
Modelos para la descripción
de sistemas temporizados

estocásticos

Pedro R. D’Argenio

Cadenas de Markov de tiempo discreto
(DTMC)

Una DTMC es una estructura

donde,

(S,S, s0,PA, L)

! S es un conjunto numerable de estados, siendo s0 ∈ S el estado incial,

! S : S × S → [0, 1] es la función de probabilidad de transición, tal que,

para todo s ∈ S,
∑

s′∈S S(s, s′) = 1, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

8y

(S,S, s0,PA, L)

! S es un conjunto numerable de estados, siendo s0 ∈ S el estado incial,

! S : S × S → [0, 1] es la función de probabilidad de transición, tal que,

para todo s ∈ S,
∑

s′∈S S(s, s′) = 1, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s, s′) es la probabilidad de pasar

al estado s′ dado que el sistema se

encuentra en el estado s.

8y

Cadenas de Markov de tiempo discreto
(DTMC)

Una DTMC es una estructura

donde,

(S,S, s0,PA, L)

! S es un conjunto numerable de estados, siendo s0 ∈ S el estado incial,

! S : S × S → [0, 1] es la función de probabilidad de transición, tal que,

para todo s ∈ S,
∑

s′∈S S(s, s′) = 1, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

8y

(S,S, s0,PA, L)

! S es un conjunto numerable de estados, siendo s0 ∈ S el estado incial,

! S : S × S → [0, 1] es la función de probabilidad de transición, tal que,

para todo s ∈ S,
∑

s′∈S S(s, s′) = 1, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s, s′) es la probabilidad de pasar

al estado s′ dado que el sistema se

encuentra en el estado s.

8y

Para model checking sólo
vamos a considerar conjuntos finitos

de estados

(S,S, s0,PA, L)

! S es un conjunto numerable de estados, siendo s0 ∈ S el estado incial,

! S : S × S → [0, 1] es la función de probabilidad de transición, tal que,

para todo s ∈ S,
∑

s′∈S S(s, s′) = 1, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s, s′) es la probabilidad de pasar

al estado s′ dado que el sistema se

encuentra en el estado s.

8y

Un protocolo simple

s0

s1s3 s2

{start}

{try}{delivered}

{lost}1
1
10

9
10

1

1

S = {s0, s1, s2, s3}

s0 es el estado inicial

S =

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

8R

S = {s0, s1, s2, s3}

s0 es el estado inicial

S =

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

8R

S = {s0, s1, s2, s3}

s0 es el estado inicial

S =

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

8R

S = {s0, s1, s2, s3}

s0 es el estado inicial

S =

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

8R

S = {s0, s1, s2, s3}

s0 es el estado inicial

S =

0 1 0 0
0 0 1

10
9
10

0 1 0 0
1 0 0 0

PA = {start, try, delivered, lost}

L(s0) = {start}
L(s1) = {try}
L(s2) = {lost}
L(s3) = {delivered}

8R

¿P (3 2)?Pr(6 2) = Pr({ρ ∈ Sω | ∃i ∈ N : ρ(i) = 2})

= Pr(
⋃
{Cyl(π) | last(π) = 2})

= Pr(
⋃
{Cyl(π) | π ∈ s0s1(s3s1)∗s42})

=
∑

n∈N S(s0s1(s3s1)ns42)

=
∑

n∈N
1

22n+3 =
1
6

8j

Simulando un dado con una moneda

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s != s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

Simulando un dado con una moneda

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s != s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

P(s0, s1) ·P(s1, s4) ·P(s4, 2)

⎧ ⎪ ⎨ ⎪ ⎩

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩
P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

Simulando un dado con una moneda

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s != s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6

⎧ ⎪ ⎨ ⎪ ⎩ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩

1
8

1
32

1
128

1
512

P (s0s1s42) + P (s0s1s3s1s42) + P (s0s1s3s1s3s1s42) + P (s0s1s3s1s3s1s3s1s42) + · · ·

Simulando un dado con una moneda

750 Probabilistic Systems

Example 10.3. Simulating a Die by a Fair Coin

Consider simulating the behavior of a standard six-sided die by a fair coin, as originally
proposed by Knuth and Yao [242], see the Markov chain depicted in Figure 10.2.

s0

s1,2,3 s4,5,6

s′1,2,3 s2,3 s4,5 s′4,5,6

1
2

1
2

1
2

1
2

1
2

1
2

1 2 3 4 5 6

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

111111

Figure 10.2: Markov chain for simulating a die by a fair coin.

The computation starts in the initial state s0, i.e., we have ιinit(s0) = 1 and ιinit(s) = 0 for
all states s != s0. The states 1, 2, 3, 4, 5, and 6 at the bottom stand for the possible die
outcomes. Each inner node stands for tossing a fair coin. If the outcome is heads, the left
branch determines the next state; if the outcome is tails, the right branch determines the
next state.

If the coin-tossing experiment in state s0 yields heads, the system moves to state s1,2,3.
Tossing the coin again leads with equal probability to either state s2,3 (from which the
die-outcomes 2 or 3 are possible with equal probability) or to state s′1,2,3. From the latter
state, a coin flipping yields with probability 1

2 the outcome 1, or with probability 1
2 a

return to state s1,2,3. The behavior for outcome tails in the initial state is symmetric. We
will establish later that, in fact, this Markov chain indeed adequately models a die, i.e.,
the outcomes are equally likely.

Example 10.4. The Craps Gambling Game

The game craps is based on betting on the outcome of the roll of two dice. The outcome
of the first roll—the “come-out” roll—determines whether there is a need for any further
rolls. On outcome 7 or 11, the game is over and the player wins. The outcomes 2, 3, or 12,
however, are “craps”; the player loses. On any other outcome, the dice are rolled again,
but the outcome of the come-out roll is remembered (the “point”). If the next roll yields

s1 s2

s3 s4 s5 s6Pr(6 2) = Pr({ρ ∈ Sω | ∃i ∈ N : ρ(i) = 2})

= Pr(
⋃
{Cyl(π) | last(π) = 2})

= Pr(
⋃
{Cyl(π) | π ∈ s0s1(s3s1)∗s42})

=
∑

n∈N S(s0s1(s3s1)ns42)

=
∑

n∈N
1

22n+3 =
1
6

8j

Propiedades de alcanzabilidad

Formalmente, se soluciona a través del siguiente sistema de
ecuaciones:

xs =
∑

t∈Pre∗(B)\B

S(s, t) · xt +
∑

t∈B
S(s, t) si s ∈ Pre∗(B)\B

xs = 1 si s ∈ B

xs = 0 si s /∈ Pre∗(B) ∪B

8d

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

xs =
∑

t∈Pre∗(B)\B

S(s, t) · xt +
∑

t∈B
S(s, t) si s ∈ Pre∗(B)\B

xs = 1 si s ∈ B

xs = 0 si s /∈ Pre∗(B) ∪B

8d

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

Propiedades de alcanzabilidad

Formalmente, se soluciona a través del siguiente sistema de
ecuaciones:

xs =
∑

t∈Pre∗(B)\B

S(s, t) · xt +
∑

t∈B
S(s, t) si s ∈ Pre∗(B)\B

xs = 1 si s ∈ B

xs = 0 si s /∈ Pre∗(B) ∪B

8d

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

xs =
∑

t∈Pre∗(B)\B

S(s, t) · xt +
∑

t∈B
S(s, t) si s ∈ Pre∗(B)\B

xs = 1 si s ∈ B

xs = 0 si s /∈ Pre∗(B) ∪B

8d

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

Estados que no alcanzan a B
Normalmente se utilizan los

métodos de Jacobi o de Gauss-Seidel para
converger a la solución

La necesidad del no-determinismo

❖ Composición Paralela / Componentes Distribuidas:

❖ las probabilidades en una componente son fáciles de estimar

❖ las probabilidades relativas entre eventos de distintas componentes
dependen de un estado global impredecible

❖ Subespecificación:

❖ algunas probabilidades pueden desconocerse al momento de modelado

❖ Abstracción:

❖ los modelos son abstracciones del sistema en estudio

❖ Síntesis de controladores y planeamiento:

❖ la subespecificación es intencional para sintetizar decisiones óptimas

Procesos de Decisión de Markov (MDP)

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

Procesos de Decisión de Markov (MDP)

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

Si Act = {α} el MDP
es una DTMC

Procesos de Decisión de Markov (MDP)

1 2 4 8

ls

lc

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

16

Procesos de Decisión de Markov (MDP)

1 2 4 8

ls

lc

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

16

Procesos de Decisión de Markov (MDP)

1 2 4 8

ls

lc

stock_market

casino

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

16

Procesos de Decisión de Markov (MDP)

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

16

Procesos de Decisión de Markov (MDP)

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

a lot

Procesos de Decisión de Markov (MDP)

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

Un MDP es una estructura

(S,Act ,S, s0,PA, L)

donde

! S es un conjunto finito de estados, siendo s0 ∈ S el estado incial,

! Act es un conjunto finito de acciones,

! S : S × Act × S → [0, 1] es la función de probabilidad de transición, tal

que, para todo s ∈ S y α ∈ Act ,
∑

s′∈S S(s,α, s′) ∈ {0, 1}, y

! L : S → P(PA) es la función de etiquetedo, donde PA es un conjunto

de proposiciones atómicas.

S(s,α, s′) es la probabilidad de pasar al estado s′

dado que el sistema se encuentra en el estado s y la

acción α fue seleccionada para ejecutar.

3d

a lot

¿Cuál es la
probabilidad de

F “a lot”?

Resolución del no-determinismo

❖ Para calcular las probabilidades en un MDP, el no-determinismo
necesita ser resuelto.

❖ Los schedulers (o adversarios) son funciones que eligen la
siguiente acción a realizar teniendo en cuenta lo ejecutado.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.8 1 0.2

Resolución del no-determinismo

❖ Para calcular las probabilidades en un MDP, el no-determinismo
necesita ser resuelto.

❖ Los schedulers (o adversarios) son funciones que eligen la
siguiente acción a realizar teniendo en cuenta lo ejecutado.

0.4 0.6 0.5 0.5 1

0.1 0.4
1

0.2
0.4

0.9 0.3 0.7 0.8 1 0.2

Un scheduler permite
construir una DTMC

(También hay schedulers
que eligen con aleatoriedad)

Probabilidad inducida por un scheduler

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

S elige siempre casino PrS(! |= 6 "� HQi") ≈ 0.0816

S elige siempre stock_market PrS(! |= 6 "� HQi") ≈ 0.0443

S alterna entre stock_market y casino PrS(! |= 6 "� HQi") ≈ 0.1504

S alterna al revés PrS(! |= 6 "� HQi") ≈ 0.1332

NR

S elige siempre casino PrS(! |= 6 "� HQi") ≈ 0.0816

S elige siempre stock_market PrS(! |= 6 "� HQi") ≈ 0.0443

S alterna entre stock_market y casino PrS(! |= 6 "� HQi") ≈ 0.1504

S alterna al revés PrS(! |= 6 "� HQi") ≈ 0.1332

NR

S elige siempre casino PrS(! |= 6 "� HQi") ≈ 0.0816

S elige siempre stock_market PrS(! |= 6 "� HQi") ≈ 0.0443

S alterna entre stock_market y casino PrS(! |= 6 "� HQi") ≈ 0.1504

S alterna al revés PrS(! |= 6 "� HQi") ≈ 0.1332

NR

S elige siempre casino PrS(! |= 6 "� HQi") ≈ 0.0816

S elige siempre stock_market PrS(! |= 6 "� HQi") ≈ 0.0443

S alterna entre stock_market y casino PrS(! |= 6 "� HQi") ≈ 0.1504

S alterna al revés PrS(! |= 6 "� HQi") ≈ 0.1332

NR

Probabilidad inducida por un scheduler

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

Pero entonces,
¡¿¿cuál es la probabilidad de

F “a lot”??!

S elige siempre casino PrS(! |= 6 "� HQi") ≈ 0.0816

S elige siempre stock_market PrS(! |= 6 "� HQi") ≈ 0.0443

S alterna entre stock_market y casino PrS(! |= 6 "� HQi") ≈ 0.1504

S alterna al revés PrS(! |= 6 "� HQi") ≈ 0.1332

NR

S elige siempre casino PrS(! |= 6 "� HQi") ≈ 0.0816

S elige siempre stock_market PrS(! |= 6 "� HQi") ≈ 0.0443

S alterna entre stock_market y casino PrS(! |= 6 "� HQi") ≈ 0.1504

S alterna al revés PrS(! |= 6 "� HQi") ≈ 0.1332

NR

S elige siempre casino PrS(! |= 6 "� HQi") ≈ 0.0816

S elige siempre stock_market PrS(! |= 6 "� HQi") ≈ 0.0443

S alterna entre stock_market y casino PrS(! |= 6 "� HQi") ≈ 0.1504

S alterna al revés PrS(! |= 6 "� HQi") ≈ 0.1332

NR

S elige siempre casino PrS(! |= 6 "� HQi") ≈ 0.0816

S elige siempre stock_market PrS(! |= 6 "� HQi") ≈ 0.0443

S alterna entre stock_market y casino PrS(! |= 6 "� HQi") ≈ 0.1504

S alterna al revés PrS(! |= 6 "� HQi") ≈ 0.1332

NR

Probabilidades supremas e ínfimas

Dado que cualquier resolución del no-determinismo es posible, se buscan

las mejores y peores cotas que garanticen la satisfacción de la propiedad

ω-regular bajo estudio.

Esto es, si L es dicha propiedad, se busca

Prmax(s |= L) !
= sup

S
PrS(s |= L), y

Prmin(s |= L) !
= inf

S
PrS(s |= L)

Nk

Probabilidades supremas e ínfimas

Dado que cualquier resolución del no-determinismo es posible, se buscan

las mejores y peores cotas que garanticen la satisfacción de la propiedad

ω-regular bajo estudio.

Esto es, si L es dicha propiedad, se busca

Prmax(s |= L) !
= sup

S
PrS(s |= L), y

Prmin(s |= L) !
= inf

S
PrS(s |= L)

Nk

Para alcanzabilidad es
suficiente considerar solo los schedulers que
en un estado siempre eligen la misma acción

(i.e. deterministas y sin memoria)

Solución a través de ecuaciones de Bellman

El calculo de la probabilidad máxima de alcanzar un estado de B
tiene solución en el mínimo punto fijo del siguiente sistemas de
ecuaciones

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

Solución a través de ecuaciones de Bellman

El calculo de la probabilidad máxima de alcanzar un estado de B
tiene solución en el mínimo punto fijo del siguiente sistemas de
ecuaciones

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

Ad Hoc Networks 123 (2021) 102663

4

F.D. Raverta et al.

In the following section, we claim the rerouting effect in an un-
certain time varying graph can be properly represented by means of
Markov Decision Processes.

3. Routing under uncertain contact plans

3.1. Markov decision process

A Markov Decision Process (MDP) is a mathematical structure that
allows for the modeling of discrete-time systems in which the inter-
action between non-deterministic and probabilistic behavior is cen-
tral [41,42]. Thus, MDPs provide an appropriate framework for mod-
eling decision making on systems under probabilistically quantified
uncertainty.

In its simplest form, a MDP M is a tuple (S,Act,P, s0) where

• S is a finite set of states with initial state s0 À S,
• Act is a finite set of actions, and
• P : S ù Act ù S ô [0, 1] is a transition probability function such
that

≥

s®ÀS P(s, ↵, s®) À {0, 1}, for all s À S and ↵ À Act.

If
≥

s®ÀS P(s, ↵, s®) = 1, ↵ is said to be enabled in s. In this case, P(s, ↵, �)
can be interpreted as the probability distribution of choosing the next
state, conditioned to the fact that the system is in state s and action
↵ has been chosen. We notice that it is usually required that at least
one action is enabled in every state. Since the problem ahead is a
reachability problem (instead of a cost or reward problem), the usual
reward function does not play any role and hence we have omitted it
in the definition of MDPs.

The intuitive operational behavior of the MDP M is as follows.
The computation of M starts at the initial state s0. Assume now the
computation has taken n steps and reached state sn. At this moment
one of the enabled actions in sn, say ↵n+1, is chosen to resolve the non-
determinism at this state. The next state sn+1 is now sampled randomly
according to distribution P(sn, ↵n+1, �).

Different types of properties could be required to a MDP. The usual
objective is to find a policy that maximizes or minimizes the likelihood
of the given property. A policy is a function ⇡ : S ô Act that defines the
decision to be made in a possible resolution of the non-determinism.1
Thus, limiting the MDP M to the choices of the policy ⇡ defines a
Markov chain for which probabilities can be calculated.

We are particularly interested on maximizing the probability to
reach a state in the set of goal states B ” S from the initial state
s0, say Pr

max
s0

(reach(B)). (In our case, B is the set of states in which
bundles have been successfully delivered.) Moreover, we want to obtain
the maximizing policy. This problem can be solved using the Bellman
equations as follows [38]. Let S

=0
” S be the set of states whose

probability of reaching a state in B is 0. (S=0 could be calculated in
O(S).) For each state s À S, define a variable xs which represents
the maximum probability of reaching a goal state in B from s, that
is xs = Pr

max
s

(reach(B)). Then, precisely the vector (xs)sÀS is the least
solution of the following equation system:

xs = 1 if s À B

xs = 0 if s À S
=0

xs = max
↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

Besides, the maximizing policy ⇡
max can be obtained as follows:

⇡
max(s) = argmax

↵ÀAct(s)

…

tÀS
P(s, ↵, t) � xt if s À S\(S=0 ‰ B)

1 Polices could be more complex, depending on the whole history rather
than the current state, and selecting randomly among the enabled actions. The
definition given here correspond to the so called memoryless and deterministic
policies, which is sufficient for our purposes.

Table 1
Notation reference.
Symbol Description

Uncertain DTN model (Section 2)

p
f
(e, t) Failure probability for link e at time slot t

&(e, t) Delay for link e at time slot t
f
dd
(e, t) Failure detection delay for link e at time slot t

T Set of time slots

RUCoP core algorithm (Section 3.2)

G
t
i

Underlying digraph G for time slot t
i

S
t
end

Set of successful final states
S
t
i

Set of states at time slot t
i

cp(c) Number of copies at node c

C
t
i

Set of nodes carrying copies in time slot t
i

pred
+
G

ti

(c) Set of all nodes in G
t
i

reaching c in at least one hop
path

G
ti

(c® , c) Set of directed path from c
® to c in G

t
i

P
c

Set of paths leading to c

R Set of rules (i.e. pairs of no. of copies and a path)
R

c
Set of c-compatible sets of rules (i.e. set of rules
transmitting exactly cp(c) copies from c)

T r(s) Set of actions leading to state s (an action is a set of
rules distributing exactly num_copies)

pr
R

Successful probability of action R

Pr(s) Successful delivery probability of state s

SDP (R, s, t) Successful probability for action R starting from state s at
time slot t (Algorithm 2)

get_prev_state(s,R) Returns the state from which action R leads to s

best_action(s) The action from s maximizing the delivery prob.
RUCoP (G, c, T) Algorithm 1

RUCoP SDP computation (Section 3.2)

}(X) Power set of X
contacts(R) Set of links involved in action R

state_af _fl(R, s,fs) Leading state when set of failures fs happen
pr

fs
Probability of all links in fs failing

pr
R

Successful delivery probability of action R

SDP (s) Successful delivery probability of state s

L-RUCoP (Section 3.3)

Safe_state(n, c, ts) State in which node n has all c copies available
LT r

n
(_, _, _) Routing table for node n

Post(LT r
n
(ts, rc, ts®)) The state known by node n after action LT r

n
(ts, rc, ts®)

CGR-UCoP (Section 3.4)

Rl
n
(ts) Set of partial routes computed by CGR at node n for time

slot ts
r A partial route computed by CGR
r[i] ith contact in the partial route r

P r
n
(ts) Prob. of delivering a copy from n at time slot ts

src(e) Source of link e

tgt(e) Destination of link e

SDP
CGR

(r, ts) Bundle’s delivery prob. through partial route r

If s À S
=0 ‰ B, ⇡max(s) is not interesting as s is already a goal state, or

it cannot reach it.
Reachability properties are standard properties in probabilistic

model checkers such as PRISM [43]. Indeed, we have successfully
modeled single-copy routing in DTNs under uncertain contact plans
in PRISM [36] and derived optimal routes in this case. Unfortunately,
PRISM cannot deal with the size of models we required, specially when
we consider DTNs with multiple copies.

3.2. RUCoP

In order to determine the upper delivery probability bound for
routing with N copies in a DTN, we have developed Routing under
Uncertain Contact Plans (RUCoP). RUCoP is an MDP formulation which
encodes all possible routing decisions for an uncertain DTN network
based on its uncertain time-varying graph representation and traffic pa-
rameters, comprising source, target and number of copies allowed. This
information is encoded in states and transitions. Table 1 summarizes
the notation used throughout the remaining of this section.

Para calcular la probabilidad
mínima, reemplazar por “min”

Alcanzabilidad cuantitativa

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P+
ls

= P+
lc

= 0

P+
al = 1

P+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al + 0.5P+

lc
)

P+
4 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al + 0.5P+

lc
)

P+
8 = max (0.55P+

8 + 0.25P+
al + 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al + 0.5P+

lc
)

P+
s es abreviación de

Prmax(s |= 6 "� HQi")

RRj

Alcanzabilidad cuantitativa

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P+
ls

= P+
lc

= 0

P+
al = 1

P+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al + 0.5P+

lc
)

P+
4 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al + 0.5P+

lc
)

P+
8 = max (0.55P+

8 + 0.25P+
al + 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al + 0.5P+

lc
)

P+
s es abreviación de

Prmax(s |= 6 "� HQi")

RRj

Alcanzabilidad cuantitativa

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

P+
ls

= P+
lc

= 0

P+
al = 1

P+
1 = max (0.7P+

1 + 0.2P+
2 + 0.1P+

ls
, 0.3P+

1 + 0.2P+
8 + 0.5P+

lc
)

P+
2 = max (0.55P+

2 + 0.25P+
4 + 0.1P+

1 + 0.1P+
ls
, 0.3P+

2 + 0.2P+
al + 0.5P+

lc
)

P+
4 = max (0.55P+

4 + 0.25P+
8 + 0.1P+

2 + 0.1P+
ls
, 0.3P+

4 + 0.2P+
al + 0.5P+

lc
)

P+
8 = max (0.55P+

8 + 0.25P+
al + 0.1P+

4 + 0.1P+
ls
, 0.3P+

8 + 0.2P+
al + 0.5P+

lc
)

P+
s es abreviación de

Prmax(s |= 6 "� HQi")

RRj

Alcanzabilidad cuantitativa

1 2 4 8

ls

0.7
0.2

0.1 0.1

0.25

0.55

0.1 0.1
0.25

0.55

0.1

0.1

0.25

0.55

0.1

lc

0.20.3

0.5

0.20.3
0.5

0.20.3
0.5 0.2

0.3

0.5

stock_market

casino

a lot

Prmax(! |= 6 "� HQi") ≈ 0.1905

y se hace máximo en el scheduler S definido por

S(!) = stock_market S(") = stock_market

S(#) = casino S($) = stock_market

N8

Autómatas temporizados con probabilidades
(PTA)PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

3

3

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

Autómatas temporizados con probabilidades
(PTA)PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

3

3

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

Autómatas temporizados con probabilidades
(PTA)PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

3

3

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

Relojes: son variables en los reales no negativos que se incrementan
sincrónicamente.

Autómatas temporizados con probabilidades
(PTA)PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

3

3

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

Relojes: son variables en los reales no negativos que se incrementan
sincrónicamente.

Se pueden resetear y verificar su valor a través de guardas o invariantes.

Autómatas temporizados con probabilidades
(PTA)PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

3

3

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

Relojes: son variables en los reales no negativos que se incrementan
sincrónicamente.

Se pueden resetear y verificar su valor a través de guardas o invariantes.

On the Analysis ofStochastic Timed Systems

Thesis for obtaining the title ofDoctor of Engineering Scienceof the Faculty of Natural Science and Technology Iof Saarland University

by

Arnd Hartmanns

Saarbrücken
February 2015

Autómatas temporizados con probabilidades
(PTA)PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

3

3

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

l0, 0

l1, 0 l2, 0

l1, 1

l1, 2

l1, 3

l1, 4

l1, 5

l3, 3

l3, 4

l3, 5

PROBABILISTIC TIMED AUTOMATA

179

l0
true l1c≤ TDmax

l2c≤ TDmax

l3
true {collision}

snd_data 95
100 , {c := 0}

5100 , {c := 0}

c≥ TDmin ,rcv_data

c≥ TDmin , τ

snd_data

snd_data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-

tion, which maps each location to a set of edges, which in turn consist of a

guard, a label and a probability distribution over sets of clocks to reset to zero

and target locations,
– linit ∈ Loc is the initial location,

– Inv∈ Loc→CC is the invariant function, which maps each location to a clock

constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and

– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using

arrows to denote edges, can be applied to PTA analogously. Let us now illus-

trate the capabilities of PTA by extending the communication protocol com-

ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP

that models a lossy communication channel with collision detection. A model-

ling artifact caused by the use of an untimed formalism was that message loss

was explicitly signalled to the sender via a timeout action, for there was no

other way to make it observable. Now, with PTA, we can use clocks to model

transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The

guards are shown on the transitions before the action label, the clock resets are

represented by standard assignments that set the affected clocks to zero, and

the invariants are given inside the locations, below the location name. Instead

of timeout, the label of the edge that is taken when a message is lost is now

simply τ . However, a new clock c has been introduced that is used to make the

transmission of a message take between TDmin and TDmax time units, modelling

PROB
ABIL

ISTIC
TIME

D AU
TOM

ATA

179

l0
true

l1

c≤ TDmax

l2

c≤ TDmax

l3
true

{coll
ision

}

snd_
data

95
100
, {
c :=

0}

5
100 , {c := 0}

c≥ TDmin
,

rcv_
data

c≥ TDmin
, τ

snd_data

sn
d_
da
ta

Figur
e 5.1:

PTA
mode

l of a
lossy

comm
. chan

nel w
ith co

llisio
n dete

ction

– E ∈ Loc
→ P(CC ×A×

Dist(
P(C)×Lo

c)) is
the au

toma
ton’s

edge
func-

tion,
which

maps
each

locati
on to

a set
of ed

ges, w
hich

in tur
n con

sist o
f a

guard
, a lab

el and
a pro

babil
ity di

stribu
tion o

ver se
ts of c

locks
to res

et to z
ero

and ta
rget l

ocatio
ns,

– linit
∈ Loc

is the
initia

l loca
tion,

– Inv
∈ Loc

→CC is
the in

varian
t func

tion,
which

maps
each

locati
on to

a cloc
k

const
raint

that a
llows

time
to pas

s as l
ong a

s it ev
aluate

s to tr
ue,

– AP
is a s

et of
atom

ic pro
positi

ons, a
nd

– L ∈
Loc→

P(AP) is th
e loca

tion l
abelli

ng fu
nctio

n.

The u
sual n

otatio
n that

we al
ready

used
for pr

eviou
s mod

els, su
ch as

also u
sing

arrow
s to d

enote
edges

, can
be ap

plied
to PT

A ana
logou

sly. L
et us

now i
llus-

trate
the c

apabi
lities

of PT
A by

exten
ding

the c
omm

unica
tion p

rotoc
ol co

m-

ponen
t mod

els fr
om p

revio
us ex

ampl
es.

Exam
ple 2

8. In
Exam

ple 1
4 in t

he pr
eviou

s cha
pter,

we in
trodu

ced a
n MD

P

that m
odels

a loss
y com

muni
cation

chann
el wit

h coll
ision

detec
tion.

A mo
del-

ling a
rtifac

t caus
ed by

the u
se of

an un
timed

forma
lism

was t
hat m

essag
e loss

was e
xplic

itly s
ignal

led to
the se

nder
via a

time
out

action
, for

there
was n

o

other
way t

o ma
ke it

obser
vable

. Now
, with

PTA,
we ca

n use
clock

s to m
odel

transm
ission

delay
s and

the de
tectio

n of t
imeo

uts in
a mor

e real
istic w

ay.

Figur
e 5.1

show
s the

updat
ed m

odel
for th

e com
muni

cation
chann

el. T
he

guard
s are

show
n on

the tr
ansiti

ons b
efore

the ac
tion l

abel,
the cl

ock r
esets

are

repre
sente

d by
stand

ard a
ssign

ment
s that

set th
e affe

cted
clock

s to z
ero, a

nd

the in
varian

ts are
given

inside
the lo

cation
s, bel

ow th
e loca

tion n
ame.

Instea
d

of ti
meou

t, the
label

of the
edge

that i
s take

n wh
en a m

essag
e is lo

st is n
ow

simpl
y τ . H

owev
er, a n

ew cl
ock c

has b
een in

trodu
ced th

at is u
sed to

make
the

transm
ission

of a m
essag

e take
betwe

en TD
min
and T

Dmax
time u

nits, m
odell

ing

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

tick

tick

tick

tick

tick

l0, 1 l0, 2
tick tick

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA

179

l0
true l1c≤ TDmax

l2c≤ TDmax

l3
true {collision}

snd_data 95
100 , {c := 0}

5100 , {c := 0}

c≥ TDmin ,rcv_data

c≥ TDmin , τ

snd_data

snd_data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-

tion, which maps each location to a set of edges, which in turn consist of a

guard, a label and a probability distribution over sets of clocks to reset to zero

and target locations,
– linit ∈ Loc is the initial location,

– Inv∈ Loc→CC is the invariant function, which maps each location to a clock

constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and

– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using

arrows to denote edges, can be applied to PTA analogously. Let us now illus-

trate the capabilities of PTA by extending the communication protocol com-

ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP

that models a lossy communication channel with collision detection. A model-

ling artifact caused by the use of an untimed formalism was that message loss

was explicitly signalled to the sender via a timeout action, for there was no

other way to make it observable. Now, with PTA, we can use clocks to model

transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The

guards are shown on the transitions before the action label, the clock resets are

represented by standard assignments that set the affected clocks to zero, and

the invariants are given inside the locations, below the location name. Instead

of timeout, the label of the edge that is taken when a message is lost is now

simply τ . However, a new clock c has been introduced that is used to make the

transmission of a message take between TDmin and TDmax time units, modelling

PROB
ABIL

ISTIC
TIME

D AU
TOM

ATA

179

l0
true

l1

c≤ TDmax

l2

c≤ TDmax

l3
true

{coll
ision

}

snd_
data

95
100
, {
c :=

0}

5
100 , {c := 0}

c≥ TDmin
,

rcv_
data

c≥ TDmin
, τ

snd_data

sn
d_
da
ta

Figur
e 5.1:

PTA
mode

l of a
lossy

comm
. chan

nel w
ith co

llisio
n dete

ction

– E ∈ Loc
→ P(CC ×A×

Dist(
P(C)×Lo

c)) is
the au

toma
ton’s

edge
func-

tion,
which

maps
each

locati
on to

a set
of ed

ges, w
hich

in tur
n con

sist o
f a

guard
, a lab

el and
a pro

babil
ity di

stribu
tion o

ver se
ts of c

locks
to res

et to z
ero

and ta
rget l

ocatio
ns,

– linit
∈ Loc

is the
initia

l loca
tion,

– Inv
∈ Loc

→CC is
the in

varian
t func

tion,
which

maps
each

locati
on to

a cloc
k

const
raint

that a
llows

time
to pas

s as l
ong a

s it ev
aluate

s to tr
ue,

– AP
is a s

et of
atom

ic pro
positi

ons, a
nd

– L ∈
Loc→

P(AP) is th
e loca

tion l
abelli

ng fu
nctio

n.

The u
sual n

otatio
n that

we al
ready

used
for pr

eviou
s mod

els, su
ch as

also u
sing

arrow
s to d

enote
edges

, can
be ap

plied
to PT

A ana
logou

sly. L
et us

now i
llus-

trate
the c

apabi
lities

of PT
A by

exten
ding

the c
omm

unica
tion p

rotoc
ol co

m-

ponen
t mod

els fr
om p

revio
us ex

ampl
es.

Exam
ple 2

8. In
Exam

ple 1
4 in t

he pr
eviou

s cha
pter,

we in
trodu

ced a
n MD

P

that m
odels

a loss
y com

muni
cation

chann
el wit

h coll
ision

detec
tion.

A mo
del-

ling a
rtifac

t caus
ed by

the u
se of

an un
timed

forma
lism

was t
hat m

essag
e loss

was e
xplic

itly s
ignal

led to
the se

nder
via a

time
out

action
, for

there
was n

o

other
way t

o ma
ke it

obser
vable

. Now
, with

PTA,
we ca

n use
clock

s to m
odel

transm
ission

delay
s and

the de
tectio

n of t
imeo

uts in
a mor

e real
istic w

ay.

Figur
e 5.1

show
s the

updat
ed m

odel
for th

e com
muni

cation
chann

el. T
he

guard
s are

show
n on

the tr
ansiti

ons b
efore

the ac
tion l

abel,
the cl

ock r
esets

are

repre
sente

d by
stand

ard a
ssign

ment
s that

set th
e affe

cted
clock

s to z
ero, a

nd

the in
varian

ts are
given

inside
the lo

cation
s, bel

ow th
e loca

tion n
ame.

Instea
d

of ti
meou

t, the
label

of the
edge

that i
s take

n wh
en a m

essag
e is lo

st is n
ow

simpl
y τ . H

owev
er, a n

ew cl
ock c

has b
een in

trodu
ced th

at is u
sed to

make
the

transm
ission

of a m
essag

e take
betwe

en TD
min
and T

Dmax
time u

nits, m
odell

ing

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA

179

l0
true l1c≤ TDmax

l2c≤ TDmax

l3
true {collision}

snd_data 95
100 , {c := 0}

5100 , {c := 0}

c≥ TDmin ,rcv_data

c≥ TDmin , τ

snd_data

snd_data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-

tion, which maps each location to a set of edges, which in turn consist of a

guard, a label and a probability distribution over sets of clocks to reset to zero

and target locations,
– linit ∈ Loc is the initial location,

– Inv∈ Loc→CC is the invariant function, which maps each location to a clock

constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and

– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using

arrows to denote edges, can be applied to PTA analogously. Let us now illus-

trate the capabilities of PTA by extending the communication protocol com-

ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP

that models a lossy communication channel with collision detection. A model-

ling artifact caused by the use of an untimed formalism was that message loss

was explicitly signalled to the sender via a timeout action, for there was no

other way to make it observable. Now, with PTA, we can use clocks to model

transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The

guards are shown on the transitions before the action label, the clock resets are

represented by standard assignments that set the affected clocks to zero, and

the invariants are given inside the locations, below the location name. Instead

of timeout, the label of the edge that is taken when a message is lost is now

simply τ . However, a new clock c has been introduced that is used to make the

transmission of a message take between TDmin and TDmax time units, modelling

PROB
ABIL

ISTIC
TIME

D AU
TOM

ATA

179

l0
true

l1

c≤ TDmax

l2

c≤ TDmax

l3
true

{coll
ision

}

snd_
data

95
100
, {
c :=

0}

5
100 , {c := 0}

c≥ TDmin
,

rcv_
data

c≥ TDmin
, τ

snd_data

sn
d_
da
ta

Figur
e 5.1:

PTA
mode

l of a
lossy

comm
. chan

nel w
ith co

llisio
n dete

ction

– E ∈ Loc
→ P(CC ×A×

Dist(
P(C)×Lo

c)) is
the au

toma
ton’s

edge
func-

tion,
which

maps
each

locati
on to

a set
of ed

ges, w
hich

in tur
n con

sist o
f a

guard
, a lab

el and
a pro

babil
ity di

stribu
tion o

ver se
ts of c

locks
to res

et to z
ero

and ta
rget l

ocatio
ns,

– linit
∈ Loc

is the
initia

l loca
tion,

– Inv
∈ Loc

→CC is
the in

varian
t func

tion,
which

maps
each

locati
on to

a cloc
k

const
raint

that a
llows

time
to pas

s as l
ong a

s it ev
aluate

s to tr
ue,

– AP
is a s

et of
atom

ic pro
positi

ons, a
nd

– L ∈
Loc→

P(AP) is th
e loca

tion l
abelli

ng fu
nctio

n.

The u
sual n

otatio
n that

we al
ready

used
for pr

eviou
s mod

els, su
ch as

also u
sing

arrow
s to d

enote
edges

, can
be ap

plied
to PT

A ana
logou

sly. L
et us

now i
llus-

trate
the c

apabi
lities

of PT
A by

exten
ding

the c
omm

unica
tion p

rotoc
ol co

m-

ponen
t mod

els fr
om p

revio
us ex

ampl
es.

Exam
ple 2

8. In
Exam

ple 1
4 in t

he pr
eviou

s cha
pter,

we in
trodu

ced a
n MD

P

that m
odels

a loss
y com

muni
cation

chann
el wit

h coll
ision

detec
tion.

A mo
del-

ling a
rtifac

t caus
ed by

the u
se of

an un
timed

forma
lism

was t
hat m

essag
e loss

was e
xplic

itly s
ignal

led to
the se

nder
via a

time
out

action
, for

there
was n

o

other
way t

o ma
ke it

obser
vable

. Now
, with

PTA,
we ca

n use
clock

s to m
odel

transm
ission

delay
s and

the de
tectio

n of t
imeo

uts in
a mor

e real
istic w

ay.

Figur
e 5.1

show
s the

updat
ed m

odel
for th

e com
muni

cation
chann

el. T
he

guard
s are

show
n on

the tr
ansiti

ons b
efore

the ac
tion l

abel,
the cl

ock r
esets

are

repre
sente

d by
stand

ard a
ssign

ment
s that

set th
e affe

cted
clock

s to z
ero, a

nd

the in
varian

ts are
given

inside
the lo

cation
s, bel

ow th
e loca

tion n
ame.

Instea
d

of ti
meou

t, the
label

of the
edge

that i
s take

n wh
en a m

essag
e is lo

st is n
ow

simpl
y τ . H

owev
er, a n

ew cl
ock c

has b
een in

trodu
ced th

at is u
sed to

make
the

transm
ission

of a m
essag

e take
betwe

en TD
min
and T

Dmax
time u

nits, m
odell

ing

tick

l0, 3

l0, 4

l0, 5

tick

tick

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

l3, 1

l3, 2

l3, 0

tick

tick

tick

tick

tick

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

etc.

tick

etc.

etc.

etc.etc.

Autómatas temporizados con probabilidades
(PTA)PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

3

3

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

l0, 0

l1, 0 l2, 0

l1, 1

l1, 2

l1, 3

l1, 4

l1, 5

l3, 3

l3, 4

l3, 5

PROBABILISTIC TIMED AUTOMATA

179

l0
true l1c≤ TDmax

l2c≤ TDmax

l3
true {collision}

snd_data 95
100 , {c := 0}

5100 , {c := 0}

c≥ TDmin ,rcv_data

c≥ TDmin , τ

snd_data

snd_data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-

tion, which maps each location to a set of edges, which in turn consist of a

guard, a label and a probability distribution over sets of clocks to reset to zero

and target locations,
– linit ∈ Loc is the initial location,

– Inv∈ Loc→CC is the invariant function, which maps each location to a clock

constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and

– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using

arrows to denote edges, can be applied to PTA analogously. Let us now illus-

trate the capabilities of PTA by extending the communication protocol com-

ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP

that models a lossy communication channel with collision detection. A model-

ling artifact caused by the use of an untimed formalism was that message loss

was explicitly signalled to the sender via a timeout action, for there was no

other way to make it observable. Now, with PTA, we can use clocks to model

transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The

guards are shown on the transitions before the action label, the clock resets are

represented by standard assignments that set the affected clocks to zero, and

the invariants are given inside the locations, below the location name. Instead

of timeout, the label of the edge that is taken when a message is lost is now

simply τ . However, a new clock c has been introduced that is used to make the

transmission of a message take between TDmin and TDmax time units, modelling

PROB
ABIL

ISTIC
TIME

D AU
TOM

ATA

179

l0
true

l1

c≤ TDmax

l2

c≤ TDmax

l3
true

{coll
ision

}

snd_
data

95
100
, {
c :=

0}

5
100 , {c := 0}

c≥ TDmin
,

rcv_
data

c≥ TDmin
, τ

snd_data

sn
d_
da
ta

Figur
e 5.1:

PTA
mode

l of a
lossy

comm
. chan

nel w
ith co

llisio
n dete

ction

– E ∈ Loc
→ P(CC ×A×

Dist(
P(C)×Lo

c)) is
the au

toma
ton’s

edge
func-

tion,
which

maps
each

locati
on to

a set
of ed

ges, w
hich

in tur
n con

sist o
f a

guard
, a lab

el and
a pro

babil
ity di

stribu
tion o

ver se
ts of c

locks
to res

et to z
ero

and ta
rget l

ocatio
ns,

– linit
∈ Loc

is the
initia

l loca
tion,

– Inv
∈ Loc

→CC is
the in

varian
t func

tion,
which

maps
each

locati
on to

a cloc
k

const
raint

that a
llows

time
to pas

s as l
ong a

s it ev
aluate

s to tr
ue,

– AP
is a s

et of
atom

ic pro
positi

ons, a
nd

– L ∈
Loc→

P(AP) is th
e loca

tion l
abelli

ng fu
nctio

n.

The u
sual n

otatio
n that

we al
ready

used
for pr

eviou
s mod

els, su
ch as

also u
sing

arrow
s to d

enote
edges

, can
be ap

plied
to PT

A ana
logou

sly. L
et us

now i
llus-

trate
the c

apabi
lities

of PT
A by

exten
ding

the c
omm

unica
tion p

rotoc
ol co

m-

ponen
t mod

els fr
om p

revio
us ex

ampl
es.

Exam
ple 2

8. In
Exam

ple 1
4 in t

he pr
eviou

s cha
pter,

we in
trodu

ced a
n MD

P

that m
odels

a loss
y com

muni
cation

chann
el wit

h coll
ision

detec
tion.

A mo
del-

ling a
rtifac

t caus
ed by

the u
se of

an un
timed

forma
lism

was t
hat m

essag
e loss

was e
xplic

itly s
ignal

led to
the se

nder
via a

time
out

action
, for

there
was n

o

other
way t

o ma
ke it

obser
vable

. Now
, with

PTA,
we ca

n use
clock

s to m
odel

transm
ission

delay
s and

the de
tectio

n of t
imeo

uts in
a mor

e real
istic w

ay.

Figur
e 5.1

show
s the

updat
ed m

odel
for th

e com
muni

cation
chann

el. T
he

guard
s are

show
n on

the tr
ansiti

ons b
efore

the ac
tion l

abel,
the cl

ock r
esets

are

repre
sente

d by
stand

ard a
ssign

ment
s that

set th
e affe

cted
clock

s to z
ero, a

nd

the in
varian

ts are
given

inside
the lo

cation
s, bel

ow th
e loca

tion n
ame.

Instea
d

of ti
meou

t, the
label

of the
edge

that i
s take

n wh
en a m

essag
e is lo

st is n
ow

simpl
y τ . H

owev
er, a n

ew cl
ock c

has b
een in

trodu
ced th

at is u
sed to

make
the

transm
ission

of a m
essag

e take
betwe

en TD
min
and T

Dmax
time u

nits, m
odell

ing

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

tick

tick

tick

tick

tick

l0, 1 l0, 2
tick tick

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA

179

l0
true l1c≤ TDmax

l2c≤ TDmax

l3
true {collision}

snd_data 95
100 , {c := 0}

5100 , {c := 0}

c≥ TDmin ,rcv_data

c≥ TDmin , τ

snd_data

snd_data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-

tion, which maps each location to a set of edges, which in turn consist of a

guard, a label and a probability distribution over sets of clocks to reset to zero

and target locations,
– linit ∈ Loc is the initial location,

– Inv∈ Loc→CC is the invariant function, which maps each location to a clock

constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and

– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using

arrows to denote edges, can be applied to PTA analogously. Let us now illus-

trate the capabilities of PTA by extending the communication protocol com-

ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP

that models a lossy communication channel with collision detection. A model-

ling artifact caused by the use of an untimed formalism was that message loss

was explicitly signalled to the sender via a timeout action, for there was no

other way to make it observable. Now, with PTA, we can use clocks to model

transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The

guards are shown on the transitions before the action label, the clock resets are

represented by standard assignments that set the affected clocks to zero, and

the invariants are given inside the locations, below the location name. Instead

of timeout, the label of the edge that is taken when a message is lost is now

simply τ . However, a new clock c has been introduced that is used to make the

transmission of a message take between TDmin and TDmax time units, modelling

PROB
ABIL

ISTIC
TIME

D AU
TOM

ATA

179

l0
true

l1

c≤ TDmax

l2

c≤ TDmax

l3
true

{coll
ision

}

snd_
data

95
100
, {
c :=

0}

5
100 , {c := 0}

c≥ TDmin
,

rcv_
data

c≥ TDmin
, τ

snd_data

sn
d_
da
ta

Figur
e 5.1:

PTA
mode

l of a
lossy

comm
. chan

nel w
ith co

llisio
n dete

ction

– E ∈ Loc
→ P(CC ×A×

Dist(
P(C)×Lo

c)) is
the au

toma
ton’s

edge
func-

tion,
which

maps
each

locati
on to

a set
of ed

ges, w
hich

in tur
n con

sist o
f a

guard
, a lab

el and
a pro

babil
ity di

stribu
tion o

ver se
ts of c

locks
to res

et to z
ero

and ta
rget l

ocatio
ns,

– linit
∈ Loc

is the
initia

l loca
tion,

– Inv
∈ Loc

→CC is
the in

varian
t func

tion,
which

maps
each

locati
on to

a cloc
k

const
raint

that a
llows

time
to pas

s as l
ong a

s it ev
aluate

s to tr
ue,

– AP
is a s

et of
atom

ic pro
positi

ons, a
nd

– L ∈
Loc→

P(AP) is th
e loca

tion l
abelli

ng fu
nctio

n.

The u
sual n

otatio
n that

we al
ready

used
for pr

eviou
s mod

els, su
ch as

also u
sing

arrow
s to d

enote
edges

, can
be ap

plied
to PT

A ana
logou

sly. L
et us

now i
llus-

trate
the c

apabi
lities

of PT
A by

exten
ding

the c
omm

unica
tion p

rotoc
ol co

m-

ponen
t mod

els fr
om p

revio
us ex

ampl
es.

Exam
ple 2

8. In
Exam

ple 1
4 in t

he pr
eviou

s cha
pter,

we in
trodu

ced a
n MD

P

that m
odels

a loss
y com

muni
cation

chann
el wit

h coll
ision

detec
tion.

A mo
del-

ling a
rtifac

t caus
ed by

the u
se of

an un
timed

forma
lism

was t
hat m

essag
e loss

was e
xplic

itly s
ignal

led to
the se

nder
via a

time
out

action
, for

there
was n

o

other
way t

o ma
ke it

obser
vable

. Now
, with

PTA,
we ca

n use
clock

s to m
odel

transm
ission

delay
s and

the de
tectio

n of t
imeo

uts in
a mor

e real
istic w

ay.

Figur
e 5.1

show
s the

updat
ed m

odel
for th

e com
muni

cation
chann

el. T
he

guard
s are

show
n on

the tr
ansiti

ons b
efore

the ac
tion l

abel,
the cl

ock r
esets

are

repre
sente

d by
stand

ard a
ssign

ment
s that

set th
e affe

cted
clock

s to z
ero, a

nd

the in
varian

ts are
given

inside
the lo

cation
s, bel

ow th
e loca

tion n
ame.

Instea
d

of ti
meou

t, the
label

of the
edge

that i
s take

n wh
en a m

essag
e is lo

st is n
ow

simpl
y τ . H

owev
er, a n

ew cl
ock c

has b
een in

trodu
ced th

at is u
sed to

make
the

transm
ission

of a m
essag

e take
betwe

en TD
min
and T

Dmax
time u

nits, m
odell

ing

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA

179

l0
true l1c≤ TDmax

l2c≤ TDmax

l3
true {collision}

snd_data 95
100 , {c := 0}

5100 , {c := 0}

c≥ TDmin ,rcv_data

c≥ TDmin , τ

snd_data

snd_data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-

tion, which maps each location to a set of edges, which in turn consist of a

guard, a label and a probability distribution over sets of clocks to reset to zero

and target locations,
– linit ∈ Loc is the initial location,

– Inv∈ Loc→CC is the invariant function, which maps each location to a clock

constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and

– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using

arrows to denote edges, can be applied to PTA analogously. Let us now illus-

trate the capabilities of PTA by extending the communication protocol com-

ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP

that models a lossy communication channel with collision detection. A model-

ling artifact caused by the use of an untimed formalism was that message loss

was explicitly signalled to the sender via a timeout action, for there was no

other way to make it observable. Now, with PTA, we can use clocks to model

transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The

guards are shown on the transitions before the action label, the clock resets are

represented by standard assignments that set the affected clocks to zero, and

the invariants are given inside the locations, below the location name. Instead

of timeout, the label of the edge that is taken when a message is lost is now

simply τ . However, a new clock c has been introduced that is used to make the

transmission of a message take between TDmin and TDmax time units, modelling

PROB
ABIL

ISTIC
TIME

D AU
TOM

ATA

179

l0
true

l1

c≤ TDmax

l2

c≤ TDmax

l3
true

{coll
ision

}

snd_
data

95
100
, {
c :=

0}

5
100 , {c := 0}

c≥ TDmin
,

rcv_
data

c≥ TDmin
, τ

snd_data

sn
d_
da
ta

Figur
e 5.1:

PTA
mode

l of a
lossy

comm
. chan

nel w
ith co

llisio
n dete

ction

– E ∈ Loc
→ P(CC ×A×

Dist(
P(C)×Lo

c)) is
the au

toma
ton’s

edge
func-

tion,
which

maps
each

locati
on to

a set
of ed

ges, w
hich

in tur
n con

sist o
f a

guard
, a lab

el and
a pro

babil
ity di

stribu
tion o

ver se
ts of c

locks
to res

et to z
ero

and ta
rget l

ocatio
ns,

– linit
∈ Loc

is the
initia

l loca
tion,

– Inv
∈ Loc

→CC is
the in

varian
t func

tion,
which

maps
each

locati
on to

a cloc
k

const
raint

that a
llows

time
to pas

s as l
ong a

s it ev
aluate

s to tr
ue,

– AP
is a s

et of
atom

ic pro
positi

ons, a
nd

– L ∈
Loc→

P(AP) is th
e loca

tion l
abelli

ng fu
nctio

n.

The u
sual n

otatio
n that

we al
ready

used
for pr

eviou
s mod

els, su
ch as

also u
sing

arrow
s to d

enote
edges

, can
be ap

plied
to PT

A ana
logou

sly. L
et us

now i
llus-

trate
the c

apabi
lities

of PT
A by

exten
ding

the c
omm

unica
tion p

rotoc
ol co

m-

ponen
t mod

els fr
om p

revio
us ex

ampl
es.

Exam
ple 2

8. In
Exam

ple 1
4 in t

he pr
eviou

s cha
pter,

we in
trodu

ced a
n MD

P

that m
odels

a loss
y com

muni
cation

chann
el wit

h coll
ision

detec
tion.

A mo
del-

ling a
rtifac

t caus
ed by

the u
se of

an un
timed

forma
lism

was t
hat m

essag
e loss

was e
xplic

itly s
ignal

led to
the se

nder
via a

time
out

action
, for

there
was n

o

other
way t

o ma
ke it

obser
vable

. Now
, with

PTA,
we ca

n use
clock

s to m
odel

transm
ission

delay
s and

the de
tectio

n of t
imeo

uts in
a mor

e real
istic w

ay.

Figur
e 5.1

show
s the

updat
ed m

odel
for th

e com
muni

cation
chann

el. T
he

guard
s are

show
n on

the tr
ansiti

ons b
efore

the ac
tion l

abel,
the cl

ock r
esets

are

repre
sente

d by
stand

ard a
ssign

ment
s that

set th
e affe

cted
clock

s to z
ero, a

nd

the in
varian

ts are
given

inside
the lo

cation
s, bel

ow th
e loca

tion n
ame.

Instea
d

of ti
meou

t, the
label

of the
edge

that i
s take

n wh
en a m

essag
e is lo

st is n
ow

simpl
y τ . H

owev
er, a n

ew cl
ock c

has b
een in

trodu
ced th

at is u
sed to

make
the

transm
ission

of a m
essag

e take
betwe

en TD
min
and T

Dmax
time u

nits, m
odell

ing

tick

l0, 3

l0, 4

l0, 5

tick

tick

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

l3, 1

l3, 2

l3, 0

tick

tick

tick

tick

tick

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

etc.

tick

etc.

etc.

etc.etc.

Es un MDP!

Autómatas temporizados con probabilidades
(PTA)PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

3

3

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

5

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c≤ TDmax

l2
c≤ TDmax

l3
true

{collision}snd_data
95
100
, {c :

= 0}

5
100 , {c := 0}

c≥ TDmin,
rcv_data

c≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc→ P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock
constraint that allows time to pass as long as it evaluates to true,

– AP is a set of atomic propositions, and
– L ∈ Loc→ P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

Se puede
construir algo parecido

para los reales

PROBABILISTIC TIMED AUTOMATA 207

〈l0,c= 0〉

〈l0,c ∈ (0,1)〉

〈l0,c= 1〉

〈l0,c ∈ (1,2)〉

〈l0,c= 2〉

〈l0,c> 2〉

〈l1,c= 0〉

〈l1,c ∈ (0,1)〉

〈l1,c= 1〉

〈l1,c ∈ (1,2)〉

〈l1,c= 2〉

〈l2,c= 0〉

〈l2,c ∈ (0,1)〉

〈l2,c= 1〉

〈l2,c ∈ (1,2)〉

〈l2,c= 2〉

〈l3,c= 0〉

{collision}

snd_ data

snd_ data

snd_ data

snd_ data

snd_ data

snd_ data

τ

τ

τ

τ

ττ

τ

τ

τ

τ

τ

τ

τ

τ

τ

95
100

5
100

95
100

5
100

rcv_data

rcv_data

rcv_data

τ

τ

τ

snd_data snd_data

snd_data snd_data

Figure 5.9: Region graph of the lossy communication channel PTA

El zoológico de autómatas cuantitativos
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

El zoológico de autómatas cuantitativos
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

El zoológico de autómatas cuantitativos
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

PRISM

+ POMDP, POPTA

El zoológico de autómatas cuantitativos
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

Storm

El zoológico de autómatas cuantitativos
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

Modest

El zoológico de autómatas cuantitativos
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

FIG

Limitado a
determinismo débil

El zoológico de autómatas cuantitativos
A. Hartmanns, H. Hermanns / Science of Computer Programming 112 (2015) 3–23 5

Fig. 2. The quantitative automata family tree.

that allows concurrency and communication. We take a deeper look at these in Section 2. The foundations for discrete
probabilistic decisions, on the other hand, stem from the discrete-time Markov chain ancestor, whose combination with
the nondeterministic choices of labelled transition systems leads to the model of Markov decision processes. We introduce
these two in Section 3. Adding ways to model real-time aspects to labelled transition systems results in timed automata,
which we look at in Section 4. That is also the place where we show how to add rewards/costs/prices to a model. This
enables reasoning about derived time-dependent quantities such as power consumption. The integration of timed automata
and Markov decision processes, gives us a real-time model with discrete probabilistic choices, known as probabilistic timed
automata. We visit this model in Section 5, together with its descendant adding the ability to handle continuous probability
distributions, the stochastic timed automaton. To handle complex physical processes together with discrete control mech-
anisms, timed automata are extended to hybrid automata. We describe these as well as their descendants of probabilistic
and stochastic hybrid automata in Section 6. Thus far, we ignored an entire branch of the automata family: the models with
exponentially-distributed residence times, based on continuous-time Markov chains. We explore this branch, which includes
interactive Markov chains and Markov automata, in Section 7. For an at-a-glance comparison of the models’ expressiveness,
we show their classification diagrammatically in Figs. 3 and 4.

In our tour through this zoo of automata we are visiting the models on an intuitive and illustrative level, and point to
background literature for further details. This is especially true for the models higher up in the hierarchy we present. The
more basic models have a very rich body of scientific literature which we are able to cover only to the extent to which it is
relevant for our tour.

2. Transition systems

All the models that we present in this paper are, at their core, variants of transition systems or can be seen as such: They
consist of a number of states that are connected by some form of transitions. In the later sections, we will associate various
pieces of information with states and transitions, such as probabilities, time progress conditions or differential equations,
but we here start with the simple case of states and action-labelled transitions connecting a single source to a single target
state. Depending on purpose and context, this model is known as labelled transition systems (in compositional modelling and
verification), Kripke structures (in verification, but without action labels), or finite automata (when focusing on the accepted
language given via the labels). The scientific literature on this model is extensive, and it is not our intention to give an
exhaustive survey. One good starting point is [3, Chapter 2].

2.1. Labelled transition system

Labelled transition systems (LTS) are the fundamental nondeterministic modelling formalism. An LTS consists of a set
of states, which are connected by transitions. Transitions in turn are labelled with elements from a given alphabet. These
labels are usually called actions. States can be any kind of concrete mathematical object that represents a “snapshot”, or
configuration, of the system under study in a more or less abstract fashion. Ideally, the set of states—and the underlying
class of mathematical objects—is chosen such that it is as small as possible without mapping two concrete configurations
to the same state when they would, in reality, lead to relevant differences in behaviour. Transitions connect states. They
model the behaviour of the system as it evolves from state to state. One state can have any number of outgoing transitions.
Nondeterminism is reflected in an LTS in the choice of transitions to take from a state, each of which in turn leads to a single
next state. If two outgoing transitions of a state have different labels, we call this external nondeterminism; otherwise, it is
an internal choice. This distinction stems from viewing the LTS as an open system that can communicate (or be composed)
with an (unspecified) environment or with another LTS in a parallel composition (see below) via synchronisation over
transition labels. The synchronisation partner could thus (externally) select a transition label and thus restrict or resolve the
choice. In a closed system view, on the other hand, transition labels can be considered not to matter (i.e. they could all be
the same), and how to resolve the choices is a decision internal to the LTS.

Science of Computer Programming 112 (2015) 3–23

Contents lists available at ScienceDirect

Science of Computer Programming
www.elsevier.com/locate/scico

In the quantitative automata zoo !

Arnd Hartmanns ∗, Holger Hermanns ∗
Saarland University, Computer Science, Germany

a r t i c l e i n f o a b s t r a c tArticle history:
Received 10 June 2014Received in revised form 26 August 2015Accepted 31 August 2015Available online 7 September 2015

Keywords:
Quantitative verificationMarkov decision processesTimed automata

Hybrid automata
Compositional modelling

Quantitative model checking and performance evaluation deal with the analysis of complex
systems that must not only satisfy correctness requirements, but also meet performance
and reliability goals. Models of such systems therefore need to represent the necessary
quantitative information about probabilistic decisions, real-time phenomena, or continuous
dynamics. At the same time, nondeterminism needs to be properly captured as in classical
verification, so as to enable abstraction and compositional modelling. These aspects span
a large spectrum of automata-based quantitative models which have been studied in the
verification and performance evaluation literature. In this paper, we embark on a guided
tour through this zoo of quantitative models. Starting from the basic formalisms of labelled
transition systems and also Markov chains, we look at how timed and hybrid automata add
real-time aspects as well as continuous dynamics, and we study extensions that provide for
behaviour governed by discrete and continuous probability distributions. For each of the
automata models, we outline its definition, provide a small illustrative example, summarise
its expressive power, and survey available formal analysis techniques as well as selected
practical applications.

 2015 Elsevier B.V. All rights reserved.

1. Introduction

We are surrounded by an increasing number of complex computer-driven systems: fly-by-wire airplanes, medical sys-

tems, automated stock trading, networked industrial automation systems, and not least the Internet itself. Over the last

decades, significant progress has been made in the area of formal methods to allow these systems to be modelled in a

mathematically precise way. Techniques like model checking have been developed to automatically prove that these mod-

els satisfy formally specified requirements. Up to modelling errors and implementation deviations, such a proof provides

confidence in the correct functioning of the real system under study.
However, purely qualitative statements about functional correctness are often not sufficient in practice: a correct system

may still be unusably slow, or we may not be able to prove correctness when we consider errors that in reality happen

with negligible probability. In such cases, we need to extend our models with quantitative information to capture details of

timing, probability, or physics. Appropriate verification techniques then allow the analysis of quantitative properties. These

include requirements, for example that a fatal error happen with a very low probability over the lifespan of an airplane, and

queries for quantitative measures, such as the throughput of a proposed server architecture.
! This work is supported by the EU Seventh Framework Programme under grant agreements 295261 (MEALS) and 318490 (SENSATION), by the DFG as

part of SFB/TR 14 AVACS, by the CAS-SAFEA International Partnership Program for Creative Research Teams, and by the CDZ project CAP (GZ 1023).

* Corresponding authors.
E-mail addresses: arnd@cs.uni-saarland.de (A. Hartmanns), hermanns@cs.uni-saarland.de (H. Hermanns).

http://dx.doi.org/10.1016/j.scico.2015.08.0090167-6423/ 2015 Elsevier B.V. All rights reserved.

