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Stochastic games

A stochastic game is a tuple G = (V, (V1, V2, VP), �) where

1. V = V1 ] V2 ] VP is a finite set of vertices (or states), and

2. � : V ⇥ V ! [0, 1] is a transition, such that

a. for v 2 V1 [ V2, �(v, ·) : V ! {0, 1} is the non-deterministic choice, and

b. for v 2 VP, �(v, ·) : V ! [0, 1] is a probability function.

post(v) = {v0 2 V | �(v, v0) > 0}

• If VP = ;, then G is a 2-player game.

• If V1 = ; or V2 = ;, then G is a Markov Decision Process.

• If V1 = V2 = ;, then G is a Markov chain.

We also consider a reward function r : V ! R+.
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Two technical results

Theorem: Determinacy.

inf
⇡22⇧F

2

sup
⇡12⇧1

E⇡1,⇡2(rew) = sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2(rew)

Theorem: Memoryless deterministic schedulers are sufficient.

sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2(rew) = sup
⇡12⇧MD

1

inf
⇡22⇧MDF

2

E⇡1,⇡2(rew)
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Moreover 

Proposal: Solve the next Bellman operator

�(f)(v) =

8
>>>>>><

>>>>>>:

r(v) +
P

v02post(v) �(v, v
0)f(v0) if v 2 VP \ {🏁}

max{r(v) + f(v0) | v0 2 post(v)} if v 2 V1 \ {🏁}

min{r(v) + f(v0) | v0 2 post(v)} if v 2 V2 \ {🏁}

0 if v =🏁

Let U � max
v2V

sup
⇡12⇧MD

1

inf
⇡22⇧MDF

2

E⇡1,⇡2
v (rew)

�(f)(v) =

8
>>>>>><

>>>>>>:

min
�
r(v) +

P
v02post(v) �(v, v

0)f(v0), U
�

if v 2 VP \ {🏁}

min
�
max{r(v) + f(v0) | v0 2 post(v)}, U

�
if v 2 V1 \ {🏁}

min
�
min{r(v) + f(v0) | v0 2 post(v)}, U

�
if v 2 V2 \ {🏁}

0 if v =🏁

Proposition: � is monotone and Scott-continuous in the lattice V [0,U].

Theorem: For all v 2 V , sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2
v (rew) = ⌫ �(v)

1. Calculate U = max
v2V

sup
⇡12⇧MD

1

E⇡1
v (rew) on the MDP obtained by fixing ⇡u

2 .

2. Starting on xv = U, approximate the maximum fixed point on the equations

xv =

8
>>>>>><

>>>>>>:

min
�
r(v) +

P
v02post(v) �(v, v

0)xv0 , U
�

if v 2 VP \ {🏁}

min
�
max{r(v) + xv0 | v0 2 post(v)}, U

�
if v 2 V1 \ {🏁}

min
�
min{r(v) + xv0 | v0 2 post(v)}, U

�
if v 2 V2 \ {🏁}

0 if v =🏁

3. Derive the optimizing strategies by traversing the graph backwards following

only the optimizing equations and starting from🏁.

(R [ {1})V

4

<
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with fair strategies and hence, the last result does not apply either. In [26] the
authors classify Player 2’s strategies into proper (those ensuring termination)
and improper (those prolonging the game indefinitely). For proving determinacy,
the authors assume that the value of the game for Player 2’s improper strategies
is 1. It is worth noting that, for proving the results below, we do not make any
assumption about unfair strategies. In the following we prove that the restriction
to fair plays does not a↵ect the determinacy of the games.

Lem. 2 Lem. 3

Lem. 4

Lem. 5

Lem. 6 Lem. 7

Prop. 1 Thm. 4

Thm. 5

reduction
to S strats.

problem is
transient

infimum is
bounded

exists min.
MDF strat.

towards
MD strats.

Bellman op.
well behaved

solution in
MD strats.

determinacy and
algorithmic solution

Fig. 3. A roadmap to proving Theo-
rems 4 and 5

Fig. 3 shows the dependencies of the lem-
mas that eventually lead to our main results,
namely, Theorem 4, which states that the
general problem can be limited to only mem-
oryless and deterministic strategies, and The-
orem 5, which establishes determinacy and
the correctness of the algorithmic solution
through the Bellman equations. To prove
Theorem 4 we use the intermidiate notion of
semi-Markov strategies [18] and a first step
to this reduction is presented in Lemma 2.
Lemmas 3 and 4 ensure the transient carach-
teristics of stopping under fairness problems. They are essential to prove that
every possible total reward play yields a solution (Lemma 5). Already approaching
Theorem 4, Lemma 6 states that there is always a minimizing fair strategy that
is memoryless and deterministic, and Lemma 7 helps to reduce the problem from
the domain of semi-Markov strategies to the domain of memoryless deterministic
strategies. Using Theorem 4 and Proposition 1, which states that the Bellman
equations are well behaved in the lattice of solutions, Theorem 5 is finally proved.

Intuitively, a semi-Markov strategy only takes into account the length of a
play, the initial state, and the current state to select the next step in the play.

Definition 4. Let G = (V, (V1, V2, VP), �) be a stochastic game. A strategy ⇡i 2
⇧i is called semi-Markov if: ⇡i(v!̂v0) = ⇡i(v!̂0

v
0), for every v 2 V and !̂, !̂

0 2 V
⇤

such that |!̂| = |!̂0|.

Notice that, by fixing an initial state v, a semi-Markov strategy ⇡i can
be thought of as a sequence of memoryless strategies ⇡

0,v
i ⇡

1,v
i ⇡

2,v
i . . . where

⇡i(v) = ⇡
0,v
i (v) and ⇡i(v!̂v0) = ⇡

|!̂|+1,v
i (v0). The set of all semi-Markov (resp.

semi-Markov fair) strategies for player i is denoted ⇧
S
i (resp. ⇧SF

i ).
The importance of semi-Markov strategies lies in the fact that, when Player 2

plays a semi-Markov strategy, any Player 1’s strategy can be mimicked by a
semi-Markov strategy as stated in the following lemma.

Lemma 2. Let G be a stopping under fairness stochastic game, and let ⇡2 2 ⇧
SF
2

be a fair and semi-Markov strategy. Then, for any ⇡1 2 ⇧1, there is a semi-Markov

strategy ⇡
⇤
1 2 ⇧

S
1 such that E⇡1,⇡2

G,v [rew] = E⇡⇤
1 ,⇡2

G,v [rew].

Proof (Sketch). The proof follows the arguments of Theorem 4.2.7 in [18] adapted
to our setting.



Two technical results

Theorem: Determinacy.

inf
⇡22⇧F

2

sup
⇡12⇧1

E⇡1,⇡2(rew) = sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2(rew)

Theorem: Memoryless deterministic schedulers are sufficient.

sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2(rew) = sup
⇡12⇧MD

1

inf
⇡22⇧MDF

2

E⇡1,⇡2(rew)

k

Theorem: Determinacy.

inf
⇡22⇧F

2

sup
⇡12⇧1

E⇡1,⇡2(rew) = sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2(rew)

Theorem: Memoryless deterministic schedulers are sufficient.

sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2(rew) = sup
⇡12⇧MD

1

inf
⇡22⇧MDF

2

E⇡1,⇡2(rew)

k

Thus, the problem could be 
solved as a fix point calculation on 

the Bellman equations
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i (v) and ⇡i(v!̂v0) = ⇡

|!̂|+1,v
i (v0). The set of all semi-Markov (resp.
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S
i (resp. ⇧SF

i ).
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SF
2

be a fair and semi-Markov strategy. Then, for any ⇡1 2 ⇧1, there is a semi-Markov

strategy ⇡
⇤
1 2 ⇧

S
1 such that E⇡1,⇡2

G,v [rew] = E⇡⇤
1 ,⇡2

G,v [rew].

Proof (Sketch). The proof follows the arguments of Theorem 4.2.7 in [18] adapted
to our setting.

🤔



Algorithmic solution

Proposal: Solve the next Bellman operator

�(f)(v) =

8
>>>>>><

>>>>>>:

r(v) +
P

v02post(v) �(v, v
0)f(v0) if v 2 VP \ {🏁}

max{r(v) + f(v0) | v0 2 post(v)} if v 2 V1 \ {🏁}

min{r(v) + f(v0) | v0 2 post(v)} if v 2 V2 \ {🏁}

0 if v =🏁

Let U � max
v2V

sup
⇡12⇧MD

1

inf
⇡22⇧MDF

2

E⇡1,⇡2
v (rew)

�(f)(v) =

8
>>>>>><

>>>>>>:

min
�
r(v) +

P
v02post(v) �(v, v

0)f(v0), U
�

if v 2 VP \ {🏁}

min
�
max{r(v) + f(v0) | v0 2 post(v)}, U

�
if v 2 V1 \ {🏁}

min
�
min{r(v) + f(v0) | v0 2 post(v)}, U

�
if v 2 V2 \ {🏁}

0 if v =🏁

Proposition: � is monotone and Scott-continuous in the lattice [0,U]V .

Theorem: For all v 2 V , sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2
v (rew) = ⌫ �(v)

1. Calculate U = max
v2V

sup
⇡12⇧MD

1

E⇡1
v (rew) on the MDP obtained by fixing ⇡u

2 .

2. Starting on xv = U, approximate the maximum fixed point on the equations

xv =

8
>>>>>><

>>>>>>:

min
�
r(v) +

P
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�

if v 2 VP \ {🏁}

min
�
max{r(v) + xv0 | v0 2 post(v)}, U

�
if v 2 V1 \ {🏁}
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�
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�
if v 2 V2 \ {🏁}

0 if v =🏁

3. Derive the optimizing strategies by traversing the graph backwards following

only the optimizing equations and starting from🏁.

(R [ {1})V

4
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2 .
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xv =
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Using the previous lemma, we can conclude that the problem of finding
supπ1∈Π1

infπ2∈ΠF
2
Eπ1,π2 [rew], for any vertex v, can be solve by only focusing on

deterministic memoryless strategies as stated and proved in the following theorem.

Theorem 4. For any stochastic game G that is stopping under fairness we have:

sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

Proof. First, we prove that the left-hand term is less than or equal to the right-
hand one:

sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew] ≤ sup

π1∈Π1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈ΠS

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew].

The first inequality follows from ΠMDF
2 ⊆ ΠF

2 , the second inequality is due to
Lemma 2 and the fact that memoryless strategies are semi-Markov, and the last
inequality is obtained by applying Lemma 7.

To prove the other inequality, we calculate:

sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew].

The first equality is a consequence of Lemma 6 and the second inequality is due
to properties of suprema. #$

The standard technique to prove the determinacy of stopping games is by
showing that the Bellman operator

Γ (f)(v) =






r(v) +
∑

v′∈post(v) δ(v, v′)f(v′) if v ∈ VP \ T
max{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V1 \ T,
min{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V2 \ T,
0 if v ∈ T.

has a unique fixpoint. However, in the case of games stopping under fairness, Γ
has several fixpoints as shown by the next example.

Fig. 4. A game with infinite fixpoints

Example 1. Consider the (one-player)
game in Fig. 4, where Player 1’s vertices
are drawn as boxes, Player 2’s vertices
are drawn as diamonds, and probabilis-
tic vertices are depicted as circles. Note
that, in that game, the greatest fixpoint
is (1, 1, 1, 0). Yet, (0.5, 0.5, 1, 0) is also a
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�
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0 if v =🏁
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Theorem: For all v 2 V , sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2
v (rew) = ⌫ �(v)

1. Calculate U = max
v2V

sup
⇡12⇧MD

1

E⇡1
v (rew) on the MDP obtained by fixing ⇡u

2 .

2. Starting on xv = U, approximate the maximum fixed point on the equations

xv =
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�
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3. Derive the optimizing strategies by traversing the graph backwards following

only the optimizing equations and starting from🏁.
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Using the previous lemma, we can conclude that the problem of finding
supπ1∈Π1

infπ2∈ΠF
2
Eπ1,π2 [rew], for any vertex v, can be solve by only focusing on

deterministic memoryless strategies as stated and proved in the following theorem.

Theorem 4. For any stochastic game G that is stopping under fairness we have:

sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

Proof. First, we prove that the left-hand term is less than or equal to the right-
hand one:

sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew] ≤ sup

π1∈Π1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈ΠS

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew].

The first inequality follows from ΠMDF
2 ⊆ ΠF

2 , the second inequality is due to
Lemma 2 and the fact that memoryless strategies are semi-Markov, and the last
inequality is obtained by applying Lemma 7.

To prove the other inequality, we calculate:

sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew].

The first equality is a consequence of Lemma 6 and the second inequality is due
to properties of suprema. #$

The standard technique to prove the determinacy of stopping games is by
showing that the Bellman operator

Γ (f)(v) =






r(v) +
∑

v′∈post(v) δ(v, v′)f(v′) if v ∈ VP \ T
max{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V1 \ T,
min{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V2 \ T,
0 if v ∈ T.

has a unique fixpoint. However, in the case of games stopping under fairness, Γ
has several fixpoints as shown by the next example.

Fig. 4. A game with infinite fixpoints

Example 1. Consider the (one-player)
game in Fig. 4, where Player 1’s vertices
are drawn as boxes, Player 2’s vertices
are drawn as diamonds, and probabilis-
tic vertices are depicted as circles. Note
that, in that game, the greatest fixpoint
is (1, 1, 1, 0). Yet, (0.5, 0.5, 1, 0) is also a

any (x, x, 1, 0) with          
x ∈ [0,1] is a solution!
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Proposal: Solve the next Bellman operator

�(f)(v) =

8
>>>>>><

>>>>>>:

r(v) +
P

v02post(v) �(v, v
0)f(v0) if v 2 VP \ {🏁}

max{r(v) + f(v0) | v0 2 post(v)} if v 2 V1 \ {🏁}

min{r(v) + f(v0) | v0 2 post(v)} if v 2 V2 \ {🏁}

0 if v =🏁

Let U � max
v2V

sup
⇡12⇧MD

1

inf
⇡22⇧MDF

2

E⇡1,⇡2
v (rew)

�(f)(v) =

8
>>>>>><

>>>>>>:

min
�
r(v) +

P
v02post(v) �(v, v

0)f(v0), U
�

if v 2 VP \ {🏁}

min
�
max{r(v) + f(v0) | v0 2 post(v)}, U

�
if v 2 V1 \ {🏁}

min
�
min{r(v) + f(v0) | v0 2 post(v)}, U

�
if v 2 V2 \ {🏁}

0 if v =🏁

Proposition: � is monotone and Scott-continuous in the lattice [0,U]V .

Theorem: For all v 2 V , sup
⇡12⇧1

inf
⇡22⇧F

2

E⇡1,⇡2
v (rew) = ⌫ �(v)

1. Calculate U = max
v2V

sup
⇡12⇧MD

1

E⇡1
v (rew) on the MDP obtained by fixing ⇡u

2 .

2. Starting on xv = U, approximate the maximum fixed point on the equations

xv =

8
>>>>>><

>>>>>>:

min
�
r(v) +

P
v02post(v) �(v, v

0)xv0 , U
�

if v 2 VP \ {🏁}

min
�
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�
if v 2 V1 \ {🏁}

min
�
min{r(v) + xv0 | v0 2 post(v)}, U

�
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0 if v =🏁

3. Derive the optimizing strategies by traversing the graph backwards following

only the optimizing equations and starting from🏁.

(R [ {1})V
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Using the previous lemma, we can conclude that the problem of finding
supπ1∈Π1

infπ2∈ΠF
2
Eπ1,π2 [rew], for any vertex v, can be solve by only focusing on

deterministic memoryless strategies as stated and proved in the following theorem.

Theorem 4. For any stochastic game G that is stopping under fairness we have:

sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

Proof. First, we prove that the left-hand term is less than or equal to the right-
hand one:

sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew] ≤ sup

π1∈Π1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈ΠS

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew].

The first inequality follows from ΠMDF
2 ⊆ ΠF

2 , the second inequality is due to
Lemma 2 and the fact that memoryless strategies are semi-Markov, and the last
inequality is obtained by applying Lemma 7.

To prove the other inequality, we calculate:

sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew].

The first equality is a consequence of Lemma 6 and the second inequality is due
to properties of suprema. #$

The standard technique to prove the determinacy of stopping games is by
showing that the Bellman operator

Γ (f)(v) =






r(v) +
∑

v′∈post(v) δ(v, v′)f(v′) if v ∈ VP \ T
max{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V1 \ T,
min{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V2 \ T,
0 if v ∈ T.

has a unique fixpoint. However, in the case of games stopping under fairness, Γ
has several fixpoints as shown by the next example.

Fig. 4. A game with infinite fixpoints

Example 1. Consider the (one-player)
game in Fig. 4, where Player 1’s vertices
are drawn as boxes, Player 2’s vertices
are drawn as diamonds, and probabilis-
tic vertices are depicted as circles. Note
that, in that game, the greatest fixpoint
is (1, 1, 1, 0). Yet, (0.5, 0.5, 1, 0) is also a

any (x, x, 1, 0) with          
x ∈ [0,1] is a solution!
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Theorem: For all v 2 V , sup
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inf
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E⇡1,⇡2
v (rew) = ⌫ �(v)

1. Calculate U = max
v2V

sup
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E⇡1
v (rew) on the MDP obtained by fixing ⇡u

2 .

2. Starting on xv = U, approximate the maximum fixed point on the equations

xv =
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0 if v =🏁

3. Derive the optimizing strategies by traversing the graph backwards following

only the optimizing equations and starting from🏁.

(R [ {1})V

4

Problem: Γ does not 
have a unique fixpoint

Playing Against Fair Adversaries in Stochastic Games with Total Rewards 59

Using the previous lemma, we can conclude that the problem of finding
supπ1∈Π1

infπ2∈ΠF
2
Eπ1,π2 [rew], for any vertex v, can be solve by only focusing on

deterministic memoryless strategies as stated and proved in the following theorem.

Theorem 4. For any stochastic game G that is stopping under fairness we have:

sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew] = sup

π1∈ΠMD
1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

Proof. First, we prove that the left-hand term is less than or equal to the right-
hand one:

sup
π1∈Π1

inf
π2∈ΠF

2

Eπ1,π2
G,v [rew] ≤ sup

π1∈Π1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈ΠS

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew]

≤ sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew].

The first inequality follows from ΠMDF
2 ⊆ ΠF

2 , the second inequality is due to
Lemma 2 and the fact that memoryless strategies are semi-Markov, and the last
inequality is obtained by applying Lemma 7.

To prove the other inequality, we calculate:

sup
π1∈ΠMD

1

inf
π2∈ΠMDF

2

Eπ1,π2
G,v [rew] = sup
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Eπ1,π2
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2
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The first equality is a consequence of Lemma 6 and the second inequality is due
to properties of suprema. #$

The standard technique to prove the determinacy of stopping games is by
showing that the Bellman operator

Γ (f)(v) =






r(v) +
∑

v′∈post(v) δ(v, v′)f(v′) if v ∈ VP \ T
max{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V1 \ T,
min{r(v) + f(v′) | v′ ∈ post(v)} if v ∈ V2 \ T,
0 if v ∈ T.

has a unique fixpoint. However, in the case of games stopping under fairness, Γ
has several fixpoints as shown by the next example.

Fig. 4. A game with infinite fixpoints

Example 1. Consider the (one-player)
game in Fig. 4, where Player 1’s vertices
are drawn as boxes, Player 2’s vertices
are drawn as diamonds, and probabilis-
tic vertices are depicted as circles. Note
that, in that game, the greatest fixpoint
is (1, 1, 1, 0). Yet, (0.5, 0.5, 1, 0) is also a

any (x, x, 1, 0) with          
x ∈ [0,1] is a solution!

🤔
The solution has to be 
the greatest fixpoint in 
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Let U � max
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sup
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1

inf
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fixpoint as Γ (0.5, 0.5, 1, 0) = (0.5, 0.5, 1, 0). In fact, the Bellman operator for
this game has infinite fixpoints: any f of the form (x, x, 1, 0) with x ∈ [0, 1].

Thus, the standard approach cannot be used here. Instead, we use the greatest
fixpoint for proving determinacy, but this cannot be done directly onΓ . Amain dif-
ficulty is that the Knaster-Tarski theorem does not apply for Γ since (RV ,≤) is not
a complete lattice. Using instead the extended reals ((R∪{∞})V ) is not a solution,
as in some cases the greatest fixpoint will assign∞ to some vertices (e.g., (∞,∞, 0)
would be the greatest fixpoint in the Markov chain of Fig. 5). One possible app-
roach is to approximate the greatest fixpoint from an estimated upper bound via
value iteration. Unfortunately, there may not be an order relation between f and
Γ (f) and it may turn out that for some vertex v, Γ (f)(v) > f(v) before converging
to the fixpoint. This is shown in the next example.

Example 2. Consider the game depicted in Fig. 5. The (unique) fixpoint in this
case is (100, 90, 0). Observe that, we have that Γ (120, 100, 0) = (110, 108, 0),
thus the value at v1 increases after one iteration. Several iterations are needed
then to reach the greatest fixpoint. Thus, in general, starting value iteration
from an estimated upper bound does not guarantee a monotone convergence to
the greatest fixpoint.

Fig. 5. A game where value
iteration may go up
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using a modified version of Γ . Roughly speaking,
we modify the Bellman operator in such a way
that it operates over a complete lattice.
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fixpoint as Γ (0.5, 0.5, 1, 0) = (0.5, 0.5, 1, 0). In fact, the Bellman operator for
this game has infinite fixpoints: any f of the form (x, x, 1, 0) with x ∈ [0, 1].

Thus, the standard approach cannot be used here. Instead, we use the greatest
fixpoint for proving determinacy, but this cannot be done directly onΓ . Amain dif-
ficulty is that the Knaster-Tarski theorem does not apply for Γ since (RV ,≤) is not
a complete lattice. Using instead the extended reals ((R∪{∞})V ) is not a solution,
as in some cases the greatest fixpoint will assign∞ to some vertices (e.g., (∞,∞, 0)
would be the greatest fixpoint in the Markov chain of Fig. 5). One possible app-
roach is to approximate the greatest fixpoint from an estimated upper bound via
value iteration. Unfortunately, there may not be an order relation between f and
Γ (f) and it may turn out that for some vertex v, Γ (f)(v) > f(v) before converging
to the fixpoint. This is shown in the next example.

Example 2. Consider the game depicted in Fig. 5. The (unique) fixpoint in this
case is (100, 90, 0). Observe that, we have that Γ (120, 100, 0) = (110, 108, 0),
thus the value at v1 increases after one iteration. Several iterations are needed
then to reach the greatest fixpoint. Thus, in general, starting value iteration
from an estimated upper bound does not guarantee a monotone convergence to
the greatest fixpoint.

Fig. 5. A game where value
iteration may go up

We overcome the aforementioned issues by
using a modified version of Γ . Roughly speaking,
we modify the Bellman operator in such a way
that it operates over a complete lattice.

Notice that, by Lemma 5, the value Eπ1,π2
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2
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)
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)
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0 if v ∈ T.

Note that Γ ∗ is monotone, which can be proven by observing that maxima,
minima and convex combinations are all monotone operators. Furthermore, Γ ∗

is also Scott continuous (it preserves suprema of directed sets), this can be proven
similarly as in [10]. The following proposition formalizes these properties.
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fixpoint as Γ (0.5, 0.5, 1, 0) = (0.5, 0.5, 1, 0). In fact, the Bellman operator for
this game has infinite fixpoints: any f of the form (x, x, 1, 0) with x ∈ [0, 1].

Thus, the standard approach cannot be used here. Instead, we use the greatest
fixpoint for proving determinacy, but this cannot be done directly onΓ . Amain dif-
ficulty is that the Knaster-Tarski theorem does not apply for Γ since (RV ,≤) is not
a complete lattice. Using instead the extended reals ((R∪{∞})V ) is not a solution,
as in some cases the greatest fixpoint will assign∞ to some vertices (e.g., (∞,∞, 0)
would be the greatest fixpoint in the Markov chain of Fig. 5). One possible app-
roach is to approximate the greatest fixpoint from an estimated upper bound via
value iteration. Unfortunately, there may not be an order relation between f and
Γ (f) and it may turn out that for some vertex v, Γ (f)(v) > f(v) before converging
to the fixpoint. This is shown in the next example.

Example 2. Consider the game depicted in Fig. 5. The (unique) fixpoint in this
case is (100, 90, 0). Observe that, we have that Γ (120, 100, 0) = (110, 108, 0),
thus the value at v1 increases after one iteration. Several iterations are needed
then to reach the greatest fixpoint. Thus, in general, starting value iteration
from an estimated upper bound does not guarantee a monotone convergence to
the greatest fixpoint.

Fig. 5. A game where value
iteration may go up

We overcome the aforementioned issues by
using a modified version of Γ . Roughly speaking,
we modify the Bellman operator in such a way
that it operates over a complete lattice.

Notice that, by Lemma 5, the value Eπ1,π2
G,v [rew]

is finite for every stopping game under fairness
G and strategies π1 ∈ ΠMD

1 , π2 ∈ ΠMDF
2 . Furthermore, because the number

of deterministic memoryless strategies is finite, we also have that the number
max{infπ2∈ΠMDF

2
supπ1∈ΠMD

1
Eπ1,π2
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0 if v ∈ T.

Note that Γ ∗ is monotone, which can be proven by observing that maxima,
minima and convex combinations are all monotone operators. Furthermore, Γ ∗

is also Scott continuous (it preserves suprema of directed sets), this can be proven
similarly as in [10]. The following proposition formalizes these properties.

Proposition 1. Γ ∗ is monotone and Scott-continuous.

Note that ([0,U]V ,≤) is a complete lattice. Thus by Proposition 1 and the
Knaster-Tarski theorem [15], the (non-empty) set of fixed points of Γ ∗ forms a
complete lattice, and the greatest fixpoint of the operator can be approximated
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0)f(v0) if v 2 VP \ {🏁}

max{r(v) + f(v0) | v0 2 post(v)} if v 2 V1 \ {🏁}

min{r(v) + f(v0) | v0 2 post(v)} if v 2 V2 \ {🏁}

0 if v =🏁
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