Optimal Routing in Satellite DTN through Markov Decision Processes

Pedro R. D'Argenio

Joint work with
Juan Fraire, Arnd Hartmanns, Fernando Raverta,
Ramiro Demasi, Pablo Madhoery, Jorge Finochieto

Satellite Delay Tolerant Networks

Standard: Contact Graph Routing (CGR)

Satellite Delay Tolerant Networks

Links may fail!

Standard: Contact Graph Routing (CGR)

Increase reliability: CGR with multiple copies

NC

Satellite Delay Tolerant Networks

Links may fail!
Not optimal!
Standard: Contact Graph Routi.g (CGR)
Increase reliability: CGR with multiple copies

Optimality through Markov Decision Processes

Assume 2 copies are sent

$$
\text { [A } \left.B^{0} C^{1} D^{0} \mid t_{2}\right]
$$

Optimality through Markov Decision Processes

Assume 2 copies are sent

We have a reachability problem where goal states are those with a copy at target node

Optimality through Markov Decision Processes

Assume 2 copies are sent

We have a reachability problem where goal states are those with a copy at target node
$\int \begin{aligned} & \text { UNI } \\ & \text { DES } \\ & \text { SAA }\end{aligned}$
DES
SAARLAND

First technique

Routing under Uncertain Contact Plans (RUCoP)

Observe: MDP (almost) acyclic

RUCoP:

* follows Bellman equations backwardly (starting from goal states)
* only one pass required
* only maximizing subgraph (Markov chain!) is preserved

First technique

Routing under Uncertain Contact Plans (RUCoP)

Observe: MDP (almost) acyclic

RUCoP:

* follows Bellman equations backwardly (starting from goal states)
* only one pass required
* only maximizing subgraph (Markov chain!) is preserved

universität
UNIVE
DES
saARLandes

Simulation through Lightweight Smart Sampling (LSS)

SMC+LSS:

1. Select m 32-bit integer, each of them representing a scheduler identifier σ
2. For each σ, perform standard SMC letting σ resolve all non-determinism
3. Return the maximum (or minimum) and the corresponding σ

* SMC+LSS returns an underapproximation (or overapproximation) which we call near optimal
* The efficiency depends on m

Implemented in the
MODEST toolset

UNIVER DES saARLANDES

The problem of distributed information

The problem of distributed information

The problem of distributed information

The decision has to be the same regardless the occurrences of locally unknown events

The problem of distributed information

Luckily we have distributed schedulers

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    1: for all \(c \leq N\) do
        \(\left(S_{c}, T r_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L T r_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
                \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
                    \(t s^{\prime}=t s^{\prime}+1\)
            if \(s^{\prime} \in S_{r c}\) then
                \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
            else
                break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\).
```


Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, T r_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L T r_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
            \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
            \(t s^{\prime}=t s^{\prime}+1\)
            if \(s^{\prime} \in S_{r c}\) then
                \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
            else
                break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\).
```


Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, T r_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
Start from a safe state for node \(n\) with \(c\) copies at
    time slot \(t s\)
        if \(s \in S_{c}\) then
            \(L \operatorname{Tr}_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
                \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
            \(t s^{\prime}=t s^{\prime}+1\)
            if \(s^{\prime} \in S_{r c}\) then
                \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
            else
                break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\).
```

s s Safate $(n, c, t s)$
$\in S_{c}$ then
$L \operatorname{Tr}_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}$
$t s^{\prime} \leftarrow t s$
$r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0$
while $r c>0$ do
$s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)$
if $s^{\prime} \in S_{r c}$ then
$L T r_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}$
else
break
end if
$r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0$
end while
end if
end for
return $L T r_{n}$, for all node n.

$\operatorname{Safe_ state}\left(A, 1, t_{2}\right)=\left[A^{1} B^{0} C^{0} D^{0} \mid t_{2}\right]$

UNIVERSITÄ UNIVER
DES
SAARL SAARLANDES

Third technique

Local decisions using RUCoP (L-RUCoP)

Input: number of copies N, target node T
Output: A routing table $L T r_{n}$ for each node n
1: for all $c \leq N$ do
$\left(S_{c}, T r_{c}, P r_{c}\right) \leftarrow \operatorname{RUCoP}(G, c, T)$
end for
for all node n, time slot $t s$, and $c \leq N$ do $s \leftarrow \operatorname{Safe}$ _state $(n, c, t s)$ if $s \in S_{c}$ then
$L \operatorname{Tr}_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}$
$t s^{\prime} \leftarrow t s$
$r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0$
while $r c>0$ do
$s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)$
$t s^{\prime}=t s^{\prime}+1$
if $s^{\prime} \in S_{r c}$ then
$L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}$
else
break
end if
$r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0$
end while
end if
end for
return $L T r_{n}$, for all node n.

Start from a safe state for node n with c copies at time slot $t s$

$$
\left[A^{0} B^{0} C^{2} D^{0} \mid t_{3}\right]\left[A^{1} B^{0} C^{1} D^{0} \mid t_{3}\right]\left[A^{0} B^{1} C^{1} D^{0} \mid t_{3}\right]\left[A^{1} B^{1} C^{0} D^{0} \mid t_{3}\right]
$$

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, T r_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
        \(L T r_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
        \(t s^{\prime} \leftarrow t s\)
        \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
        while \(r c>0\) do
            \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
            \(t s^{\prime}=t s^{\prime}+1\)
            if \(s^{\prime} \in S_{r c}\) then
                \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
            else
                break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\).
\(\left.(\exists, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\) while
end if
return \(L T r_{n}\), for all node \(n\).
```

Define the routing for node n in a safe state with c copies just like in RUCoP for c copies

Decision is taken from RUCoP of 1 copy for the safe state $\left[A^{1} B^{0} C^{0} D^{0} \mid t_{2}\right]$.
$\left[A^{0} B^{0} C^{2} D^{0} \mid t_{3}\right]\left[A^{1} B^{0} C^{1} D^{0} \mid t_{3}\right]\left[A^{0} B^{1} C^{1} D^{0} \mid t_{3}\right]\left[A^{1} B^{1} C^{0} D^{0} \mid t_{3}\right]$

universitä DES saARLANDES

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, \operatorname{Tr}_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L \operatorname{Tr}_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
                \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
                \(t s^{\prime}=t s^{\prime}+1\)
                if \(s^{\prime} \in S_{r c}\) then
                    \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
                else
                    break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\)
```


Sometimes a node has some information about other nodes (e.g. when it just sent a message)

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, \operatorname{Tr}_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L T r_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
                \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
                \(t s^{\prime}=t s^{\prime}+1\)
                if \(s^{\prime} \in S_{r c}\) then
                    \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
                else
                    break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\)
```


$t_{1}: B$ sends a copy to C who ack reception

Sometimes a node has some information about other nodes (e.g. when it just sent a message)
universität DES saARLANDES

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, \operatorname{Tr}_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L \operatorname{Tr}_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
                \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
                \(t s^{\prime}=t s^{\prime}+1\)
                if \(s^{\prime} \in S_{r c}\) then
                    \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
                else
                    break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\)
return \(L T r_{n}\), for all node \(n\)
```


$t_{2}: B$ knows C has a copy

Sometimes a node has some information about other nodes (e.g. when it just sent a message)

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, \operatorname{Tr}_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L T r_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
                \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
                \(t s^{\prime}=t s^{\prime}+1\)
                if \(s^{\prime} \in S_{r c}\) then
                    \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
                else
                    break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\).
```


$t_{3}: B$ knows C has a copy

Sometimes a node has some information about other nodes (e.g. when it just sent a message)

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, \operatorname{Tr}_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L \operatorname{Tr}_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
                \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
                \(t s^{\prime}=t s^{\prime}+1\)
                if \(s^{\prime} \in S_{r c}\) then
                    \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
                else
                    break
            end if
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\)
```


$t_{4}: B$ does not know if C has a copy

Sometimes a node has some information about other nodes (e.g. when it just sent a message)

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, \operatorname{Tr}_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L \operatorname{Tr}_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
                \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
                \(t s^{\prime}=t s^{\prime}+1\)
                if \(s^{\prime} \in S_{r c}\) then
                    \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
                else
                    break
                enaiin
                \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
            end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\)
```


$t_{4}: B$ does not know if C has a copy

Third technique

Local decisions using RUCoP (L-RUCoP)

```
Input: number of copies \(N\), target node \(T\)
Output: A routing table \(L T r_{n}\) for each node \(n\)
    for all \(c \leq N\) do
        \(\left(S_{c}, \operatorname{Tr}_{c}, P r_{c}\right) \leftarrow R U C o P(G, c, T)\)
    end for
    for all node \(n\), time slot \(t s\), and \(c \leq N\) do
        \(s \leftarrow \operatorname{Safe}\) _state \((n, c, t s)\)
        if \(s \in S_{c}\) then
            \(L \operatorname{Tr}_{n}(t s, c, t s) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{c}(s) \mid \operatorname{first}(r)=n\right\}\)
            \(t s^{\prime} \leftarrow t s\)
            \(r c \leftarrow\left(\exists(k, n) \in L T_{r}\left(n, t s, c, t s^{\prime}\right)\right) ? k: 0\)
            while \(r c>0\) do
            \(s^{\prime} \leftarrow \operatorname{Post}\left(L T r_{n}\left(t s, r c, t s^{\prime}\right)\right)\)
            \(t s^{\prime}=t s^{\prime}+1\)
            if \(s^{\prime} \in S_{r c}\) then
                    \(L \operatorname{Tr}_{n}\left(t s, r c, t s^{\prime}\right) \leftarrow\left\{(k, r) \in \operatorname{Tr}_{r c}\left(s^{\prime}\right) \mid \operatorname{first}(r)=n\right\}\)
                else
                    break
            enaiin
            \(r c \leftarrow\left(\exists(k, n) \in L T r_{n}\left(t s, r c, t s^{\prime}\right)\right) ? k: 0\)
        end while
        end if
    end for
    return \(L T r_{n}\), for all node \(n\)
```


$t_{4}: B$ does not know if C has a copy

universität UNIVERSIT
DES SAARLANDES

Fourth technique
 SMC + LSS of distributed schedulers

* Resolving non-determinism in SMC+LSS

UNC

Fourth technique

SMC + LSS of distributed schedulers

* Resolving non-determinism in SMC+LSS

$$
\mathcal{H}(\sigma . s) \bmod n
$$

* Resolving non-determinism in SMC+LSS+DS

$$
\mathcal{H}\left(\sigma \cdot\left(s \downarrow_{M_{i}}\right)\right) \bmod n_{i}
$$

bit vector limited to component i
number of choices of component i at s

UNIV
DES

Fourth technique
 SMC + LSS of distributed schedulers

* Resolving non-determinism in SMC+LSS

$$
\mathcal{H}(\sigma . s) \bmod n
$$

* Resolving non-determinism in SMC+LSS+DS

$$
\mathcal{H}\left(\sigma \cdot\left(s \downarrow_{M_{i}}\right)\right) \bmod n_{i}
$$

bit vector limited
to component i
number of choices of component i at s

Input: Network of VMDP $M=\|_{S V}\left(M_{1}, \ldots, M_{n}\right)$ with $\llbracket M \rrbracket=\left\langle S, s_{I}, A, T\right\rangle$, goal set $G \subseteq S, \sigma \in \mathbb{Z}_{32}, \mathcal{H}$ uniform deterministic, PRNG $\mathcal{U}_{\mathrm{pr}}$.
$s:=s_{I}$
while $s \notin G$ do // break on goal state
if $\forall s \xrightarrow{a} \mu: \mu=\{s \mapsto 1\}$ then break // break on self-loops $C:=\left\{j \mid T(s) \cap I_{t}\left(M_{j}\right) \neq \emptyset\right\} \quad / /$ get active components $i:=\mathcal{U}_{\mathrm{pr}}\left(\left\{\left.j \mapsto \frac{1}{|C|} \right\rvert\, j \in C\right\}\right) \quad / /$ select component uniformly
$T_{i}:=T(s) \cap I_{t}\left(M_{i}\right) \quad / /$ get component's transitions
$\langle a, \mu\rangle:=\left(\mathcal{H}\left(\sigma . s \downarrow_{M_{i}}\right) \bmod \left|T_{i}\right|\right)$-th element of $T_{i} \quad / /$ schedule local transition $s:=\mathcal{U}_{\mathrm{pr}}(\mu) \quad / /$ select next state according to μ
9 return $s \in G$

Fourth technique
 SMC + LSS of distributed schedulers

* Resolving non-determinism in SMC+LSS

$$
\mathcal{H}(\sigma . s) \bmod n
$$

* Resolving non-determinism in SMC+LSS+DS

$$
\mathcal{H}\left(\sigma \cdot\left(s \downarrow_{M_{i}}\right)\right) \bmod n_{i}
$$

bit vector limited to component i
number of choices of component i at s

Input: Network of VMDP $M=\|_{S V}\left(M_{1}, \ldots, M_{n}\right)$ with $\llbracket M \rrbracket=\left\langle S, s_{I}, A, T\right\rangle$, goal set $G \subseteq S, \sigma \in \mathbb{Z}_{32}, \mathcal{H}$ uniform deterministic, PRNG $\mathcal{U}_{\mathrm{pr}}$.
$s:=s_{I}$
while $s \notin G$ do // break on goal state

return $s \in G$
pling Distributed Schedulers Sampling Distributed Communication

Abstract. We consider routing in delay-tolerant networks like satelilite

Experiments (delivery probability)

Figure 5: SDP gain over CGR in random networks.

Figure 6: SDP, solving time, and memory for binomial networks with varying complexity (i.e., levels).

Figure 7: SDP for RRN for different source-target nodes, contact plan duration, and scheduler sampling

Experiments (delivery probability)

Experiments (delivery probability)

Experiments
 time \& memory

Figure 8: Solving time (left) and memory (right) for RRN for different source-target nodes, contact plan duration, and scheduler sampling ($\mathrm{R}=\mathrm{RUCoP}, \mathrm{L}=\mathrm{LSS}$).

Probability
 Experiments (routing efficiency)

Latency

$\binom{$ Only RUCoP }{$\& ~ L-R U C o P}$

CONICET
䨋

Energy

Concluding remarks

* Clear increase of reliability (particularly L-RUCoP \& CGR-UCoP)
* Comparison on latency is mixed. It very much depends on probability of link failure
* Particularly, (L-)RUCoP-1 \& CGR-UCoP are more energy efficient than CGR
* All algorithms are demanding:
* Routing tables need to be calculated on ground and uploaded to the satellites
* (CGR requires uploading the contact plan, routing decisions are made on flight)
* CGR-UCoP requires uploading an annotated contact plan, routing decisions are made on flight. However, RUCoP is needed to annotate.
g

Optimal Routing in Satellite DTN through Markov Decision Processes

Pedro R. D'Argenio

Universidad Nacional de Córdoba - CONICET - Universität des Saarlandes https://cs.famaf.unc.edu.ar/~dargenio/

