Roborta vs. the Fair Light!

Pedro R. D'Argenio
joint work with

Pablo Castro, Ramiro Demasi, and Luciano Putruele

2

UNC

2

2
.5

UNC

2

$0 \leftrightarrow$	$0 \leftrightarrow$	$0 \Rightarrow$	$0 \leftrightarrow$
$4 \Rightarrow$	$2 \sim$	$6 \mapsto$	$1 \Rightarrow$
$0 \leftrightarrow$		$1 \Rightarrow$	$2 \Leftrightarrow$
$2 \rightarrow$	4	2	0

$0 \leftrightarrow$	$0 \leftrightarrow$	$0 \Rightarrow$	$0 \leftrightarrow$
$4 \Rightarrow$	$2 \sim$	$6 \rightarrow$	$1 \Rightarrow$
$0 \leftrightarrow$	$0 \leftrightarrow$		$2 \Leftrightarrow$
$2 \rightarrow$	4		0

$0 \leftrightarrow$	$0 \leftrightarrow$	$0 \Rightarrow$	$0 \leftrightarrow$
$4 \Rightarrow$	2	$6 \Rightarrow$	1 -
$0 \leftrightarrow$	$0 \leftrightarrow$	$1 \Rightarrow$	$2 \Leftrightarrow$
2	$4 \Leftrightarrow$	2	0

Stochastic game or

2½-player game

Stochastic games

A stochastic game is a tuple $\mathcal{G}=\left(V,\left(V_{1}, V_{2}, V_{\mathrm{P}}\right), \delta\right)$ where

1. $V=V_{1} \uplus V_{2} \uplus V_{\mathrm{P}}$ is a finite set of vertices (or states), and
2. $\delta: V \times V \rightarrow[0,1]$ is a transition, such that
a. for $v \in V_{1} \cup V_{2}, \delta(v, \cdot): V \rightarrow\{0,1\}$ is the non-deterministic choice, and
b. for $v \in V_{\mathrm{P}}, \delta(v, \cdot): V \rightarrow[0,1]$ is a probability function.

Stochastic games

A stochastic game is a tuple $\mathcal{G}=\left(V,\left(V_{1}, V_{2}, V_{\mathrm{P}}\right), \delta\right)$ where

1. $V=V_{1} \uplus V_{2} \uplus V_{\mathrm{P}}$ is a finite set of vertices (or states), and
2. $\delta: V \times V \rightarrow[0,1]$ is a transition, such that
a. for $v \in V_{1} \cup V_{2}, \delta(v, \cdot): V \rightarrow\{0,1\}$ is the non-deterministic choice, and
b. for $v \in V_{\mathrm{P}}, \delta(v, \cdot): V \rightarrow[0,1]$ is a probability function.

- If $V_{P}=\emptyset$, then \mathcal{G} is a 2-player game.

Stochastic games

A stochastic game is a tuple $\mathcal{G}=\left(V,\left(V_{1}, V_{2}, V_{\mathrm{P}}\right), \delta\right)$ where

1. $V=V_{1} \uplus V_{2} \uplus V_{\mathrm{P}}$ is a finite set of vertices (or states), and
2. $\delta: V \times V \rightarrow[0,1]$ is a transition, such that
a. for $v \in V_{1} \cup V_{2}, \delta(v, \cdot): V \rightarrow\{0,1\}$ is the non-deterministic choice, and
b. for $v \in V_{\mathrm{P}}, \delta(v, \cdot): V \rightarrow[0,1]$ is a probability function.

- If $V_{\mathrm{P}}=\emptyset$, then \mathcal{G} is a 2-player game.
- If $V_{1}=\emptyset$ or $V_{2}=\emptyset$, then \mathcal{G} is a Markov Decision Process.

Stochastic games

A stochastic game is a tuple $\mathcal{G}=\left(V,\left(V_{1}, V_{2}, V_{\mathrm{P}}\right), \delta\right)$ where

1. $V=V_{1} \uplus V_{2} \uplus V_{\mathrm{P}}$ is a finite set of vertices (or states), and
2. $\delta: V \times V \rightarrow[0,1]$ is a transition, such that
a. for $v \in V_{1} \cup V_{2}, \delta(v, \cdot): V \rightarrow\{0,1\}$ is the non-deterministic choice, and
b. for $v \in V_{\mathrm{P}}, \delta(v, \cdot): V \rightarrow[0,1]$ is a probability function.

- If $V_{\mathrm{P}}=\emptyset$, then \mathcal{G} is a 2-player game.
- If $V_{1}=\emptyset$ or $V_{2}=\emptyset$, then \mathcal{G} is a Markov Decision Process.
- If $V_{1}=V_{2}=\emptyset$, then \mathcal{G} is a Markov chain.

Stochastic games

A stochastic game is a tuple $\mathcal{G}=\left(V,\left(V_{1}, V_{2}, V_{\mathrm{P}}\right), \delta\right)$ where

1. $V=V_{1} \uplus V_{2} \uplus V_{\mathrm{P}}$ is a finite set of vertices (or states), and
2. $\delta: V \times V \rightarrow[0,1]$ is a transition, such that
a. for $v \in V_{1} \cup V_{2}, \delta(v, \cdot): V \rightarrow\{0,1\}$ is the non-deterministic choice, and
b. for $v \in V_{\mathrm{P}}, \delta(v, \cdot): V \rightarrow[0,1]$ is a probability function.

We also consider a reward function $r: V \rightarrow \mathbb{R}^{+}$.

Expected Total Reward

$$
\mathbb{E}^{\pi_{1}, \pi_{2}(r e w)} \quad \operatorname{rew}(\rho)=\sum_{i=0}^{\infty} r(\rho(i))
$$

Expected Total Reward

$\mathbb{E}^{\pi_{1}, \pi_{2}}($ rew $)$
The sum of all state rewards along path ρ

$$
\operatorname{rew}(\rho)=\sum_{i=0}^{\infty} r(\rho(i))
$$

Expected Total Reward

$$
\inf _{\pi_{2} \in \Pi_{2}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })
$$

$$
\operatorname{rew}(\rho)=\sum_{i=0}^{\infty} r(\rho(i))
$$

Expected Total Reward

$$
\sup _{\pi_{1} \in \Pi_{1}} \inf _{\pi_{2} \in \Pi_{2}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })
$$

$$
\operatorname{rew}(\rho)=\sum_{i=0}^{\infty} r(\rho(i))
$$

Expected Total Reward

$$
\sup _{\pi_{1} \in \Pi_{1}} \inf _{\pi_{2} \in \Pi_{2}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })
$$

$$
\operatorname{rew}(\rho)=\sum_{i=0}^{\infty} r(\rho(i))
$$

The sum of all state rewards along path ρ

It may go to infinity!

Expected Total Reward

$$
\sup _{\pi_{1} \in \Pi_{1}} \inf _{\pi_{2} \in \Pi_{2}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })
$$

The sum of all state rewards along path ρ

$$
\operatorname{rew}(\rho)=\sum_{i=0}^{\infty} r(\rho(i))
$$

It may ge, infinity!

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}}(\diamond \mathbb{K})=1
$$

$$
\text { for all } \pi_{1} \in \Pi_{1} \text { and } \pi_{2} \in \Pi_{2}
$$

The light must play fair

The light must play fair

Set of fair plays (for Player 2):

$$
F P=\left\{\omega \in \text { Paths }_{\mathcal{G}} \mid \forall v^{\prime} \in V_{2}: v^{\prime} \in \inf (\omega) \Rightarrow \operatorname{post}\left(v^{\prime}\right) \subseteq \inf (\omega)\right\}
$$

$$
\operatorname{post}(v)=\left\{v^{\prime} \in V \mid \delta\left(v, v^{\prime}\right)>0\right\}
$$

The light must play fair

Set of fair plays (for Player 2):

$$
F P=\left\{\omega \in \text { Paths }_{\mathcal{G}} \mid \forall v^{\prime} \in V_{2}: v^{\prime} \in \inf (\omega) \Rightarrow \operatorname{post}\left(v^{\prime}\right) \subseteq \inf (\omega)\right\}
$$

A strategy $\pi_{2} \in \Pi_{2}$ is (almost-sure) fair if for all $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}}(F P)=1
$$

The light must play fair

Set of fair plays (for Player 2):

$$
F P=\left\{\omega \in \text { Paths }_{\mathcal{G}} \mid \forall v^{\prime} \in V_{2}: v^{\prime} \in \inf (\omega) \Rightarrow \operatorname{post}\left(v^{\prime}\right) \subseteq \inf (\omega)\right\}
$$

A strategy $\pi_{2} \in \Pi_{2}$ is (almost-sure) fair if for all $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}}(F P)=1
$$

A game is stopping under fairness if for every $\pi_{1} \in \Pi_{1}$ and every fair $\pi_{2} \in \Pi_{2}^{\mathcal{F}}$,

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}}(\diamond \mathbb{K})=1
$$

Checking stopping under fairness

Theorem: A game is stopping under fairness iff for every $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}^{u}}\left(\diamond \mathbb{k}_{)}\right)=1
$$

where π_{2}^{u} is the strategy that choses uniformly a transition.

Checking stopping under fairness

Theorem: A game is stopping under fairness iff for every $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}^{u}}(\diamond \mathbb{k})=1
$$

where π_{2}^{u} is the strategy that choses uniformly a transition.

Checking stopping under fairness

Theorem: A game is stopping under fairness iff for every $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}^{u}}(\diamond \mathbb{\$})=1
$$

where π_{2}^{u} is the strategy that choses uniformly a transition.

$$
\begin{gathered}
\text { By fixing } \pi_{2}^{u} \text {, obtain } \\
\text { the corresponding MDP and check } \\
\inf _{\pi_{1} \in \Pi_{1}} \operatorname{Prob}^{\pi_{1}}(\diamond \mathbf{\otimes})=1 \\
\text { there! }
\end{gathered}
$$

Actually, we check if the initial state does not belong to the set

$$
\exists \operatorname{Pre}_{f}^{*}\left(V \backslash \forall \operatorname{Pr}_{f}^{*}(\text { 洶 })\right)
$$

where

$$
\begin{aligned}
& \exists \operatorname{Pre}_{f}(C)=\{v \in V \mid \delta(v, C)>0\} \\
& \forall \operatorname{Pre}_{f}(C)=\left\{v \in V_{\mathrm{P}} \cup V_{2} \mid \delta(v, C)>0\right\} \cup\left\{v \in V_{1} \mid \forall v^{\prime} \in V: \delta\left(v, v^{\prime}\right)>0 \Rightarrow v^{\prime} \in C\right\}
\end{aligned}
$$

Checking stopping under fairness

Theorem: A game is stopping under fairness iff for every $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}^{u}}(\diamond \mathbb{\$})=1
$$

where π_{2}^{u} is the strategy that choses uniformly a transition.

$$
\begin{gathered}
\text { By fixing } \pi_{2}^{u} \text {, obtain } \\
\text { the corresponding MDP and check } \\
\inf _{\pi_{1} \in \Pi_{1}} \operatorname{Prob}^{\pi_{1}}(\diamond \mathbb{N})=1 \\
\text { there! }
\end{gathered}
$$

Actually, we check if the initial state does not belong to the set

$$
\exists P r e_{f}^{*}\left(V \backslash \forall \operatorname{Pre}_{f}^{*}(\text { 汹 })\right) \quad \text { The set of all states that }
$$

where

$$
\begin{aligned}
& \exists \operatorname{Pre}_{f}(C)=\{v \in V \mid \delta(v, C)>0\} \\
& \forall \operatorname{Pre}_{f}(C)=\left\{v \in V_{\mathrm{P}} \cup V_{2} \mid \delta(v, C)>0\right\} \cup\left\{v \in V_{1} \mid \forall v^{\prime} \in V: \delta\left(v, v^{\prime}\right)>0 \Rightarrow v^{\prime} \in C\right\}
\end{aligned}
$$

Checking stopping under fairness

Theorem: A game is stopping under fairness iff for every $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}^{u}}(\diamond \mathbb{\$})=1
$$

where π_{2}^{u} is the strategy that choses uniformly a transition.

$$
\begin{gathered}
\text { By fixing } \pi_{2}^{u} \text {, obtain } \\
\text { the corresponding MDP and check } \\
\inf _{\pi_{1} \in \Pi_{1}} \operatorname{Prob}^{\pi_{1}}(\diamond \mathbb{\$})=1 \\
\text { there! }
\end{gathered}
$$

Actually, we check if the initial state does not belong to the set

$$
\exists \operatorname{Pre}_{f}^{*}\left(V \backslash \forall \operatorname{Pre}_{f}^{*}(\mathbb{\|})\right) \quad \begin{aligned}
& \text { The set of all states in } V_{\mathrm{P}} \cup V_{2} \text { that } \\
& \text { reach some state in } C
\end{aligned}
$$

where

$$
\begin{aligned}
& \exists \operatorname{Pre}_{f}(C)=\{v \in V \mid \delta(v, C)>0\} \\
& \forall \operatorname{Pre}_{f}(C)=\left\{v \in V_{\mathrm{P}} \cup V_{2} \mid \delta(v, C)>0\right\} \cup\left\{v \in V_{1} \mid \forall v^{\prime} \in V: \delta\left(v, v^{\prime}\right)>0 \Rightarrow v^{\prime} \in C\right\}
\end{aligned}
$$

Checking stopping under fairness

Theorem: A game is stopping under fairness iff for every $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}^{u}}(\diamond \mathbb{\$})=1
$$

where π_{2}^{u} is the strategy that choses uniformly a transition.

$$
\begin{gathered}
\text { By fixing } \pi_{2}^{u} \text {, obtain } \\
\text { the corresponding MDP and check } \\
\inf _{\pi_{1} \in \Pi_{1}} \operatorname{Prob}^{\pi_{1}}(\diamond \mathbf{\$})=1 \\
\text { there! }
\end{gathered}
$$

Actually, we check if the initial state does not belong to the set

$$
\exists \operatorname{Pre}_{f}^{*}\left(V \backslash \forall \operatorname{Pr} e_{f}^{*}(\mathbb{\otimes})\right) \quad \begin{gathered}
\text { The set of all states in } V_{\mathrm{P}} \cup V_{2} \text { that } \\
\text { reach some state in } C
\end{gathered}
$$

The set of all states in V_{1} that reach all states in C

$$
\begin{aligned}
& \exists \operatorname{Pre}_{f}(C)=\{v \in V \mid \delta(v, C)>0\} \\
& \forall \operatorname{Pre}_{f}(C)=\left\{v \in V_{\mathrm{P}} \cup V_{2} \mid \delta(v, C)>0\right\} \cup\left\{v \in V_{1} \mid \forall v^{\prime} \in V: \delta\left(v, v^{\prime}\right)>0 \Rightarrow v^{\prime} \in C\right\}
\end{aligned}
$$

Checking stopping under fairness

Theorem: A game is stopping under fairness iff for every $\pi_{1} \in \Pi_{1}$

$$
\operatorname{Prob}^{\pi_{1}, \pi_{2}^{u}}(\diamond \mathbb{W})=1
$$

where π_{2}^{u} is the strategy that choses uniformly a transition.

Actually, we check if the initial state does not belong to the set

$$
\exists \operatorname{Pre}_{f}^{*}\left(V \backslash \forall \operatorname{Pr} e_{f}^{*}(\text { 欧 })\right)
$$

where

$$
\begin{aligned}
& \exists \operatorname{Pre}_{f}(C)=\{v \in V \mid \delta(v, C)>0\} \\
& \forall \operatorname{Pre}_{f}(C)=\left\{v \in V_{\mathrm{P}} \cup V_{2} \mid \delta(v, C)>0\right\} \cup\left\{v \in V_{1} \mid \forall v^{\prime} \in V: \delta\left(v, v^{\prime}\right)>0 \Rightarrow v^{\prime} \in C\right\}
\end{aligned}
$$

It can be calculated in polynomial time

Two technical results

Theorem: Determinacy.

$$
\inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \sup _{\pi_{1} \in \Pi_{1}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })=\sup _{\pi_{1} \in \Pi_{1}} \inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })
$$

Two technical results

Theorem: Determinacy.

Moreover
$<\infty$

$$
\inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \sup _{\pi_{1} \in \Pi_{1}} \mathbb{E}^{\pi_{1}, \pi_{2}}(r e w)=\sup _{\pi_{1} \in \Pi_{1} \pi_{2} \in \Pi_{2}^{\mathcal{F}}} \inf \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })
$$

Two technical results

Theorem: Determinacy.

Moreover
$<\infty$

$$
\inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \sup _{\pi_{1} \in \Pi_{1}} \mathbb{E}^{\pi_{1}, \pi_{2}}(r e w)=\sup _{\pi_{1} \in \Pi_{1} \pi_{2} \in \Pi_{2}^{\mathcal{F}}} \inf \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })
$$

Theorem: Memoryless deterministic schedulers are sufficient.

$$
\sup _{\pi_{1} \in \Pi_{1}} \inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \mathbb{E}^{\pi_{1}, \pi_{2}}(r e w)=\sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D \mathcal{F}}} \mathbb{E}^{\pi_{1}, \pi_{2}}(r e w)
$$

Two technical results

Theorem: Determinacy.

$$
\inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \sup _{\pi_{1} \in \Pi_{1}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })=\sup _{\pi_{1} \in \Pi_{1} \pi_{2} \in \Pi_{2}^{\mathcal{F}}} \inf ^{\mathbb{E}^{\pi_{1}}, \pi_{2}}(\text { rew })
$$

Theorem: Memoryless deterministic schedulers are sufficient.

$$
\sup _{\pi_{1} \in \Pi_{1}} \inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \mathbb{E}^{\pi_{1}, \pi_{2}}(r e w)=\sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D \mathcal{F}}} \mathbb{E}^{\pi_{1}, \pi_{2}}(r e w)
$$

Two technical results

Theorem: Determinacy.

$$
\inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \sup _{\pi_{1} \in \Pi_{1}} \mathbb{E}^{\pi_{1}, \pi_{2}}(r e w)=\sup _{\pi_{1} \in \Pi_{1} \pi_{2} \in \Pi_{2}^{\mathcal{F}}} \inf ^{\mathbb{E}^{\pi_{1}}, \pi_{2}}(\text { rew })
$$

Theorem: Memoryless deterministic schedulers are sufficient.

$$
\sup _{\pi_{1} \in \Pi_{1}} \inf _{\pi_{2} \in \Pi_{2}^{\mathcal{F}}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })=\sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D \mathcal{F}}} \mathbb{E}^{\pi_{1}, \pi_{2}}(\text { rew })
$$

Thus, the problem could be

solved as a fix point calculation on the Bellman equations

Algorithmic solution

Proposal: Solve the next Bellman operator

$$
\Gamma(f)(v)= \begin{cases}r(v)+\sum_{v^{\prime} \in \operatorname{post}(v)} \delta\left(v, v^{\prime}\right) f\left(v^{\prime}\right) & \text { if } v \in V_{\mathrm{P}} \backslash\{\mathbb{k}\} \\
\max \left\{r(v)+f\left(v^{\prime}\right) \mid v^{\prime} \in \operatorname{post}(v)\right\} & \text { if } v \in V_{1} \backslash\left\{\begin{array}{l}
\mathrm{k}
\end{array}\right\} \\
\min \left\{r(v)+f\left(v^{\prime}\right) \mid v^{\prime} \in \operatorname{post}(v)\right\} & \text { if } v \in V_{2} \backslash\{\mathbb{k}\} \\
0 & \text { if } v=\mathbb{W}\end{cases}
$$

Algorithmic solution

Proposal: Solve the next Bellman operator

$$
\Gamma(f)(v)= \begin{cases}r(v)+\sum_{v^{\prime} \in \operatorname{post}(v)} \delta\left(v, v^{\prime}\right) f\left(v^{\prime}\right) & \text { if } v \in V_{\mathrm{P}} \backslash\{\mathbb{W}\} \\ \max \left\{r(v)+f\left(v^{\prime}\right) \mid v^{\prime} \in \operatorname{post}(v)\right\} & \text { if } v \in V_{1} \backslash\left\{\mathbb{W}_{\mathbf{W}}\right\} \\ \min \left\{r(v)+f\left(v^{\prime}\right) \mid v^{\prime} \in \operatorname{post}(v)\right\} & \text { if } v \in V_{2} \backslash\{\mathbb{W}\} \\ 0 & \text { if } v=\mathbb{W}\end{cases}
$$

Algorithmic solution

Proposal: Solve the next Bellman operator
any $(x, x, 1,0)$ with $x \in[0,1]$ is a solution!

Algorithmic solution

Proposal: Solve the next Bellman operator
any $(x, x, 1,0)$ with $x \in[0,1]$ is a solution!

Problem: Γ does not have a unique fixpoint

Algorithmic solution

Proposal: Solve the next Bellman operator
any $(x, x, 1,0)$ with $x \in[0,1]$ is a solution!

Problem: Γ does not have a unique fixpoint

The solution has to be the greatest fixpoint in
$(\mathbb{R} \cup\{\infty\})^{V}$

Algorithmic solution

Proposal: Solve the next Bellman operator

Algorithmic solution

Proposal: Solve the next Bellman operator

$(\infty, \infty, 0)$ is the greatest fixpont!

Algorithmic solution

Proposal: Solve the next Bellman operator

$$
\Gamma(f)(v)= \begin{cases}r(v)+\sum_{v^{\prime} \in \operatorname{post}(v)} \delta\left(v, v^{\prime}\right) f\left(v^{\prime}\right) & \text { if } v \in V_{\mathrm{P}} \backslash\{\text { 涩 }\} \\ \max \left\{r(v)+f\left(v^{\prime}\right) \mid v^{\prime} \in \operatorname{post}(v)\right\} & \text { if } v \in V_{1} \backslash\left\{\mathbb{W}_{\mathbb{W}}\right\} \\ \min \left\{r(v)+f\left(v^{\prime}\right) \mid v^{\prime} \in \operatorname{post}(v)\right\} & \text { if } v \in V_{2} \backslash\{\mathbb{\mathbb { W }}\} \\ 0 & \text { if } v=\mathbb{\mathbb { M }}\end{cases}
$$

Problem: Γ greatest fixpoint in the extended reals may be outside the reals!

$(\infty, \infty, 0)$ is the greatest fixpont!

Algorithmic solution

Algorithmic solution

$$
\Gamma(f)(v)= \begin{cases}r(v)+\sum_{v^{\prime} \in \operatorname{post}(v)} \delta\left(v, v^{\prime}\right) f\left(v^{\prime}\right) & \text { if } v \in V_{\mathrm{P}} \backslash\{\text { 梕 }\} \\ \max \left\{r(v)+f\left(v^{\prime}\right) \mid v^{\prime} \in \operatorname{post}(v)\right\} & \text { if } v \in V_{1} \backslash\{\text { 幻 }\} \\ \min \left\{r(v)+f\left(v^{\prime}\right) \mid v^{\prime} \in \operatorname{post}(v)\right\} & \text { if } v \in V_{2} \backslash\{\text { 幻 }\} \\ 0 & \text { if } v=\mathbb{\mathbb { K }}\end{cases}
$$

Algorithmic solution

$$
\begin{aligned}
& \text { Let } \mathbf{U} \geq \max _{v \in V} \sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D \mathcal{F}}} \mathbb{E}_{v}^{\pi_{1}, \pi_{2}}(\text { rew })
\end{aligned}
$$

Algorithmic solution

$$
\begin{aligned}
& \text { Let } \mathbf{U} \geq \max _{v \in V} \sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D \mathcal{F}}} \mathbb{E}_{v}^{\pi_{1}, \pi_{2}}(\text { rew })
\end{aligned}
$$

Proposition: Γ is monotone and Scott-continuous in the lattice $[0, \mathbf{U}]^{V}$.

Algorithmic solution

$$
\begin{aligned}
& \text { Let } \mathbf{U} \geq \max _{v \in V} \sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D F}} \mathbb{E}_{v}^{\pi_{1}, \pi_{2}}(\text { rew })
\end{aligned}
$$

Proposition: Γ is monotone and Scott-continuous in the lattice $[0, \mathbf{U}]^{V}$.

Thus, the greatest fixpoint can be approximated from \mathbf{U}^{V}.

Algorithmic solution

$$
\begin{aligned}
& \text { Let } \mathbf{U} \geq \max _{v \in V} \sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D \mathcal{F}}} \mathbb{E}_{v}^{\pi_{1}, \pi_{2}}(\text { rew })
\end{aligned}
$$

Proposition: Γ is monotone and Scott-continuous in the lattice $[0, \mathbf{U}]^{V}$.
Theorem: For all $v \in V, \sup _{\pi_{1} \in \Pi_{1}} \inf _{\pi_{2} \in \Pi_{2}^{F}} \mathbb{E}_{v}^{\pi_{1}, \pi_{2}}($ rew $)=\nu \Gamma(v)$

Algorithmic solution

$$
\begin{aligned}
& \mathbf{U} \geq \max _{v \in V} \sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D \mathcal{F}}} \mathbb{E}_{v}^{\pi_{1}, \pi_{2}}(\text { rew })
\end{aligned}
$$

Algorithmic solution

1. Calculate $\mathbf{U}=\max _{v \in V} \sup _{\pi_{1} \in \Pi_{1}^{M D}} \mathbb{E}_{v}^{\pi_{1}}($ rew $)$ on the MDP obtained by fixing π_{2}^{u}.
2. Starting on $x_{v}=\mathbf{U}$, approximate the maximum fixed point on the equations
3. Derive the optimizing strategies by traversing the graph backwards following only the optimizing equations and starting from .

This is an upper bound for
$\max _{v \in V} \sup _{\pi_{1} \in \Pi_{1}^{M D}} \inf _{\pi_{2} \in \Pi_{2}^{M D \mathcal{F}}} \mathbb{E}_{v}^{\pi_{1}, \pi_{2}}(r e w) \quad A$ ororithnnic solutinn

1. Calculate $\mathbf{U}=\max _{v \in V} \sup _{\pi_{1} \in \Pi_{1}^{M D}} \mathbb{E}_{v}^{\pi_{1}}($ rew $)$ on the MDP obtained by fixing π_{2}^{u}.
2. Starting on $x_{v}=\mathbf{U}$, approximate the maximum fixed point on the equations
3. Derive the optimizing strategies by traversing the graph backwards following only the optimizing equations and starting from $\$$

To conclude:

* Solving expected total rewards on stochastic games with fair minimizer ...
* ... is determined
*... has a solution on memoryless deterministic (fair) schedulers
* ... can be approximated using Bellman equation provided the game is (almost surely) stopping under fairness

To conclude:

* Solving expected total rewards on stochastic games with fair minimizer ...
* ... is determined
*... has a solution on memoryless deterministic (fair) schedulers
It can be checked in polynomial time
* ... can be approximated using Bellman equation provided the game is (almost surely) stopping under fairness

To conclude:

* Solving expected total rewards on stochastic games with fair minimizer ...
* ... is determined
*... has a solution on memoryless deterministic (fair) schedulers
* ... can be approximated using Bellman equation provided the game is (almost surely) stopping under fairness

It can be checked in polynomial time

Prototype implemented in PRISM

To conclude:

* Solving expected total rewards on stochastic games with fair minimizer ...
* ... is determined

It can be checked in polynomial time

Prototype implemented in PRISM

* An inconvenience: many interesting problems may not be stopping under fairness

Roborta vs. the Fair Light!

Pedro R. D'Argenio
joint work with

Pablo Castro, Ramiro Demasi, and Luciano Putruele

