Probabilistic Model Checking

Pedro R. D'Argenio

Universidad Nacional de Córdoba – CONICET <u>https://cs.famaf.unc.edu.ar/~dargenio/</u>

ICTAC 2023 Training School on Applied Formal Methods

Famous Errors

Pentium:

FDIV

Ariane 5:

64 bits fp

vs 16 bits int

Image: Condition

Image: Condition

Mars Climate Orbiter: Metric vs Imperial

Northeast blackout in 2003: Race Condition

CONICET

More errors

Nest Thermostat: Battery drained

Nissan airbag: Incorrect sensing

Boeing 737 MAX 8: Incorrect sensing

Schiaparelli Landing Demonstrator Module: Multiple errors

The problem of correctness...

 $System \vDash Property$

Usually an abstraction describing the behavior

Describes what is expected from the system (The correctness criteria)

The problem of correctness... ...using Model Checking

 $\vdash \quad \Box \text{ (send(file)} \Rightarrow \diamond \text{ receive(file))}$

A graph representing nondeterministic behavior

Properties that represent boolean behavior on executions

Model Checking

UNC

- ✤ Leader Election Protocol in IEEE 1394 "Firewire"
- Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

- ◆ Leader Election Protocol in IEEE 1394 "Firewire"
- Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

- ◆ Leader Election Protocol in IEEE 1394 "Firewire"
- Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

- ◆ Leader Election Protocol in IEEE 1394 "Firewire"
- Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

- ◆ Leader Election Protocol in IEEE 1394 "Firewire"
- Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Many algorithms propose better solutions using randomness as a new ingredient

- ◆ Leader Election Protocol in IEEE 1394 "Firewire"
- Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

UNC

- Many times, correctness cannot be asserted qualitatively. Instead, the validity of a property can only be measured quantitatively
 - Bounded Retransmission Protocol in Philips RC6
 - Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

- Many times, correctness cannot be asserted qualitatively. Instead, the validity of a property can only be measured quantitatively
 - Bounded Retransmission Protocol in Philips RC6
 - Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Suppose transmission of a file with ABP or sliding window:

 $\Box (send(file) \Rightarrow \diamond receive(file))$

- Many times, correctness cannot be asserted qualitatively. Instead, the validity of a property can only be measured quantitatively
 - Bounded Retransmission Protocol in Philips RC6

CONICET

Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

- Many times, correctness cannot be asserted qualitatively. Instead, the validity of a property can only be measured quantitatively
 - Bounded Retransmission Protocol in Philips RC6
 - Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

If the protocol has a bounded number of retransmissions before aborting (e.g. BRP):

Probabilistic Model Checking

A graph representing nondeterministic behavior

CONICET

 $\vdash \quad \Box \text{ (send(file)} \Rightarrow \diamond \text{ receive(file))}$

Properties that represent boolean behavior on executions

Probabilistic Model Checking

Before continuing, I must say:

The course borrows from Chapter 10 of Principles of Model Checking by Christel Baier & Joost-Pieter Katoen published in 2008 by the MIT press

Markov Chains

Discrete Time Markov Chain (DTMC)

A DTMC is a structure

 $(S, \mathbf{P}, s_0, AP, L)$

where

- ♦ *S* is a denumerable set of states, where $s_0 \in S$ is the initial state,
- ◆ **P** : *S* × *S* → [0, 1] is the probabilistic transition function, such that, for every *s* ∈ *S*, $\sum_{s' \in S} \mathbf{P}(s, s') = 1$, and
- ♦ $L: S \to \mathscr{P}(AP)$ is a labelling function, where AP is a set of atomic propositions.

- ◆ *S* is a denumerable set of states, where $s_0 \in S$ is the initial state,
- ◆ **P** : *S* × *S* → [0, 1] is the probabilistic transition function, such that, for every *s* ∈ *S*, $\sum_{s' \in S} \mathbf{P}(s, s') = 1$, and
- ♦ $L: S \to \mathscr{P}(AP)$ is a labelling function, where AP is a set of atomic propositions.

A toy protocol

 $S = \{s_0, s_1, s_2, s_3\}$

 s_0 is the initial state

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{1}{10} & \frac{9}{10} \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

 $AP = \{ start, try, delivered, lost \}$

 $L(s_0) = \{ start \}$ $L(s_1) = \{ try \}$ $L(s_2) = \{ lost \}$ $L(s_3) = \{ delivered \}$

 $P(\diamondsuit 2)$?

 $P(s_0s_1s_42) + P(s_0s_1s_3s_1s_42) + P(s_0s_1s_3s_1s_3s_1s_42) + P(s_0s_1s_3s_1s_3s_1s_3s_1s_42) + \cdots$

 $\underbrace{P(s_0s_1s_42) + P(s_0s_1s_3s_1s_42) + P(s_0s_1s_3s_1s_3s_1s_42) + P(s_0s_1s_3s_1s_3s_1s_3s_1s_3s_1s_3s_1s_42) + \cdots}_{\text{CONICET}} \mathbf{P}(s_0, s_1) \cdot \mathbf{P}(s_1, s_4) \cdot \mathbf{P}(s_4, 2)$

UNC

 $\underbrace{P(s_0s_1s_42)}_{\frac{1}{8}} + P(s_0s_1s_3s_1s_42) + P(s_0s_1s_3s_1s_3s_1s_42) + P(s_0s_1s_3s_1s_3s_1s_3s_1s_42) + \cdots$

UNC

CONICET

UNC

CONICET

Probability space defined by a DTMC

♦ The sample space is the set of all *plausible* infinite executions:

 $\Omega=S^\omega$

• The σ -algebra is the one generated by the set of all *cylinders*, i.e., by all sets of the form

 $Cyl(\pi) = \{ \rho \in S^{\omega} \mid \pi \text{ es prefijo de } \rho \}$

where $\pi \in S^*$ is a *finite* sequence of states

• For each state $s \in S$ define the unique probability measure such that

$$\Pr_{s}(Cyl(s_{1}s_{2}\ldots s_{n})) = \mathbf{1}_{s}(s_{1}) \cdot \mathbf{P}(s_{1},s_{2}) \cdot \mathbf{P}(s_{2},s_{3}) \cdots \mathbf{P}(s_{n-1},s_{n})$$

where $\mathbf{1}_{s}(s) = 1$ and $\mathbf{1}_{s}(t) = 0$ otherwise

Probability space defined by a DTMC

✤ The sample space is the set of all *plausible* infinite executions:

 $\Omega=S^\omega$

• The σ -algebra is the one generated by the set of all *cylinders*, i.e., by all sets of the form

 $Cyl(\pi) = \{ \rho \in S^{\omega} \mid \pi \text{ es prefijo de } \rho \}$

where $\pi \in S^*$ is a *finite* sequence of states

♦ For each state $s \in S$ define the unique probability measure such that

 $\Pr_{s}(Cyl(s_{1}s_{2}...s_{n})) = \mathbf{1}_{s}(s_{1}) \cdot \mathbf{P}(s_{1},s_{2}) \cdot \mathbf{P}(s_{2},s_{3}) \cdots \mathbf{P}(s_{n-1},s_{n})$

where $\mathbf{1}_{s}(s) = 1$ and $\mathbf{1}_{s}(t) = 0$ otherwise

Probability space defined by a DTMC

✤ The sample space is the set of all *plausible* infinite executions:

 $\Omega=S^\omega$

• The σ -algebra is the one generated by the set of all *cylinders*, i.e., by all sets of the form

 $Cyl(\pi) = \{ \rho \in S^{\omega} \mid \pi \text{ es prefijo de } \rho \}$

where $\pi \in S^*$ is a *finite* sequence of states

• For each state $s \in S$ define the unique probability measure such that

 $\Pr_s(Cyl(s_1s_2\ldots s_n)) = \mathbf{1}_s(s_1) \cdot \mathbf{P}(s_1s_2s_3\ldots s_n)$

where $\mathbf{1}_{s}(s) = 1$ and $\mathbf{1}_{s}(t) = 0$ otherwise

 $Pr(\diamond 2) = Pr(\{\rho \in S^{\omega} \mid \exists i \in \mathbb{N} : \rho(i) = 2\})$ $= Pr(\bigcup\{Cyl(\pi) \mid last(\pi) = 2\})$ $= Pr(\bigcup\{Cyl(\pi) \mid \pi \in s_0s_1(s_3s_1)^*s_42\})$ $= \sum_{n \in \mathbb{N}} \mathbf{P}(s_0s_1(s_3s_1)^ns_42)$ $= \sum_{n \in \mathbb{N}} \frac{1}{2^{2n+3}} = \frac{1}{6}$

 $Pr(\diamond 2) = Pr(\{\rho \in S^{\omega} \mid \exists i \in \mathbb{N} : \rho(i) = 2\})$ = $Pr(\bigcup\{Cyl(\pi) \mid last(\pi) = 2\})$ = $Pr(\bigcup\{Cyl(\pi) \mid \pi \in s_0s_1(s_3s_1)^*s_42\})$ = $\sum_{n \in \mathbb{N}} \mathbf{P}(s_0s_1(s_3s_1)^ns_42)$ = $\sum_{n \in \mathbb{N}} \frac{1}{2^{2n+3}} = \frac{1}{6}$

But, how does the computer calculate this?

Quantitative reachability properties

Reachability properties

The probability of reaching a set of states B

$$\Pr_{s}(\diamondsuit B) = \Pr_{s}(\{\rho \in S^{\omega} \mid \exists i \in \mathbb{N} : \rho(i) \in B\})$$
$$= \Pr_{s}(\bigcup\{Cyl(\pi) \mid last(\pi) \in B\})$$
$$= \sum_{s_{0}...s_{n} \in (S \setminus B)^{*}B} \mathbf{1}_{s}(s_{0}) \cdot \mathbf{P}(s_{0}...s_{n})$$

If $s \in \mathbf{B}$ then

$$\Pr_s(\diamondsuit B) = 1$$

If $s \notin B$

$$\Pr_{s}(\diamondsuit B) = \sum_{s_0 \dots s_n \in (S \setminus B)^* B} \mathbf{1}_{s}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

$$=\sum_{s_0\ldots s_n\in (S\setminus B)^*B}\mathbf{1}_s(s_0)\cdot\prod_{i=0}^{n-1}\mathbf{P}(s_i,s_{i+1})$$

$$= \sum_{s_0...s_n \in (S \setminus B)^* B \land s_1 \notin B} \mathbf{1}_s(s_0) \cdot \prod_{i=0}^{n-1} \mathbf{P}(s_i, s_{i+1}) + \sum_{s_1 \in B} \mathbf{1}_s(s_0) \cdot \mathbf{P}(s_0, s_1)$$

$$= \sum_{s_1\dots s_n \in (S \setminus B)^* B \land s_1 \notin B} \mathbf{P}(s, s_1) \cdot \prod_{i=1}^{n-1} \mathbf{P}(s_i, s_{i+1}) + \sum_{s_1 \in B} \mathbf{P}(s, s_1)$$

$$= \sum_{s_1 \notin B} \mathbf{P}(s, s_1) \cdot \sum_{\substack{t_1 \dots t_n \in (S \setminus B)^* B}} \mathbf{1}_{s_1}(t_1) \cdot \prod_{i=1}^{n-1} \mathbf{P}(t_i, t_{i+1}) + \sum_{s_1 \in B} \mathbf{P}(s, s_1)$$
$$\Pr_{s_1}(\diamondsuit B)$$

If $s \notin B$

$$\Pr_{s}(\diamondsuit B) = \sum_{s_0 \dots s_n \in (S \setminus B)^* B} \mathbf{1}_{s}(s_0) \cdot \mathbf{P}(s_0 \dots s_n)$$

$$=\sum_{s_0\dots s_n\in (S\setminus B)^*B}\mathbf{1}_s(s_0)\cdot\prod_{i=0}^{n-1}\mathbf{P}(s_i,s_{i+1})$$

$$= \sum_{s_0...s_n \in (S \setminus B)^* B \land s_1 \notin B} \mathbf{1}_s(s_0) \cdot \prod_{i=0}^{n-1} \mathbf{P}(s_i, s_{i+1}) + \sum_{s_1 \in B} \mathbf{1}_s(s_0) \cdot \mathbf{P}(s_0, s_1)$$

$$= \sum_{s_1\dots s_n \in (S \setminus B)^* B \land s_1 \notin B} \mathbf{P}(s, s_1) \cdot \prod_{i=1}^{n-1} \mathbf{P}(s_i, s_{i+1}) + \sum_{s_1 \in B} \mathbf{P}(s, s_1)$$

$$=\sum_{s_1\notin B} \mathbf{P}(s,s_1) \cdot \sum_{t_1\dots t_n \in (S\setminus B)^* B} \mathbf{1}_{s_1}(t_1) \cdot \prod_{i=1}^{n-1} \mathbf{P}(t_i,t_{i+1}) + \sum_{s_1\in B} \mathbf{P}(s,s_1)$$

$$= \sum_{s_1 \notin \mathbf{B}} \mathbf{P}(s, s_1) \cdot \Pr_{s_1}(\diamondsuit \mathbf{B}) + \sum_{s_1 \in \mathbf{B}} \mathbf{P}(s, s_1)$$

If $s \notin B$

UNC

A.

The following set of equations is obtained (one for each $s \notin B$)

$$x_s = \sum_{t \notin \mathbf{B}} \mathbf{P}(s, t) \cdot x_t + \sum_{t \in \mathbf{B}} \mathbf{P}(s, t)$$

Be aware! The system of equations may not have unique solution:

if $B = \{s_1\}$, the system of equations only contains equation:

$$x_{s_0} = x_{s_0}$$

Note that the only interesting states are those reaching *B* (otherwise the reachability probability is 0)

The following set of equations is obtained (one for each $s \notin P$

$$x_s = \sum_{t \notin \mathbf{B}} \mathbf{P}(s, t) \cdot x_t + \sum_{t \in \mathbf{B}} \mathbf{P}(s, t)$$

Be aware! The system of equations may not have unique solution:

if $B = \{s_1\}$, the system of equations only contains equation:

$$x_{s_0} = x_{s_0}$$

Note that the only interesting states are those reaching *B* (otherwise the reachability probability is 0)

The following set of equations is obtained (one for each $s \notin P$

$$x_s = \sum_{t \in Pre^*(\mathbf{B}) \setminus \mathbf{B}} \mathbf{P}(s, t) \cdot x_t + \sum_{t \in \mathbf{B}} \mathbf{P}(s, t)$$

Be aware! The system of equations may not have unique solution:

if $B = \{s_1\}$, the system of equations only contains equation:

$$x_{s_0} = x_{s_0}$$

 $Pre^{*}(B) = \{s \in S \mid \Pr_{s}(\diamond B) > 0\}$ is the set of all states that may reach B. It is calculated by graph analysis

Note that the only interesting states are those reaching B (otherwise the reachability probability is 0)

The tonowing pt equations is obtained (one for each $s \notin P$

$$x_s = \sum_{t \in Pre^*(\mathbf{B}) \setminus \mathbf{B}} \mathbf{P}(s, t) \cdot x_t + \sum_{t \in \mathbf{B}} \mathbf{P}(s, t)$$

Be aware! The system of equations may not have unique solution:

if $B = \{s_1\}$, the system of equations only contains equation:

$$x_{s_0} = x_{s_0}$$

The complete system of equations is defined by:

$$x_{s} = \sum_{t \in Pre^{*}(B) \setminus B} \mathbf{P}(s,t) \cdot x_{t} + \sum_{t \in B} \mathbf{P}(s,t) \qquad \text{if } s \in Pre^{*}(B) \setminus B$$
$$x_{s} = 1 \qquad \qquad \text{if } s \in B$$
$$x_{s} = 0 \qquad \qquad \text{if } s \notin Pre^{*}(B) \cup B$$

For the example, the system of equations is

CONICET

This system of equations has a unique solution

Calculated using techniques like Gaussian elimination, Jacobi or Gauss-Seidel

Computed in polynomial time

The complete system of equations is defined by:

$$x_{s} = \sum_{t \in Pre^{*}(B) \setminus B} \mathbf{P}(s,t) \cdot x_{t} + \sum_{t \in B} \mathbf{P}(s,t) \qquad \text{if } s \in Pre^{*}(B) \setminus B$$
$$x_{s} = 1 \qquad \qquad \text{if } s \in B$$
$$x_{s} = 0 \qquad \qquad \qquad \text{if } s \notin Pre^{*}(B) \cup B$$

For the example, the system of equations is

CONICET

This system of equations has a unique solution

 $x_s = 0$

if $s \notin Pre^*(B) \cup B$

 $x_2 = 1$

$$\begin{aligned} x_{s_0} &= \frac{1}{2} \cdot x_{s_1} \\ x_{s_1} &= \frac{1}{2} \cdot x_{s_3} + \frac{1}{2} \cdot x_{s_4} \\ x_{s_3} &= \frac{1}{2} \cdot x_{s_1} \\ x_{s_4} &= \frac{1}{2} \end{aligned}$$

$$\begin{aligned} x_2 &= 1 \end{aligned}$$

$x_{s_0} = \frac{1}{2} \cdot x_{s_1}$	$Pre^*(B)\setminus B$
$x_{s_1} = \frac{1}{2} \cdot x_{s_3} + \frac{1}{2} \cdot x_{s_4}$	
$x_{s_3} = \frac{1}{2} \cdot x_{s_1}$	
$x_{s_4} = \frac{1}{2}$	
$x_2 = 1$	В
$x_s = 0$, if $s \notin \{s_0, s_1, s_3, s_4, 2\}$	$S \setminus Pre^*(B)$

$x_s = \sum_{t \in Pre^*(B) \setminus B} \mathbf{P}(s, t) \cdot x_t + \sum_{t \in B} \mathbf{P}(s, t)$	$if s \in Pre^*(B) \backslash B$	
$x_s = 1$	if $s \in B$	
$x_s = 0$	if $s \notin Pre^*(B) \cup B$	

e with a com	check that indeed $x_{s_0} = \frac{1}{6}$
$x_{s_0} = \frac{1}{2} \cdot x_{s_1}$	$Pre^*(B)\setminus B$
$x_{s_1} = \frac{1}{2} \cdot x_{s_3} + \frac{1}{2} \cdot x_{s_4}$	
$x_{s_3} = \frac{1}{2} \cdot x_{s_1}$	
$x_{s_4} = \frac{1}{2}$	
$x_2 = 1$	В
$x_s = 0$, if $s \notin \{s_0, s_1, \ldots, s_n\}$	$s_3, s_4, 2$ $S \setminus Pre^*(B)$

It's up to you to

$x_s = \sum_{t \in Pre^*(B) \setminus B} \mathbf{P}(s, t) \cdot x_t + \sum_{t \in B} \mathbf{P}(s, t)$	if $s \in Pre^*(B) \setminus B$	
$x_s = 1$	if $s \in B$	
$x_s = 0$	if $s \notin Pre^*(B) \cup B$	

Bounded reachability (exact: $Pr_{s_0}(\diamondsuit^{=n}B)$)

- The probability transition function P defines the probability of moving from one state to another in one single step
- Then the probability of moving from s to t in two steps is

$$\sum_{s \in S} \mathbf{P}(s, s') \cdot \mathbf{P}(s', t) = (\mathbf{P} \cdot \mathbf{P})(s, t) = \mathbf{P}^2(s, t)$$

Bounded reachability (exact: $Pr_{s_0}(\diamondsuit^{=n}B)$)

- The probability transition function P defines the probability of moving from one state to another in one single step
 P is a matrix!
- Then the probability of moving from s to t in two steps is

$$\sum_{s \in S} \mathbf{P}(s, s') \cdot \mathbf{P}(s', t) = (\mathbf{P} \cdot \mathbf{P})(s, t) = \mathbf{P}^2(s, t)$$

In general, the probability of reaching t on n steps from the initial state is:

 $\Theta_n(t) = \mathbf{P}^n(s_0, t)$

• Then, the probability of reaching a state in B in exactly n steps is

$$\Pr_{s_0}(\diamondsuit^{=n}B) = \sum_{t \in B} \Theta_n(t)$$

... so, this is calculated with matrix multiplication

Bounded reachability (upper bound)

• Given the DTMC *M* construct the DTMC M_B by making all states in *B* absorbing:

$$\mathbf{P}_{\boldsymbol{M}_{\boldsymbol{B}}}(s,t) = \begin{cases} 1 & \text{if } t = s \in B \\ 0 & \text{if } t \neq s \in B \\ \mathbf{P}_{\boldsymbol{M}}(s,t) & \text{if } s \notin B \end{cases}$$

Then calculate

$$\operatorname{Pr}_{s_0}^{M}(\diamondsuit^{\leq n}B) = \operatorname{Pr}_{s_0}^{M_B}(\diamondsuit^{=n}B) = \sum_{t \in B} \Theta_n^{M_B}(t)$$

Constrained reachability (until operator)

◆ The probability of reaching states in *B* passing only through states in *C*:

 $\Pr_{s_0}(C \ U B) \qquad \Pr_{s_0}(C \ U^{=n} B) \qquad \Pr_{s_0}(C \ U^{\leq n} B)$ bounded versions

Constrained reachability (until operator)

◆ The probability of reaching states in *B* passing only through states in *C*:

 $\Pr_{s_0}(C \, \mathtt{U} \, B) \qquad \Pr_{s_0}(C \, \mathtt{U}^{=n} \, B) \qquad \Pr_{s_0}(C \, \mathtt{U}^{\leq n} \, B)$

♦ Construct the DTMC M^{\cup} from M by making states not in $C \cup B$ absorbing:

$$\mathbf{P}_{M^{\mathsf{U}}}(s,t) = \begin{cases} 1 & \text{if } t = s \notin (C \cup B) \\ 0 & \text{if } t \neq s \notin (C \cup B) \\ \mathbf{P}_{M}(s,t) & \text{if } s \in (C \cup B) \end{cases}$$

Then calculate:

$$\operatorname{Pr}_{s_0}^{M}(C \operatorname{U} B) = \operatorname{Pr}_{s_0}^{M^{\operatorname{U}}}(\diamondsuit B)$$
$$\operatorname{Pr}_{s_0}^{M}(C \operatorname{U}^{=n} B) = \operatorname{Pr}_{s_0}^{M^{\operatorname{U}}}(\diamondsuit^{=n} B)$$
$$\operatorname{Pr}_{s_0}^{M}(C \operatorname{U}^{\leq n} B) = \operatorname{Pr}_{s_0}^{M^{\operatorname{U}}}(\diamondsuit^{\leq n} B)$$

Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$

 $\Pr_{s_0}(C \operatorname{U}^{=4} B)?$

Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$

 $\operatorname{Pr}_{s_0}(C \operatorname{U}^{=4} B)?$

Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$

 $\operatorname{Pr}_{s_0}(C \operatorname{U}^{=4} B)?$

Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$

 $\Pr_{s_0}(C \operatorname{U}^{=4} B)?$

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\Pr_{s_0}(C \operatorname{U}^{=4} B)?$
- 1) Calculate M^{U}

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\Pr_{s_0}(C \operatorname{U}^{=4} B)?$
- 1) Calculate M^{U}

i.e. make states not in *C* or *B* absorbing

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\Pr_{s_0}(C \, \mathbb{U}^{=4} \, B)$?
- 1) Calculate M^{U}

i.e. make states not in

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\operatorname{Pr}_{s_0}(C \operatorname{U}^{=4} B) \mathsf{?}$
- 1) Calculate M^{U} 2) Calculate $\Pr_{s_0}^{M^{U}}(\diamondsuit^{=4}B)$

Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$

 $\Pr_{s_0}(C \operatorname{U}^{=4} B)?$

1) Calculate M^{U} 2) Calculate $\Pr_{s_0}^{M^{U}}(\diamondsuit^{=4}B)$

i.e. make states not in *C* or *B* absorbing

Notice that $\Pr_{s_0}(C \cup B)$ can be obtained in this DTMC by calculating $\Pr_{s_0}^{M^{\cup}}(\diamondsuit B)$ instead

Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$

 $\Pr_{s_0}(C \operatorname{U}^{\leq 4} B)?$

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\Pr_{s_0}(C \operatorname{U}^{\leq 4} B)?$
- 1) Calculate M^{U}

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\operatorname{Pr}_{s_0}(C \operatorname{U}^{\leq 4} B) ?$
- Calculate M^U
 Calculate M^U_B

CONICET

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\operatorname{Pr}_{s_0}(C \operatorname{U}^{\leq 4} B)?$
- Calculate M^U
 Calculate M^U_B

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\Pr_{s_0}(C \operatorname{U}^{\leq 4} B)?$
- Calculate M^U
 Calculate M^U_B

- Let $C = \{s_0, s_1, s_3\}$ and $B = \{s_4\}$
- $\operatorname{Pr}_{s_0}(C \operatorname{U}^{\leq 4} B)?$
- 1) Calculate M^{U} 2) Calculate M^{U}_{B} 3) Calculate $\Pr^{M^{U}_{B}}_{s_{0}}(\diamondsuit^{=4}B)$

Qualitative properties

Qualitative properties

- These properties deal with extreme probabilities:
 - something happens with probability 1, or
 - something happens with some probability (different from 0)
- ✤ We focus on:
 - ♦ reachability (◊B)
 - ♦ constrained reachability (*C* ∪ *B*)
 - ◆ repeated reachability $(\Box \diamond B) \rightarrow$ states in *B* are visited infinitely often
 - ◆ persistence ($\Diamond \square B$) → reach SCCs that contain only states in *B*
- All these properties can be verified by doing graph analysis on the underlying graph
 of the DTMC

UNC

Qualitative properties

- These properties deal with extreme probabilities:
 - something happens with probability 1, or
 - something happens with some probability (different from 0)
- We focus on:
 - ♦ reachability (◊B)
 - ♦ constrained reachability (*C* ∪ *B*)
 - ◆ repeated reachability $(\Box \diamond B) \rightarrow$ states in *B* are visited infinitely often
 - ◆ persistence ($\Diamond \square B$) → reach SCCs that contain only states in *B*
- All these properties can be verified by doing graph analysis on the underlying graph of the DTMC

Dually: something happens with probability 0

> All these properties can be proved measurable

> > UNC

An execution fragment is a sequence $s_0 s_1 s_2 \dots s_n \in S^*$ such that $\mathbf{P}(s_0 s_1 s_2 \dots s_n) > 0$, that is, $\mathbf{P}(s_i, s_{i+1}) > 0$ for all $0 \le i < n$.

 $Path_{fin}(s)$ is the set of all execution fragments starting in the state s.

An execution fragment is a sequence $s_0 s_1 s_2 \dots s_n \in S^*$ such that $\mathbf{P}(s_0 s_1 s_2 \dots s_n) > 0$, that is, $\mathbf{P}(s_i, s_{i+1}) > 0$ for all $0 \le i < n$.

 $Path_{fin}(s)$ is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states $B \subseteq S$ is defined by

 $Pre(B) = \{s \mid \exists t \in B \colon \mathbf{P}(s,t) > 0\}$

An execution fragment is a sequence $s_0 s_1 s_2 \dots s_n \in S^*$ such that $\mathbf{P}(s_0 s_1 s_2 \dots s_n) > 0$, that is, $\mathbf{P}(s_i, s_{i+1}) > 0$ for all $0 \le i < n$.

 $Path_{fin}(s)$ is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states $B \subseteq S$ is defined by

 $Pre(B) = \{s \mid \exists t \in B \colon \mathbf{P}(s,t) > 0\}$

An execution fragment is a sequence $s_0 s_1 s_2 \dots s_n \in S^*$ such that $\mathbf{P}(s_0 s_1 s_2 \dots s_n) > 0$, that is, $\mathbf{P}(s_i, s_{i+1}) > 0$ for all $0 \le i < n$.

 $Path_{fin}(s)$ is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states $B \subseteq S$ is defined by

 $Pre(B) = \{s \mid \exists t \in B \colon \mathbf{P}(s,t) > 0\}$

Then, is the set of states reaching *B* is defined by

$$Pre^{*}(B) = \bigcup_{i \ge 0} Pre^{i}(B) = \{s \in S \mid \exists \pi \in Path_{fin}(s) \colon last(\pi) \in B\}$$

An execution fragment is a sequence $s_0 s_1 s_2 \dots s_n \in S^*$ such that $\mathbf{P}(s_0 s_1 s_2 \dots s_n) > 0$, that is, $\mathbf{P}(s_i, s_{i+1}) > 0$ for all $0 \le i < n$.

 $Path_{fin}(s)$ is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a set of states $B \subseteq S$ is defined by

 $Pre(B) = \{s \mid \exists t \in B \colon \mathbf{P}(s,t) > 0\}$

Then, is the set of states reaching *B* is defined by

$$Pre^{*}(B) = \bigcup_{i \ge 0} Pre^{i}(B) = \{ s \in S \mid \exists \pi \in Path_{fin}(s) \colon last(\pi) \in B \}$$

An execution fragment is a sequence $s_0 s_1 s_2 \dots s_n \in S^*$ such that $\mathbf{P}(s_0 s_1 s_2 \dots s_n) > 0$, that is, $\mathbf{P}(s_i, s_{i+1}) > 0$ for all $0 \le i < n$.

This equality can

follows

od by

 $Path_{fin}(s)$ is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a s

be proved by induction from which the theorem $Pre(B) = \{s \mid \exists t \in B \colon \mathbf{P}(s, t)\}$

Then, is the set of states reaching is defined by

$$Pre^*(B) = \bigcup_{i \ge 0} Pre^i(B) = \{ s \in S \mid \exists \pi \in Path_{fin}(s) \colon last(\pi) \in B \}$$

Theorem: $\Pr_s(\Diamond B) > 0$ if and only if $s \in Pre^*(B)$

An execution fragment is a sequence $s_0 s_1 s_2 \dots s_n \in S^*$ such that $\mathbf{P}(s_0 s_1 s_2 \dots s_n) > 0$, that is, $\mathbf{P}(s_i, s_{i+1}) > 0$ for all $0 \le i < n$.

This equality can

follows

 $Path_{fin}(s)$ is the set of all execution fragments starting in the state s.

The (immediate) predecesors of a s

be proved by induction from which the theorem $Pre(B) = \{s \mid \exists t \in B \colon \mathbf{P}(s, t)\}$

Then, is the set of states reaching is defined by

$$Pre^*(B) = \bigcup_{i \ge 0} Pre^i(B) = \{s \in S \mid \exists \pi \in Path_{fin}(s) \colon last(\pi) \in B\}$$

Theorem: $\Pr_s(\Diamond B) > 0$ if and only if $s \in Pre^*(B)$

od by

Let $M = (S, \mathbf{P}, s_0, AP, L)$ be a DTMC. Then $T \subseteq S$ is

★ strongly connected if every pair of states in *T* is connected with an execution fragment, i.e., $\forall t, u \in T$: $\exists \pi \in Path_{fin}(t)$: $last(\pi) = u$.

Let $M = (S, \mathbf{P}, s_0, AP, L)$ be a DTMC. Then $T \subseteq S$ is

★ strongly connected if every pair of states in *T* is connected with an execution fragment, i.e., $\forall t, u \in T$: $\exists \pi \in Path_{fin}(t)$: $last(\pi) = u$.

a strongly connected component (SCC) if it is a maximal strongly connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T' such that $T \cap T' \neq \emptyset$, $T' \subseteq T$.

Let $M = (S, \mathbf{P}, s_0, AP, L)$ be a DTMC. Then $T \subseteq S$ is

★ strongly connected if every pair of states in *T* is connected with an execution fragment, i.e., $\forall t, u \in T$: $\exists \pi \in Path_{fin}(t)$: $last(\pi) = u$.

a strongly connected component (SCC) if it is a maximal strongly connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T' such that $T \cap T' \neq \emptyset$, $T' \subseteq T$.

Let $M = (S, \mathbf{P}, s_0, AP, L)$ be a DTMC. Then $T \subseteq S$ is

★ strongly connected if every pair of states in *T* is connected with an execution fragment, i.e., $\forall t, u \in T$: $\exists \pi \in Path_{fin}(t)$: $last(\pi) = u$.

A strongly connected component (SCC) if it is a maximal strongly connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T' such that $T \cap T' \neq \emptyset$, $T' \subseteq T$.

a bottom strongly connected component (BSCC) if it is a SCC and no state outside *T* is reached from *T*, i.e.,

i. T is a SCC and

ii. $\forall t \in \mathbf{T} : \mathbf{P}(t, S \setminus \mathbf{T}) = 0$ (or alternatively, $\mathbf{P}(t, \mathbf{T}) = 1$).

Let $M = (S, \mathbf{P}, s_0, AP, L)$ be a DTMC. Then $T \subseteq S$ is

★ strongly connected if every pair of states in *T* is connected with an execution fragment, i.e., $\forall t, u \in T$: $\exists \pi \in Path_{fin}(t)$: $last(\pi) = u$.

A strongly connected component (SCC) if it is a maximal strongly connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T' such that $T \cap T' \neq \emptyset$, $T' \subseteq T$.

a bottom strongly connected component (BSCC) if it is a SCC and no state outside *T* is reached from *T*, i.e.,

i. T is a SCC and

ii. $\forall t \in \mathbf{T} : \mathbf{P}(t, S \setminus \mathbf{T}) = 0$ (or alternatively, $\mathbf{P}(t, \mathbf{T}) = 1$).

Let $M = (S, \mathbf{P}, s_0, AP, L)$ be a DTMC. Then $T \subseteq S$ is

★ strongly connected if every pair of states in *T* is connected with an execution fragment, i.e., $\forall t, u \in T$: $\exists \pi \in Path_{fin}(t)$: $last(\pi) = u$.

A strongly connected component (SCC) if it is a maximal strongly connected set, i.e.,

i. T is strongly connected and

ii. for every strongly connected T' such that $T \cap T' \neq \emptyset$, $T' \subseteq T$.

a bottom strongly connected component (BSCC) if it is a SCC and no state outside *T* is reached from *T*, i.e.,

i. T is a SCC and

ii. $\forall t \in \mathbf{T} : \mathbf{P}(t, S \setminus \mathbf{T}) = 0$ (or alternatively, $\mathbf{P}(t, \mathbf{T}) = 1$).

UNC

Theorem: For every state s of a finite DTMC M,

 $\Pr_s\left(\{\rho \in Path(s) \mid infty(\rho) \in BSCC(M)\}\right) = 1.$

In other words: the probability of getting trapped in a BSCC is 1

Theorem: For every state s of a finite DTMC M,

 $\Pr_s\left(\{\rho \in Path(s) \mid infty(\rho) \in BSCC(M)\}\right) = 1.$

In other words: the probability of getting trapped in a BSCC is 1

Theorem: For every state s of a finite DTMC M,

 $\Pr_s\left(\{\rho \in Path(s) \mid infty(\rho) \in BSCC(M)\}\right) = 1.$

In other words: the probability of getting trapped in a BSCC is 1

There is always some probability to leave the SCC

SCC but not

BSCC

Theorem: For every state s of a finite DTMC M,

 $\Pr_s\left(\{\rho \in Path(s) \mid infty(\rho) \in BSCC(M)\}\right) = 1.$

In other words: the probability of getting trapped in a BSCC is 1

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

 $\Pr_s(\diamondsuit B) = 1$ if and ony if $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

B

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

 $\Pr_s(\diamondsuit B) = 1$ if and ony if $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

 $Pre^{*}(B)$

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

What if *B* is not absorbing?

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

What if *B* is not absorbing?

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

 $\Pr_s(\diamondsuit B) = 1$ if and ony if $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

B

What if *B* is not absorbing?

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

 $\Pr_s(\diamondsuit B) = 1$ if and ony if $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

What if *B* is not absorbing?

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

 $\Pr_s(\diamondsuit B) = 1$ if and ony if $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

 $S \backslash Pre^*(B)$

What if *B* is not absorbing?

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

 $\Pr_s(\diamondsuit B) = 1$ if and ony if $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

 $Pre^*(S \setminus Pre^*(B))$

What if *B* is not absorbing?

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

 $\Pr_s(\diamondsuit B) = 1$ if and ony if $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

 $S \setminus Pre^*(S \setminus Pre^*(B))$

What if *B* is not absorbing?

UNC

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

 $\Pr_s(\Diamond B) = 1$ if and ony if $s \in S \setminus Pre^*(S \setminus Pre^*(B))$

 $S \setminus Pre^*(S \setminus Pre^*(B))$

Therefore, for the general case, first construct M_B

Some state of *B* should repeat infinitely often

 $\rho\in\Box\diamondsuit B\quad \text{iff}\quad \inf\!fy(\rho)\cap B\neq\varnothing$

Some state of *B* should repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Box \diamondsuit B) = 1$ iff for all $T \in BSCC(M)$ reachable from $s \in S, T \cap B \neq \emptyset$

iff $s \in Pre^*(\bigcup \{T \in BSCC(M) \mid T \cap B \neq \emptyset\})$

Some state of *B* should repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Box \diamondsuit B) = 1$ iff for all $T \in BSCC(M)$ reachable from $s \in S, T \cap B \neq \emptyset$

iff $s \in Pre^*(\bigcup \{T \in BSCC(M) \mid T \cap B \neq \emptyset\})$

Follows from the limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

 $\Pr_s\left(\{\rho \in Path(s) \mid infty(\rho) \in BSCC(M)\}\right) = 1.$

CONICET

Some state of *B* should repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Box \diamondsuit B) = 1$ iff for all $T \in BSCC(M)$ reachable from $s \in S, T \cap B \neq \emptyset$

iff $s \in Pre^*(\bigcup \{T \in BSCC(M) \mid T \cap B \neq \emptyset\})$

$$B = \{s_3, s_4, s_5\}$$

Some state of *B* should repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Box \diamondsuit B) = 1$ iff for all $T \in BSCC(M)$ reachable from $s \in S, T \cap B \neq \emptyset$

iff $s \in Pre^*(\bigcup \{T \in BSCC(M) \mid T \cap B \neq \emptyset\})$

 $B = \{s_3, s_4, s_5\}$

Computed

in linear time

 $\rho \in \Diamond \Box B \quad \text{iff} \quad infty(\rho) \subseteq B$

Only states from *B* can repeat infinitely often

 $\rho \in \Diamond \Box B \quad \text{iff} \quad infty(\rho) \subseteq B$

Only states from *B* can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_{s}(\Diamond \Box G) = 1 \quad \text{iff} \quad \text{for all } T \in BSCC(M) \text{ reachable from } s \in S, T \subseteq B$ $\text{iff} \quad s \in Pre^{*}(\bigcup T \in BSCC(M) \mid T \subseteq B\})$

 $\rho \in \Diamond \Box B \quad \text{iff} \quad infty(\rho) \subseteq B$

Only states from *B* can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Diamond \Box G) = 1$ iff for all $T \in BSCC(M)$ reachable from $s \in S, T \subseteq B$

iff $s \in Pre^*(\bigcup \{T \in BSCC(M) \mid T \subseteq B\})$

Like before, follows from the limit behavior of Markov chains

 $\rho \in \Diamond \Box B \quad \text{iff} \quad infty(\rho) \subseteq B$

CONICET

Only states from *B* can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_{s}(\Diamond \Box G) = 1 \quad \text{iff} \quad \text{for all } T \in BSCC(M) \text{ reachable from } s \in S, T \subseteq B$ $\text{iff} \quad s \in Pre^{*}(\bigcup \{T \in BSCC(M) \mid T \subseteq B\})$

$$B = \{s_3, s_4, s_5\}$$

 $\rho \in \Diamond \Box B \quad \text{iff} \quad infty(\rho) \subseteq B$

CONICET

Only states from *B* can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_{s}(\Diamond \Box G) = 1 \quad \text{iff} \quad \text{for all } T \in BSCC(M) \text{ reachable from } s \in S, T \subseteq B$ $\text{iff} \quad s \in Pre^{*}(\bigcup \{T \in BSCC(M) \mid T \subseteq B\})$

 $\rho \in \Diamond \Box B \quad \text{iff} \quad infty(\rho) \subseteq B$

CONICET

Only states from *B* can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_{s}(\Diamond \Box G) = 1 \quad \text{iff} \quad \text{for all } T \in BSCC(M) \text{ reachable from } s \in S, T \subseteq B$ $\text{iff} \quad s \in Pre^{*}(\bigcup \{T \in BSCC(M) \mid T \subseteq B\})$

 $\rho \in \Diamond \Box B \quad \text{iff} \quad infty(\rho) \subseteq B$

CONICET

Only states from *B* can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Diamond \Box G) = 1$ iff for all $T \in BSCC(M)$ reachable from $s \in S, T \subseteq B$

iff $s \in Pre^*(\bigcup \{T \in BSCC(M) \mid T \subseteq B\})$

$$B = \{s_3, s_4, s_5, s_6\}$$

Computed

in linear time

More quantitative properties

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Box \diamondsuit B) = \Pr_s(\diamondsuit U)$

where $U = \bigcup \{T \in BSCC(M) \mid T \cap B \neq \emptyset \}$.

$$B = \{s_4, s_5\}$$

Theorem: Let
$$s \in S$$
 and $B \subseteq S$. Then
 $\Pr_s(\Box \diamondsuit B) = \Pr_s(\diamondsuit U)$
where $U = \bigcup \{T \in BSCC(M) \mid T \cap B \neq \varnothing \}$.

$$B = \{s_4, s_5\}$$

• Compute
$$U$$
 (linear time

Theorem: Let
$$s \in S$$
 and $B \subseteq S$. Then
 $\Pr_s(\Box \diamondsuit B) = \Pr_s(\diamondsuit U)$
where $U = \bigcup \{T \in BSCC(M) \mid T \cap B \neq \varnothing \}$.

 $\bullet \text{ Compute } U \qquad (\text{linear time})$

 $B = \{s_4, s_5\}$

 $U = \{s_2, s_4, s_5\}$

Theorem: Let
$$s \in S$$
 and $B \subseteq S$. Then
 $\Pr_s(\Box \diamondsuit B) = \Pr_s(\diamondsuit U)$
where $U = \bigcup \{T \in BSCC(M) \mid T \cap B \neq \emptyset\}.$

• Compute U (linear time)

♦ Compute $Pr_s(\diamondsuit U)$ (polynomial time)

 $B = \{s_4, s_5\}$ $U = \{s_2, s_4, s_5\}$

Computed in polynomial time

Quantitative repeated reachability

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Box \diamondsuit B) = \Pr_s(\diamondsuit U)$

where $U = \bigcup \{T \in BSCC(M) \mid T \cap B \neq \emptyset \}.$

• Compute U (linear time)

♦ Compute $Pr_s(\diamondsuit U)$ (polynomial time)

 $B = \{s_4, s_5\}$ $U = \{s_2, s_4, s_5\}$

Theorem: Let $s \in S$ and $B \subseteq S$. Then

 $\Pr_s(\Diamond \Box B) = \Pr_s(\Diamond U)$

where $U = \bigcup \{T \in BSCC(M) \mid T \subseteq B\}.$

$$B = \{s_4, s_5\}$$

Theorem: Let
$$s \in S$$
 and $B \subseteq S$. Then
 $\Pr_s(\Diamond \Box B) = \Pr_s(\Diamond U)$
where $U = \bigcup \{T \in BSCC(M) \mid T \subseteq B\}.$

0.5 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.5 0.25 0.5 0.25 0.5 0.5 0.25 0.5 0.5 0.25 0.5 0.5 0.5 0.25 0.50.5

 \diamond Compute U

$$B = \{s_4, s_5\}$$

Theorem: Let
$$s \in S$$
 and $B \subseteq S$. Then
 $\Pr_s(\Diamond \Box B) = \Pr_s(\Diamond U)$
where $U = \bigcup \{T \in BSCC(M) \mid T \subseteq B\}.$

 \diamond Compute U

$$B = \{s_4, s_5\}$$

$$U = \{s_4\}$$

Computed in polynomial time

Quantitative persistence

Theorem: Let
$$s \in S$$
 and $B \subseteq S$. Then

 $\Pr_s(\Diamond \Box B) = \Pr_s(\Diamond U)$

where
$$U = \bigcup \{T \in BSCC(M) \mid T \subseteq B\}.$$

• Compute $\Pr_s(\diamond U)$

$$B = \{s_4, s_5\}$$

$$U = \{s_4\}$$

ω -regular properties

- Can be expressed with ω-automata such as Büchi automata, Rabin automata, Strett automata, etc.
- Repeated reachability and persistence are central, since, e.g., the Rabin acceptance condition of can be expressed as properties of the form:

 $\bigvee_{i\in I} (\Diamond \Box \neg G_i \land \Box \Diamond H_i)$

- The verification of ω -properties proceed by
 - i. obtaining the synchronous product of the DTMC with the deterministic Rabin automata (DRA) of the property, and
 - ii. calculating the reachability property of a set *U* very much like for repeated reachability and persistence.

ω-regular properties

Though polynomial w.r.t. the DTMC and the DRA, the DRA normally grows exponentially large w.r.t. the ω-property ata, expressed in e.g. LTL

- Can be expressed with ω-automata such as Büchi automata, automata, etc.
- Repeated reachability and persistence are central, since, e.g., the Kabin acceptance condition of can be expressed as properties of the form:

$$\bigvee_{i\in I} (\Diamond \Box \neg G_i \land \Box \Diamond H_i)$$

- * The verification of ω -properties proceed by
 - i. obtaining the synchronous product of the DTMC with the deterministic Rabin automata (DRA) of the property, and
 - ii. calculating the reachability property of a set *U* very much like for repeated reachability and persistence.

PCTL

PCTL: Probabilistic Computational Tree Logic

where

• $p \in AP$ is an atomic proposition, and

• $\bowtie \in \{<, \leq, \geq, >\}$ and $a \in \mathbb{R}$.

PCTL: Probabilistic Computational Tree Logic

where

- $p \in AP$ is an atomic proposition, and
- $\bowtie \in \{<, \leq, \geq, >\}$ and $a \in \mathbb{R}$.
- Some abbreviations:
 - $$\begin{split} \mathbf{P}_{(a,b]}(\phi) &\equiv \mathbf{P}_{>a}(\phi) \wedge \mathbf{P}_{\leq b}(\phi) \\ \mathbf{P}_{\bowtie a}(\diamond \Phi) &\equiv \mathbf{P}_{\bowtie a}(\textit{true}\,\mathbf{U}\,\Phi) \\ \mathbf{P}_{\bowtie a}(\diamond \Phi) &\equiv \mathbf{P}_{\bowtie a}(\textit{true}\,\mathbf{U}^{\leq n}\,\Phi) \\ \mathbf{P}_{\leq a}(\Box \Phi) &\equiv \mathbf{P}_{\geq 1-a}(\diamond \neg \Phi) \\ \end{split}$$

in addition to the boolean abbreviations

Some examples

On the "die with a coin" example:

 $\mathbf{P}_{=\frac{1}{6}}(\diamondsuit 1) \ \land \ \mathbf{P}_{=\frac{1}{6}}(\diamondsuit 2) \ \land \ \mathbf{P}_{=\frac{1}{6}}(\diamondsuit 3) \ \land \ \mathbf{P}_{=\frac{1}{6}}(\diamondsuit 4) \ \land \ \mathbf{P}_{=\frac{1}{6}}(\diamondsuit 5) \ \land \ \mathbf{P}_{=\frac{1}{6}}(\diamondsuit 6)$

"Each of the six sides will eventually appear with 1/6 probability"

On the "toy protocol":

 $P_{=1}(\diamondsuit delivered)$

"The message is almost surely delivered"

 $\mathsf{P}_{=1}\left(\Box\left(\textit{start} \Rightarrow \mathsf{P}_{\geq 0.99}(\diamondsuit^{\leq 4}\textit{delivered})\right)\right)$

"Almost surely always each time a communication is started, the message is eventually delivered in at most 4 steps with probability 0.99"

CONICET

delivered}

Semantics of PCTL

A PCTL formula Φ holds in state $s \in S$ of a DTMC M, denoted by $s \models \Phi$, whenever:

$$s \models p$$
 iff $p \in L(s)$

formulas

state

$$s \models \neg \Phi$$
 iff $s \not\models \Phi$

$$s \models \Phi_1 \land \Phi_2$$
 iff $s \models \Phi_1$ and $s \models \Phi_2$

$$s \models \mathsf{P}_{\bowtie a}(\phi) \quad \text{ iff } \quad \Pr(s \models \phi) \bowtie a$$

where $\Pr(s \models \phi) = \Pr_s(\{\rho \in Path(s) \mid \rho \models \phi\})$ and

path formulas

$$\rho\models \bigcirc \Phi \qquad \quad \text{iff} \quad \rho(1)\models \Phi$$

 $\rho \models \Phi \, \mathrm{U} \, \Psi$ iff exists $j \ge 0$ s.t. $\rho(j) \models \Psi$ and for all $0 \le k < j, \rho(k) \models \Phi$

 $\rho \models \Phi \, \mathtt{U}^{\leq n} \, \Psi \quad \text{iff} \quad \text{exists} \ \ 0 \leq j \leq n \ \ \text{s.t.} \ \ \rho(j) \models \Psi \ \ \text{and for all} \ \ 0 \leq k < j, \rho(k) \models \Phi$

fun *Sat*(Φ) {

// input: a PCTL (state) formula Φ // output: $\{s \in S \mid s \models \Phi\}$ case { $\Phi \in AP$ return $\{s \in S \mid \Phi \in L(s)\}$ $\Phi \equiv \neg \Psi$ return $S \setminus Sat(\Psi)$ $\Phi \equiv \Psi_1 \wedge \Psi_2$ return $Sat(\Psi_1) \cap Sat(\Psi_2)$ $\Phi \equiv \mathsf{P}_J(\phi)$ return $\{s \in S \mid Prob(s, \phi) \in J\}$ $Prob(\cdot, \phi)$ is calculated as a matrix // **input:** a state s and a path formula ϕ

Algorithm for PCTL model checking

Polynomial on the size of M Linear on the size of Φ Linear on the largest *n*

fun $Prob(s, \phi)$ {

CONICET

// output: $\Pr_s(s \models \phi)$ return $(\mathbf{P} \cdot \mathbf{1}_{Sat(\Phi)})(s)$ case { $\phi \equiv \bigcirc \Phi$ let $B = Sat(\Psi)$; let $C = Sat(\Phi)$ $\phi \equiv \Phi \, \mathrm{U} \, \Psi$ return $Pr_s(C U B)$ // constrained reachability $\phi \equiv \Phi \, \mathrm{U}^{\leq n} \, \Psi$ let $B = Sat(\Psi)$; let $C = Sat(\Phi)$ return $\Pr_s(C \ U^{\leq n} B)$ // bounded constrained reachability

Markov Decision Processes

The need of non-determinism

Parallel composition / distributed components:

- relative probabilities of events occurring in different physical locations may be hard to estimate.
- Sub-specification:
 - many probabilities may be unknown at modeling time
- Abstraction:
 - models are intentional abstractions of the system under study
- Control synthesis and planning:
 - sub-specification is intentional to synthesize optimal decisions

Markov Decision Processes (MDP)

A MDP is a structure

 $(S, Act, \mathbf{P}, s_0, AP, L)$

where

- ♦ *S* is a finite set of states, where $s_0 \in S$ is the initial state,
- ✤ Act is a finite set of actions,
- ◆ **P** : *S* × *Act* × *S* → [0, 1] is the probabilistic transition function, such that, for every *s* ∈ *S*, and *α* ∈ *Act*, $\sum_{s' \in S} \mathbf{P}(s, α, s') \in \{0, 1\}$, and
- ♦ $L: S \to \mathscr{P}(AP)$ is a labelling function, where AP is a set of atomic propositions.

If $Act = \{\alpha\}$, the MDP is a DTMC

Markov Decision Processes (MDP)

A MDP is a structure

 $(S, Act, \mathbf{P}, s_0, AP, L)$

where

- ♦ *S* is a finite set of states, where $s_0 \in S$ is the initial state,
- ✤ Act is a finite set of actions,
- ◆ **P** : *S* × *Act* × *S* → [0, 1] is the probabilistic transition function, such that, for every *s* ∈ *S*, and *α* ∈ *Act*, $\sum_{s' \in S} \mathbf{P}(s, α, s') \in \{0, 1\}$, and
- ♦ $L: S \to \mathscr{P}(AP)$ is a labelling function, where AP is a set of atomic propositions.

Act(s) is the set of all actions enabled in s

At least one action should be enabled in every state

 $\mathbf{P}(s, \alpha, s')$ is the probability to move to state s' conditioned to the system being at state s and action α being selected

$(S, Act, \mathbf{P}, s_0, AP, L)$

$(S, Act, \mathbf{P}, s_0, AP, L)$

- To compute the probabilities in a MDP, non-determinism needs to be resolved
- Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

- To compute the probabilities in a MDP, non-determinism needs to be resolved
- Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

- To compute the probabilities in a MDP, non-determinism needs to be resolved
- Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

- To compute the probabilities in a MDP, non-determinism needs to be resolved
- Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

- * To compute the probabilities in a MDP, non-determinism needs to be resolved
- Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

A scheduler defines a (maybe infinite) DTMC

- To compute the probabilities in a MDP, non-determinism needs to be resolved
- Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

A scheduler defines a (maybe infinite) DTMC

A scheduler can also chose with randomness

Schedulers

Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP.

A scheduler is a funciton $\mathfrak{S}: S^+ \to Act \to [0, 1]$ such that

1. $\mathfrak{S}(s_0 s_1 \dots s_n)$ is a probability distribution on Act, i.e., $\sum_{\alpha \in Act} \mathfrak{S}(s_0 s_1 \dots s_n)(\alpha) = 1$, and 2. if $\mathfrak{S}(s_0 s_1 \dots s_n)(\alpha) > 0$, then $\alpha \in Act(s_n)$.

A scheduler \mathfrak{S} induces the DTMC $\mathcal{M}_{\mathfrak{S}} = (S^+, \mathbf{P}_{\mathfrak{S}}, s_0, AP, L')$ where

$$\bullet \mathbf{P}_{\mathfrak{S}}(s_0 s_1 \dots s_n, s_0 s_1 \dots s_n s_{n+1}) = \sum_{\alpha \in Act} \mathfrak{S}(s_0 s_1 \dots s_n)(\alpha) \cdot \mathbf{P}(s_n, \alpha, s_{n+1})$$
$$\bullet L'(s_0 s_1 \dots s_n) = L(s_n)$$

S always chooses casino

 $\Pr^{\mathfrak{S}}(\mathfrak{T} \models \diamondsuit"a \ lot") \approx 0.0816$

casino

S always chooses casino

 \mathfrak{S} always chooses stock_market

 $\Pr^{\mathfrak{S}}(\mathfrak{T} \models \diamondsuit"a \ lot") \approx 0.0816$ $\Pr^{\mathfrak{S}}(\mathfrak{T} \models \diamondsuit"a \ lot") \approx 0.0443$

 \mathfrak{S} always chooses casino $\Pr^{\mathfrak{S}}(\mathfrak{D} \models \diamond^{"}a \ lot") \approx 0.0816$ \mathfrak{S} always chooses stock_market $\Pr^{\mathfrak{S}}(\mathfrak{D} \models \diamond^{"}a \ lot") \approx 0.0443$ \mathfrak{S} chooses stock_market on \mathfrak{D} and \mathfrak{A} and casino otherwise $\Pr^{\mathfrak{S}}(\mathfrak{D} \models \diamond^{"}a \ lot") \approx 0.1504$

S always chooses casino

CONICET

 \mathfrak{S} always chooses stock_market

€ chooses stock_market on ① and ④ and casino otherwise

 $\ensuremath{\mathfrak{S}}$ chooses on the other way around

 $\Pr^{\mathfrak{S}}(\textcircled{1} \models \diamondsuit"a \ lot") \approx 0.0816$ $\Pr^{\mathfrak{S}}(\textcircled{1} \models \diamondsuit"a \ lot") \approx 0.0443$ $\Pr^{\mathfrak{S}}(\textcircled{1} \models \diamondsuit"a \ lot") \approx 0.1504$ $\Pr^{\mathfrak{S}}(\textcircled{1} \models \diamondsuit"a \ lot") \approx 0.1332$

stock_market 0.1 0.1 0.1 0.1 0.25 0.1 0.1 0.25 0.1 0.25 0.1 0.25 0.1 0.25 0.5

 \mathfrak{S} always chooses casino $\Pr^{\mathfrak{S}}(\mathfrak{D} \models \diamond^{A})$ \mathfrak{S} always chooses stock_market $\Pr^{\mathfrak{S}}(\mathfrak{D} \models \diamond^{A})$ \mathfrak{S} chooses stock_market on \mathfrak{D} and \mathfrak{P} and casino otherwise $\Pr^{\mathfrak{S}}(\mathfrak{D} \models \diamond^{A})$ \mathfrak{S} chooses on the other way around $\Pr^{\mathfrak{S}}(\mathfrak{D} \models \diamond^{A})$

 $\Pr^{\mathfrak{S}}(\mathfrak{O} \models \diamond^{"a} lot") \approx 0.0816$ $\Pr^{\mathfrak{S}}(\mathfrak{O} \models \diamond^{"a} lot") \approx 0.0443$ $\Pr^{\mathfrak{S}}(\mathfrak{O} \models \diamond^{"a} lot") \approx 0.1504$ $\Pr^{\mathfrak{S}}(\mathfrak{O} \models \diamond^{"a} lot") \approx 0.1332$

But then,...

what is the probability

of *♦ "a lot"* ??!!

Supremum and infimum probabilities

- There are uncountably many resolutions
- Only the best or worst bound for the probability can guarantee the satisfaction of a property, e.g:
 - an error occurs with probability less than 0.001
 - ♦ a message is transmitted successfully with probability over 0.95
- $\boldsymbol{\ast}$ Therefore, if Φ is the property of interest, we search for

$$\Pr^{\max}(s \models \Phi) \stackrel{\triangle}{=} \sup_{\mathfrak{S}} \Pr^{\mathfrak{S}}(s \models \Phi), \text{ and}$$
$$\Pr^{\min}(s \models \Phi) \stackrel{\triangle}{=} \inf_{\mathfrak{S}} \Pr^{\mathfrak{S}}(s \models \Phi)$$

Supremum and infimum probabilities

- There are uncountably many resolutions
- Only the best or worst bound for the probability can guarantee the satisfaction of a property, e.g:
 - an error occurs with probability less than 0.001
 - ♦ a message is transmitted successfully with probability over 0.95
- * Therefore, if Φ is the property of interest, we search for

$$\Pr^{\max}(s \models \Phi) \stackrel{\triangle}{=} \sup_{\mathfrak{S}} \Pr^{\mathfrak{S}}(s \models \Phi), \text{ and}$$
$$\Pr^{\min}(s \models \Phi) \stackrel{\triangle}{=} \inf_{\mathfrak{S}} \Pr^{\mathfrak{S}}(s \models \Phi)$$

How can we calculate this?

Type of schedulers

A scheduler \mathfrak{S} is:

deterministic: if for all $s_0 s_1 \dots s_n$, $\mathfrak{S}(s_0 s_1 \dots s_n)(\alpha) = 1$ for some $\alpha \in Act$ memoryless: if for all $s_0 s_1 \dots s_n$, $\mathfrak{S}(s_0 s_1 \dots s_n) = \mathfrak{S}(s_n)$ memoryless and deterministic:

if it is memoryless and deterministic at the same time \bigcirc

Type of schedulers

A scheduler \mathfrak{S} is:

deterministic: if for all $s_0 s_1 \dots s_n$, $\mathfrak{S}(s_0 s_1 \dots s_n)(\alpha) = 1$ for some $\alpha \in Act$ memoryless: if for all $s_0 s_1 \dots s_n$, $\mathfrak{S}(s_0 s_1 \dots s_n) = \mathfrak{S}(s_n)$ memoryless and deterministic:

if it is memoryless and deterministic at the same time \bigcirc

Theorem:

Let $B \subseteq S$. Then:

• There exists a memoryless and deterministic scheduler \mathfrak{S}^{\max} such that

$$\Pr^{\mathfrak{S}^{\max}}(s \models \Diamond B) = \Pr^{\max}(s \models \Diamond B)$$

• There exists a memoryless and deterministic scheduler \mathfrak{S}^{\min} such that

$$\Pr^{\mathfrak{S}^{\min}}(s \models \Diamond B) = \Pr^{\min}(s \models \Diamond B)$$

Not any property! only reachability

Theorem:

Let $B \subseteq S$. Then:

 \blacklozenge There exists a memoryless and deterministic scheduler \mathfrak{S}^{\max} such that

$$\Pr^{\mathfrak{S}^{\max}}(s \models \Diamond B) = \Pr^{\max}(s \models \Diamond B)$$

• There exists a memoryless and deterministic scheduler \mathfrak{S}^{\min} such that

$$\Pr^{\mathfrak{S}^{\min}}(s \models \Diamond B) = \Pr^{\min}(s \models \Diamond B)$$

$$P_{l_s}^+ = P_{l_c}^+ = 0$$

 $\Pr^{\max}(s \models \diamondsuit"a \ lot")$

$$P_{l_s}^+ = P_{l_c}^+ = 0$$
$$P_{al}^+ = 1$$

$$P_{l_s}^+ = P_{l_c}^+ =$$

$$P_{al}^+ = 1$$

$$P_1^+ =$$

0

$$P_{al}^{+} = 1$$

$$P_{1}^{+} = 0.7 P_{1}^{+} + 0.2 P_{2}^{+} + 0.1 P_{l_{s}}^{+}$$

 $\Pr^{\max}(\textcircled{1} \models \diamondsuit"a \ lot") \approx 0.1905$

and the (memoryless and determinstic) scheduler \mathfrak{S} that maximizes it is

 $\mathfrak{S}(\textcircled{1}) = \operatorname{stock_market}$ $\mathfrak{S}(\textcircled{4}) = \operatorname{stock_market}$ $\mathfrak{S}(\textcircled{2}) = \operatorname{casino}$ $\mathfrak{S}(\textcircled{8}) = \operatorname{stock_market}$

Theorem:

The family of values $\{\mathbf{x}_s\}_{s\in S}$ with $\mathbf{x}_s = \Pr^{\max}(s \models \Diamond B)$ is the unique solution to the following equation system:

$$x_{s} = 1 \qquad \text{if } s \in B$$

$$x_{s} = 0 \qquad \text{if } \Pr^{\max}(s \models \Diamond B) = 0$$

$$x_{s} = \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in Act(s)\right\} \qquad \text{if } \Pr^{\max}(s \models \Diamond B) > 0 \text{ and } s \notin B$$

Theorem:

The family of values $\{\mathbf{x}_s\}_{s\in S}$ with $\mathbf{x}_s = \Pr^{\max}(s \models \Diamond B)$ is the unique solution to the following equation system:

 $x_s = 1$ if $s \in B$ $x_s = 0$ if $\Pr^{\max}(s \models \Diamond B) = 0$

 $x_s = \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in Act(s)\right\} \quad \text{if } \Pr^{\max}(s \models \Diamond B) > 0 \text{ and } s \notin B$

The Bellman equations can be computed with a fixed-point iteration

... but how can the conditions be calculated?

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\Pr^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

$$\exists Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\Pr^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

$$\exists Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\operatorname{Pr}^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\Pr^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

$$\exists Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\operatorname{Pr}^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\Pr^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

$$\exists Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\operatorname{Pr}^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\Pr^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

$$\exists Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\operatorname{Pr}^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\Pr^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

$$\exists Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\operatorname{Pr}^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\Pr^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

$$\exists Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\operatorname{Pr}^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\operatorname{Pr}^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

$$\exists Pre(C) \stackrel{\triangle}{=} \{s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0\} \qquad \exists Pre^*(C) \stackrel{\triangle}{=} \bigcup_{n \ge 0} \exists Pre^n(C)$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0\} \qquad \forall Pre^*(C) \stackrel{\triangle}{=} \bigcup_{n \ge 0} \forall Pre^n(C)$$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0$ iff $s \in \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\operatorname{Pr}^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

where

$$\exists Pre(C) \stackrel{\triangle}{=} \{s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0\} \qquad \qquad \exists Pre^*(C) \stackrel{\triangle}{=} \bigcup_{n \ge 0} \exists Pre^n(C) \\ \forall Pre(C) \stackrel{\triangle}{=} \{s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0\} \qquad \qquad \forall Pre^*(C) \stackrel{\triangle}{=} \bigcup_{n \ge 0} \forall Pre^n(C)$$

 $\mathcal{O}(size(\mathcal{M}))$

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

$$\begin{array}{l} \diamond \operatorname{Pr}^{\max}(s \models \Diamond B) > 0 \quad \text{iff} \quad s \in \exists \operatorname{Pre}^{*}(B) \\ \diamond \operatorname{Pr}^{\max}(s \models \Diamond B) = 0 \quad \text{iff} \quad s \in S \setminus \exists \operatorname{Pre}^{*}(B) \\ \diamond \operatorname{Pr}^{\max}(s \models \Diamond B) < 1 \quad \text{iff} \quad s \in \forall \operatorname{Pre}^{*}(S \setminus \exists \operatorname{Pre}^{*}(B)) \\ \diamond \operatorname{Pr}^{\max}(s \models \Diamond B) = 1 \quad \text{iff} \quad s \in S \setminus \forall \operatorname{Pre}^{*}(S \setminus \exists \operatorname{Pre}^{*}(B)) \end{array} \right\}$$

where

$$\exists Pre(C) \stackrel{\triangle}{=} \{s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0\} \qquad \exists Pre^*(C) \stackrel{\triangle}{=} \bigcup_{n \ge 0} \exists Pre^n(C) \\ \forall Pre(C) \stackrel{\triangle}{=} \{s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0\} \qquad \forall Pre^*(C) \stackrel{\triangle}{=} \bigcup_{n \ge 0} \forall Pre^n(C) \\ \forall Pre^n(C) \stackrel{\triangle}{=} (C) \stackrel{\triangle}{=} (C) \\ \forall Pre^n(C) \stackrel{\triangle}{=} (C) \stackrel{\triangle}{=} (C) \\ \forall Pre^n(C) \\ \forall Pre^n(C)$$

2

For the general case, first make states in *B* absorbing then apply the corresponding algorithm

Actually

achieved with a different algorithm*

Lemma: Let $\mathcal{M} = (S, Act, \mathbf{P}, s_0, AP, L)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

- $\Pr^{\max}(s \models \Diamond B) > 0 \quad \text{iff} \quad s \in \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) = 0$ iff $s \in S \setminus \exists Pre^*(B)$
- $\Pr^{\max}(s \models \Diamond B) < 1$ iff $s \in \forall Pre^*(S \setminus \exists Pre^*(B))$
- $\Pr^{\max}(s \models \Diamond B) = 1$ iff $s \in S \setminus \forall Pre^*(S \setminus \exists Pre^*(B))$

where

CONICET

$$\exists Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \exists \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$
$$\forall Pre(C) \stackrel{\triangle}{=} \{ s \in S \mid \forall \alpha \in Act(s) : \mathbf{P}(s, \alpha, C) > 0 \}$$

$$\exists Pre^*(C) \stackrel{\triangle}{=} \bigcup_{n \ge 0} \exists Pre^n(C)$$
$$\forall Pre^*(C) \stackrel{\triangle}{=} \bigcup_{n \ge 0} \forall Pre^n(C)$$

 $\mathcal{O}(size(\mathcal{M}))$

 $\mathcal{O}(size(\mathcal{M})^2)$

Theorem:

The family of values $\{\mathbf{x}_s\}_{s\in S}$ with $\mathbf{x}_s = \Pr^{\max}(s \models \Diamond B)$ is the unique solution to the following equation system:

$$x_{s} = 1 \qquad \text{if } s \in B$$

$$x_{s} = 0 \qquad \text{if } \Pr^{\max}(s \models \Diamond B) = 0$$

$$x_{s} = \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in Act(s)\right\} \qquad \text{if } \Pr^{\max}(s \models \Diamond B) > 0 \text{ and } s \notin B$$

Theorem:

The family of values $\{\mathbf{x}_s\}_{s\in S}$ with $\mathbf{x}_s = \Pr^{\max}(s \models \Diamond B)$ is the unique solution to the following equation system:

$$x_s = 1 \qquad \qquad \text{if } s \in S_{=1}^{\max}$$

$$x_s = 0 \qquad \qquad \text{if } s \in S_{=0}^{\max}$$

$$x_s = \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in Act(s)\right\} \quad \text{if } s \in S_{>0}^{\max} \setminus S_{=1}^{\max}$$

Theorem:

CONICET

The family of values $\{\mathbf{x}_s\}_{s\in S}$ with $\mathbf{x}_s = \Pr^{\max}(s \models \Diamond B)$ is the unique solution to the following equation system:

$$x_s = 1$$
 if $s \in S_{=1}^{\max}$
if $s \in S_{=0}^{\max}$

$$x_{s} = \max \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in Act(s) \right\}$$
 if $s \in S_{>0}^{\max} \setminus S_{=1}^{\max}$
First make states
in *B* absorbing
$$S_{=1}^{\max} = S \setminus \forall Pre^{*}(S \setminus \exists Pre^{*}(B))$$
$$S_{=0}^{\max} = S \setminus \exists Pre^{*}(B)$$
$$S_{>0}^{\max} = \exists Pre^{*}(B)$$

UNC

Quantitative reachability (max) Value iteration algorithm

for all
$$s \in S_{=1}^{\max}$$
, $x_s^{(0)} = 1$
for all $s \notin S_{=1}^{\max}$, $x_s^{(0)} = 0$
 $i = 0$

repeat

CONICET

$$\begin{split} i &= i + 1\\ \text{for all } s \in S_{=1}^{\max}, \ x_s^{(i)} = 1\\ \text{for all } s \in S_{=0}^{\max}, \ x_s^{(i)} = 0\\ \text{for all } s \in S_{>0}^{\max} \setminus S_{=1}^{\max},\\ x_s^{(i)} &= \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(i-1)} \mid \alpha \in Act(s)\right\}\\ \text{until } \left(\max_{s \in S} |x_s^{(i)} - x_s^{(i-1)}| < \varepsilon\right)\\ \text{Normally very small,}\\ \text{e.g. 10-6} \end{split}$$

Quantitative reachability (max) Value iteration algorithm

for all
$$s \in S_{=1}^{\max}$$
, $x_s^{(0)} = 1$
for all $s \notin S_{=1}^{\max}$, $x_s^{(0)} = 0$
 $i = 0$

repeat

$$\begin{split} i &= i + 1\\ \text{for all } s \in S_{=1}^{\max}, \ x_s^{(i)} = 1\\ \text{for all } s \in S_{=0}^{\max}, \ x_s^{(i)} = 0\\ \text{for all } s \in S_{>0}^{\max} \setminus S_{=1}^{\max},\\ x_s^{(i)} &= \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(i-1)} \mid \alpha \in Act(s)\right\}\\ \text{until } \left(\max_{s \in S} |x_s^{(i)} - x_s^{(i-1)}| < \varepsilon\right)\\ \text{Normally very small,}\\ \text{e.g. 10^{-6}} \end{split}$$

What about $Pr^{\max}(\diamondsuit^{=n}B)$ and $Pr^{\max}(\diamondsuit^{\leq n}B)$?

Quantitative **bounded** reachability

Only two memoryless deterministic schedulers:

$$\mathfrak{S}_1(\circledast) = \alpha$$
 $\mathfrak{S}_2(\circledast) = \beta$

$$\Pr^{\mathfrak{S}_1}(\diamondsuit^{\leq 2} \mathfrak{S}) = 0.875 \qquad \Pr^{\mathfrak{S}_2}(\diamondsuit^{\leq 2} \mathfrak{S}) = 0.9$$

Quantitative bounded reachability

Only two memoryless deterministic schedulers:

$$\mathfrak{S}_{1}(\circledast) = \alpha \qquad \mathfrak{S}_{2}(\circledast) = \beta$$
$$\Pr^{\mathfrak{S}_{1}}(\diamondsuit^{\leq 2} \circledast) = 0.875 \qquad \Pr^{\mathfrak{S}_{2}}(\diamondsuit^{\leq 2} \circledast) = 0.9$$

♦ However $Pr^{max}(\diamondsuit^{\leq 2} \circledast) = 0.975$ with

$$\mathfrak{S}(\circledast) = \alpha \quad \mathfrak{S}(\circledast \circledast) = \alpha \quad \mathfrak{S}(\circledast \circledast) = \beta$$

Memoryless deterministic schedulers are not sufficient

Quantitative **bounded** reachability (max)

for all
$$s \in S_{=1}^{\max}$$
, $x_s^{(0)} = 1$
for all $s \notin S_{=1}^{\max}$, $x_s^{(0)} = 0$
 $i = 0$

repeat

$$\begin{split} i &= i + 1\\ \text{for all } s \in S_{=1}^{\max}, \ x_s^{(i)} = 1\\ \text{for all } s \in S_{=0}^{\max}, \ x_s^{(i)} = 0\\ \text{for all } s \in S_{>0}^{\max} \setminus S_{=1}^{\max},\\ x_s^{(i)} &= \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(i-1)} \mid \alpha \in Act(s)\right\}\\ \text{until } \left(\max_{s \in S} |x_s^{(i)} - x_s^{(i-1)}| < \varepsilon\right) \end{split}$$

Quantitative **bounded** reachability (max)

for all
$$s \in B$$
, $x_s^{(0)} = 1$
for all $s \notin B$, $x_s^{(0)} = 0$
 $i = 0$
repeat
 $i = i + 1$
for all $s \in B$, $x_s^{(i)} = 1$
for all $s \in S_{=0}^{\max}$, $x_s^{(i)} = 0$
for all $s \in S_{=0}^{\max} \setminus B$,
 $x_s^{(i)} = \max \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(i-1)} \mid \alpha \in Act(s) \right\}$
until $(i = n)$

Exactly *n* times

Lemma: Let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

• $\Pr^{\min}(s \models \Diamond B) > 0$ iff $s \in \forall Pre^*(B)$

•
$$\Pr^{\min}(s \models \Diamond B) = 0 \quad \text{iff} \quad s \in S \setminus \forall Pre^*(B)$$

- $\mathbf{Pr}^{\min}(s \models \Diamond B) < 1 \quad \text{iff} \quad s \in \exists Pre^*(S \setminus \forall Pre^*(B))$
- $\mathbf{Pr}^{\min}(s \models \Diamond B) = 1 \quad \text{iff} \quad s \in S \setminus \exists Pre^*(S \setminus \forall Pre^*(B))$

Note the inversion of ∀ and ∃ respect to max qualitative reachability

Note the inversion of ∀ and ∃ respect to max qualitative reachability

For the general case, first make states in *B* absorbing then apply the corresponding algorithm

Lemma: Let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$, \diamond $\Pr^{\min}(s \models \Diamond B) > 0$ iff $s \in \forall Pre^*(B)$ \diamond $\Pr^{\min}(s \models \Diamond B) = 0$ iff $s \in S \setminus \forall Pre^*(B)$ \diamond $\Pr^{\min}(s \models \Diamond B) < 1$ iff $s \in \exists Pre^*(S \setminus \forall Pre^*(B))$ \diamond $\Pr^{\min}(s \models \Diamond B) = 1$ iff $s \in S \setminus \exists Pre^*(S \setminus \forall Pre^*(B))$ \diamond $\Pr^{\min}(s \models \Diamond B) = 1$ iff $s \in S \setminus \exists Pre^*(S \setminus \forall Pre^*(B))$

> Note the inversion of ∀ and ∃ respect to max qualitative reachability

CONICET

Actually achieved with a different algorithm*

Theorem:

The family of values $\{\mathbf{x}_s\}_{s\in S}$ with $\mathbf{x}_s = \Pr^{\min}(s \models \Diamond B)$ is the unique solution to the following equation system:

 $x_{s} = 1 \qquad \text{if } s \in B$ $x_{s} = 0 \qquad \text{if } \Pr^{\min}(s \models \Diamond B) = 0$ $x_{s} = \min\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in Act(s)\right\} \qquad \text{if } \Pr^{\min}(s \models \Diamond B) > 0 \text{ and } s \notin B$

Theorem:

The family of values $\{\mathbf{x}_s\}_{s\in S}$ with $\mathbf{x}_s = \Pr^{\min}(s \models \Diamond B)$ is the unique solution to the following equation system:

$$x_s = 1 \qquad \qquad \text{if } s \in S_{=1}^{\min}$$

$$x_s = 0 \qquad \qquad \text{if } s \in S_{=0}^{\min}$$

$$x_s = \min\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t \mid \alpha \in Act(s)\right\} \qquad \text{if } s \in S_{>0}^{\min} \setminus S_{=1}^{\min}$$

Quantitative reachability (min) Value iteration algorithm

for all
$$s \in S_{=1}^{\min}$$
, $x_s^{(0)} = 1$
for all $s \notin S_{=1}^{\min}$, $x_s^{(0)} = 0$
 $i = 0$

repeat

$$\begin{split} i &= i + 1\\ \text{for all } s \in S_{=1}^{\min}, \ x_s^{(i)} = 1\\ \text{for all } s \in S_{=0}^{\min}, \ x_s^{(i)} = 0\\ \text{for all } s \in S_{>0}^{\min} \setminus S_{=1}^{\max},\\ x_s^{(i)} &= \min\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(i-1)} \mid \alpha \in Act(s)\right\}\\ \text{until } \left(\max_{s \in S} |x_s^{(i)} - x_s^{(i-1)}| < \varepsilon\right) \end{split}$$

Quantitative bounded reachability (min)

for all
$$s \in B$$
, $x_s^{(0)} = 1$
for all $s \notin B$, $x_s^{(0)} = 0$
 $i = 0$
repeat
 $i = i + 1$
for all $s \in B$, $x_s^{(i)} = 1$
for all $s \in S_{=0}^{\min}$, $x_s^{(i)} = 0$
for all $s \in S_{\geq 0}^{\min} \setminus B$,
 $x_s^{(i)} = \min \left\{ \sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_t^{(i-1)} \mid \alpha \in Act(s) \right\}$

until (i = n)

Exactly *n* times

- We gave approximating algorithms (value iteration) to calculate quantitative reachability (max or min)
- However, the exact values can be computed by solving a linear programming problem
- Therefore, quantitative reachability (max or min) can be computed in polynomial time

Constrained reachability

To compute

$$\begin{split} & \Pr^{\max}(s \models C \, \mathtt{U} \, B) & \quad \Pr^{\max}(s \models C \, \mathtt{U}^{\leq n} \, B) & \quad \Pr^{\max}(s \models C \, \mathtt{U} \, B) = 1 \\ & \Pr^{\min}(s \models C \, \mathtt{U} \, B) & \quad \Pr^{\min}(s \models C \, \mathtt{U}^{\leq n} \, B) & \quad \Pr^{\min}(s \models C \, \mathtt{U} \, B) = 1 \end{split} \quad \text{etc.} \end{split}$$

in a MDP \mathcal{M} do:

- 1. Obtain \mathcal{M}_{U} from \mathcal{M} by making states in $S \setminus (C \cup B)$ absorbing.
- 2. Apply the algorithm in \mathcal{M}_{U} to verify the reachability property $s \models \Diamond B$.

PCTL in MDP

A PCTL formula Φ holds in state $s \in S$ of a MDP \mathcal{M} , denoted by $s \models \Phi$, whenever:

state formulas s

$$\models p \qquad \qquad \text{iff} \quad p \in L(s)$$

$$s \models \neg \Phi$$
 iff $s \not\models \Phi$

$$s \models \Phi_1 \land \Phi_2$$
 iff $s \models \Phi_1$ and $s \models \Phi_2$

 $s \models \mathbf{P}_{\bowtie a}(\phi)$ iff **?**

path formulas

$$\rho \models \bigcirc \Phi$$
 iff $\rho(1) \models \Phi$

 $\rho \models \Phi \, {\tt U} \, \Psi \qquad \text{iff} \quad \text{exists} \ \ j \geq 0 \ \ \text{s.t.} \ \ \rho(j) \models \Psi \ \ \text{and for all} \ \ 0 \leq k < j, \rho(k) \models \Phi$

 $\rho \models \Phi \, \mathrm{U}^{\leq n} \, \Psi \quad \text{iff} \quad \text{exists} \ \ 0 \leq j \leq n \ \ \text{s.t.} \ \ \rho(j) \models \Psi \ \ \text{and for all} \ \ 0 \leq k < j, \rho(k) \models \Phi$

CONICET

PCTL in MDP

A PCTL formula Φ holds in state $s \in S$ of a MDP \mathcal{M} , denoted by $s \models \Phi$, whenever:

state formulas

$$s \models p \qquad \qquad \text{iff} \quad p \in L(s)$$

$$s \models \neg \Phi$$
 iff $s \not\models \Phi$

$$s \models \Phi_1 \land \Phi_2$$
 iff $s \models \Phi_1$ and $s \models \Phi_2$

$$s \models \mathsf{P}_{\bowtie a}(\phi)$$
 iff for every scheduler \mathfrak{S} , $\Pr^{\mathfrak{S}}(s \models \phi) \bowtie a$

where $\Pr^{\mathfrak{S}}(s \models \phi) = \Pr^{\mathfrak{S}}_{s}(\{\rho \in Path(s) \mid \rho \models \phi\})$ and

path formulas

$$\rho\models \bigcirc \Phi \qquad \quad \text{iff} \quad \rho(1)\models \Phi$$

 $\rho \models \Phi \, {\tt U} \, \Psi \qquad \text{iff} \quad \text{exists} \ \ j \geq 0 \ \ \text{s.t.} \ \ \rho(j) \models \Psi \ \ \text{and for all} \ \ 0 \leq k < j, \rho(k) \models \Phi$

 $\rho \models \Phi \, \mathrm{U}^{\leq n} \, \Psi \quad \text{iff} \quad \text{exists} \ \ 0 \leq j \leq n \ \ \text{s.t.} \ \ \rho(j) \models \Psi \ \ \text{and for all} \ \ 0 \leq k < j, \rho(k) \models \Phi$

CONICET

PCTL in MDP

A PCTL formula Φ holds in state $s \in S$ of a MDP \mathcal{M} , denoted by $s \models \Phi$, whenever:

state formulas

$$s \models p$$
 iff $p \in L(s)$

$$s \models \neg \Phi$$
 iff $s \not\models \Phi$

$$s \models \Phi_1 \land \Phi_2$$
 iff $s \models \Phi_1$ and $s \models \Phi_2$

$$s \models \mathsf{P}_{\bowtie a}(\phi)$$
 iff for every scheduler \mathfrak{S} , $\Pr^{\mathfrak{S}}(s \models \phi) \bowtie a$

where $\Pr^{\mathfrak{S}}(s \models \phi) = \Pr^{\mathfrak{S}}_{s}(\{\rho \in Path(s) \mid \rho \models \phi\})$ and

path formulas $\rho \models$

$$\bigcirc \Phi \qquad \quad \text{iff} \quad \rho(1) \models \Phi$$

 $\rho \models \Phi \, \mathrm{U} \, \Psi \qquad \text{iff} \quad \text{exists} \ \ j \geq 0 \ \ \text{s.t.} \ \ \rho(j) \models \Psi \ \ \text{and for all} \ \ 0 \leq k < j, \rho(k) \models \Phi$

 $\rho \models \Phi \, \mathrm{U}^{\leq n} \, \Psi \quad \text{iff} \quad \text{exists} \ \ 0 \leq j \leq n \ \ \text{s.t.} \ \ \rho(j) \models \Psi \ \ \text{and for all} \ \ 0 \leq k < j, \rho(k) \models \Phi$

CONICET

fun Sat(Φ) {

Algorithm for PCTL // **input:** a PCTL formula Φ // output: $\{s \in S \mid s \models \Phi\}$ model checking case { $\Phi \in AP$ return $\{s \in S \mid \Phi \in L(s)\}$ $\lhd \in \{<,\leq\}$ $\Phi \equiv \neg \Psi$ return $S \setminus Sat(\Psi)$ $\triangleright \in \{\geq, >\}$ $\Phi \equiv \Psi_1 \wedge \Psi_2$ return $Sat(\Psi_1) \cap Sat(\Psi_2)$ $\Phi \equiv \mathsf{P}_{\triangleleft a}(\phi)$ return { $s \in S \mid maxProb(s, \phi) \triangleleft a$ } Polynomial on the size of *M* $\Phi \equiv \mathsf{P}_{\triangleright a}(\phi)$ return $\{s \in S \mid minProb(s, \phi) \triangleright a\}$ *minProb* is the same but changing \max for \min

Linear on the size of Φ

Linear on the largest *n*

UNC

```
fun maxProb(s, \phi) {
```

CONICET

// **input:** a state *s* and a path formula ϕ

$$\begin{array}{ll} \textit{// output: } \Pr_s^{\max}(s \models \phi) \\ \textbf{case} \left\{ \begin{array}{ll} \phi \equiv \bigcirc \Phi & \textbf{return } \max\left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot \mathbf{1}_{Sat(\Phi)}(t) \mid \alpha \in Act(s)\right\} \\ \phi \equiv \Phi \, \mathbb{U} \, \Psi & \textbf{let} \ B = Sat(\Psi); \ \textbf{let} \ C = Sat(\Phi) \\ \textbf{return } \Pr_s^{\max}(C \, \mathbb{U} \, B) & \textit{// constrained reachability} \\ \phi \equiv \Phi \, \mathbb{U}^{\leq n} \, \Psi & \textbf{let} \ B = Sat(\Psi); \ \textbf{let} \ C = Sat(\Phi) \\ \textbf{return } \Pr_s^{\max}(C \, \mathbb{U}^{\leq n} \, B) & \textit{// bounded constrained reachability} \\ \end{array}$$

Probabilistic model checkers

The quantitative automata zoo

The quantitative automata zoo

147

The quantitative automata zoo

....

PRISM

- First appeared in 2000 [KNP00, dAKNPS00]
- https://www.prismmodelchecker.org/
- In addition POMDP, POPTA, IMDP
- ♦ PRISM language → network of modules
- Properties: PCTL, CSL, LTL, PCTL*, steady state, rewards and costs, multi-objective
- Symbolic, hybrid, and explicit engines
- Also SMC on deterministic models
- Alternate version for stochastic games

The Modest toolset

- First appeared in 2009 [Hartmanns09]
- https://www.modestchecker.net/
- Modest language includes conventional programming constructs with ideas from process algebra [DHKK01]
- Properties: reachability, bounded reachability, steady state, expected rewards
- mcsta: disk-based explicit engine
- modes: SMC for non-det. models and RES
- More tools: prohver, modysh, mosta, moconv

CONICET

Storm

- First appeared in 2017 [DJKV17]
- https://www.stormchecker.org/
- In addition POMDP, Parametric models
- Languages: PRISM, cpGCL, GSPN, DFT
- Properties: PCTL, CSL, LTL, steady state, expected rewards, multi-objective, conditional probabilies
- Counterexample generation
- Explicit and symbolic engine

Probabilistic Model Checking

Pedro R. D'Argenio

Universidad Nacional de Córdoba – CONICET <u>https://cs.famaf.unc.edu.ar/~dargenio/</u>

ICTAC 2023 Training School on Applied Formal Methods