be callable from both Java and Scala.

Once trained, the LinearRegressionModel returned in all languages includes a pre
dict() function that can be used to predict a value on a single vector. The RidgeRe
gressionWithSGD and LassoWithSGD classes behave similarly and return a similar
model class. Indeed, this pattern of an algorithm with parameters adjusted through
setters, which returns a Model object with a predict() method, is common in all of
MLlib.

Logistic regression
Logistic regression is a binary classification method that identifies a linear separating
plane between positive and negative examples. In MLlib, it takes LabeledPoints with
label 0 or 1 and returns a LogisticRegressionModel that can predict new points.

The logistic regression algorithm has a very similar API to linear regression, covered
in the previous section. One difference is that there are two algorithms available for
solving it: SGD and LBFGS.4 LBFGS is generally the best choice, but is not available
in some earlier versions of MLlib (before Spark 1.2). These algorithms are available in
the mllib.classification.LogisticRegressionWithLBFGS and WithSGD classes,
which have interfaces similar to LinearRegressionWithSGD. They take all the same
parameters as linear regression (see the previous section).

226 | Chapter 11: Machine Learning with MLlib

http://en.wikipedia.org/wiki/Limited-memory_BFGS

The LogisticRegressionModel from these algorithms computes a score between 0
and 1 for each point, as returned by the logistic function. It then returns either 0 or 1
based on a threshold that can be set by the user: by default, if the score is at least 0.5, it
will return 1. You can change this threshold via setThreshold(). You can also dis‐
able it altogether via clearThreshold(), in which case predict() will return the raw
scores. For balanced datasets with about the same number of positive and negative
examples, we recommend leaving the threshold at 0.5. For imbalanced datasets, you
can increase the threshold to drive down the number of false positives (i.e., increase
precision but decrease recall), or you can decrease the threshold to drive down the
number of false negatives.

When using logistic regression, it is usually important to scale the
features in advance to be in the same range. You can use MLlib’s
StandardScaler to do this, as seen in “Scaling” on page 222.

Support Vector Machines
Support Vector Machines, or SVMs, are another binary classification method with
linear separating planes, again expecting labels of 0 or 1. They are available through
the SVMWithSGD class, with similar parameters to linear and logisitic regression. The
returned SVMModel uses a threshold for prediction like LogisticRegressionModel.

Naive Bayes
Naive Bayes is a multiclass classification algorithm that scores how well each point
belongs in each class based on a linear function of the features. It is commonly used
in text classification with TF-IDF features, among other applications. MLlib imple‐
ments Multinomial Naive Bayes, which expects nonnegative frequencies (e.g., word
frequencies) as input features.

In MLlib, you can use Naive Bayes through the mllib.classification.NaiveBayes
class. It supports one parameter, lambda (or lambda_ in Python), used for smoothing.
You can call it on an RDD of LabeledPoints, where the labels are between 0 and C–1
for C classes.

The returned NaiveBayesModel lets you predict() the class in which a point best
belongs, as well as access the two parameters of the trained model: theta, the matrix
of class probabilities for each feature (of size C × D for C classes and D features), and
pi, the C-dimensional vector of class priors.

Algorithms | 227

Decision trees and random forests
Decision trees are a flexible model that can be used for both classification and regres‐
sion. They represent a tree of nodes, each of which makes a binary decision based on
a feature of the data (e.g., is a person’s age greater than 20?), and where the leaf nodes
in the tree contain a prediction (e.g., is the person likely to buy a product?). Decision
trees are attractive because the models are easy to inspect and because they support
both categorical and continuous features. Figure 11-2 shows an example tree.

Figure 11-2. An example decision tree predicting whether a user might buy a product

In MLlib, you can train trees using the mllib.tree.DecisionTree class, through the
static methods trainClassifier() and trainRegressor(). Unlike in some of the
other algorithms, the Java and Scala APIs also use static methods instead of a Deci
sionTree object with setters. The training methods take the following parameters:

data

RDD of LabeledPoint.

numClasses (classification only)
Number of classes to use.

impurity

Node impurity measure; can be gini or entropy for classification, and must be
variance for regression.

maxDepth

Maximum depth of tree (default: 5).

maxBins

Number of bins to split data into when building each node (suggested value: 32).

228 | Chapter 11: Machine Learning with MLlib

categoricalFeaturesInfo

A map specifying which features are categorical, and how many categories they
each have. For example, if feature 1 is a binary feature with labels 0 and 1, and
feature 2 is a three-valued feature with values 0, 1, and 2, you would pass {1: 2,
2: 3}. Use an empty map if no features are categorical.

The online MLlib documentation contains a detailed explanation of the algorithm
used. The cost of the algorithm scales linearly with the number of training examples,
number of features, and maxBins. For large datasets, you may wish to lower maxBins
to train a model faster, though this will also decrease quality.

The train() methods return a DecisionTreeModel. You can use it to predict values
for a new feature vector or an RDD of vectors via predict(), or print the tree using
toDebugString(). This object is serializable, so you can save it using Java Serializa‐
tion and load it in another program.

Finally, in Spark 1.2, MLlib adds an experimental RandomForest class in Java and
Scala to build ensembles of trees, also known as random forests. It is available
through RandomForest.trainClassifier and trainRegressor. Apart from the per-
tree parameters just listed, RandomForest takes the following parameters:

numTrees

How many trees to build. Increasing numTrees decreases the likelihood of over‐
fitting on training data.

featureSubsetStrategy

Number of features to consider for splits at each node; can be auto (let the
library select it), all, sqrt, log2, or onethird; larger values are more expensive.

seed

Random-number seed to use.

Random forests return a WeightedEnsembleModel that contains several trees (in the
weakHypotheses field, weighted by weakHypothesisWeights) and can predict() an
RDD or Vector. It also includes a toDebugString to print all the trees.

Clustering
Clustering is the unsupervised learning task that involves grouping objects into clus‐
ters of high similarity. Unlike the supervised tasks seen before, where data is labeled,
clustering can be used to make sense of unlabeled data. It is commonly used in data
exploration (to find what a new dataset looks like) and in anomaly detection (to iden‐
tify points that are far from any cluster).

Algorithms | 229

http://spark.apache.org/docs/latest/mllib-decision-tree.html

5 K-means|| was introduced in Bahmani et al., “Scalable K-Means++,” VLDB 2008.

K-means
MLlib includes the popular K-means algorithm for clustering, as well as a variant
called K-means|| that provides better initialization in parallel environments.5 K-
means|| is similar to the K-means++ initialization procedure often used in single-
node settings.

The most important parameter in K-means is a target number of clusters to generate,
K. In practice, you rarely know the “true” number of clusters in advance, so the best
practice is to try several values of K, until the average intracluster distance stops
decreasing dramatically. However, the algorithm takes only one K at a time. Apart
from K, K-means in MLlib takes the following parameters:

initializationMode

The method to initialize cluster centers, which can be either “k-means||” or “ran‐
dom”; k-means|| (the default) generally leads to better results but is slightly
more expensive.

maxIterations

Maximum number of iterations to run (default: 100).

runs

Number of concurrent runs of the algorithm to execute. MLlib’s K-means sup‐
ports running from multiple starting positions concurrently and picking the best
result, which is a good way to get a better overall model (as K-means runs can
stop in local minima).

Like other algorithms, you invoke K-means by creating a mllib.clustering.KMeans
object (in Java/Scala) or calling KMeans.train (in Python). It takes an RDD of Vec
tors. K-means returns a KMeansModel that lets you access the clusterCenters (as an
array of vectors) or call predict() on a new vector to return its cluster. Note that
predict() always returns the closest center to a point, even if the point is far from all
clusters.

Collaborative Filtering and Recommendation
Collaborative filtering is a technique for recommender systems wherein users’ ratings
and interactions with various products are used to recommend new ones. Collabora‐
tive filtering is attractive because it only needs to take in a list of user/product interac‐
tions: either “explicit” interactions (i.e., ratings on a shopping site) or “implicit” ones
(e.g., a user browsed a product page but did not rate the product). Based solely on
these interactions, collaborative filtering algorithms learn which products are similar

230 | Chapter 11: Machine Learning with MLlib

6 Two research papers on ALS for web-scale data are Zhou et al.’s “Large-Scale Parallel Collaborative Filtering
for the Netflix Prize” and Hu et al.’s “Collaborative Filtering for Implicit Feedback Datasets,” both from 2008.

to each other (because the same users interact with them) and which users are similar
to each other, and can make new recommendations.

While the MLlib API talks about “users” and “products,” you can also use collabora‐
tive filtering for other applications, such as recommending users to follow on a social
network, tags to add to an article, or songs to add to a radio station.

Alternating Least Squares
MLlib includes an implementation of Alternating Least Squares (ALS), a popular
algorithm for collaborative filtering that scales well on clusters.6 It is located in the
mllib.recommendation.ALS class.

ALS works by determining a feature vector for each user and product, such that the
dot product of a user’s vector and a product’s is close to their score. It takes the fol‐
lowing parameters:

rank

Size of feature vectors to use; larger ranks can lead to better models but are more
expensive to compute (default: 10).

iterations

Number of iterations to run (default: 10).

lambda

Regularization parameter (default: 0.01).

alpha

A constant used for computing confidence in implicit ALS (default: 1.0).

numUserBlocks, numProductBlocks
Number of blocks to divide user and product data in, to control parallelism; you
can pass –1 to let MLlib automatically determine this (the default behavior).

To use ALS, you need to give it an RDD of mllib.recommendation.Rating objects,
each of which contains a user ID, a product ID, and a rating (either an explicit rating
or implicit feedback; see upcoming discussion). One challenge with the implementa‐
tion is that each ID needs to be a 32-bit integer. If your IDs are strings or larger num‐
bers, it is recommended to just use the hash code of each ID in ALS; even if two users
or products map to the same ID, overall results can still be good. Alternatively, you
can broadcast() a table of product-ID-to-integer mappings to give them unique IDs.

Algorithms | 231

7 In Java, start with a JavaRDD of Tuple2<Integer, Integer> and call .rdd() on it.

ALS returns a MatrixFactorizationModel representing its results, which can be used
to predict() ratings for an RDD of (userID, productID) pairs.7 Alternatively, you
can use model.recommendProducts(userId, numProducts) to find the top numProd
ucts() products recommended for a given user. Note that unlike other models in
MLlib, the MatrixFactorizationModel is large, holding one vector for each user and
product. This means that it cannot be saved to disk and then loaded back in another
run of your program. Instead, you can save the RDDs of feature vectors produced in
it, model.userFeatures and model.productFeatures, to a distributed filesystem.

Finally, there are two variants of ALS: for explicit ratings (the default) and for
implicit ratings (which you enable by calling ALS.trainImplicit() instead of
ALS.train()). With explicit ratings, each user’s rating for a product needs to be a
score (e.g., 1 to 5 stars), and the predicted ratings will be scores. With implicit feed‐
back, each rating represents a confidence that users will interact with a given item
(e.g., the rating might go up the more times a user visits a web page), and the predic‐
ted items will be confidence values. Further details about ALS with implicit ratings
are described in Hu et al., “Collaborative Filtering for Implicit Feedback Datasets,”
ICDM 2008.

Dimensionality Reduction

Principal component analysis
Given a dataset of points in a high-dimensional space, we are often interested in
reducing the dimensionality of the points so that they can be analyzed with simpler
tools. For example, we might want to plot the points in two dimensions, or just
reduce the number of features to train models more effectively.

The main technique for dimensionality reduction used by the machine learning com‐
munity is principal component analysis (PCA). In this technique, the mapping to the
lower-dimensional space is done such that the variance of the data in the low-
dimensional representation is maximized, thus ignoring noninformative dimensions.
To compute the mapping, the normalized correlation matrix of the data is construc‐
ted and the singular vectors and values of this matrix are used. The singular vectors
that correspond to the largest singular values are used to reconstruct a large fraction
of the variance of the original data.

PCA is currently available only in Java and Scala (as of MLlib 1.2). To invoke it, you
must first represent your matrix using the mllib.linalg.distributed.RowMatrix

232 | Chapter 11: Machine Learning with MLlib

http://en.wikipedia.org/wiki/Principal_component_analysis

8 In Java, start with a JavaRDD of Vectors, and then call .rdd() on it to convert it to a Scala RDD.

 class, which stores an RDD of Vectors, one per row.8 You can then call PCA as
shown in Example 11-13.

Example 11-13. PCA in Scala

import org.apache.spark.mllib.linalg.Matrix
import org.apache.spark.mllib.linalg.distributed.RowMatrix

val points: RDD[Vector] = // ...
val mat: RowMatrix = new RowMatrix(points)
val pc: Matrix = mat.computePrincipalComponents(2)

// Project points to low-dimensional space
val projected = mat.multiply(pc).rows

// Train a k-means model on the projected 2-dimensional data
val model = KMeans.train(projected, 10)

In this example, the projected RDD contains a two-dimensional version of the origi‐
nal points RDD, and can be used for plotting or performing other MLlib algorithms,
such as clustering via K-means.

Note that computePrincipalComponents() returns a mllib.linalg.Matrix object,
which is a utility class representing dense matrices, similar to Vector. You can get at
the underlying data with toArray.

Singular value decomposition
MLlib also provides the lower-level singular value decomposition (SVD) primitive.
The SVD factorizes an m × n matrix A into three matrices A ≈ UΣV T , where:

• U is an orthonormal matrix, whose columns are called left singular vectors.
• Σ is a diagonal matrix with nonnegative diagonals in descending order, whose

diagonals are called singular values.
• V is an orthonormal matrix, whose columns are called right singular vectors.

For large matrices, usually we don’t need the complete factorization but only the top
singular values and its associated singular vectors. This can save storage, denoise, and
recover the low-rank structure of the matrix. If we keep the top k singular values,
then the dimensions of the resulting matrices will be U : m × k , Σ : k × k , and
V : n × k .

Algorithms | 233

To achieve the decomposition, we call computeSVD on the RowMatrix class, as shown
in Example 11-14.

Example 11-14. SVD in Scala

// Compute the top 20 singular values of a RowMatrix mat and their singular vectors.
val svd: SingularValueDecomposition[RowMatrix, Matrix] =
 mat.computeSVD(20, computeU=true)

val U: RowMatrix = svd.U // U is a distributed RowMatrix.
val s: Vector = svd.s // Singular values are a local dense vector.
val V: Matrix = svd.V // V is a local dense matrix.

Model Evaluation
No matter what algorithm is used for a machine learning task, model evaluation is an
important part of end-to-end machine learning pipelines. Many learning tasks can be
tackled with different models, and even for the same algorithm, parameter settings
can lead to different results. Moreover, there is always a risk of overfitting a model to
the training data, which you can best evaluate by testing the model on a different
dataset than the training data.

At the time of writing (for Spark 1.2), MLlib contains an experimental set of model
evaluation functions, though only in Java and Scala. These are available in the
mllib.evaluation package, in classes such as BinaryClassificationMetrics and
MulticlassMetrics, depending on the problem. For these classes, you can create a
Metrics object from an RDD of (prediction, ground truth) pairs, and then compute
metrics such as precision, recall, and area under the receiver operating characteristic
(ROC) curve. These methods should be run on a test dataset not used for training
(e.g., by leaving out 20% of the data before training). You can apply your model to
the test dataset in a map() function to build the RDD of (prediction, ground truth)
pairs.

In future versions of Spark, the pipeline API at the end of this chapter is expected to
include evaluation functions in all languages. With the pipeline API, you can define a
pipeline of ML algorithms and an evaluation metric, and automatically have the sys‐
tem search for parameters and pick the best model using cross-validation.

Tips and Performance Considerations
Preparing Features
While machine learning presentations often put significant emphasis on the algo‐
rithms used, it is important to remember that in practice, each algorithm is only as
good as the features you put into it! Many large-scale learning practitioners agree that

234 | Chapter 11: Machine Learning with MLlib

feature preparation is the most important step to large-scale learning. Both adding
more informative features (e.g., joining with other datasets to bring in more informa‐
tion) and converting the available features to suitable vector representations (e.g.,
scaling the vectors) can yield major improvements in results.

A full discussion of feature preparation is beyond the scope of this book, but we
encourage you to refer to other texts on machine learning for more information.
However, with MLlib in particular, some common tips to follow are:

• Scale your input features. Run features through StandardScaler as described in
“Scaling” on page 222 to weigh features equally.

• Featurize text correctly. Use an external library like NLTK to stem words, and
use IDF across a representative corpus for TF-IDF.

• Label classes correctly. MLlib requires class labels to be 0 to C–1, where C is the
total number of classes.

Configuring Algorithms
Most algorithms in MLlib perform better (in terms of prediction accuracy) with regu‐
larization when that option is available. Also, most of the SGD-based algorithms
require around 100 iterations to get good results. MLlib attempts to provide useful
default values, but you should try increasing the number of iterations past the default
to see whether it improves accuracy. For example, with ALS, the default rank of 10 is
fairly low, so you should try increasing this value. Make sure to evaluate these param‐
eter changes on test data held out during training.

Caching RDDs to Reuse
Most algorithms in MLlib are iterative, going over the data multiple times. Thus, it is
important to cache() your input datasets before passing them to MLlib. Even if your
data does not fit in memory, try persist(StorageLevel.DISK_ONLY).

In Python, MLlib automatically caches RDDs on the Java side when you pass them
from Python, so there is no need to cache your Python RDDs unless you reuse them
within your program. In Scala and Java, however, it is up to you to cache them.

Recognizing Sparsity
When your feature vectors contain mostly zeros, storing them in sparse format can
result in huge time and space savings for big datasets. In terms of space, MLlib’s
sparse representation is smaller than its dense one if at most two-thirds of the entries
are nonzero. In terms of processing cost, sparse vectors are generally cheaper to com‐
pute on if at most 10% of the entries are nonzero. (This is because their

Tips and Performance Considerations | 235

http://www.nltk.org

representation requires more instructions per vector element than dense vectors.)
But if going to a sparse representation is the difference between being able to cache
your vectors in memory and not, you should consider a sparse representation even
for denser data.

Level of Parallelism
For most algorithms, you should have at least as many partitions in your input RDD
as the number of cores on your cluster to achieve full parallelism. Recall that Spark
creates a partition for each “block” of a file by default, where a block is typically 64
MB. You can pass a minimum number of partitions to methods like SparkCon
text.textFile() to change this—for example, sc.textFile("data.txt", 10).
Alternatively, you can call repartition(numPartitions) on your RDD to partition it
equally into numPartitions pieces. You can always see the number of partitions in
each RDD on Spark’s web UI. At the same time, be careful with adding too many
partitions, because this will increase the communication cost.

Pipeline API
Starting in Spark 1.2, MLlib is adding a new, higher-level API for machine learning,
based on the concept of pipelines. This API is similar to the pipeline API in SciKit-
Learn. In short, a pipeline is a series of algorithms (either feature transformation or
model fitting) that transform a dataset. Each stage of the pipeline may have parame‐
ters (e.g., the number of iterations in LogisticRegression). The pipeline API can
automatically search for the best set of parameters using a grid search, evaluating
each set using an evaluation metric of choice.

The pipeline API uses a uniform representation of datasets throughout, which is
SchemaRDDs from Spark SQL in Chapter 9. SchemaRDDs have multiple named col‐
umns, making it easy to refer to different fields in the data. Various pipeline stages
may add columns (e.g., a featurized version of the data). The overall concept is also
similar to data frames in R.

To give you a preview of this API, we include a version of the spam classification
examples from earlier in the chapter. We also show how to augment the example to
do a grid search over several values of the HashingTF and LogisticRegression
parameters. (See Example 11-15.)

Example 11-15. Pipeline API version of spam classification in Scala

import org.apache.spark.sql.SQLContext
import org.apache.spark.ml.Pipeline
import org.apache.spark.ml.classification.LogisticRegression
import org.apache.spark.ml.feature.{HashingTF, Tokenizer}
import org.apache.spark.ml.tuning.{CrossValidator, ParamGridBuilder}

236 | Chapter 11: Machine Learning with MLlib

http://scikit-learn.org
http://scikit-learn.org

import org.apache.spark.ml.evaluation.BinaryClassificationEvaluator

// A class to represent documents -- will be turned into a SchemaRDD
case class LabeledDocument(id: Long, text: String, label: Double)
val documents = // (load RDD of LabeledDocument)

val sqlContext = new SQLContext(sc)
import sqlContext._

// Configure an ML pipeline with three stages: tokenizer, tf, and lr; each stage
// outputs a column in a SchemaRDD and feeds it to the next stage's input column
val tokenizer = new Tokenizer() // Splits each email into words
 .setInputCol("text")
 .setOutputCol("words")
val tf = new HashingTF() // Maps email words to vectors of 10000 features
 .setNumFeatures(10000)
 .setInputCol(tokenizer.getOutputCol)
 .setOutputCol("features")
val lr = new LogisticRegression() // Uses "features" as inputCol by default
val pipeline = new Pipeline().setStages(Array(tokenizer, tf, lr))

// Fit the pipeline to the training documents
val model = pipeline.fit(documents)

// Alternatively, instead of fitting once with the parameters above, we can do a
// grid search over some parameters and pick the best model via cross-validation
val paramMaps = new ParamGridBuilder()
 .addGrid(tf.numFeatures, Array(10000, 20000))
 .addGrid(lr.maxIter, Array(100, 200))
 .build() // Builds all combinations of parameters
val eval = new BinaryClassificationEvaluator()
val cv = new CrossValidator()
 .setEstimator(lr)
 .setEstimatorParamMaps(paramMaps)
 .setEvaluator(eval)
val bestModel = cv.fit(documents)

The pipeline API is still experimental at the time of writing, but you can always find
the most recent documentation for it in the MLlib documentation.

Conclusion
This chapter has given an overview of Spark’s machine learning library. As you can
see, the library ties directly to Spark’s other APIs, letting you work on RDDs and get
back results you can use in other Spark functions. MLlib is one of the most actively
developed parts of Spark, so it is still evolving. We recommend checking the official
documentation for your Spark version to see the latest functions available in it.

Conclusion | 237

http://spark.apache.org/docs/latest/mllib-guide.html
http://spark.apache.org/documentation.html
http://spark.apache.org/documentation.html

Index

Symbols
=> lambda syntax, 16

A
AccumulatorParam, 104
accumulators, 100

and fault tolerance, 103
custom, 103
empty line count in Python and Scala

(example), 100
error count in Python (example), 102
how they work, 102

aggregations, 51
conditional aggregate operations in Spark

SQL, 180
disabling map-side aggregation in combine‐

ByKey(), 54
distributed word count, 53
per-key average using combineByKey(), 54
per-key average using reduceByKey() and

mapValues(), 52
per-key combiners, combineByKey() and,

53
Akka actor stream, 200
Alternating Least Squares (ALS) algorithm, 231
Amazon EC2, 135-138

launching clusters, 135
logging into a cluster, 136
pausing and restarting clusters, 137
storage on the cluster, 138

Amazon S3, 90
Amazon Web Services (AWS) account, 135
Apache Flume, 201

pull-based receiver for, 203

push-based receiver for, 202
Apache Hive, 91

connecting Spark SQL to existing Hive
installation, 91

Hive JDBC/ODBC, 175
(see also JDBC/ODBC server in Spark

SQL))
HiveServer2, 175
loading and saving data from, in Spark SQL,

170
Spark SQL and, 162
user defined functions (UDFs), 179

Apache Kafka, 201
Apache Mesos, 118, 134-135

client and cluster mode, 135
configuring resource usage, 135
scheduling modes, 134

Apache Software Foundation
Spark, 7

Apache ZooKeeper, 133
using with Mesos, 134

applications, Spark, 117
driver and executors, 118
driver programs, 14
runtime architecture, 117

driver, 118
executors, 119
launching a program, 120
summary of steps, 120

standalone applications, 17
building, 18

ascending parameter, sortByKey() function, 60
assembly JAR, 124

239

adding assembly plug-in to sbt project
build, 127

associative operations, 104
Aurora, 135
Avro sink, 202
AvroFlumeEvent, 204
AWS_ACCESS_KEY_ID variable, 90, 135
AWS_SECRET_ACCESS_KEY variable, 90,

135

B
batch interval, 184, 193
Beeline client

command for enabling codegen, 181
connecting to JDBC server with, 175
working with, 177

Berkeley Data Analytics Stack (BDAS), 7
BinaryClassificationMetrics, 234
Block Manager, 119
Broadcast object, 105
broadcast variables, 104

country lookup with Broadcast values in
(example), 105

defined, 105
optimizing broadcasts, 106
using, process of, 106

build tools
for Java and Scala applications, 124
Maven, Java Spark application built with,

124
sbt, Scala Spark application built with, 126

C
cache(), 65

cacheTable() and, 169
caching

CACHE TALE or UNCACHE TABLE com‐
mand in HQL, 177

in Spark SQL, 169
of RDDs for reuse, 235
of RDDs in serialized form, 210
tweaking default caching behavior, 158

Cassandra, 94
saving to, from RDD types, 96
setting Cassandra property in Scala and

Java, 95
Spark Cassandra connector, 94
table, loading as RDD with key/value data

into Spark, 95

CassandraRow objects, 94
checkpointing, 183, 189

for stateful transformations, 193
setting up for fault tolerance in Spark

Streaming, 205
Chronos, 135
classification, 215, 224

decision trees, 228
Naive Bayes algorithm, 227
random forests, 229
Support Vector Machines (SVMs), 227

client mode, 133
on Apache Mesos, 135

cluster managers, 4, 117, 119, 129-139
Apache Mesos, 134-135
deciding which to use, 138
Hadoop YARN, 133
scheduling jobs in multitenant clusters, 128
spark-submit script and, 120
Standalone cluster manager, 129

cluster mode, 133
on Apache Mesos, 135

cluster URLs, 121
in Standalone cluster manager web UI, 131

clustering, 229
K-means algorithm for, 230

clusters
deploying on Amazon EC2, 135-138
multiple input sources and cluster sizing,

204
running on a cluster, 117-139

deploying applications with spark-
submit, 121

packaging code with dependencies, 123
scheduling within/between Spark appli‐

cations, 128
Spark runtime architecture, 117
summary of steps, 120

Spark executing on, 15
coalesce(), 57, 155
coarse-grained Mesos mode, 134
codegen, enabling in Spark SQL, 181
cogroup(), 58

benefitting from partitioning, 65
on DStreams, 191
setting partitioner, 66

collaborative filtering, 230
Alternating Least Squares (ALS), 231

collect(), 59, 147

240 | Index

collectAsMap(), 60
combine(), 51
combineByKey(), 52

benefitting from partitioning, 65
disabling map-side aggregation in, 54
per-key average using, 54
setting partitioner, 66

combiners, reduceByKey() and foldByKey()
and, 52

comma-separated vaule file (see CSV files)
commutative operations, 104
compression

choosing a compression codec, 88
file compression options, 87
ShemaRDD records, 181

computing cluster, 2
Concurrent Mark-Sweep garbage collector, 210
conf/spark-defaults.conf file, 143
configuration

copying hive-site.xml file to Spark /conf/
directory, 170

information on, web UI environment page,
153

configuring algorithms, 235
configuring Spark, 141

common configuration values, 143
configuration properties set in multiple

places, 143
local directories for shuffle data storage, 145
setting configurations dynamically with

spark-submit, 142
with SparkConf, 141

connections, shared connection pool, 107
core input sources, Spark Streaming, 199

Akka actor stream, 200
stream of files, 199

cores, number for executors, 158
count(), 113
countByKey(), 60
countByValue(), 53
countByValueAndWindow(), 196
countByWindow(), 196
CSV files, 72, 77

loading, 77
saving, 79

D
data processing applications, 6
data science tasks, 5

data wrangling, 5
databases

accessing from Spark, 93
Cassandra, 94
data sources from, 72
Elasticsearch, 97
external, writing data to, 198
HBase, 96
supporting JDBC, loading data from, 93

debugging Spark
finding information, 150-154

driver and executor logs, 154
on executors, 153
on Spark configuration, 153

output operations, 198
decision trees, 228

and random forests, 229
DecisionTree class, training methods, 228
DecisionTreeModel, 229

dependencies
conflicts in, 128
conflicts with Hive, 163
for Spark SQL, 162
information about, 153
packaging your code with, 123

in Python, 124
in Scala and Java, 124
Java Spark application built with Maven,

124
Scala Spark application built with sbt,

126
runtime dependencies of an application, 122

deployment modes
and location of application logfiles, 154
executor memory, cores, and number of

executors, 158
local disk configuration, 159

dimensionality reduction
principal component analysis, 232
singular value decomposition (SVD), 233

directed acyclic graph (DAG), 118, 146
directories

loading, 73
wildcard expansion on, 74

discretized streams (see DStreams)
distance program (in R), 110

driver programs using pipe() to call finddis‐
tance.R), 111

Index | 241

distributed data and computation, resilient dis‐
tributed datasets (RDDs), 13

downloading Spark, 9
important files and directories, 10

driver programs, 14, 117, 118
collecting an RDD to, 147
deploy mode on Apache Mesos, 135
deploy modes on Standalone cluster man‐

ager, 131
deploy modes on YARN cluster manager,

133
duties performed by, 118
fault tolerance, 206
in local mode, 119
launching in supervise mode, 206
logs, 154

DStream.repartition(), 210
DStream.transformWith(), 192
DStreams (discretized streams), 183

as continuous series of RDDs, 187
creating from Kafka messages, 201
creating with socketTextStream(), 184
fault-tolerance properties for, 189
of SparkFlumeEvents, 204
output operations, 197
output operations support, 188
transform() operator, 192
transformations on, 189

stateless transformations, 190
statful transformations, 192

transformations support, 187

E
EC2 clusters, 135

launching a cluster, 135
logging into a cluster, 136
pausing and restarting, 137

Elasticsearch, reading and writing data from, 97
Elephant Bird package (Twitter), 84

support for protocol buffers, 87
empty line count using accumulators (exam‐

ple), 100
ETL (extract, transform, and load), 47
exactly-once semantics for transformations,

208
execution components, 145-150

summary of execution phases, 150
execution graph, 118
executors, 15, 118

configuration values for, 143
in local mode, 119
information on, web UI executors page, 153
logs, 154
memory usage, 157
memory, number of cores, and total num‐

ber of executors, 158
requests for more memory, causing applica‐

tion not to run, 131
resource allocation on Apache Mesos, 135
resource allocation on Hadoop YARN clus‐

ter manager, 133
resource allocation on Standalone cluster

manager, 132
scheduling modes on Apache Mesos, 134
scheduling tasks on, 119
sizing heaps for, 159

exiting a Spark application, 18
Externalizable interface (Java), 107

F
Fair Scheduler, 129
fakelogs_directory.sh script, 200
fault tolerance in Spark Streaming, 205

driver fault tolerance, 206
receiver fault tolerance, 207
worker fault tolerance, 207

fault tolerance, accumulators and, 103
feature extraction algorithms, 213, 221

normalization, 223
scaling, 222
TF-IDF, 221
Word2Vec, 223

feature extraction and transformation, 215
feature preparation, 234
file formats, 71

common supported file formats, 72
CSV and TSV files, 77
file compression, 87
Hadoop input and output formats, 84
object files, 83
SequenceFiles, 80

files
building list of files for each worker node to

download for Spark job, 112
stream of, input source in Spark Streaming,

199
filesystems, 89

Amazon S3, 90

242 | Index

and file formats, 71
HDFS (Hadoop Distributed File System), 90
local/regular, 89

filter()
setting partitioner, 66
streaming filter for printing lines containing

error, 184
filtering, Python example of, 15
fine-grained Mesos mode, 134
flatMap(), 53
flatMapValues(), 66
Flume (see Apache Flume)
FlumeUtils object, 202
fold(), 51

groupByKey() and, 57
foldByKey(), 51

combiners and, 52
foreach()

accumulators used in actions, 103
per-partition version, 107

foreachPartition(), 109, 198
foreachRDD(), 198
functions, passing to Spark, 16

G
garbage collection

executor heap sizes and, 159
in Spark Streaming applications, 210

gfortran runtime library, 214
Google Guava library, 59
GraphX library, 4
groupBy(), 57
groupByKey(), 57

benefitting from partitioning, 65
resulting in hash-partitioned RDDs, 64
setting partitioner, 66

grouping data in pair RDDs, 57
groupWith()

benefitting from partitioning, 65
setting partitioner, 66

H
Hadoop

CSVInputFormat, 77
file APIs for keyed (paired) data, 72
input and output formats, 84

Elasticsearch, 97
file compression, 87
input format for HBase, 96

non-filesystem data sources, 85
reading input formats, 200
saving with Hadoop output formats, 85

LZO support, hadoop-lzo package, 85
RecordReader, 80
SequenceFiles, 80

Hadoop Distributed File System (HDFS), 90
on Spark EC2 clusters, 138

Hadoop YARN, 118, 133
configuring resource usage, 133

hadoopFile(), 84
HADOOP_CONF_DIR variable, 133
hardware provisioning, 158
HashingTF algorithm, 221
HashPartitioner object, 62
HBase, 96
HBaseConfiguration, 97
HDFS (Hadoop Distributed File System), 90
Hive (see Apache Hive)
Hive Query Language (HQL), 3, 91

CACHE TABLE or UNCACHE TABLE
statement, 169

CREATE TABLE statement, 164
documentation for, 177
syntax for type definitions, 167
using within Beeline client, 177

HiveContext object, 91, 163
creating, 165
importing, 164
registering SchemaRDDs as temp tables to

query, 166
requirement for using Hive UDFs, 180

HiveContext.inferSchema(), 174
HiveContext.jsonFile(), 92, 172
HiveContext.parquetFile(), 171
hiveCtx.cacheTable(), 169
HiveServer2, 175

I
IDF (inverse document frequency), 221
implicits

importing, 164
schema inference with, 174

incrementally computing reductions, 194
inner joins, 58
input and output souces, 71

common data sources, 71
file formats, 72

CSV and TSV files, 77

Index | 243

file compression, 87
Hadoop input and output formats, 84
JSON, 74
object files, 83
SequenceFiles, 80
text files, 73

Hadoop input and output formats, non-
filesystem, 85

input sources in Spark Streaming, 199
reliable sources, 207

InputFormat and OutputFormat interfaces, 71
InputFormat types, 85
integers

accumulator type, 103
sorting as strings, 60

IPython shell, 13
Iterable object, 108
Iterator object, 108

J
JAR files

in transitive dependency graph, 124
uber JAR (or assembly JAR), 124

Java
Apache Kafka, 201
Concurrent Mark-Sweep garbage collector,

210
country lookup with Broadcast values in

(example), 106
creating HiveContext and selecting data, 92
creating pair RDD, 48
creating SchemaRDD from a JavaBean, 174
custom sort order, sorting integers as if

strings, 60
driver program using pipe() to call finddis‐

tance.R, 112
FlumeUtils agent in, 202
FlumeUtils custom sink, 203
Hive load in, 170
joining DStreams in, 191
lambdas in Java 8, 16
linear regression in, 226
linking Spark into standalone applications,

17
loading and querying tweets, 165
loading CSV with textFile(), 78
loading entire Cassandra table as RDD with

key/value data, 95
loading JSON, 76, 93, 172

loading text files, 73
map() and reduceByKey() on DStream, 191
Maven coordinates for Spark SQL with Hive

support, 163
partitioner, custom, 70
partitioner, determining for an RDD, 64
partitioning in, 64
passing functions to Spark, 16
per-key average using combineByKey(), 54
Row objects, getter functions, 168
saving JSON, 77
saving SequenceFiles, 83, 85, 198
setting Cassandra property, 95
setting up driver that can recover from fail‐

ure, 206
shared connection pool and JSON parser,

108
spam classifier in, 218
Spark application built with Maven, 124
Spark Cassandra connector, 95
SQL imports, 164
streaming filter for printing lines containing

error, 184
streaming imports, 184
streaming text files written to a directory,

200
string length UDF, 179
submitting applications with dependencies,

124
transform() on a DStream, 192
transformations on pair RDDs, 50
UDF imports, 179
updateStateByKey() transformation, 197
using summary statistics to remove outliers

in, 114
vectors, creating, 220
visit counts per IP address, 195
window(), using, 193
windowed count operations in, 196
word count in, 19, 53
Writable types, 80

Java Database Connectivity (JDBC), 93
JDBC connector in Spark SQL, performance

tuning options, 181
Java Serialization, 83, 106, 156
Java Virtual Machine (JVM), 9
java.io.Externalizable interface, 107
java.io.Serializable, Hadoop Writable classes

and, 80

244 | Index

JDBC/ODBC server in Spark SQL, 129,
175-178
connecting to JDBC server with Beeline, 175
launching the JDBC server, 175

JdbcRDD, 93
jobs

defined, 149
Spark application UI jobs page, 151
submission by scheduler, 150

join operator, 58
join()

benefitting from partitioning, 65
setting partitioner, 66

joins
on pair RDDs, 58
transformations on key/value DStreams,

191
using partitionBy(), 63

JSON, 72
ham radio call log in (example), 99
loading, 74
loading and saving in Spark SQL, 172
loading using custom Hadoop input format,

84
saving, 76
structured, working with using Spark SQL,

92

K
K-means algorithm, 230
Kafka, 201
key/value pairs, working with, 47-70

actions available on pair RDDs, 60
aggregations, 51
creating pair RDDs, 48
DStream transformations, 190
loading Cassandra table as RDD with key/

value pairs, 95
pair RDDs, 47
partitioning (advanced), 61

custom partitioners, 68
determining RDD's partitioner, 64
example, PageRank, 66
operations affecting partitioning, 65
operations benefitting from partitioning,

65
transformations on pair RDDs, 49-60

aggregations, 51
grouping data, 57

joins, 58
sorting data, 59
tuning level of parallelism, 56

key/value stores
data sources from, 72
SequenceFiles, 80

KeyValueTextInputFormat(), 84
Kryo serialization library, 106, 156

using Kyro serializer and registering classes,
156

L
LabeledPoints, 218, 219

use in classification and regression, 224
lambda (=>) syntax, 16
LassoWithSGD, 225
launch scripts, using cluster launch scripts, 129
LBFGS algorithm, 226
leftOuterJoin(), 59

benefitting from partitioning, 65
on DStreams, 191
setting partitioner, 66

linear regression, 225
LinearRegressionModel, 226
LinearRegressionWithSGD object, 225
Linux/Mac

streaming application, running on, 185
tar command, 10

loading and saving data, 71-98
databases, 93

Cassandra, 94
Elasticsearch, 97
HBase, 96

file formats, 72
CSV and TSV files, 77
file compression, 87
Hadoop input and output formats, 84
JSON, 74
object files, 83
SequenceFiles, 80
text files, 73

filesystems, 89
Amazon S3, 90
HDFS, 90
local/regular, 89

in Spark SQL, 170-175
structured data, using Spark SQL, 91

Apache Hive, 91
JSON, 92

Index | 245

local mode, Spark running in, 11, 119
local/regular filesystem, 89
log4j, 154

customizing logging in Spark, 154
example configuration file, 154

Log4j.properties.template, 12
logging

controlling for PySpark shell, 12
driver and executor logs, 154
logs for JDBC server, 176
output from Spark Streaming app example,

187
logistic regression, 226
LogisticRegressionModel, 226
long-lived Spark applications, 129
long-lived tables and queries, 178
lookup(), 60

benefitting from partitioning, 65
LzoJsonInputFormat, 84

M
machine learning

with MLlib, 213
algorithms, 220
basic machine learning concepts, 215
classification and regression, 224
clustering, 229
collaborative filtering and recommenda‐

tion, 230
data types, 218
dimensionality reduction, 232
example, spam classification, 216
feature extraction algorithms, 221
model evaluation, 234
overview, 213
pipeline API, 236
statistics, 223
system requirements, 214
tips and performance considerations,

234
working with vectors, 219

machine learning (ML) functionality (MLlib), 4
main function, 14
map(), 51, 64

on DStreams in Scala, 191
partitioner property and, 66
per-partition version, 107

mapPartitions(), 107
advantages of using, 109

calculating average with and without, 109
mapPartitionsWithIndex(), 108
mapValues(), 51, 66
master, 120, 129

editing conf/slaves file on, 130
launching manually, 130

-- master flag (spark-submit), 121
master/slave architecture, 117
match operator, 69
Matrix object, 233
MatrixFactorizationModel, 232
Maven, 17, 124

building a simple Spark application, 19
coordinates for Flume sink, 203
coordinates for Spark Streaming, 184
Java Spark application built with, 124
linking to Spark SQL with Hive, 163
shading support, 128

max(), 113
mean(), 113
memory management, 157

controlling memory use in Spark Streaming
applications, 210

MEMORY_AND_DISK storage level, 158
Mesos (see Apache Mesos)
Metrics object, 234
micro-batch architecture, Spark Streaming, 186
min(), 113
MLlib, 4
model evaluation, 234
models, 215
MulticlassMetrics, 234
Multinomial Naive Bayes, 227
multitenant clusters, scheduling in, 128

N
Naive Bayes algorithm, 227
NaiveBayes class, 227
NaiveBayesModel, 227
natural language libraries, 222
network filesystems, 89
newAPIHadoopFile(), 84
normalization, 223
Normalizer class, 223
NotSerializableException, 157
numeric operations, 113

StatsCounter, methods available on, 113
using summary statistics to remove outliers,

113

246 | Index

NumPy, 214

O
object files, 83
objectFile(), 83
ODBC, Spark SQL ODBC driver, 176
optimizations performed by Spark driver, 119
Option object, 59, 64
Optional object, 59
outer joins, 59
output operations, 197
OutputFormat interface, 71

P
package managers (Python), 124
packaging

modifying to eliminate dependency con‐
flicts, 128

Spark application built with Maven, 126
Spark application built with sbt, 127

PageRank algorithm, 66
pair RDDs, 47

actions available on, 60
aggregations on, 51

distributed word count, 53
creating, 48
partitioning (advanced), 61

custom partitioners, 68
determining an RDD's partitioner, 64
example, PageRank, 66
operations affecting partitioning, 65
operations benefitting from partitioning,

65
transformations on, 49-60

aggregations, 51
grouping data, 57
joins, 58
sorting data, 59
tuning level of parallelism, 56

parallel algorithms, 214
parallelism

level of, for MLlib algorithms, 236
level of, in Spark Streaming apps, 210
level of, performance and, 155
tuning level of, 56

parallelize(), 48, 214
Parquet, 171

loading data into Spark SQL, 171

registering Parquet file as temp table and
querying against it in Spark SQL, 171

saving a SchemaRDD to, 171
partitionBy(), 62

failure to persist RDD after transformation
by, 64

setting partitioner, 66
Partitioner object, 64

custom, 68
partitioner property, 64

automatically set by operations partitioning
data, 65

transformations not setting, 66
partitioning, 47

advanced, 61
custom partitioners, 68
determining an RDD's partitioner, 64
example, PageRank, 66
operations affecting partitioning, 65
operations benefitting from partitioning,

65
changing for RDDs outside of aggregations

and grouping, 57
partitions

asking Spark to use specific number of, 56
controlling number when loading text files,

73
working on per-partition basis, 107

per-partition operators, 108
PBs (see protocol buffers)
PCA (principal component analysis), 232
performance

information about, 150-154
level of parallelism, 155
web UI stage page, 152

key considerations, 155-159
hardware provisioning, 158
level of parallelism, 155
memory management, 157
serialization format, 156

Spark SQL, 180
performance tuning options, 180

Spark Streaming applications, 209
batch and window sizing, 209
garbage collection and memory usage,

210
level of parallelism, 210

persist(), 65
pickle serializaion library (Python), 83

Index | 247

pipe(), 109
driver programs using pipe() to call finddis‐

tance.R, 111
specifying shell environment variables with,

112
using to interact with an R program, 110

pipeline API in MLlib, 214, 236
spam classification example, 236

pipelining, 147, 150
piping to external programs, 109
port 4040, information on running Spark appli‐

cations, 119
predict(), 226
principal component analysis (PCA), 232
print(), 184, 198
programming, advanced, 99-133

accumulators, 100
and fault tolerance, 103
custom, 103

broadcast variables, 104
numeric RDD operations, 113
piping to external programs, 109

protocol buffers, 86
sample definition, 86

pull-based receiver, 201, 203
push-based receiver, 201
PySpark shell, 5

creating RDD and doing simple analysis, 13
filtering example, 15
launching against Standalone cluster man‐

ager, 131
launching against YARN cluster manager,

133
opening and using, 11

Python
accumulaor error count in, 102
accumulator empty line count in, 100
average without and with mapPartitions(),

109
constructing SQL context, 165
country lookup in, 104
country lookup with broadcast variables,

105
creating an application using a SparkConf,

141
creating HiveContext and selecting data, 91
creating pair RDD, 48
creating SchemaRDD using Row and

named tuple, 174

custom sort order, sorting integers as if
strings, 60

driver program using pipe() to call finddis‐
tance.R, 111

HashingTF, using in, 221
Hive load in, 170
installing third-party libraries, 124
IPython shell, 13
linear regression in, 225
loading and querying tweets, 166
loading CSV with textFile(), 77
loading JSON with Spark SQL, 92, 172
loading SequenceFiles, 82
loading text files, 73
loading unstructured JSON, 74
Parquet files in, 171
partitioner, custom, 70
partitioning in, 64
passing functions to Spark, 16
per-key avarage using reduceByKey() and

mapValues(), 52
per-key average using combineByKey(), 54
pickle serialization library, 83
requirement for EC2 script, 135
Row objects, working with, 168
saving JSON, 76
scaling vectors in, 222
shared connection pool in, 107
shell in Spark, 11
spam classifier in, 216
Spark SQL with Hive support, 163
SQL imports, 164
string length UDF, 178
submitting a Python program with spark-

submit, 121
TF-IDF, using in, 222
transformations on pair RDDs, 50
using MLlib in, requirement for NumPy,

214
using summary statistics to remove outliers

in, 113
vectors, creating, 219
word count in, 53
writing CSV in, 79
writing Spark applications as scripts, 17

Q
queues, scheduling in YARN, 134
Quick Start Guide, 11

248 | Index

R
R library, 110

distance program, 110
RandomForest class, 229
Rating objects, 231
Rating type, 219
rdd.getNumPartitions(), 57
rdd.partition.size(), 57
receivers, 188

fault tolerance, 207
increasing number of, 210

recommendations, 230
ALS collaborative filtering algorithm, 231

RecordReader (Hadoop), 80
reduce(), 51

groupByKey() and, 57
reduceByKey(), 51

benefitting from partitioning, 65
combiners and, 52
DStream transformations, 190
setting partitioner, 66

reduceByKeyAndWindow(), 194
reduceByWindow(), 194
regression, 224

decision trees, 228
linear, 225
logistic, 226
random forests, 229

repartition(), 57, 155, 210
resilient distributed datasets (RDDs), 3 (see

caching in executors)
caching to reuse, 235
Cassandra table, loading as RDD with key/

value pairs, 95
changing partitioning, 57
collecting, 147
computing an alredy cached RDD, 148
counts (example), 146
creating and doing simple analysis, 13
DStreams as continuous series of, 186
JdbcRDD, 93
loading and saving data from, in Spark SQL,

174
numeric operations, 113
of CassandraRow objects, 94
pair RDDs, 47

(see also pair RDDs)
persisted, information on, 153
pipe(), 109

pipelining of RDD transforations into a sin‐
gle stage, 147

running computations on RDDs in a
DStream, 198

saving to Cassandra from, 96
SchemaRDDs, 161, 166-169
visualiing with toDebugString() in Scala,

146
resource allocation

configuring on Hadoop YARN cluster man‐
ager, 133

configuring on Standalone cluster manager,
132

on Apache Mesos, 135
RidgeRegressionWithSGD, 225
rightOuterJoin(), 59

benefitting from partitioning, 65
setting partitioner, 66

Row objects, 91
creating RDD of, 174
RDD of, 161
working with, 168

RowMatrix class, 233
runtime architecture (Spark), 117

cluster manager, 119
driver, 118
executors, 119
launching a program, 120
running Spark application on a cluster,

summary of steps, 120
runtime dependencies of an application, 122

S
s3n://, path starting with, 90
sampleStdev(), 113
sampleVariance(), 113
save(), 59

for DStreams, 198
saveAsHadoopFiles(), 198
saveAsObjectFile(), 83
saveAsParquetFile(), 171
saveAsTextFile(), 74

saving JSON, 76
using with accumulators, 101

sbt (Scala build tool), 124
building a simple Spark application, 19
Spark application built with, 126

adding assembly plug-in, 127
sc variable (SparkContext), 14, 118

Index | 249

Scala, 9
accumulator empty line count in, 100
Apache Kafka, 201
constructing SQL context, 165
country lookup with broadcast variables,

105
creating HiveContext and selecting data, 91
creating pair RDD, 48
creating SchemaRDD from case class, 174
custom sort order, sorting integers as if

strings, 60
driver program using pipe() to call finddis‐

tance.R, 111
Elasticsearch output in, 97
FlumeUtils agent in, 202
FlumeUtils custom sink, 203
Hive load in, 170
joining DStreams in, 191
linear regression in, 225
linking to Spark, 17
loading and querying tweets, 165
loading compressed text file from local file‐

system, 89
loading CSV with textFile(), 77
loading entire Cassandra table as RDD with

key/value pairs, 95
loading JSON, 75, 92, 172
loading LZO-compressed JSON with Ele‐

phant Bird, 84
loading SequenceFiles, 82
loading text files, 73
map() and reduceByKey() on DStream, 191
Maven coordinates for Spark SQL with Hive

support, 163
PageRank example, 67
partitioner, custom, 62, 69
partitioner, determining for an RDD, 64
passing functions to Spark, 16
PCA (principal component analysis) in, 233
per-key avarage using redueByKey() and

mapValues(), 52
per-key average using combineByKey(), 54
processing text data in Scala Spark shell, 146
reading from HBase, 96
Row objects, getter functions, 168
saving data to external systems with fore‐

achRDD(), 199
saving DStream to text files, 198
saving JSON, 76

saving SequenceFiles, 82, 198
saving to Cassandra, 96
setting Cassandra property, 95
setting up driver that can recover from fail‐

ure, 206
spam classifier in, 216
spam classifier, pipeline API version, 236
Spark application built with sbt, 126
Spark Cassandra connector, 94
SparkFlumeEvent in, 204
SQL imports, 164
streaming filter for printing lines containing

error, 184
streaming imports, 184
streaming SequenceFiles written to a direc‐

tory, 200
streaming text files written to a directory,

200
string length UDF, 178
submitting applications with dependencies,

124
transform() on a DStream, 192
transformations on pair RDDs, 50
updateStateByKey() transformation, 197
user information application (example), 61
using summary statistics to remove outliers

in, 113
vectors, creating, 219
visit counts per IP address, 195
visualizing RDDs with toDebugString(), 146
window(), using, 193
windowed count operations in, 196
word count application example, 19
word count in, 53
Writable types, 80
writing CSV in, 79

Scala shell, 11
creating RDD and doing simple analysis, 14
filtering example, 15
opening, 11

scala.Option object, 64
scala.Tuple2 class, 48
scaling vectors, 222
schedulers

creating execution plan to compute RDDs
necessary for an action, 147

pipelining of RDDs into a single stage, 147
scheduling information, 122
scheduling jobs, 128

250 | Index

Apache Mesos scheduling modes, 134
SchemaRDDs, 161, 166

caching of, 181
converting regular RDDs to, 174
in Spark SQL UI, 169
registering as temporary table to query, 166
saving to Parquet, 171
types stored by, 167
use in MLlib pipeline API, 236
working with Row objects, 168

schemas, 91, 161
acccessing nested fields and array fields in

SQL, 173
in JSON data, 172
partial schema of tweets, 172

SequenceFiles, 72, 80
compression in, 89
loading, 81
saving, 82
saving from a DStream, 198
saving in Java using old Hadoop format

APIs, 85
streaming, written to a directory, 200

SerDes (serialization and deserialization for‐
mats), 162

serialization
caching RDDs in serialized form, 210
caching serialized objects, 158
class to use for serializing object, 145
optimizing for broadasts, 106
serialization format, performance and, 156

shading, 128
shared variables, 99, 100

accumulators, 100-104
broadcast variables, 104-107

shells
driver program, creating, 118
IPython, 13
launching against Standalone cluster man‐

ager, 131
launching Spark shell and PySpark against

YARN, 133
opening PySpark shell in Spark, 11
opening Scala shell in Spark, 11
processing text data in Scala Spark shell, 146
sc variable (SparkContext), 14
Scala and Python shells in Spark, 11
standalone Spark SQL shell, 178

singular value decomposition (SVD), 233

skew, 152
sliding duration, 193
sorting data

in pair RDDs, 59
sort(), setting partitioner, 66
sortByKey(), 60

range-partitioned RDDs, 64
spam classification example (MLlib), 216-218

pipeline API version, 236
Spark

accessing Spark UI, 14
brief history of, 6
closely integrated components, 2
defined, xi
linking into standalone applications in dif‐

ferent languages, 17
shutting down an application, 18
storage layers, 7
uses of, 4
versions and releases, 7
web UI (see web UI)

Spark Core, 3
Spark SQL, 3, 161-182

capabilities provided by, 161
JDBC/ODBC server, 175-178

connecting to JDBC server with Beeline,
175

long-lived tables and queries, 178
ODBC driver, 176
working with Beeline, 177

linking with, 162
Apache Hive, 162

loading and saving data, 170-175
Apache Hive, 170
from RDDs, 174
JSON, 172
Parquet, 171

performance, 180
performance tuning options, 180

structured data sources through, 72
user-defined functions (UDFs), 178

Hive UDFs, 179
using in applications, 164

basic query example, 165
caching, 169
initializing Spark SQL, 164
SchemaRDDs, 166

working with structured data, 91
Apache Hive, 91

Index | 251

JSON, 92
Spark Streaming, 3, 183-211

additional setup for applications, 183
architecture and abstraction, 186
checkpointing, 189
DStreams, 183
execution within Spark components, 188
fault-tolerance properties for DStreams, 189
input sources, 199

additional, 200
Apaache Kafka, 201
Apache Flume, 201
core sources, 199
custom, 204
multiple sources and cluster sizing, 204

output operations, 197
performance considerations, 209

batch and window sizing, 209
garbage collection and memory usage,

210
level of parallelism, 210

running applications 24/7, 205-208
checkpointing, 205
driver fault tolerance, 206
processing guarantees, 208
receiver fault tolerance, 207
worker fault tolerance, 207

simple example, 184
running application and providing data

on Linux/Mac, 185
Spark application UI showing, 188
Streaming UI, 208
transformations on DStreams, 189

stateful transformations, 192
stateless transformations, 190

spark-class script, 130
spark-core package, 19
spark-ec2 script, 135

launch command, 136
login command, 136
options, common, 136
stopping and restarting clusters, 137

spark-submit script, 21, 120
--deploy-mode cluster flag, 131, 207
--deploy-mode flag, 133
--executor-cores flag, 158
--executor-memory flag, 131, 132, 135, 158
--jars flag, 124
--master mesos flag, 134

--master yarn flag, 133
--num-executors flag, 133, 159
--py-files argument, 124
--total-executor-cores argument, 132, 135
common flags, summary listing of, 122
deploying applications with, 121

submitting application with extra argu‐
ments, 121

submitting Python program with, 121
general format, 122
loading configuration values from a file, 143
setting configuration values at runtime with

flags, 142
submitting application from Amazon EC2,

137
using with various options, 123

spark.cores.max, 159
spark.deploy.spreadOut config property, 132
spark.executor.cores, 158
spark.executor.memory, 158
spark.local.dir option, 159
spark.Partitioner object, 64
spark.serializer property, 106
spark.sql.codegen, 181
spark.sql.inMemoryColumnarStorage.batch‐

Size, 181
spark.storage.memoryFracton, 157
SparkConf object, 17

configuring Spark application with, 141-145
SparkContext object, 14, 118

initializing, 17
StreamingContext and, 184

SparkContext.addFile(), 112
SparkContext.parallelize(), 48
SparkContext.parallelizePairs(), 48
SparkContext.sequenceFile(), 81
SparkFiles.get(), 112
SparkFiles.getRootDirectory(), 112
SparkFlumeEvents, 204
SparkR project, 110
SparkStreamingContext.checkpoint(), 205
SPARK_LOCAL_DIRS variable, 145, 159
SPARK_WORKER_INSTANCES variable, 159
sparsity, recognizing, 235
SQL (Structured Query Language)

CACHE TABLE or UNCACHE TABLE
statement, 169

query to run on structured data source, 91
querying data with, 161

252 | Index

SQL shell, 5
sql(), 165
SQLContext object, 163

creating, 165
importing, 164
SchemaRDDs, registering as temp tables to

query, 166
SQLContext.parquetFile(), 171
stack trace from executors, 153
stages, 119, 147, 150

pipelining of RDD transformations into
physical stages, 148

progress and metrics of, on web UI jobs
page, 151

standalone applications, 17
building, 18

Standalone cluster manager, 118, 129-133
configuration, documentation for, 130
configuring resource usage, 132
deploy modes, 131
high availability, 133
launching, 129
submitting applications to, 130
using with clusters launched on Amazon

EC2, 135
StandardScaler class, 222
StandardScalerModel, 222
start-thriftserver.sh, 175
stateful transformations, 189, 192

checkpointing for, 193
updateStateByKey(), 196
windowed transformations, 193

stateless transformations, 189
combining data from multiple DStreams,

191
merging DStreams with union(), 192

Statistics class, 223
StatsCounter object, 113

methods available on, 113
stdev(), 113
stochastic gradient descent (SGD), 216, 225

logistic regression with, 226
storage

information for RDDs that are persisted,
153

local disks to store intermediate data, 159
setting local storage directories for shuffle

data, 145
spark.storage.memoryFraction, 157

storage layers for Spark, 7
storage levels

MEMORY_AND_DISK_SER, 158
MEMORY_ONLY, 158
MEMORY_ONLY_SER, 158

streaming (see Spark Streaming)
StreamingContext object, 184
StreamingContext.awaitTermination(), 185
StreamingContext.getOrCreate(), 206
StreamingContext.start(), 185
StreamingContext.transform(), 192
StreamingContext.union(), 192
strings, sorting integers as, 60
structured data, 161

working with, using Spark SQL, 91
Apache Hive, 91
JSON, 92

sum(), 113
supervised learning, 224
Support Vector Machines, 227
SVD (singular value decomposition), 233
SVMModel, 227
SVMWithSGD class, 227

T
tab-separated value files (see TSV files)
TableInputFormat, 97
tar command, 10
tar extractors, 10
tasks, 118, 150

for each partition in an RDD, 147
progress and metrics of, on web UI jobs

page, 151
scheduling on executors, 119

term frequency, 216
Term Frequency–Inverse Document Frequency

(TF-IDF), 221
using in Python, 222

text files, 72
KeyValueTextInputFormat(), Hadoop, 84
loading in Spark, 73
saving, 74
saving DStream to, 198
saving JSON as, 76

textFile(), 73, 147
compressed input, handling, 89
loading CSV with, in Java, 78
loading CSV with, in Python, 77
loading CSV with, in Scala, 77

Index | 253

Thrift server, 175
toDebugString(), 146
training data, 215
transitive dependency graph, 124
TSV (tab-separated value) files, 77

loading, 77
saving, 79

tuning Spark, 141,
components of execution, 145-150
configuring Spark with SparkConf, 141-145
performance considerations, key, 155-159
performance tuning options for Spark SQL,

180
tuples, 48

scala.Tuple2 class, 48
tweets, 162

accessing text column in topTweets Sche‐
maRDD, 168

loading and queryiny, 165
partial schema of, 172

Twitter
Elephant Bird package, 84

support for protocol buffers, 87
types

accumulator types in Spark, 103
in MLlib, 218
stored by SchemaRDDs, 167

U
uber JAR, 124
UDFs (see user-defined functions)
union(), merging DStreams, 192
updateStateByKey transformation, 196
user-defined functions (UDFs), 162, 178

Hive UDFs, 179
Spark SQL, 178

V
variables, shared (see shared variables)
variance(), 113
vectors

Vector type, 218

working with, 219
versions, Spark and HDFS, 90
visit counts per IP address, 195

W
web UI, 119, 150

driver and executor logs, 154
environment page, 153
executors page, 153
for Standalone cluster manager, 131
jobs page, 151
storage page, 153

WeightedEnsembleModel, 229
wholeFile(), 79
wholeTextFiles(), 73
window duration, 193
window(), 193
windowed transformations, 193
Windows systems

installing Spark, 9
IPython shell, running on, 13
streaming application, running on, 185
tar extractor, 10

word count, distributed, 53
Word2Vec class, 223
Word2VecModel, 223
workers, 120, 129

fault tolerance, 207
lauching manually, 130
requirement in standalone mode, 159

Writable interface (Hadoop), 80
Writable types (Hadoop)

automatic conversion in Scala, 82
corresponding Scala and Java types, 80

Y
YARN (see Hadoop YARN)

Z
ZooKeeper, 133

using with Apache Mesos, 134

254 | Index

About the Authors
Holden Karau is a software development engineer at Databricks and is active in open
source. She is the author of an earlier Spark book. Prior to Databricks, she worked on
a variety of search and classification problems at Google, Foursquare, and Amazon.
She graduated from the University of Waterloo with a Bachelor of Mathematics in
Computer Science. Outside of software she enjoys playing with fire, welding, and
hula hooping.

Most recently, Andy Konwinski cofounded Databricks. Before that he was a PhD
student and then postdoc in the AMPLab at UC Berkeley, focused on large-scale dis‐
tributed computing and cluster scheduling. He cocreated and is a committer on the
Apache Mesos project. He also worked with systems engineers and researchers at
Google on the design of Omega, their next-generation cluster scheduling system.
More recently, he developed and led the AMP Camp Big Data Bootcamps and Spark
Summits, and contributes to the Spark project.

Patrick Wendell is a cofounder of Databricks as well as a Spark Committer and PMC
member. In the Spark project, Patrick has acted as release manager for several Spark
releases, including Spark 1.0. Patrick also maintains several subsystems of Spark’s
core engine. Before helping start Databricks, Patrick obtained an MS in Computer
Science at UC Berkeley. His research focused on low-latency scheduling for large-
scale analytics workloads. He holds a BSE in Computer Science from Princeton
University.

Matei Zaharia is the creator of Apache Spark and CTO at Databricks. He holds a
PhD from UC Berkeley, where he started Spark as a research project. He now serves
as its Vice President at Apache. Apart from Spark, he has made research and open
source contributions to other projects in the cluster computing area, including
Apache Hadoop (where he is a committer) and Apache Mesos (which he also helped
start at Berkeley).

Colophon
The animal on the cover of Learning Spark is a small-spotted catshark (Scyliorhinus
canicula), one of the most abundant elasmobranchs in the Northeast Atlantic and
Mediterranean Sea. It is a small, slender shark with a blunt head, elongated eyes, and
a rounded snout. The dorsal surface is grayish-brown and patterned with many small
dark and sometimes lighter spots. The texture of the skin is rough, similar to the
coarseness of sandpaper.

This small shark feeds on marine invertebrates including mollusks, crustaceans,
cephalopods, and polychaete worms. It also feeds on small bony fish, and

occasionally larger fish. It is an oviparous species that deposits egg-cases in shallow
coastal waters, protected by a horny capsule with long tendrils.

The small-spotted catshark is of only moderate commercial fisheries importance,
however it is utilized in public aquarium display tanks. Though commercial landings
are made and large individuals are retained for human consumption, the species is
often discarded and studies show that post-discard survival rates are high.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Animate Creation. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Table of Contents
	Foreword
	Preface
	Audience
	How This Book Is Organized
	Supporting Books
	Conventions Used in This Book
	Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Introduction to Data Analysis with Spark
	What Is Apache Spark?
	A Unified Stack
	Spark Core
	Spark SQL
	Spark Streaming
	MLlib
	GraphX
	Cluster Managers

	Who Uses Spark, and for What?
	Data Science Tasks
	Data Processing Applications

	A Brief History of Spark
	Spark Versions and Releases
	Storage Layers for Spark

	Chapter 2. Downloading Spark and Getting Started
	Downloading Spark
	Introduction to Spark’s Python and Scala Shells
	Introduction to Core Spark Concepts
	Standalone Applications
	Initializing a SparkContext
	Building Standalone Applications

	Conclusion

	Chapter 3. Programming with RDDs
	RDD Basics
	Creating RDDs
	RDD Operations
	Transformations
	Actions
	Lazy Evaluation

	Passing Functions to Spark
	Python
	Scala
	Java

	Common Transformations and Actions
	Basic RDDs
	Converting Between RDD Types

	Persistence (Caching)
	Conclusion

	Chapter 4. Working with Key/Value Pairs
	Motivation
	Creating Pair RDDs
	Transformations on Pair RDDs
	Aggregations
	Grouping Data
	Joins
	Sorting Data

	Actions Available on Pair RDDs
	Data Partitioning (Advanced)
	Determining an RDD’s Partitioner
	Operations That Benefit from Partitioning
	Operations That Affect Partitioning
	Example: PageRank
	Custom Partitioners

	Conclusion

	Chapter 5. Loading and Saving Your Data
	Motivation
	File Formats
	Text Files
	JSON
	Comma-Separated Values and Tab-Separated Values
	SequenceFiles
	Object Files
	Hadoop Input and Output Formats
	File Compression

	Filesystems
	Local/“Regular” FS
	Amazon S3
	HDFS

	Structured Data with Spark SQL
	Apache Hive
	JSON

	Databases
	Java Database Connectivity
	Cassandra
	HBase
	Elasticsearch

	Conclusion

	Chapter 6. Advanced Spark Programming
	Introduction
	Accumulators
	Accumulators and Fault Tolerance
	Custom Accumulators

	Broadcast Variables
	Optimizing Broadcasts

	Working on a Per-Partition Basis
	Piping to External Programs
	Numeric RDD Operations
	Conclusion

	Chapter 7. Running on a Cluster
	Introduction
	Spark Runtime Architecture
	The Driver
	Executors
	Cluster Manager
	Launching a Program
	Summary

	Deploying Applications with spark-submit
	Packaging Your Code and Dependencies
	A Java Spark Application Built with Maven
	A Scala Spark Application Built with sbt
	Dependency Conflicts

	Scheduling Within and Between Spark Applications
	Cluster Managers
	Standalone Cluster Manager
	Hadoop YARN
	Apache Mesos
	Amazon EC2

	Which Cluster Manager to Use?
	Conclusion

	Chapter 8. Tuning and Debugging Spark
	Configuring Spark with SparkConf
	Components of Execution: Jobs, Tasks, and Stages
	Finding Information
	Spark Web UI
	Driver and Executor Logs

	Key Performance Considerations
	Level of Parallelism
	Serialization Format
	Memory Management
	Hardware Provisioning

	Conclusion

	Chapter 9. Spark SQL
	Linking with Spark SQL
	Using Spark SQL in Applications
	Initializing Spark SQL
	Basic Query Example
	SchemaRDDs
	Caching

	Loading and Saving Data
	Apache Hive
	Parquet
	JSON
	From RDDs

	JDBC/ODBC Server
	Working with Beeline
	Long-Lived Tables and Queries

	User-Defined Functions
	Spark SQL UDFs
	Hive UDFs

	Spark SQL Performance
	Performance Tuning Options

	Conclusion

	Chapter 10. Spark Streaming
	A Simple Example
	Architecture and Abstraction
	Transformations
	Stateless Transformations
	Stateful Transformations

	Output Operations
	Input Sources
	Core Sources
	Additional Sources
	Multiple Sources and Cluster Sizing

	24/7 Operation
	Checkpointing
	Driver Fault Tolerance
	Worker Fault Tolerance
	Receiver Fault Tolerance
	Processing Guarantees

	Streaming UI
	Performance Considerations
	Batch and Window Sizes
	Level of Parallelism
	Garbage Collection and Memory Usage

	Conclusion

	Chapter 11. Machine Learning with MLlib
	Overview
	System Requirements
	Machine Learning Basics
	Example: Spam Classification

	Data Types
	Working with Vectors

	Algorithms
	Feature Extraction
	Statistics
	Classification and Regression
	Clustering
	Collaborative Filtering and Recommendation
	Dimensionality Reduction
	Model Evaluation

	Tips and Performance Considerations
	Preparing Features
	Configuring Algorithms
	Caching RDDs to Reuse
	Recognizing Sparsity
	Level of Parallelism

	Pipeline API
	Conclusion

	Index
	About the Authors

