Measuring Masking Fault-Tolerance

Pablo F. Castro, Pedro R. D'Argenio, Ramiro Demasi, Luciano Putruele

Dependable Systems dTime Talks October, 2020

Measuring Masking Fault-Tolerance

Pablo F. Castro, Pedro R. D'Argenio, Ramiro Demasi, Luciano Putruele

A fault is masked when the occurrence of it have no observable consequences

module NOMINAL

module FAULTY

v : [0..3] init 0;

b : [0..1] init 0;

[w0] true -> (b' = 0); [w1] true -> (b' = 1); [r0] b=0 -> true; [r1] b=1 -> true;

endmodule

[w0] true -> (v' = 0); [w1] true -> (v' = 3); [r0] v<=1 -> true; [r1] v>=2 -> true; [fault] v<3 -> (v' = v+1); [fault] v>0 -> (v' = v-1);

endmodule

¿Can an implementation mask all faults?

module NOMINAL

module FAULTY

v : [0..5] init 0;

b : [0..1] init 0;

[w0] true -> (b' = 0); [w1] true -> (b' = 1); [r0] b=0 -> true; [r1] b=1 -> true;

endmodule

[w0] true -> (v' = 0); [w1] true -> (v' = 5); [r0] v<=2 -> true; [r1] v>=3 -> true; [fault] v<5 -> (v' = v+1); [fault] v>0 -> (v' = v-1);

endmodule

¿Can an implementation mask all faults?

module NOMINAL

module FAULTY

v : [0..5] init 0;

b : [0..1] init 0;

[w0] true -> (b' = 0); [w1] true -> (b' = 1); [r0] b=0 -> true; [r1] b=1 -> true;

endmodule

[w0] true -> (v' = 0); [w1] true -> (v' = 5); [r0] v<=2 -> true; [r1] v>=3 -> true; [fault] v<5 -> (v' = v+1); [fault] v>0 -> (v' = v-1);

endmodule

- ¿Can an implementation mask all faults?
- Given two implementations ¿can we determine which is better on masking?

Given two implementations ¿can we determine which is better on masking?

CONICET

Strong Masking Simulation

Definition 3.1. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ be two transition systems. A' is strong masking fault-tolerant with respect to A if there exists a relation $\mathbf{M} \subseteq S \times S'$ between A and A' such that:

- (A) $s_0 \mathbf{M} s'_0$, and
- (B) for all $s \in S, s' \in S'$ with $s \mathbf{M} s'$ and all $e \in \Sigma$ the following holds:
 - (1) if $s \xrightarrow{e} t$ then $\exists t' \in S' : s' \xrightarrow{e} t' \wedge t \mathbf{M} t';$
 - (2) if $s' \xrightarrow{e} t'$ then $\exists t \in S : s \xrightarrow{e} t \wedge t \mathbf{M} t'$;
 - (3) if $s' \xrightarrow{F} t'$ for some $F \in \mathcal{F}$ then $s \mathbf{M} t'$.

Strong Masking Simulation

Implementation: has faults

Definition 3.1. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_{\mathcal{F}}, \rightarrow', s'_0 \rangle$ be two transition systems. A' is strong masking fault-tolerant with respect to A if there exists a relation $\mathbf{M} \subseteq S \times S'$ between A and A' such that:

(A) $s_0 \mathbf{M} s'_0$, and

(B) for all $s \in S, s' \in S'$ with $s \mathbf{M} s'$ and all $e \in \Sigma$ the following holds:

- (1) if $s \xrightarrow{e} t$ then $\exists t' \in S' : s' \xrightarrow{e} t' \wedge t \mathbf{M} t';$
- (2) if $s' \xrightarrow{e} t' t'$ then $\exists t \in S : s \xrightarrow{e} t \wedge t \mathbf{M} t';$
- (3) if $s' \xrightarrow{F} t'$ for some $F \in \mathcal{F}$ then $s \mathbf{M} t'$.

Strong Masking Simulation

Implementation: has faults

Definition 3.1. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ be two transition systems. A' is strong masking fault-tolerant with respect to A if there exists a relation $\mathbf{M} \subseteq S \times S'$ between A and A' such that:

(A) $s_0 \mathbf{M} s'_0$, and (B) for all $s \in S, s' \in S'$ with $s \mathbf{M} s'$ and all $e \in \Sigma$ the following holds: (1) if $s \xrightarrow{e} t$ then $\exists t' \in S' : s' \xrightarrow{e} t' t' \wedge t \mathbf{M} t'$; (2) if $s' \xrightarrow{e} t'$ t' then $\exists t \in S : s \xrightarrow{e} t \wedge t \mathbf{M} t'$; (3) if $s' \xrightarrow{F} t'$ t' for some $F \in \mathcal{F}$ then $s \mathbf{M} t'$.

Strong Masking Simulation

Implementation: has faults

Definition 3.1. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_{\mathcal{F}}, \rightarrow', s'_0 \rangle$ be two transition systems. A' is strong masking fault-tolerant with respect to A if there exists a relation $\mathbf{M} \subseteq S \times S'$ between A and A' such that:

(A) $s_0 \mathbf{M} s'_0$, and (B) for all $s \in S, s' \in S'$ with $s \mathbf{M} s'$ and all $e \in \Sigma$ the following holds: (1) if $s \stackrel{e}{\to} t$ then $\exists t' \in S' : s' \stackrel{e}{\to}' t' \wedge t \mathbf{M} t'$; (2) if $s' \stackrel{e}{\to}' t'$ then $\exists t \in S : s \stackrel{e}{\to} t \wedge t \mathbf{M} t'$; (3) if $s' \stackrel{F}{\to}' t'$ for some $F \in \mathcal{F}$ then $s \mathbf{M} t'$.

If such a relation exists we say that A' is a strong masking fault-tolerant implementation of A, denoted by $A \leq_m A'$.

DES

Strong Masking Simulation

Implementation: has faults

Definition 3.1. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ be two transition systems. A' is strong masking fault-tolerant with respect to A if there exists a relation $\mathbf{M} \subseteq S \times S'$ between A and A' such that:

(A) $s_0 \mathbf{M} s'_0$, and (B) for all $s \in S, s' \in S'$ with $s \mathbf{M} s'$ and all $e \in \Sigma$ the following holds: (1) if $s \stackrel{e}{\to} t$ then $\exists t' \in S' : s' \stackrel{e}{\to}' t' \wedge t \mathbf{M} t'$; (2) if $s' \stackrel{e}{\to}' t'$ then $\exists t \in S : s \stackrel{e}{\to} t \wedge t \mathbf{M} t'$; (3) if $s' \stackrel{F}{\to}' t'$ for some $F \in \mathcal{F}$ then $s \mathbf{M} t'$.

Strong Masking Simulation

module NOMINAL

module FAULTY

v : [0..3] init 0;

b : [0..1] init 0;

[w0] true -> (b' = 0); [w1] true -> (b' = 1); [r0] b=0 -> true; [r1] b=1 -> true;

endmodule

[w0] true -> (v' = 0); [w1] true -> (v' = 3); [r0] v<=1 -> true; [r1] v>=2 -> true; [fault] v<3 -> (v' = v+1); [fault] v>0 -> (v' = v-1);

endmodule

NOMINAL
$$\neq m$$
 FAULTY

Strong Masking Simulation

module NOMINAL

b : [0..1] init 0;

module FAULTY_BOUNDED

[w0] true -> (b' = 0); [w1] true -> (b' = 1); [r0] b=0 -> true; [r1] b=1 -> true; endmodule endmodule

 $\mathbf{M} = \{ \langle b, (v, f) \rangle \mid 2b \le v \le 2b + 1 \}$

NOMINAL \preceq_m FAULTY_BOUNDED

Weak Masking Simulation

Definition 3.2. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ be two transition systems with Σ possibly containing τ . A' is weak masking fault-tolerant with respect to A if there is a relation $\mathbf{M} \subseteq S \times S'$ between A and A' such that:

(A) $s_0 \mathbf{M} s'_0$ (B) for all $s \in S, s' \in S'$ with $s \mathbf{M} s'$ and all $e \in \Sigma \cup \{\tau\}$ the following holds: (1) if $s \xrightarrow{e} t$ then $\exists t' \in S' : s' \xrightarrow{e} t' \wedge t \mathbf{M} t';$ (2) if $s' \xrightarrow{e} t'$ t' then $\exists t \in S : s \xrightarrow{e} t \wedge t \mathbf{M} t';$ (3) if $s' \xrightarrow{F} t'$ for some $F \in \mathcal{F}$ then $s \mathbf{M} t'$.

Equivalently Veak Masking Simulation

Definition 3.2. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ be two transition systems with Σ possibly containing τ . A' is weak masking fault-tolerant with respect to A if there is a relation $\mathbf{M} \subseteq S \times S'$ between A and A' such that:

(A) $s_0 \mathbf{M} s'_0$ (B) for all $s \in S, s' \in S'$ with $s \mathbf{M} s'$ and all $e \in \Sigma \cup \{\tau\}$ the following holds: (1) if $s \stackrel{e}{\Rightarrow} t$ then $\exists t' \in S' : s' \stackrel{e}{\Rightarrow}' t' \wedge t \mathbf{M} t';$ (2) if $s' \stackrel{e}{\Rightarrow}' t'$ then $\exists t \in S : s \stackrel{e}{\Rightarrow} t \wedge t \mathbf{M} t';$ (3) if $s' \stackrel{F}{\Rightarrow}' t'$ for some $F \in \mathcal{F}$ then $s \mathbf{M} t'$.

If such a relation exists, we say that A' is a *weak masking fault-tolerant implementation* of A, denoted by $A \leq_m^w A'$.

Hence, every result for strong also applies to weak by replacing de strong transition relation by the weak one (except for faults)

Definition 3.5. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ two transition systems. The strong masking game graph $\mathcal{G}_{A,A'} = \langle V^G, V_R, V_V, E^G, v_0^G \rangle$ for two players is defined as follows:

- $V^G = (S \times (\Sigma^1 \cup \Sigma^2_{\mathcal{F}_{\mathcal{I}}} \cup \{\#\}) \times S' \times \{\mathrm{R}, \mathrm{V}\}) \cup \{v_{err}\}$
- The initial state is $v_0^G = \langle s_0, \#, s'_0, \mathbb{R} \rangle$, where the Refuter starts playing
- The Refuter's states are $V_{\mathbf{R}} = \{(s, \#, s', \mathbf{R}) \mid s \in S \land s' \in S'\} \cup \{v_{err}\}$
- The Verifier's states are $V_{\rm V} = \{(s, \sigma, s', {\rm V}) \mid s \in S \land s' \in S' \land \sigma \in (\Sigma^1 \cup \Sigma_{\mathcal{F}}^2)\}$ and E^G is the minimal set satisfying:

- {(($s, \#, s', \mathbf{R}$), ($t, \sigma^1, s', \mathbf{V}$)) | $\exists \sigma \in \Sigma : s \xrightarrow{\sigma} t$ } $\subseteq E^G$,
- {(($s, \#, s', \mathbf{R}$), ($s, \sigma^2, t', \mathbf{V}$)) | $\exists \sigma \in \Sigma_{\mathcal{F}} : s' \xrightarrow{\sigma} t'$ } $\subseteq E^G$,
- $\{((s, \sigma^2, s', \mathbf{V}), (t, \#, s', \mathbf{R})) \mid \exists \sigma \in \Sigma : s \xrightarrow{\sigma} t\} \subseteq E^G,$
- $\{((s, \sigma^1, s', \mathbf{V}), (s, \#, t', \mathbf{R})) \mid \exists \sigma \in \Sigma : s' \xrightarrow{\sigma} t' \} \subseteq E^G,$
- { $((s, F^2, s', \mathbf{V}), (s, \#, s', \mathbf{R}))$ } $\subseteq E^G$, for any $F \in \mathcal{F}$.
- If there is no outgoing transition from some state v, then, we additionally assume $(v, v_{err}) \in E^G$ and $(v_{err}, v_{err}) \in E^G$.

Definition 3.5. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ two transition systems. The strong masking game graph $\mathcal{G}_{A,A'} = \langle V^G, V_R, V_V, E^G, v_0^G \rangle$ for two players is defined as follows:

- $V^G = (S \times (\Sigma^1 \cup \Sigma^2_{\mathcal{F}_{\mathcal{I}}} \cup \{\#\}) \times S' \times \{\mathrm{R}, \mathrm{V}\}) \cup \{v_{err}\}$
- The initial state is $v_0^G = \langle s_0, \#, s'_0, \mathbb{R} \rangle$, where the Refuter starts playing
- The Refuter's states are $V_{\rm R} = \{(s, \#, s', {\rm R}) \mid s \in S \land s' \in S'\} \cup \{v_{err}\}$
- The Verifier's states are $V_{\mathcal{V}} = \{(s, \sigma, s', \mathcal{V}) \mid s \in S \land s' \in S' \land \sigma \in (\Sigma^1 \cup \Sigma^2_{\mathcal{F}})\}$

- $\bullet \ \{((s,\#,s',\mathbf{R}),(t,\sigma^1,s',\mathbf{V})) \mid \exists \ \sigma \in \Sigma: s \xrightarrow{\sigma} t\} \subseteq E^G,$
- {(($s, \#, s', \mathbf{R}$), ($s, \sigma^2, t', \mathbf{V}$)) | $\exists \sigma \in \Sigma_{\mathcal{F}} : s' \xrightarrow{\sigma} t'$ } $\subseteq E^G$,
- $\{((s, \sigma^2, s', \mathbf{V}), (t, \#, s', \mathbf{R})) \mid \exists \sigma \in \Sigma : s \xrightarrow{\sigma} t\} \subseteq E^G,$
- $\{((s, \sigma^1, s', \mathbf{V}), (s, \#, t', \mathbf{R})) \mid \exists \sigma \in \Sigma : s' \xrightarrow{\sigma} t'\} \subseteq E^G,$
- $\{((s, F^2, s', \mathbf{V}), (s, \#, s', \mathbf{R}))\} \subseteq E^G$, for any $F \in \mathcal{F}$.
- If there is no outgoing transition from some state v, then, we additionally assume $(v, v_{err}) \in E^G$ and $(v_{err}, v_{err}) \in E^G$.

Definition 3.5. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ two transition systems. The strong masking game graph $\mathcal{G}_{A,A'} = \langle V^G, V_R, V_V, E^G, v_0^G \rangle$ for two players is defined as follows:

- $V^G = (S \times (\Sigma^1 \cup \Sigma^2_{\mathcal{F}} \cup \{\#\}) \times S' \times \{\mathrm{R}, \mathrm{V}\}) \cup \{v_{err}\}$
- The initial state is $v_0^G = \langle s_0, \#, s'_0, \mathbb{R} \rangle$, where the Refuter starts playing
- The Refuter's states are $V_{\mathbf{R}} = \{(s, \#, s', \mathbf{R}) \mid s \in S \land s' \in S'\} \cup \{v_{err}\}$
- The Verifier's states are $V_{\mathcal{V}} = \{(s, \sigma, s', \mathcal{V}) \mid s \in S \land s' \in S' \land \sigma \in (\Sigma^1 \cup \Sigma_{\mathcal{F}}^2)\}$

- $\{((s, \#, s', \mathbf{R}), (t, \sigma^1, s', \mathbf{V})) \mid \exists \sigma \in \Sigma : s \xrightarrow{\sigma} t\} \subseteq E^G,$
- {(($s, \#, s', \mathbf{R}$), ($s, \sigma^2, t', \mathbf{V}$)) | $\exists \sigma \in \Sigma_{\mathcal{F}} : s' \xrightarrow{\sigma} t'$ } $\subseteq E^G$,
- $\{((s, \sigma^2, s', \mathbf{V}), (t, \#, s', \mathbf{R})) \mid \exists \sigma \in \Sigma : s \xrightarrow{\sigma} t\} \subseteq E^G,$
- $\{((s, \sigma^1, s', \mathbf{V}), (s, \#, t', \mathbf{R})) \mid \exists \sigma \in \Sigma : s' \xrightarrow{\sigma} t'\} \subseteq E^G,$
- $\{((s, F^2, s', \mathbf{V}), (s, \#, s', \mathbf{R}))\} \subseteq E^G$, for any $F \in \mathcal{F}$.
- If there is no outgoing transition from some state v, then, we additionally assume $(v, v_{err}) \in E^G$ and $(v_{err}, v_{err}) \in E^G$.

Definition 3.5. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_F, \rightarrow', s'_0 \rangle$ two transition systems. The strong masking game graph $\mathcal{G}_{A,A'} = \langle V^G, V_R, V_V, E^G, v_0^G \rangle$ for two players is defined as follows:

- $V^G = (S \times (\Sigma^1 \cup \Sigma^2_{\mathcal{F}_{\mathcal{I}}} \cup \{\#\}) \times S' \times \{\mathrm{R}, \mathrm{V}\}) \cup \{v_{err}\}$
- The initial state is $v_0^G = \langle s_0, \#, s'_0, \mathbb{R} \rangle$, where the Refuter starts playing
- The Refuter's states are $V_{\mathbf{R}} = \{(s, \#, s', \mathbf{R}) \mid s \in S \land s' \in S'\} \cup \{v_{err}\}$
- The Verifier's states are $V_{\mathcal{V}} = \{(s, \sigma, s', \mathcal{V}) \mid s \in S \land s' \in S' \land \sigma \in (\Sigma^1 \cup \Sigma_{\mathcal{F}}^2)\}$ and E^G is the minimal set satisfying:

- $\{((s, \#, s', \mathbf{R}), (t, \sigma^1, s', \mathbf{V})) \mid \exists \ \sigma \in \Sigma : s \xrightarrow{\sigma} t\} \subseteq E^G,$
- {(($s, \#, s', \mathbf{R}$), ($s, \sigma^2, t', \mathbf{V}$)) | $\exists \sigma \in \Sigma_{\mathcal{F}} : s' \xrightarrow{\sigma} t' \} \subseteq E^G$,
- $\{((s, \sigma^2, s', \mathbf{V}), (t, \#, s', \mathbf{R})) \mid \exists \sigma \in \Sigma : s \xrightarrow{\sigma} t\} \subseteq E^G,$
- $\{((s, \sigma^1, s', \mathbf{V}), (s, \#, t', \mathbf{R})) \mid \exists \sigma \in \Sigma : s' \xrightarrow{\sigma} t'\} \subseteq E^G,$
- $\{((s, F^2, s', \mathbf{V}), (s, \#, s', \mathbf{R}))\} \subseteq E^G$, for any $F \in \mathcal{F}$.
- If there is no outgoing transition from some state v, then, we additionally assume $(v, v_{err}) \in E^G$ and $(v_{err}, v_{err}) \in E^G$.

Definition 3.5. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_{\mathcal{F}}, \rightarrow', s'_0 \rangle$ two transition systems. The strong masking game graph $\mathcal{G}_{A,A'} = \langle V^G, V_R, V_V, E^G, v_0^G \rangle$ for two players is defined as follows:

- $V^G = (S \times (\Sigma^1 \cup \Sigma^2_{\mathcal{F}_{\mathcal{I}}} \cup \{\#\}) \times S' \times \{\mathrm{R}, \mathrm{V}\}) \cup \{v_{err}\}$
- The initial state is $v_0^G = \langle s_0, \#, s'_0, \mathbb{R} \rangle$, where the Refuter starts playing
- The Refuter's states are $V_{\mathbf{R}} = \{(s, \#, s', \mathbf{R}) \mid s \in S \land s' \in S'\} \cup \{v_{err}\}$
- The Verifier's states are $V_{\rm V} = \{(s, \sigma, s', {\rm V}) \mid s \in S \land s' \in S' \land \sigma \in (\Sigma^1 \cup \Sigma_{\mathcal{F}}^2)\}$ and E^G is the minimal set satisfying:

- $\{((s, \#, s', \mathbf{R}), (t, \sigma^1, s', \mathbf{V})) \mid \exists \ \sigma \in \Sigma : s \xrightarrow{\sigma} t\} \subseteq E^G,$
- {(($s, \#, s', \mathbf{R}$), ($s, \sigma^2, t', \mathbf{V}$)) | $\exists \sigma \in \Sigma_{\mathcal{F}} : s' \xrightarrow{\sigma} t'$ } $\subseteq E^G$,
- $\{((s,\sigma^2,s',\mathbf{V}),(t,\#,s',\mathbf{R})) \mid \exists \sigma \in \Sigma : s \xrightarrow{\sigma} t\} \subseteq E^G,$
- $\{((s, \sigma^1, s', \mathbf{V}), (s, \#, t', \mathbf{R})) \mid \exists \sigma \in \Sigma : s' \xrightarrow{\sigma} t'\} \subseteq E^G,$
- $\{((s, F^2, s', \mathbf{V}), (s, \#, s', \mathbf{R}))\} \subseteq E^G$, for any $F \in \mathcal{F}$.
- If there is no outgoing transition from some state v, then, we additionally assume $(v, v_{err}) \in E^G$ and $(v_{err}, v_{err}) \in E^G$.

Definition 3.5. Let $A = \langle S, \Sigma, \rightarrow, s_0 \rangle$ and $A' = \langle S', \Sigma_{\mathcal{F}}, \rightarrow', s'_0 \rangle$ two transition systems. The strong masking game graph $\mathcal{G}_{A,A'} = \langle V^G, V_R, V_V, E^G, v_0^G \rangle$ for two players is defined as follows:

- $V^G = (S \times (\Sigma^1 \cup \Sigma^2_{\mathcal{F}} \cup \{\#\}) \times S' \times \{\mathrm{R}, \mathrm{V}\}) \cup \{v_{err}\}$
- The initial state is $v_0^G = \langle s_0, \#, s'_0, \mathbf{R} \rangle$, where the Refuter starts playing
- The Refuter's states are $V_{\rm R} = \{(s, \#, s', {\rm R}) \mid s \in S \land s' \in S'\} \cup \{v_{err}\}$
- The Verifier's states are $V_{\rm V} = \{(s, \sigma, s', {\rm V}) \mid s \in S \land s' \in S' \land \sigma \in (\Sigma^1 \cup \Sigma_{\mathcal{F}}^2)\}$

and E^G is the minimal set satisfying:

- { $((s, \#, s', \mathbf{R}), (t, \sigma^1, s', \mathbf{V})) \mid \exists \sigma \in \Sigma : s \xrightarrow{\sigma} t$ } $\subseteq E^G$,
- { $((s, \#, s', \mathbf{R}), (s, \sigma^2, t', \mathbf{V})) \mid \exists \sigma \in \Sigma_{\mathcal{F}} : s' \xrightarrow{\sigma} t' \} \subset E^G$,
- { $((s, \sigma^2, s', \mathbf{V}), (t, \#, s', \mathbf{R})) \mid \exists \sigma \in \Sigma : s \xrightarrow{\sigma} t$ } $\subseteq E^G$,
- { $((s, \sigma^1, s', \mathbf{V}), (s, \#, t', \mathbf{R})) \mid \exists \sigma \in \Sigma : s' \xrightarrow{\sigma} t' \in E^G$,
- $\{((s, F^2, s', \mathbf{V}), (s, \#, s', \mathbf{R}))\} \subseteq E^G$, for any $F \in \mathcal{F}$.
- If there is no outgoing transition from some state v, then, we additionally assume $(v, v_{err}) \in$ E^G and $(v_{err}, v_{err}) \in E^G$.

We are in the presence of a masking simulation iff the Verifier has a winning strategy (i.e. the Refuter is not able to lead the Verifier to the error state) ARLANDES

Masking Simulation Game (Algorithm)

Definition 3.9. Given a strong masking game graph $\mathcal{G}_{A,A'}$, the sets $U_i^{\mathcal{I}}$ (for $i, j \geq 0$) are defined as follows:

Lemma 3.10. The Refuter has a winning strategy in $\mathcal{G}_{A,A'}$ (or $\mathcal{G}_{A,A'}^W$) iff $v_0^G \in U$

Back to the example

module NOMINAL

b : [0..1] init 0;

[w0]	true	->	(b'	=	0);
[w1]	true	->	(b'	=	1);
[r0]	b=0	->	true	∋;	
[r1]	b=1	->	true	Э;	

Which solution is better?

```
endmodule
```

module FAULTY

v : [0..3] init 0; [w0] true -> (v' = 0); [w1] true -> (v' = 3); [r0] v<=1 -> true; [r1] v>=2 -> true; [fault] v<3 -> (v' = v+1); [fault] v>0 -> (v' = v-1);

endmodule

module FAULTY

v : [0..5] init 0; [w0] true -> (v' = 0); [w1] true -> (v' = 5); [r0] v<=2 -> true; [r1] v>=3 -> true; [fault] v<5 -> (v' = v+1); [fault] v>0 -> (v' = v-1);

endmodule

Back to the example

module NOMINAL

b : [0..1] init 0;

[w0]	true	->	(b'	=	0);
[w1]	true	->	(b'	=	1);
[r0]	b=0	->	true	e;	
[r1]	b=1	->	true	e;	

Which solution is better?

```
endmodule
```

module FAULTY_BOUNDED

```
module FAULTY_BOUNDED
```

endmodule

endmodule

Add the counting artifact and check masking simulation

Back to the example

endmodule

endmodule

Add the counting artifact and check masking simulation

The quantitative masking game $Q_{A,A'}$ is defined by extending the masking game with the reward function

$$\mathbf{r}((s,\sigma,s',X)) = \begin{cases} (1,0) & \text{if } \sigma \in \mathcal{F} \\ (0,0) & \text{otherwise} \end{cases} \quad \mathbf{r}(v_{err}) = (0,1)$$

Take a play $\rho = \rho_0 \rho_1 \rho_2$,... and let $r(\rho_i) = (a_i, b_i)$ for all $i \ge 0$. We define the masking payoff function by:

$$f_m(\rho) = \lim_{n \to \infty} \frac{b_n}{1 + \sum_{i=0}^n a_i}$$

The quantitative masking game $Q_{A,A'}$ is defined by extending the masking game with the reward function

$$\mathbf{r}((s,\sigma,s',X)) = \begin{cases} (1,0) & \text{if } \sigma \in \mathcal{F} \\ (0,0) & \text{otherwise} \end{cases} \quad \mathbf{r}(v_{err}) = (0,1)$$

Take a play $\rho = \rho_0 \rho_1 \rho_2$,... and let $r(\rho_i) = (a_i, b_i)$ for all $i \ge 0$. We define the masking payoff function by:

CONICE

$$f_m(\rho) = \lim_{n \to \infty} \frac{b_n}{1 + \sum_{i=0}^n a_i}$$

$$f_m(\rho) = \begin{cases} 0 & \text{if } v_{err} \text{ is not in } \rho \\ \frac{1}{\text{number of faults before } v_{err}} & \text{otherwise} \end{cases}$$

The masking distance is defined by the value of the game:

$$\delta_m(A, A') \stackrel{\text{def}}{=} \operatorname{val}(\mathcal{Q}_{A, A'}) = \inf_{\pi_{\mathrm{V}} \in \Pi_{\mathrm{V}}} \sup_{\pi_{\mathrm{R}} \in \Pi_{\mathrm{R}}} f_m(\operatorname{out}(\pi_{\mathrm{R}}, \pi_{\mathrm{V}}))$$
$$= \sup_{\pi_{\mathrm{R}} \in \Pi_{\mathrm{R}}} \inf_{\pi_{\mathrm{V}} \in \Pi_{\mathrm{V}}} f_m(\operatorname{out}(\pi_{\mathrm{R}}, \pi_{\mathrm{V}}))$$

The masking distance is defined by the value of the game:

Theorem: $\delta_m(A, A') = 0$ iff $A \preceq_m A'$

Quantitative Masking Game (algorithm)

Definition 3.9. Given a strong masking game graph $\mathcal{G}_{A,A'}$, the sets $U_i^{\mathcal{I}}$ (for $i, j \geq 0$) are defined as follows:

$$\begin{split} U_i^0 = & U_0^j = \emptyset, \\ U_1^1 = \{ v_{err} \}, \\ & U_{i+1}^{j+1} = \{ v' \mid v' \in V_{\mathcal{R}} \land \operatorname{post}(v') \cap U_{i+1}^j \neq \emptyset \} \\ & \cup \{ v' \mid v' \in V_{\mathcal{V}} \land \operatorname{post}(v') \subseteq \bigcup_{i' \leq i+1, j' \leq j} U_{i'}^{j'} \land \operatorname{post}(v') \cap U_{i+1}^j \neq \emptyset \land \operatorname{pr}_1(v') \notin \mathcal{F} \} \\ & \cup \{ v' \mid v' \in V_{\mathcal{V}} \land \operatorname{post}(v') \subseteq \bigcup_{i' \leq i, j' \leq j} U_{i'}^{j'} \land \operatorname{post}(v') \cap U_i^j \neq \emptyset \land \operatorname{pr}_1(v') \notin \mathcal{F} \} \\ & \cup \{ v' \mid v' \in V_{\mathcal{V}} \land \operatorname{post}(v') \subseteq \bigcup_{i' \leq i, j' \leq j} U_{i'}^{j'} \land \operatorname{post}(v') \cap U_i^j \neq \emptyset \land \operatorname{pr}_1(v') \notin \mathcal{F} \} \\ & \text{Furthermore, } U^k = \bigcup_{i \geq 0} U_i^k \text{ and } U = \bigcup_{k \geq 0} U^k. \end{split}$$

Quantitative Masking Game (algorithm)

Definition 3.9. Given a strong masking game graph $\mathcal{G}_{A,A'}$, the sets $U_i^{\mathcal{I}}$ (for $i, j \geq 0$) are defined as follows:

$$\begin{split} U_{i}^{0} = U_{0}^{j} &= \emptyset, \\ U_{1}^{1} = \{v_{err}\}, \\ U_{i+1}^{j+1} = \{v' \mid v' \in V_{\mathcal{R}} \land \operatorname{post}(v') \cap U_{i+1}^{j} \neq \emptyset\} \\ & \cup \{v' \mid v' \in V_{\mathcal{V}} \land \operatorname{post}(v') \subseteq \bigcup_{i' \leq i+1} j' \leq j} U_{i'}^{j'} \land \operatorname{post}(v') \cap U_{i+1}^{j} \neq \emptyset \land \operatorname{pr}_{1}(v') \notin \mathcal{F}\} \\ & \cup \{v' \mid v' \in V_{\mathcal{V}} \land \operatorname{post}(v') \subseteq \bigcup_{i' \leq i, j' \leq j} U_{i'}^{j'} \land \operatorname{post}(v') \cap U_{i}^{j} \neq \emptyset \land \operatorname{pr}_{1}(v') \notin \mathcal{F}\} \\ & \cup \{v' \mid v' \in V_{\mathcal{V}} \land \operatorname{post}(v') \subseteq \bigcup_{i' \leq i, j' \leq j} U_{i'}^{j'} \land \operatorname{post}(v') \cap U_{i}^{j} \neq \emptyset \land \operatorname{pr}_{1}(v') \notin \mathcal{F}\} \\ & \text{Furthermore, } U^{k} = \bigcup_{i \geq 0} U_{i}^{k} \text{ and } U = \bigcup_{k \geq 0} U^{k}. \end{split}$$

Quantitative Masking Game (algorithm)

Definition 3.9. Given a strong masking game graph $\mathcal{G}_{A,A'}$, the sets $U_i^{\mathcal{I}}$ (for $i, j \geq 0$) are defined as follows:

Theorem:

$$\delta_m(A,A') = \begin{cases} \frac{1}{\min\{i \mid v_0^G \in U_i^j\}} & \text{if } v_0^G \in U\\ 0 & \text{otherwise} \end{cases}$$

Everybody loves tables!

- Tool MaskD (developed by Luciano)
- ♦ Complexity (general): $\mathcal{O}(|E^G| * \log |V^G|)$
- Weak case requires reflexivetransitive construction, so add $\mathcal{O}(\max(|S|, |S'|)^{2.3727})$
- * Complexity (deterministic) $\mathcal{O}(|E^G|)$

Shortest weighted path

Case Study	Redundancy	Masking Distance	Time	Time(Det)
	3 bits	0.333	0.7s	0.6s
	5 bits	0.25	2.5s	1.9s
Redundant Memory Cell	7 bits	0.2	7.2s	5.7s
	9 bits	0.167	1m.4s	1m11s
	11 bits	0.143	28m27s	26m10s
	3 modules	0.333	0.6s	0.5s
N-Modular Redundancy	5 modules	0.25	1.2s	0.7s
	7 modules	0.2	5.6s	3.8s
	9 modules	0.167	2m55s	2m32s
	11 modules	0.143	75m17s	72m48s
	2 phils	0.5	0.6s	0.6s
	3 phils	0.333	1.9s	0.9s
Dining Philosophers	4 phils	0.25	5.9s	2.6s
	5 phils	0.2	25.3s	24.1s
	6 phils	0.167	19m.23s	11m39s
	3 generals	0.5	0.9s	—
Byzantine Generals	4 generals	0.333	17.1s	—
	5 generals	0.333	429m54s	—
	1 follower	0	0.7s	0.8s
Raft LRCC (5)	2 followers	0	5.6s	3.6s
	3 followers	0	49m.50s	37m.53s
	1 retransm.	0.333	0.7s	—
	5 retransm.	0.143	0.8s	—
BRP(1)	10 retransm.	0.083	1.3s	—
	20 retransm.	0.045	3.9s	—
	40 retransm.	0.024	4.8s	—
BRP(5)	1 retransm.	0.333	4.2 <i>s</i>	—
	5 retransm.	0.143	4.8 <i>s</i>	—
	10 retransm.	0.083	6.1s	—
	20 retransm.	0.045	8.7 <i>s</i>	—
	40 retransm.	0.024	18.6 <i>s</i>	—
	1 retransm.	0.333	4.7s	—
	5 retransm.	0.143	6.4 <i>s</i>	—
BRP(10)	10 retransm.	0.083	10.1s	—
	20 retransm.	0.045	20.5s	—
	40 retransm.	0.024	1m.9s	_

Measuring Masking Fault-Tolerance

Pablo F. Castro, Pedro R. D'Argenio, Ramiro Demasi, Luciano Putruele

Dependable Systems dTime Talks October, 2020

