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Córdoba, Argentina

{pcastro,lp
utruele}@dc

.exa.unr
c.edu.ar

2 FaMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
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Abstract. In this paper we introduce a notion of fault-tolerance dis-

tance between labeled transition systems. Intuitively, this notion of dis-

tance measures the degree of fault-tolerance exhibited by a candidate

system. In practice, there are different kinds of fault-tolerance, here we

restrict ourselves to the analysis of masking fault-tolerance because it

is often a highly desirable goal for critical systems. Roughly speaking,

a system is masking fault-tolerant when it is able to completely mask

the faults, not allowing these faults to have any observable consequences

for the users. We capture masking fault-tolerance via a simulation rela-

tion, which is accompanied by a corresponding game characterizat
ion.

We enrich the resulting games with quantitative objectives to define the

notion of masking fault-tolerance distance. Furthermore, we investigate

the basic properties of this notion of masking distance, and we prove that

it is a directed semimetric. We have implemented our approach in a pro-

totype tool that automatically computes the masking distance between

a nominal system and a fault-tolerant version of it. We have used this

tool to measure the masking tolerance of multiple instances of several

case studies.

1 Introduction

Fault-tolerance allows for the construction of systems that are able to over-

come the occurrence of faults during their execution. Examples of fault-tolerant

systems can be found everywhere: communication protocols, hardware circuits,

avionic systems, cryptographic currencies, etc. So, the increasing relevance of

critical software in everyday life has led to a renewed interest in the automatic
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Motivation
module NOMINAL

  b : [0..1] init 0;

  [w0]   true -> (b' = 0);
  [w1]   true -> (b' = 1);
  [r0]   b=0  -> true;
  [r1]   b=1  -> true;

endmodule

module FAULTY

  v : [0..3] init 0;

  [w0]    true -> (v' = 0);
  [w1]    true -> (v' = 3);
  [r0]    v<=1 -> true;
  [r1]    v>=2 -> true;
  [fault] v<3  -> (v' = v+1);
  [fault] v>0  -> (v' = v-1);

endmodule

Ideal 
behaviour Behaviour of the 

implementation

Redundancy

A fault is masked when the occurrence of it have no observable consequences
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module FAULTY

  v : [0..5] init 0;

  [w0]    true -> (v' = 0);
  [w1]    true -> (v' = 5);
  [r0]    v<=2 -> true;
  [r1]    v>=3 -> true;
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❖ Behavioural relation 
❖ Game characterisation 
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Strong Masking Simulation

DISTANCES FOR FAULT-TOLERANCE: THE MASKING CASE 5

a quantitative objective f , the value of the game for a Player 1’s strategy ⇡1, denoted by
v1(⇡1), is defined as the infimum over all the values resulting from Player 2’s strategies,
i.e., v1(⇡1) = inf⇡22⇧2 f(out(⇡1,⇡2)). The value of the game for Player 1 is defined as the
supremum of the values of all Player 1’s strategies, i.e., sup⇡12⇧1

v1(⇡1). Analogously, the
value of the game for a Player 2’s strategy ⇡2 and the value of the game for Player 2 are
defined as v2(⇡2) = sup⇡12⇧1

f(out(⇡1,⇡2)) and inf⇡22⇧2 v2(⇡2), respectively. A strategy
is an optimal strategy for a player if the value of the strategy for that player is equal to
the value of the game. We say that a game is determined if both values are equal, that is:
sup⇡12⇧1

v1(⇡1) = inf⇡22⇧2 v2(⇡2). In this case we denote by val(G) the value of game G.
The following result from [24] characterizes a large set of determined games.

Theorem 2.1. Any game with a quantitative function f that is bounded and Borel measurable

is determined.

3. Masking Simulation

We start by defining masking simulation. In [11], we have defined a state-based simulation
for masking fault-tolerance, here we recast this definition using labelled transition systems.
First, let us introduce some concepts needed for defining masking fault-tolerance. For
any vocabulary ⌃, and set of labels F = {F0, . . . , Fn} not belonging to ⌃, we consider
⌃F = ⌃ [ F , where F \ ⌃ = ;. Intuitively, the elements of F indicate the occurrence of a
fault in a faulty implementation. Furthermore, sometimes it will be useful to consider the
set ⌃i = {e

i
| e 2 ⌃}, containing the elements of ⌃ indexed with superscript i.

3.1. Strong Masking Simulation.

Definition 3.1. Let A = hS,⌃,!, s0i and A
0 = hS

0
,⌃F ,!

0
, s

0
0i be two transition systems.

A
0 is strong masking fault-tolerant with respect to A if there exists a relation M ✓ S ⇥ S

0

between A and A
0 such that:

(A) s0 M s
0
0, and

(B) for all s 2 S, s
0
2 S

0 with sM s
0 and all e 2 ⌃ the following holds:

(1) if s
e
�! t then 9 t

0
2 S

0 : s0
e
�!

0
t
0
^ tM t

0;
(2) if s0

e
�!

0
t
0 then 9 t 2 S : s

e
�! t ^ tM t

0;

(3) if s0
F
�!

0
t
0 for some F 2 F then sM t

0.

If such a relation exists we say that A0 is a strong masking fault-tolerant implementation

of A, denoted by A �m A
0.

Intuitively, the definition states that, starting in s
0, faults can be masked in such a way

that the behavior exhibited is the same as that observed when starting from s and executing
transitions without faults. In other words, a masking relation ensures that every faulty
behavior in the implementation can be simulated by the specification. More specifically,
note that conditions (A), (B.1), and (B.2) imply that we have a bisimulation when A and A

0

do not exhibit faulty behavior. Particularly, condition (B.1) says that the normal execution
of A can be simulated by an execution of A0. On the other hand, condition (B.2) says that
the implementation does not add normal (non-faulty) behavior. Finally, condition (B.3)
states that every outgoing faulty transition (F ) from s

0 must be matched by a stuttering
step from s.
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If such a relation exists we say that A0 is a strong masking fault-tolerant implementation
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Intuitively, the definition states that, starting in s
0, faults can be masked in such a way

that the behavior exhibited is the same as that observed when starting from s and executing
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behavior in the implementation can be simulated by the specification. More specifically,
note that conditions (A), (B.1), and (B.2) imply that we have a bisimulation when A and A

0

do not exhibit faulty behavior. Particularly, condition (B.1) says that the normal execution
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the implementation does not add normal (non-faulty) behavior. Finally, condition (B.3)
states that every outgoing faulty transition (F ) from s

0 must be matched by a stuttering
step from s.

Nominal: 
no faults Implementation: 

has faults
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the implementation does not add normal (non-faulty) behavior. Finally, condition (B.3)
states that every outgoing faulty transition (F ) from s

0 must be matched by a stuttering
step from s.

Just like 
bisimulation

s

t

a

∀∀
s
′

t
′

a

∃∃

M

M
∃∃

a

t t
′
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s s

′

a

M

M

Nominal: 
no faults Implementation: 

has faults
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Abstract. We present a formal characterization of fault-tolerant behaviors of computing systems via simulation

relations. This formalization makes use of variations of standard simulation relations in order to compare the

executions of a system that exhibits faults with executions where no faults occur; intuitively, the latter can be

understood as a specification of the system and the former as a fault-tolerant implementation. By employing vari-

ations of standard simulation algorithms, our characterization enables us to algorithmically check fault-tolerance

in polynomial time, i.e., to verify that a system behaves in an acceptable way even subject to the occurrence of

faults. Furthermore, the use of simulation relations in this setting allows us to distinguish between the differ-

ent levels of fault-tolerance exhibited by systems during their execution. We prove that each kind of simulation

relation preserves a corresponding class of temporal properties expressed in CTL; more precisely, masking fault-

tolerance preserves liveness and safety properties, nonmasking fault-tolerance preserves liveness properties, while

failsafe fault-tolerance guarantees the preservation of safety properties. We illustrate the suitability of this formal

framework through its application to standard examples of fault-tolerance.

Keywords: Formal specification, Simulation relations, Fault-tolerance, Program verification

1. Introduction

The increasing demand for highly dependable and constantly available systems has focused attention on providing

strong guarantees for software robustness, understood as the ability of software to continue behaving in an

acceptable way despite erroneous behavior during its execution or the existence of an uncooperative environment;

this is particularly true for critical systems. Some examples of such critical systems include software for medical

devices and software controllers in the avionics and automotive industries. In this context, a problem that requires

attention is that of reasoning about faults, that is, those unexpected events that could affect a system and may

corrupt or degrade its performance. A related problem is that of expressing the properties of systems in the

presence of such faults and providing rigorous, or mathematical, proofs of the truth of these properties.
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module NOMINAL

  b : [0..1] init 0;

  [w0]   true -> (b' = 0);
  [w1]   true -> (b' = 1);
  [r0]   b=0  -> true;
  [r1]   b=1  -> true;

endmodule

module FAULTY

  v : [0..3] init 0;

  [w0]    true -> (v' = 0);
  [w1]    true -> (v' = 3);
  [r0]    v<=1 -> true;
  [r1]    v>=2 -> true;
  [fault] v<3  -> (v' = v+1);
  [fault] v>0  -> (v' = v-1);

endmodule

DISTANCES FOR FAULT-TOLERANCE: THE MASKING CASE 5

a quantitative objective f , the value of the game for a Player 1’s strategy ⇡1, denoted by
v1(⇡1), is defined as the infimum over all the values resulting from Player 2’s strategies,
i.e., v1(⇡1) = inf⇡22⇧2 f(out(⇡1,⇡2)). The value of the game for Player 1 is defined as the
supremum of the values of all Player 1’s strategies, i.e., sup⇡12⇧1

v1(⇡1). Analogously, the
value of the game for a Player 2’s strategy ⇡2 and the value of the game for Player 2 are
defined as v2(⇡2) = sup⇡12⇧1

f(out(⇡1,⇡2)) and inf⇡22⇧2 v2(⇡2), respectively. A strategy
is an optimal strategy for a player if the value of the strategy for that player is equal to
the value of the game. We say that a game is determined if both values are equal, that is:
sup⇡12⇧1

v1(⇡1) = inf⇡22⇧2 v2(⇡2). In this case we denote by val(G) the value of game G.
The following result from [24] characterizes a large set of determined games.

Theorem 2.1. Any game with a quantitative function f that is bounded and Borel measurable

is determined.

3. Masking Simulation

We start by defining masking simulation. In [11], we have defined a state-based simulation
for masking fault-tolerance, here we recast this definition using labelled transition systems.
First, let us introduce some concepts needed for defining masking fault-tolerance. For
any vocabulary ⌃, and set of labels F = {F0, . . . , Fn} not belonging to ⌃, we consider
⌃F = ⌃ [ F , where F \ ⌃ = ;. Intuitively, the elements of F indicate the occurrence of a
fault in a faulty implementation. Furthermore, sometimes it will be useful to consider the
set ⌃i = {e

i
| e 2 ⌃}, containing the elements of ⌃ indexed with superscript i.

3.1. Strong Masking Simulation.

Definition 3.1. Let A = hS,⌃,!, s0i and A
0 = hS

0
,⌃F ,!

0
, s

0
0i be two transition systems.

A
0 is strong masking fault-tolerant with respect to A if there exists a relation M ✓ S ⇥ S

0

between A and A
0 such that:

(A) s0 M s
0
0, and

(B) for all s 2 S, s
0
2 S

0 with sM s
0 and all e 2 ⌃ the following holds:

(1) if s
e
�! t then 9 t

0
2 S

0 : s0
e
�!

0
t
0
^ tM t

0;
(2) if s0

e
�!

0
t
0 then 9 t 2 S : s

e
�! t ^ tM t

0;

(3) if s0
F
�!

0
t
0 for some F 2 F then sM t

0.

If such a relation exists we say that A0 is a strong masking fault-tolerant implementation

of A, denoted by A �m A
0.

Intuitively, the definition states that, starting in s
0, faults can be masked in such a way

that the behavior exhibited is the same as that observed when starting from s and executing
transitions without faults. In other words, a masking relation ensures that every faulty
behavior in the implementation can be simulated by the specification. More specifically,
note that conditions (A), (B.1), and (B.2) imply that we have a bisimulation when A and A

0

do not exhibit faulty behavior. Particularly, condition (B.1) says that the normal execution
of A can be simulated by an execution of A0. On the other hand, condition (B.2) says that
the implementation does not add normal (non-faulty) behavior. Finally, condition (B.3)
states that every outgoing faulty transition (F ) from s

0 must be matched by a stuttering
step from s.

NOMINAL FAULTY
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module NOMINAL

  b : [0..1] init 0;

  [w0]   true -> (b' = 0);
  [w1]   true -> (b' = 1);
  [r0]   b=0  -> true;
  [r1]   b=1  -> true;

endmodule

module FAULTY_BOUNDED

  v : [0..3] init 0;
  f : [0..1] init 0;

  [w0]    true -> (v' = 0);
  [w1]    true -> (v' = 3);
  [r0]    v<=1 -> true;
  [r1]    v>=2 -> true;
  [fault] (v<3) & (f<1) -> (v' = v+1) &
                           (f' = f+1);
  [fault] (v>0) & (f<1) -> (v' = v-1) &
                           (f' = f+1);

endmodule

DISTANCES FOR FAULT-TOLERANCE: THE MASKING CASE 5

a quantitative objective f , the value of the game for a Player 1’s strategy ⇡1, denoted by
v1(⇡1), is defined as the infimum over all the values resulting from Player 2’s strategies,
i.e., v1(⇡1) = inf⇡22⇧2 f(out(⇡1,⇡2)). The value of the game for Player 1 is defined as the
supremum of the values of all Player 1’s strategies, i.e., sup⇡12⇧1

v1(⇡1). Analogously, the
value of the game for a Player 2’s strategy ⇡2 and the value of the game for Player 2 are
defined as v2(⇡2) = sup⇡12⇧1

f(out(⇡1,⇡2)) and inf⇡22⇧2 v2(⇡2), respectively. A strategy
is an optimal strategy for a player if the value of the strategy for that player is equal to
the value of the game. We say that a game is determined if both values are equal, that is:
sup⇡12⇧1

v1(⇡1) = inf⇡22⇧2 v2(⇡2). In this case we denote by val(G) the value of game G.
The following result from [24] characterizes a large set of determined games.

Theorem 2.1. Any game with a quantitative function f that is bounded and Borel measurable

is determined.

3. Masking Simulation

We start by defining masking simulation. In [11], we have defined a state-based simulation
for masking fault-tolerance, here we recast this definition using labelled transition systems.
First, let us introduce some concepts needed for defining masking fault-tolerance. For
any vocabulary ⌃, and set of labels F = {F0, . . . , Fn} not belonging to ⌃, we consider
⌃F = ⌃ [ F , where F \ ⌃ = ;. Intuitively, the elements of F indicate the occurrence of a
fault in a faulty implementation. Furthermore, sometimes it will be useful to consider the
set ⌃i = {e

i
| e 2 ⌃}, containing the elements of ⌃ indexed with superscript i.

3.1. Strong Masking Simulation.

Definition 3.1. Let A = hS,⌃,!, s0i and A
0 = hS

0
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0
, s

0
0i be two transition systems.

A
0 is strong masking fault-tolerant with respect to A if there exists a relation M ✓ S ⇥ S
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between A and A
0 such that:

(A) s0 M s
0
0, and
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0 with sM s
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0
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0
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If such a relation exists we say that A0 is a strong masking fault-tolerant implementation

of A, denoted by A �m A
0.

Intuitively, the definition states that, starting in s
0, faults can be masked in such a way

that the behavior exhibited is the same as that observed when starting from s and executing
transitions without faults. In other words, a masking relation ensures that every faulty
behavior in the implementation can be simulated by the specification. More specifically,
note that conditions (A), (B.1), and (B.2) imply that we have a bisimulation when A and A

0

do not exhibit faulty behavior. Particularly, condition (B.1) says that the normal execution
of A can be simulated by an execution of A0. On the other hand, condition (B.2) says that
the implementation does not add normal (non-faulty) behavior. Finally, condition (B.3)
states that every outgoing faulty transition (F ) from s

0 must be matched by a stuttering
step from s.

NOMINAL FAULTY_BOUNDED

J = {⟨b, (v, f)⟩ | 2b ≤ v ≤ 2b+ 1}

The quantitaive masking game QA,A′ is defined by extending the masking game

with the reward function

r((s,σ, s′, X)) =

⎧
⎨

⎩
(1, 0) if σ ∈ F

(0, 0) otherwise
r(verr ) = (0, 1)

Take a play ρ = ρ0ρ1ρ2, . . . and let r(ρi) = (ai, bi) for all i ≥ 0. We define the

masking payoff function by:

fm(ρ) = lim
n→∞

bn
1 +

∑n
i=0 ai

The masking distance is defined by the value of the game:

δm(A,A′)
def
= val(QA,A′) = infπV∈ΠV supπR∈ΠR

fm(out(πR,πV))

= supπR∈ΠR
infπV∈ΠV fm(out(πR,πV))

fm(ρ) =

⎧
⎪⎨

⎪⎩

0 if verr is not in ρ

1

number of faults before verr
otherwise

Theorem: δm(A,A′) = 0 iff A ≼m A′

δm(A,A′) =

⎧
⎪⎨

⎪⎩

1

min{i | vG0 ∈ U j
i }

if vG0 ∈ U

0 otherwise

R
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3.2. Weak Masking Simulation. For analyzing nontrivial systems a weak version of
masking simulation relation is needed. The main idea is that a weak masking simulation
abstracts away from internal behaviour, which is modeled by a special action ⌧ . Note
that internal transitions are common in fault-tolerance: the actions performed as part of a
fault-tolerant procedure in a component are usually not observable by the rest of the system.

The weak transition relations ) ✓ S ⇥ (⌃ [ {⌧} [ F)⇥ S considers the silent step ⌧

and is defined as follows:

e
=)=

8
><

>:

⌧
�!

⇤
�

e
�! �

⌧
�!

⇤ if e 2 ⌃,
e
�!

⇤ if e = ⌧,
e
�! if e 2 F .

The symbol � stands for composition of binary relations and
⌧
�!

⇤ is the reflexive and transitive
closure of the binary relation

⌧
�!.

Intuitively, if e /2 {⌧} [F , then s
e
=) s

0 means that there is a sequence of zero or more ⌧

transitions starting in s, followed by one transition labelled by e, followed again by zero or
more ⌧ transitions eventually reaching s

0. s
⌧
=) s

0 states that s can transition to s
0 via zero

or more ⌧ transitions. In particular, s
⌧
=) s for every s. For the case in which e 2 F , s

e
=) s

0

is equivalent to s
e
�! s

0 and hence no ⌧ step is allowed before or after the e transition.

Definition 3.2. Let A = hS,⌃,!, s0i and A
0 = hS

0
,⌃F ,!

0
, s

0
0i be two transition systems

with ⌃ possibly containing ⌧ . A0 is weak masking fault-tolerant with respect to A if there is
a relation M ✓ S ⇥ S

0 between A and A
0 such that:

(A) s0 M s
0
0

(B) for all s 2 S, s
0
2 S

0 with sM s
0 and all e 2 ⌃ [ {⌧} the following holds:

(1) if s
e
�! t then 9 t

0
2 S

0 : s0
e
=)0

t
0
^ tM t

0;
(2) if s0

e
�!

0
t
0 then 9 t 2 S : s

e
=) t ^ tM t

0;

(3) if s0
F
�!

0
t
0 for some F 2 F then sM t

0.

If such a relation exists, we say that A0 is a weak masking fault-tolerant implementation

of A, denoted by A �
w
m A

0.

The following theorem connects strong and weak masking simulation. It states that
weak masking simulation becomes strong masking simulation whenever transition �! is
replaced by =) in the original structure.

Theorem 3.3. Let A = hS,⌃,!, s0i and A
0 = hS

0
,⌃F ,!

0
, s

0
0i. M ✓ S⇥S

0
between A and

A
0
is a weak masking simulation if and only if:

(A) s0 M s
0
0, and

(B) for all s 2 S, s
0
2 S

0
with sM s

0
and all e 2 ⌃ [ {⌧} the following holds:

(1) if s
e
=) t then 9 t

0
2 S

0 : s0
e
=)0

t
0
^ tM t

0
;

(2) if s
0 e
=)0

t
0
then 9 t 2 S : s

e
=) t ^ tM t

0);

(3) if s
0 F
=)0

t
0
for some F 2 F then sM t

0

Proof. First note that conditions (A), (B.1), (B.2) and (B.3) in this theorem imply
conditions (A), (B.1), (B.2) and (B.3) of Def. 3.2, then the “if” part is direct. For the other
direction, condition (A) is the same in the theorem and in the definition. Now, suppose
that condition (B.1) of Def. 3.2 holds, i.e., s

e
=) t for e 2 ⌃ [ {⌧} and t 2 S. If e 2 ⌃, then,

by definition of ), we have that there are w and v such that s
⌧
�!

⇤
w, w

e
�! v and v

⌧
�!

⇤
t.
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3.2. Weak Masking Simulation. For analyzing nontrivial systems a weak version of
masking simulation relation is needed. The main idea is that a weak masking simulation
abstracts away from internal behaviour, which is modeled by a special action ⌧ . Note
that internal transitions are common in fault-tolerance: the actions performed as part of a
fault-tolerant procedure in a component are usually not observable by the rest of the system.

The weak transition relations ) ✓ S ⇥ (⌃ [ {⌧} [ F)⇥ S considers the silent step ⌧

and is defined as follows:
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If such a relation exists, we say that A0 is a weak masking fault-tolerant implementation

of A, denoted by A �
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The following theorem connects strong and weak masking simulation. It states that
weak masking simulation becomes strong masking simulation whenever transition �! is
replaced by =) in the original structure.
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conditions (A), (B.1), (B.2) and (B.3) of Def. 3.2, then the “if” part is direct. For the other
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⌧
�!

⇤
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⌧
�!

⇤
t.
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3.2. Weak Masking Simulation. For analyzing nontrivial systems a weak version of
masking simulation relation is needed. The main idea is that a weak masking simulation
abstracts away from internal behaviour, which is modeled by a special action ⌧ . Note
that internal transitions are common in fault-tolerance: the actions performed as part of a
fault-tolerant procedure in a component are usually not observable by the rest of the system.
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3.2. Weak Masking Simulation. For analyzing nontrivial systems a weak version of
masking simulation relation is needed. The main idea is that a weak masking simulation
abstracts away from internal behaviour, which is modeled by a special action ⌧ . Note
that internal transitions are common in fault-tolerance: the actions performed as part of a
fault-tolerant procedure in a component are usually not observable by the rest of the system.
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⌧
�!.
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⌧
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⌧
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e
=) s
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e
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0
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e
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(3) if s0
F
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0
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The following theorem connects strong and weak masking simulation. It states that
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;
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⇤
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3.3. Masking Simulation Game. Let us define a masking simulation game for two transi-
tion systems (the specification of the nominal system and its fault-tolerant implementation)
that captures masking fault-tolerance. We first define the masking game graph with two
players, named by convenience the Refuter (R) and the Verifier (V).

Definition 3.5. Let A = hS,⌃,!, s0i and A
0 = hS

0
,⌃F ,!

0
, s

0
0i two transition systems.

The strong masking game graph GA,A0 = hV
G
, VR, VV, E

G
, v0

G
i for two players is defined as

follows:

• V
G = (S ⇥ (⌃1

[ ⌃2
F [ {#})⇥ S

0
⇥ {R,V}) [ {verr}

• The initial state is vG0 = hs0,#, s
0
0,Ri, where the Refuter starts playing

• The Refuter’s states are VR = {(s,#, s
0
,R) | s 2 S ^ s

0
2 S

0
} [ {verr}

• The Verifier’s states are VV = {(s,�, s0,V) | s 2 S ^ s
0
2 S

0
^ � 2 (⌃1

[ ⌃2
F )}

and E
G is the minimal set satisfying:

• {((s,#, s
0
,R), (t,�1

, s
0
,V)) | 9 � 2 ⌃ : s

�
�! t} ✓ E

G,
• {((s,#, s

0
,R), (s,�2

, t
0
,V)) | 9 � 2 ⌃F : s0

�
�!

0
t
0
} ✓ E

G,
• {((s,�2

, s
0
,V), (t,#, s

0
,R)) | 9 � 2 ⌃ : s

�
�! t} ✓ E

G,
• {((s,�1

, s
0
,V), (s,#, t

0
,R)) | 9 � 2 ⌃ : s0

�
�!

0
t
0
} ✓ E

G,
• {((s, F 2

, s
0
,V), (s,#, s

0
,R))} ✓ E

G, for any F 2 F .
• If there is no outgoing transition from some state v, then, we additionally assume (v, verr ) 2
E

G and (verr , verr ) 2 E
G.

The intuition of this game is as follows. The Refuter chooses transitions of either the
specification or the implementation to play, and the Verifier tries to match her choice, this is
similar to the bisimulation game [30]. However, when the Refuter chooses a fault, the Verifier
must match it with a stuttering step. The intuitive reading of this is that the fault-tolerant
implementation masked the fault in such a way that the occurrence of this fault cannot be
noticed from the users’ side. R wins if the game reaches the error state, i.e., verr ; otherwise,
V wins the game. This is basically a reachability game [26].

A weak masking game graph G
W
A,A0 is defined in the same way as the strong masking

game graph in Def. 3.5, with the exception that ⌃ and ⌃F may contain ⌧ , and the set of
labelled transitions (denoted as EG

W ) is now defined using the weak transition relations (i.e.,
) and )

0) from the respective transition systems.
Fig. 2 shows a part of the strong masking game graph for the running example considering

the transition systems A and A
00. Therein, Refuter’s nodes are drawn as boxes whereas
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3.3. Masking Simulation Game. Let us define a masking simulation game for two transi-
tion systems (the specification of the nominal system and its fault-tolerant implementation)
that captures masking fault-tolerance. We first define the masking game graph with two
players, named by convenience the Refuter (R) and the Verifier (V).
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• If there is no outgoing transition from some state v, then, we additionally assume (v, verr ) 2
E

G and (verr , verr ) 2 E
G.

The intuition of this game is as follows. The Refuter chooses transitions of either the
specification or the implementation to play, and the Verifier tries to match her choice, this is
similar to the bisimulation game [30]. However, when the Refuter chooses a fault, the Verifier
must match it with a stuttering step. The intuitive reading of this is that the fault-tolerant
implementation masked the fault in such a way that the occurrence of this fault cannot be
noticed from the users’ side. R wins if the game reaches the error state, i.e., verr ; otherwise,
V wins the game. This is basically a reachability game [26].

A weak masking game graph G
W
A,A0 is defined in the same way as the strong masking

game graph in Def. 3.5, with the exception that ⌃ and ⌃F may contain ⌧ , and the set of
labelled transitions (denoted as EG

W ) is now defined using the weak transition relations (i.e.,
) and )

0) from the respective transition systems.
Fig. 2 shows a part of the strong masking game graph for the running example considering

the transition systems A and A
00. Therein, Refuter’s nodes are drawn as boxes whereas
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3.3. Masking Simulation Game. Let us define a masking simulation game for two transi-
tion systems (the specification of the nominal system and its fault-tolerant implementation)
that captures masking fault-tolerance. We first define the masking game graph with two
players, named by convenience the Refuter (R) and the Verifier (V).

Definition 3.5. Let A = hS,⌃,!, s0i and A
0 = hS

0
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and E
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• {((s, F 2

, s
0
,V), (s,#, s
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,R))} ✓ E

G, for any F 2 F .
• If there is no outgoing transition from some state v, then, we additionally assume (v, verr ) 2
E

G and (verr , verr ) 2 E
G.

The intuition of this game is as follows. The Refuter chooses transitions of either the
specification or the implementation to play, and the Verifier tries to match her choice, this is
similar to the bisimulation game [30]. However, when the Refuter chooses a fault, the Verifier
must match it with a stuttering step. The intuitive reading of this is that the fault-tolerant
implementation masked the fault in such a way that the occurrence of this fault cannot be
noticed from the users’ side. R wins if the game reaches the error state, i.e., verr ; otherwise,
V wins the game. This is basically a reachability game [26].

A weak masking game graph G
W
A,A0 is defined in the same way as the strong masking

game graph in Def. 3.5, with the exception that ⌃ and ⌃F may contain ⌧ , and the set of
labelled transitions (denoted as EG

W ) is now defined using the weak transition relations (i.e.,
) and )

0) from the respective transition systems.
Fig. 2 shows a part of the strong masking game graph for the running example considering

the transition systems A and A
00. Therein, Refuter’s nodes are drawn as boxes whereas
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3.3. Masking Simulation Game. Let us define a masking simulation game for two transi-
tion systems (the specification of the nominal system and its fault-tolerant implementation)
that captures masking fault-tolerance. We first define the masking game graph with two
players, named by convenience the Refuter (R) and the Verifier (V).

Definition 3.5. Let A = hS,⌃,!, s0i and A
0 = hS

0
,⌃F ,!

0
, s

0
0i two transition systems.

The strong masking game graph GA,A0 = hV
G
, VR, VV, E

G
, v0

G
i for two players is defined as

follows:

• V
G = (S ⇥ (⌃1

[ ⌃2
F [ {#})⇥ S

0
⇥ {R,V}) [ {verr}

• The initial state is vG0 = hs0,#, s
0
0,Ri, where the Refuter starts playing

• The Refuter’s states are VR = {(s,#, s
0
,R) | s 2 S ^ s

0
2 S

0
} [ {verr}

• The Verifier’s states are VV = {(s,�, s0,V) | s 2 S ^ s
0
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[ ⌃2
F )}

and E
G is the minimal set satisfying:

• {((s,#, s
0
,R), (t,�1

, s
0
,V)) | 9 � 2 ⌃ : s

�
�! t} ✓ E

G,
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G,
• {((s, F 2

, s
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,V), (s,#, s

0
,R))} ✓ E

G, for any F 2 F .
• If there is no outgoing transition from some state v, then, we additionally assume (v, verr ) 2
E

G and (verr , verr ) 2 E
G.

The intuition of this game is as follows. The Refuter chooses transitions of either the
specification or the implementation to play, and the Verifier tries to match her choice, this is
similar to the bisimulation game [30]. However, when the Refuter chooses a fault, the Verifier
must match it with a stuttering step. The intuitive reading of this is that the fault-tolerant
implementation masked the fault in such a way that the occurrence of this fault cannot be
noticed from the users’ side. R wins if the game reaches the error state, i.e., verr ; otherwise,
V wins the game. This is basically a reachability game [26].

A weak masking game graph G
W
A,A0 is defined in the same way as the strong masking

game graph in Def. 3.5, with the exception that ⌃ and ⌃F may contain ⌧ , and the set of
labelled transitions (denoted as EG

W ) is now defined using the weak transition relations (i.e.,
) and )

0) from the respective transition systems.
Fig. 2 shows a part of the strong masking game graph for the running example considering

the transition systems A and A
00. Therein, Refuter’s nodes are drawn as boxes whereas
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3.3. Masking Simulation Game. Let us define a masking simulation game for two transi-
tion systems (the specification of the nominal system and its fault-tolerant implementation)
that captures masking fault-tolerance. We first define the masking game graph with two
players, named by convenience the Refuter (R) and the Verifier (V).

Definition 3.5. Let A = hS,⌃,!, s0i and A
0 = hS

0
,⌃F ,!

0
, s

0
0i two transition systems.

The strong masking game graph GA,A0 = hV
G
, VR, VV, E

G
, v0

G
i for two players is defined as

follows:

• V
G = (S ⇥ (⌃1

[ ⌃2
F [ {#})⇥ S

0
⇥ {R,V}) [ {verr}

• The initial state is vG0 = hs0,#, s
0
0,Ri, where the Refuter starts playing

• The Refuter’s states are VR = {(s,#, s
0
,R) | s 2 S ^ s
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} [ {verr}

• The Verifier’s states are VV = {(s,�, s0,V) | s 2 S ^ s
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and E
G is the minimal set satisfying:
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0
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G, for any F 2 F .
• If there is no outgoing transition from some state v, then, we additionally assume (v, verr ) 2
E

G and (verr , verr ) 2 E
G.

The intuition of this game is as follows. The Refuter chooses transitions of either the
specification or the implementation to play, and the Verifier tries to match her choice, this is
similar to the bisimulation game [30]. However, when the Refuter chooses a fault, the Verifier
must match it with a stuttering step. The intuitive reading of this is that the fault-tolerant
implementation masked the fault in such a way that the occurrence of this fault cannot be
noticed from the users’ side. R wins if the game reaches the error state, i.e., verr ; otherwise,
V wins the game. This is basically a reachability game [26].

A weak masking game graph G
W
A,A0 is defined in the same way as the strong masking

game graph in Def. 3.5, with the exception that ⌃ and ⌃F may contain ⌧ , and the set of
labelled transitions (denoted as EG

W ) is now defined using the weak transition relations (i.e.,
) and )

0) from the respective transition systems.
Fig. 2 shows a part of the strong masking game graph for the running example considering

the transition systems A and A
00. Therein, Refuter’s nodes are drawn as boxes whereas
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3.3. Masking Simulation Game. Let us define a masking simulation game for two transi-
tion systems (the specification of the nominal system and its fault-tolerant implementation)
that captures masking fault-tolerance. We first define the masking game graph with two
players, named by convenience the Refuter (R) and the Verifier (V).
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• If there is no outgoing transition from some state v, then, we additionally assume (v, verr ) 2
E

G and (verr , verr ) 2 E
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The intuition of this game is as follows. The Refuter chooses transitions of either the
specification or the implementation to play, and the Verifier tries to match her choice, this is
similar to the bisimulation game [30]. However, when the Refuter chooses a fault, the Verifier
must match it with a stuttering step. The intuitive reading of this is that the fault-tolerant
implementation masked the fault in such a way that the occurrence of this fault cannot be
noticed from the users’ side. R wins if the game reaches the error state, i.e., verr ; otherwise,
V wins the game. This is basically a reachability game [26].

A weak masking game graph G
W
A,A0 is defined in the same way as the strong masking

game graph in Def. 3.5, with the exception that ⌃ and ⌃F may contain ⌧ , and the set of
labelled transitions (denoted as EG

W ) is now defined using the weak transition relations (i.e.,
) and )

0) from the respective transition systems.
Fig. 2 shows a part of the strong masking game graph for the running example considering

the transition systems A and A
00. Therein, Refuter’s nodes are drawn as boxes whereas

We are in the presence of a masking 
simulation iff the Verifier has a winning strategy       

(i.e. the Refuter is not able to lead the Verifier to the 
error state)
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is winning from (s,#, s
0
,R) for the Verifier, there is a play ⇡(s, F 2

, t
0
,V) = (s,#, t

0
,R) such

that ⇡ wins from (s,#, t
0
,R). Hence, s �m t

0, and the result follows. ⇧

By Theorem 3.3, the result also holds for weak masking games as it is stated in the
following theorem.

Theorem 3.7. Let A = hS,⌃ [ {⌧},!, s0i and A
0 = hS

0
,⌃F [ {⌧},!

0
, s

0
0i. A �

w
m A

0
i↵

the Verifier has a winning strategy for the weak masking game graph G
W
A,A0.

Theorem 3.8. For any A and A
0
, the strong (resp. weak) masking game graph GA,A0 (resp.

G
W
A,A0) can be determined in time O(|EG

|) (resp. O(|EG
W |)).

Proof. The set of winning states for the Refuter can be computed using a bottom-up
breadth-first search from the error state, as in reachability games [26]. This procedure
inspects once each edge, in the worst case. That is, the running time of this algorithm is
O(|EG

|) for the strong masking case, and O(|EG
W |) for the weak case. For the latter case,

one needs to bear in mind that computing ) from ! takes polynomial time. ⇧

s0,W0,t0 
2s1,W1,t0

1s0,R0,t0
1s0,R0,t0

2 s0,F2,t2

s1,#,t1 

s1,R1,t1
1 s1,R1,t1

2s1,W1,t1
1 s1,W1,t1

2

s0,#,t2

s0,#,t0 

s0,F2,t3

verr s0,#,t3s0,R1,t3
2

s1,W0,t0
2

s0,W0,t1
1

s0,R0,t2
2

s0,W1,t1
2s0,W0,t0 

1

s0,R0,t2
1

Figure 2: Part of the masking game graph for memory cell model with two faults

Solving reachability games can be performed by computing sets Reach0 (winning states
for the Refuter) as a fixed point of sets Reachi0 [26]. These ideas can be adapted to our
setting to take into account the number of faults. This will be useful for the next sections,
wherein the number of faults are important for reasoning about the quantitative version of
masking games.

Definition 3.9. Given a strong masking game graph GA,A0 , the sets U j
i (for i, j � 0) are

defined as follows:

U
0
i =U

j
0 = ;,

U
1
1 ={verr},
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U
j+1
i+1 ={v

0
| v

0
2 VR ^ post(v0) \ U

j
i+1 6= ;}

[ {v
0
| v

0
2 VV ^ post(v0) ✓

S
i0i+1,j0j U

j0

i0 ^ post(v0) \ U
j
i+1 6= ; ^ pr1(v

0) /2 F}

[ {v
0
| v

0
2 VV ^ post(v0) ✓

S
i0i,j0j U

j0

i0 ^ post(v0) \ U
j
i 6= ; ^ pr1(v

0) 2 F}

Furthermore, Uk =
S

i�0 U
k
i and U =

S
k�0 U

k.

Intuitively, the subindex i in U
k
i indicates that verr is reached after at most i� 1 faults

and k steps occurred. The following lemma is straightforwardly proven using standard
techniques of reachability games [9]. Note that these sets can also be computed for weak
games in a similar way by using the ) relation.

Lemma 3.10. The Refuter has a winning strategy in GA,A0 (or GW
A,A0) i↵ v

G
0 2 U

k
, for some

k.

Proof. “only if”: The proof uses standard results of reachability games. More specifically,
consider the set V G

\ U , this set is a trap for the Refuter, that is, if (s,�, s0,V) 2 V
G
\ U ,

then there is a v 2 post((s,�, s0,V)) such that v 2 V
G
\ U , otherwise (s,�, s0,V) 2 U

k

for some k. Similarly, if (s,#, s
0
, R) 2 V

G
\ U , then for all v 2 post((s,#, s

0
,R)) we

have v 2 V
G
\ U . That is, V G

\ U is a “trap” for the Refuter. Now, we can define a
strategy for the Verifier ⇡V as follows: if (s,�, s0,V) 2 V

G
\ U , then ⇡V(s,�, s0,V) = ⇢

for some v 2 V
G
\ U (which is guaranteed to exist), otherwise it returns an arbitrary

node. This strategy is winning for the Verifier from any v 2 V
G, that is, for any play

⇢0⇢1⇢2 . . . if ⇢0 2 V
G
\ U , then 8i � 0 : ⇢i 2 V

G
\ U (which implies 8i � 0 : ⇢i 6= verr ).

The proof is by induction on i. For i = 0 the result is direct since ⇢0 2 V
G
\ {verr}.

For the inductive case, suppose that ⇢i 2 V
G
\ U . In case that ⇢i = (s,�, s0,V), then

by definition of ⇡V, ⇢i+1 = ⇡V(s,�, s0,V) 2 V
G
\ U . Moreover, if ⇢i = (s,#, s

0
,R), then

post((s,#, s
0
,R)) ✓ V

G
\ U , and so ⇢i+1 /2 U . Now, since v

G
0 /2 U

k for all k, then v
G
0 /2 U

and v
G
0 2 V

G
\ U . Thus, by the property proven above R has a winning strategy from v

G
0 .

But this is a contradiction because the Refuter and the Verifier cannot have both winning
strategies from the same states. Hence, vG0 2 U

k for some k.
“if”: Consider v

G
0 2 U

k for some k, that is, we have v
G
0 2 U

k
i for some i by Def. 3.9.

Furthermore, for every v 2 V
G we define �(v) = min{(i, j) | v 2 U

j
i } (using the lexicographi-

cal order), for convenience we assume min ; = (1,1). Then, the winning strategy ⇡R for
the Refuter is defined as follows. If �(v) = (i, j) (with (i, j) < (1,1)), then ⇡V(v) = w,
for w being a vertex such that �(w) = (i, j � 1) (if pr1(v) /2 F) or �(w) = (i � 1, j � 1)
(if pr1(v) 2 F), which is guaranteed to exists by Def. 3.9. Otherwise, ⇡R(v) returns an
arbitrary vertex. Note that for any play ⇢0⇢1⇢2 . . . starting at vG0 we have that: for all i � 0,
�(⇢i) > �(⇢i+1), in lexicographic order. Thus, at some k > 0 we have �(⇢k) = (1, 1), and
then ⇢k = verr . ⇧

By Theorem 3.3, this proof also applies to the weak masking game G
W
A,A0 .

4. Quantitative Masking

In this section, we extend the strong (resp. weak) masking simulation game introduced
above with quantitative objectives to define the notion of masking fault-tolerance distance.
It is important to remark that we use the attribute “quantitative” in a non-probabilistic
sense.
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cal order), for convenience we assume min ; = (1,1). Then, the winning strategy ⇡R for
the Refuter is defined as follows. If �(v) = (i, j) (with (i, j) < (1,1)), then ⇡V(v) = w,
for w being a vertex such that �(w) = (i, j � 1) (if pr1(v) /2 F) or �(w) = (i � 1, j � 1)
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then ⇢k = verr . ⇧

By Theorem 3.3, this proof also applies to the weak masking game G
W
A,A0 .

4. Quantitative Masking

In this section, we extend the strong (resp. weak) masking simulation game introduced
above with quantitative objectives to define the notion of masking fault-tolerance distance.
It is important to remark that we use the attribute “quantitative” in a non-probabilistic
sense.

Fix-point 
calculation



Back to the example
module NOMINAL

  b : [0..1] init 0;

  [w0]   true -> (b' = 0);
  [w1]   true -> (b' = 1);
  [r0]   b=0  -> true;
  [r1]   b=1  -> true;

endmodule

module FAULTY

  v : [0..3] init 0;

  [w0]    true -> (v' = 0);
  [w1]    true -> (v' = 3);
  [r0]    v<=1 -> true;
  [r1]    v>=2 -> true;
  [fault] v<3  -> (v' = v+1);
  [fault] v>0  -> (v' = v-1);

endmodule

module FAULTY

  v : [0..5] init 0;

  [w0]    true -> (v' = 0);
  [w1]    true -> (v' = 5);
  [r0]    v<=2 -> true;
  [r1]    v>=3 -> true;
  [fault] v<5  -> (v' = v+1);
  [fault] v>0  -> (v' = v-1);

endmodule

Which solution 
is better?
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module NOMINAL

  b : [0..1] init 0;

  [w0]   true -> (b' = 0);
  [w1]   true -> (b' = 1);
  [r0]   b=0  -> true;
  [r1]   b=1  -> true;
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  [r1]    v>=2 -> true;
  [fault] (v<3) & (f<1) -> (v' = v+1) &
                           (f' = f+1);
  [fault] (v>0) & (f<1) -> (v' = v-1) &
                           (f' = f+1);

endmodule

module FAULTY_BOUNDED

  v : [0..5] init 0;
  f : [0..2] init 0;

  [w0]    true -> (v' = 0);
  [w1]    true -> (v' = 5);
  [r0]    v<=2 -> true;
  [r1]    v>=3 -> true;
  [fault] (v<3) & (f<2) -> (v' = v+1) &
                           (f' = f+1);
  [fault] (v>0) & (f<2) -> (v' = v-1) &
                           (f' = f+1);

endmodule

Add the counting artifact and 
check masking simulation
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  [w1]    true -> (v' = 5);
  [r0]    v<=2 -> true;
  [r1]    v>=3 -> true;
  [fault] (v<3) & (f<2) -> (v' = v+1) &
                           (f' = f+1);
  [fault] (v>0) & (f<2) -> (v' = v-1) &
                           (f' = f+1);

endmodule

Add the counting artifact and 
check masking simulation

Needless to say that 
this is an ad-hoc solution 

and prone to error



Quantitative Masking Game

The quantitaive masking game QA,A′ is defined by extending the masking game

with the reward function

r((s,σ, s′, X)) =

⎧
⎨

⎩
(1, 0) if σ ∈ F

(0, 0) otherwise
r(verr ) = (0, 1)

Take a play ρ = ρ0ρ1ρ2, . . . and let r(ρi) = (ai, bi) for all i ≥ 0. We define the

masking payoff function by:

fm(ρ) = lim
n→∞

bn
1 +

∑n
i=0 ai

The masking distance is defined by the value of the game:

δm(A,A′)
def
= val(QA,A′) = infπV∈ΠV supπR∈ΠR

fm(out(πR,πV))

= supπR∈ΠR
infπV∈ΠV fm(out(πR,πV))

R
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this equality 
is guaranteed by a 

theorem

The quantitaive masking game QA,A′ is defined by extending the masking game

with the reward function

r((s,σ, s′, X)) =

⎧
⎨

⎩
(1, 0) if σ ∈ F

(0, 0) otherwise
r(verr ) = (0, 1)

Take a play ρ = ρ0ρ1ρ2, . . . and let r(ρi) = (ai, bi) for all i ≥ 0. We define the

masking payoff function by:

fm(ρ) = lim
n→∞

bn
1 +

∑n
i=0 ai

The masking distance is defined by the value of the game:

δm(A,A′)
def
= val(QA,A′) = infπV∈ΠV supπR∈ΠR

fm(out(πR,πV))

= supπR∈ΠR
infπV∈ΠV fm(out(πR,πV))

fm(ρ) =

⎧
⎪⎨

⎪⎩

0 if verr is not in ρ

1

number of faults before verr
otherwise

Theorem: δm(A,A′) = 0 iff A ≼m A′

R
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is winning from (s,#, s
0
,R) for the Verifier, there is a play ⇡(s, F 2

, t
0
,V) = (s,#, t

0
,R) such

that ⇡ wins from (s,#, t
0
,R). Hence, s �m t

0, and the result follows. ⇧

By Theorem 3.3, the result also holds for weak masking games as it is stated in the
following theorem.

Theorem 3.7. Let A = hS,⌃ [ {⌧},!, s0i and A
0 = hS

0
,⌃F [ {⌧},!

0
, s

0
0i. A �

w
m A

0
i↵

the Verifier has a winning strategy for the weak masking game graph G
W
A,A0.

Theorem 3.8. For any A and A
0
, the strong (resp. weak) masking game graph GA,A0 (resp.

G
W
A,A0) can be determined in time O(|EG

|) (resp. O(|EG
W |)).

Proof. The set of winning states for the Refuter can be computed using a bottom-up
breadth-first search from the error state, as in reachability games [26]. This procedure
inspects once each edge, in the worst case. That is, the running time of this algorithm is
O(|EG

|) for the strong masking case, and O(|EG
W |) for the weak case. For the latter case,

one needs to bear in mind that computing ) from ! takes polynomial time. ⇧
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Figure 2: Part of the masking game graph for memory cell model with two faults

Solving reachability games can be performed by computing sets Reach0 (winning states
for the Refuter) as a fixed point of sets Reachi0 [26]. These ideas can be adapted to our
setting to take into account the number of faults. This will be useful for the next sections,
wherein the number of faults are important for reasoning about the quantitative version of
masking games.

Definition 3.9. Given a strong masking game graph GA,A0 , the sets U j
i (for i, j � 0) are

defined as follows:

U
0
i =U

j
0 = ;,

U
1
1 ={verr},
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0
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S
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i0 ^ post(v0) \ U
j
i 6= ; ^ pr1(v
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Furthermore, Uk =
S

i�0 U
k
i and U =

S
k�0 U

k.

Intuitively, the subindex i in U
k
i indicates that verr is reached after at most i� 1 faults

and k steps occurred. The following lemma is straightforwardly proven using standard
techniques of reachability games [9]. Note that these sets can also be computed for weak
games in a similar way by using the ) relation.

Lemma 3.10. The Refuter has a winning strategy in GA,A0 (or GW
A,A0) i↵ v

G
0 2 U

k
, for some

k.

Proof. “only if”: The proof uses standard results of reachability games. More specifically,
consider the set V G

\ U , this set is a trap for the Refuter, that is, if (s,�, s0,V) 2 V
G
\ U ,

then there is a v 2 post((s,�, s0,V)) such that v 2 V
G
\ U , otherwise (s,�, s0,V) 2 U

k

for some k. Similarly, if (s,#, s
0
, R) 2 V

G
\ U , then for all v 2 post((s,#, s

0
,R)) we

have v 2 V
G
\ U . That is, V G

\ U is a “trap” for the Refuter. Now, we can define a
strategy for the Verifier ⇡V as follows: if (s,�, s0,V) 2 V

G
\ U , then ⇡V(s,�, s0,V) = ⇢

for some v 2 V
G
\ U (which is guaranteed to exist), otherwise it returns an arbitrary

node. This strategy is winning for the Verifier from any v 2 V
G, that is, for any play

⇢0⇢1⇢2 . . . if ⇢0 2 V
G
\ U , then 8i � 0 : ⇢i 2 V

G
\ U (which implies 8i � 0 : ⇢i 6= verr ).

The proof is by induction on i. For i = 0 the result is direct since ⇢0 2 V
G
\ {verr}.

For the inductive case, suppose that ⇢i 2 V
G
\ U . In case that ⇢i = (s,�, s0,V), then

by definition of ⇡V, ⇢i+1 = ⇡V(s,�, s0,V) 2 V
G
\ U . Moreover, if ⇢i = (s,#, s

0
,R), then

post((s,#, s
0
,R)) ✓ V

G
\ U , and so ⇢i+1 /2 U . Now, since v

G
0 /2 U

k for all k, then v
G
0 /2 U

and v
G
0 2 V

G
\ U . Thus, by the property proven above R has a winning strategy from v

G
0 .

But this is a contradiction because the Refuter and the Verifier cannot have both winning
strategies from the same states. Hence, vG0 2 U

k for some k.
“if”: Consider v

G
0 2 U

k for some k, that is, we have v
G
0 2 U

k
i for some i by Def. 3.9.

Furthermore, for every v 2 V
G we define �(v) = min{(i, j) | v 2 U

j
i } (using the lexicographi-

cal order), for convenience we assume min ; = (1,1). Then, the winning strategy ⇡R for
the Refuter is defined as follows. If �(v) = (i, j) (with (i, j) < (1,1)), then ⇡V(v) = w,
for w being a vertex such that �(w) = (i, j � 1) (if pr1(v) /2 F) or �(w) = (i � 1, j � 1)
(if pr1(v) 2 F), which is guaranteed to exists by Def. 3.9. Otherwise, ⇡R(v) returns an
arbitrary vertex. Note that for any play ⇢0⇢1⇢2 . . . starting at vG0 we have that: for all i � 0,
�(⇢i) > �(⇢i+1), in lexicographic order. Thus, at some k > 0 we have �(⇢k) = (1, 1), and
then ⇢k = verr . ⇧

By Theorem 3.3, this proof also applies to the weak masking game G
W
A,A0 .

4. Quantitative Masking

In this section, we extend the strong (resp. weak) masking simulation game introduced
above with quantitative objectives to define the notion of masking fault-tolerance distance.
It is important to remark that we use the attribute “quantitative” in a non-probabilistic
sense.
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is winning from (s,#, s
0
,R) for the Verifier, there is a play ⇡(s, F 2

, t
0
,V) = (s,#, t

0
,R) such

that ⇡ wins from (s,#, t
0
,R). Hence, s �m t

0, and the result follows. ⇧

By Theorem 3.3, the result also holds for weak masking games as it is stated in the
following theorem.

Theorem 3.7. Let A = hS,⌃ [ {⌧},!, s0i and A
0 = hS

0
,⌃F [ {⌧},!

0
, s

0
0i. A �

w
m A

0
i↵

the Verifier has a winning strategy for the weak masking game graph G
W
A,A0.

Theorem 3.8. For any A and A
0
, the strong (resp. weak) masking game graph GA,A0 (resp.

G
W
A,A0) can be determined in time O(|EG

|) (resp. O(|EG
W |)).

Proof. The set of winning states for the Refuter can be computed using a bottom-up
breadth-first search from the error state, as in reachability games [26]. This procedure
inspects once each edge, in the worst case. That is, the running time of this algorithm is
O(|EG

|) for the strong masking case, and O(|EG
W |) for the weak case. For the latter case,

one needs to bear in mind that computing ) from ! takes polynomial time. ⇧
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Solving reachability games can be performed by computing sets Reach0 (winning states
for the Refuter) as a fixed point of sets Reachi0 [26]. These ideas can be adapted to our
setting to take into account the number of faults. This will be useful for the next sections,
wherein the number of faults are important for reasoning about the quantitative version of
masking games.

Definition 3.9. Given a strong masking game graph GA,A0 , the sets U j
i (for i, j � 0) are

defined as follows:
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0
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j
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U
1
1 ={verr},
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Furthermore, Uk =
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Intuitively, the subindex i in U
k
i indicates that verr is reached after at most i� 1 faults

and k steps occurred. The following lemma is straightforwardly proven using standard
techniques of reachability games [9]. Note that these sets can also be computed for weak
games in a similar way by using the ) relation.

Lemma 3.10. The Refuter has a winning strategy in GA,A0 (or GW
A,A0) i↵ v
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Proof. “only if”: The proof uses standard results of reachability games. More specifically,
consider the set V G
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\ U , then for all v 2 post((s,#, s

0
,R)) we

have v 2 V
G
\ U . That is, V G
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strategy for the Verifier ⇡V as follows: if (s,�, s0,V) 2 V

G
\ U , then ⇡V(s,�, s0,V) = ⇢

for some v 2 V
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\ U (which is guaranteed to exist), otherwise it returns an arbitrary

node. This strategy is winning for the Verifier from any v 2 V
G, that is, for any play

⇢0⇢1⇢2 . . . if ⇢0 2 V
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\ U , then 8i � 0 : ⇢i 2 V
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\ U (which implies 8i � 0 : ⇢i 6= verr ).

The proof is by induction on i. For i = 0 the result is direct since ⇢0 2 V
G
\ {verr}.

For the inductive case, suppose that ⇢i 2 V
G
\ U . In case that ⇢i = (s,�, s0,V), then

by definition of ⇡V, ⇢i+1 = ⇡V(s,�, s0,V) 2 V
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,R), then
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k for all k, then v
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and v
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\ U . Thus, by the property proven above R has a winning strategy from v
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But this is a contradiction because the Refuter and the Verifier cannot have both winning
strategies from the same states. Hence, vG0 2 U

k for some k.
“if”: Consider v

G
0 2 U

k for some k, that is, we have v
G
0 2 U

k
i for some i by Def. 3.9.

Furthermore, for every v 2 V
G we define �(v) = min{(i, j) | v 2 U

j
i } (using the lexicographi-

cal order), for convenience we assume min ; = (1,1). Then, the winning strategy ⇡R for
the Refuter is defined as follows. If �(v) = (i, j) (with (i, j) < (1,1)), then ⇡V(v) = w,
for w being a vertex such that �(w) = (i, j � 1) (if pr1(v) /2 F) or �(w) = (i � 1, j � 1)
(if pr1(v) 2 F), which is guaranteed to exists by Def. 3.9. Otherwise, ⇡R(v) returns an
arbitrary vertex. Note that for any play ⇢0⇢1⇢2 . . . starting at vG0 we have that: for all i � 0,
�(⇢i) > �(⇢i+1), in lexicographic order. Thus, at some k > 0 we have �(⇢k) = (1, 1), and
then ⇢k = verr . ⇧

By Theorem 3.3, this proof also applies to the weak masking game G
W
A,A0 .

4. Quantitative Masking

In this section, we extend the strong (resp. weak) masking simulation game introduced
above with quantitative objectives to define the notion of masking fault-tolerance distance.
It is important to remark that we use the attribute “quantitative” in a non-probabilistic
sense.
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that ⇡ wins from (s,#, t
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,R). Hence, s �m t

0, and the result follows. ⇧

By Theorem 3.3, the result also holds for weak masking games as it is stated in the
following theorem.
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the Verifier has a winning strategy for the weak masking game graph G
W
A,A0.

Theorem 3.8. For any A and A
0
, the strong (resp. weak) masking game graph GA,A0 (resp.

G
W
A,A0) can be determined in time O(|EG

|) (resp. O(|EG
W |)).

Proof. The set of winning states for the Refuter can be computed using a bottom-up
breadth-first search from the error state, as in reachability games [26]. This procedure
inspects once each edge, in the worst case. That is, the running time of this algorithm is
O(|EG

|) for the strong masking case, and O(|EG
W |) for the weak case. For the latter case,

one needs to bear in mind that computing ) from ! takes polynomial time. ⇧
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Figure 2: Part of the masking game graph for memory cell model with two faults

Solving reachability games can be performed by computing sets Reach0 (winning states
for the Refuter) as a fixed point of sets Reachi0 [26]. These ideas can be adapted to our
setting to take into account the number of faults. This will be useful for the next sections,
wherein the number of faults are important for reasoning about the quantitative version of
masking games.

Definition 3.9. Given a strong masking game graph GA,A0 , the sets U j
i (for i, j � 0) are

defined as follows:

U
0
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j
0 = ;,

U
1
1 ={verr},
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Furthermore, Uk =
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i and U =

S
k�0 U

k.

Intuitively, the subindex i in U
k
i indicates that verr is reached after at most i� 1 faults

and k steps occurred. The following lemma is straightforwardly proven using standard
techniques of reachability games [9]. Note that these sets can also be computed for weak
games in a similar way by using the ) relation.

Lemma 3.10. The Refuter has a winning strategy in GA,A0 (or GW
A,A0) i↵ v
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Proof. “only if”: The proof uses standard results of reachability games. More specifically,
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G
\ U ,
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The proof is by induction on i. For i = 0 the result is direct since ⇢0 2 V
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Furthermore, for every v 2 V
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i } (using the lexicographi-

cal order), for convenience we assume min ; = (1,1). Then, the winning strategy ⇡R for
the Refuter is defined as follows. If �(v) = (i, j) (with (i, j) < (1,1)), then ⇡V(v) = w,
for w being a vertex such that �(w) = (i, j � 1) (if pr1(v) /2 F) or �(w) = (i � 1, j � 1)
(if pr1(v) 2 F), which is guaranteed to exists by Def. 3.9. Otherwise, ⇡R(v) returns an
arbitrary vertex. Note that for any play ⇢0⇢1⇢2 . . . starting at vG0 we have that: for all i � 0,
�(⇢i) > �(⇢i+1), in lexicographic order. Thus, at some k > 0 we have �(⇢k) = (1, 1), and
then ⇢k = verr . ⇧

By Theorem 3.3, this proof also applies to the weak masking game G
W
A,A0 .

4. Quantitative Masking

In this section, we extend the strong (resp. weak) masking simulation game introduced
above with quantitative objectives to define the notion of masking fault-tolerance distance.
It is important to remark that we use the attribute “quantitative” in a non-probabilistic
sense.

indicates that the 
error state is reached after at most  

i-1  faults 

The quantitaive masking game QA,A′ is defined by extending the masking game

with the reward function

r((s,σ, s′, X)) =

⎧
⎨

⎩
(1, 0) if σ ∈ F

(0, 0) otherwise
r(verr ) = (0, 1)

Take a play ρ = ρ0ρ1ρ2, . . . and let r(ρi) = (ai, bi) for all i ≥ 0. We define the

masking payoff function by:

fm(ρ) = lim
n→∞

bn
1 +

∑n
i=0 ai

The masking distance is defined by the value of the game:

δm(A,A′)
def
= val(QA,A′) = infπV∈ΠV supπR∈ΠR

fm(out(πR,πV))

= supπR∈ΠR
infπV∈ΠV fm(out(πR,πV))

fm(ρ) =

⎧
⎪⎨

⎪⎩

0 if verr is not in ρ

1

number of faults before verr
otherwise

Theorem: δm(A,A′) = 0 iff A ≼m A′

δm(A,A′) =

⎧
⎪⎨

⎪⎩

1

min{i | vG0 ∈ U j
i }

if vG0 ∈ U

0 otherwise

R

Theorem:
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Case Study Redundancy Masking Distance Time Time(Det)

Redundant Memory Cell

3 bits 0.333 0.7s 0.6s
5 bits 0.25 2.5s 1.9s
7 bits 0.2 7.2s 5.7s
9 bits 0.167 1m.4s 1m11s
11 bits 0.143 28m27s 26m10s

N-Modular Redundancy

3 modules 0.333 0.6s 0.5s
5 modules 0.25 1.2s 0.7s
7 modules 0.2 5.6s 3.8s
9 modules 0.167 2m55s 2m32s
11 modules 0.143 75m17s 72m48s

Dining Philosophers

2 phils 0.5 0.6s 0.6s
3 phils 0.333 1.9s 0.9s
4 phils 0.25 5.9s 2.6s
5 phils 0.2 25.3s 24.1s
6 phils 0.167 19m.23s 11m39s

Byzantine Generals
3 generals 0.5 0.9s �

4 generals 0.333 17.1s �

5 generals 0.333 429m54s �

Raft LRCC (5)
1 follower 0 0.7s 0.8s
2 followers 0 5.6s 3.6s
3 followers 0 49m.50s 37m.53s

BRP(1)

1 retransm. 0.333 0.7s �

5 retransm. 0.143 0.8s �

10 retransm. 0.083 1.3s �

20 retransm. 0.045 3.9s �

40 retransm. 0.024 4.8s �

BRP(5)

1 retransm. 0.333 4.2s �

5 retransm. 0.143 4.8s �

10 retransm. 0.083 6.1s �

20 retransm. 0.045 8.7s �

40 retransm. 0.024 18.6s �

BRP(10)

1 retransm. 0.333 4.7s �

5 retransm. 0.143 6.4s �

10 retransm. 0.083 10.1s �

20 retransm. 0.045 20.5s �

40 retransm. 0.024 1m.9s �

Table 1: Results of the masking distance for the case studies.

We assume that the messages are delivered correctly and all the lieutenants can communicate
directly with each other. In this scenario they can recognize who is sending a message.
Faults can convert loyal lieutenants into traitors (byzantines faults). As a consequence,
traitors might deliver false messages or perhaps they avoid sending a message that they
received. The loyal lieutenants must agree on attacking or retreating after m+ 1 rounds of
communication, where m is the maximum numbers of traitors. Here we consider the case of
m = 1.
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Theorem 4.8. Any quantitative strong (resp. weak) masking game graph QA,A0 =
hV

G
, VR, VV, E

G
, v

G
0 , r

G
i can be determined in time O(|EG

| ⇤ log |V G
|) (resp. O(|EG

W | ⇤

log |V G
|)).

Proof. Note that the loop in line 8 inspects the edges of the graph. Furthermore, note
that, no edge (v, v0) can be inspected twice: if v0 is a Refuter’s vertex, then it will be added
to ST B and the edge cannot be processed any longer. If v is Verifier’s vertex, then v

0 is
a Refuter’s vertex, thus once dequeued (line 7), it will not be added to the queue again,
and therefore the edge (v, v0) will not processed again. Thereby, the loop of line 8 will
be executed |E

G
| times in the worst case. Furthermore, if some e�cient implementation

of priority queues is used for storing the states (line 21), then it takes O(log |V G
|) steps

to insert or remove an element from the queue, that is, in total the loop of line 8 takes
O(|EG

| ⇤ log |V G
|) steps. In addition, note that the while loop of line 6 is executed until the

Q gets empty, and nodes are enqueued only in line 21. Thus, the number of times that the
while loop is executed is bounded by the number of times that the for loop is executed,
which implies that the outmost loop is executed at most O(|EG

|) times. Similar remarks
hold for the quantitative weak masking game. ⇧

Theorems 3.8 and 4.8 describe the complexity of solving the quantitative and standard
masking games. However, in practice, one needs to bear in mind that |V

G
| = |S| ⇤ |S

0
|

and |E
G
| = |!| + |!

0
|, so constructing the game takes O(|S|2 ⇤ |S0

|
2) steps in the worst

case. Additionally, for weak games, the transitive closure of the original model needs to be
computed, which for the best known algorithm yields O(max(|S|, |S0

|)2.3727) [32].
Interestingly, deterministic games can be solved in linear time by using the fact proven

in Theorem 4.5.

Theorem 4.9. Any quantitative strong (resp. weak) deterministic masking game can be

solved in time O(|EG
|) (resp. O(|EG

W |)).

Proof. By Theorem 4.5, the value of the game is given by the shortest path to the error state
in the game graph where the weight function assigns 1 to faults, and 0 to other transitions.
Dial’s algorithm [28] can be used to obtain the shortest path in this graph, which runs in
O(|EG

|) (resp. O(|EG
W |) in the case of weak games). ⇧

Let us note that using the sets U
j
i we can define optimal strategies for the Refuter

and the Verifier, without taking into account the history of the play. That is, we have the
following theorem.

Theorem 4.10. Let QA,A0 be a quantitative strong masking game graph. Players R and V
have memoryless optimal strategies for QA,A0.

Proof. Giving a game we can compute the sets U
j
i using Algorithm 1. Thereby,

it is straightforward to define an optimal strategy for the Refuter. For a given

node v, if it belongs to some U
j
i , then the Refuter chooses some node in U

j0

i0 where:

(i0, j0) = max{(i00, j00) | post(v) \ U
j
i 6= ; ^ (i00, j00) < (i, j)}. By Definition of U j

i , we know

that such a pair exists, and also that this strategy is winning for the Refuter. If v /2 U
j
i ,

then any choice by the Refuter will lead to a winning play of the Verifier. Hence, the Refuter
moves to any successor of v. In a similar way, we can define an optimal strategy for the
Verifier. ⇧
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