Probabilistic Model Checking

Pedro R. D'Argenio
Universidad Nacional de Córdoba - CONICET
https://cs.famaf.unc.edu.ar/~dargenio/

Famous Errors

More errors

911 blackout:

MAX value
reached

Nissan airbag: Incorrect sensing

Boeing 737 MAX 8: Incorrect sensing

Schiaparelli Landing Demonstrator Module: Multiple errors

The problem of correctness...

Usually an abstraction describing the behavior

The problem of correctness...
 ...using Model Checking

$$
\vDash \quad \square(\text { send }(\text { file }) \Rightarrow \diamond \text { receive(file) })
$$

Properties that
A graph representing nondeterministic behavior
represent boolean behavior on executions

Model Checking

Limitations of classical Model Checking

* Many algorithms propose better solutions using randomness as a new ingredient
* Leader Election Protocol in IEEE 1394 "Firewire"
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Limitations of classical Model Checking

* Many algorithms propose better solutions using randomness as a new ingredient
* Leader Election Protocol in IEEE 1394 "Firewire"
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Limitations of classical Model Checking

* Many algorithms propose better solutions using randomness as a new ingredient
* Leader Election Protocol in IEEE 1394 "Firewire"
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Limitations of classical Model Checking

* Many algorithms propose better solutions using randomness as a new ingredient
* Leader Election Protocol in IEEE 1394 "Firewire"
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Limitations of classical Model Checking

* Many algorithms propose better solutions using randomness as a new ingredient
* Leader Election Protocol in IEEE 1394 "Firewire"
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Root contention!

Limitations of classical Model Checking

* Many algorithms propose better solutions using randomness as a new ingredient
* Leader Election Protocol in IEEE 1394 "Firewire"
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Root contention!

It is solved by
"flipping coins"

Limitations of classical Model Checking

* Many times, correctness cannot be asserted qualitatively. Instead, the validity of a property can only be measured quantitatively
* Bounded Retransmission Protocol in Philips RC6
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Limitations of classical Model Checking

* Many times, correctness cannot be asserted qualitatively. Instead, the validity of a property can only be measured quantitatively
* Bounded Retransmission Protocol in Philips RC6
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Suppose transmission of a file with ABP or sliding window:
$\square($ send(file) $\Rightarrow \diamond$ receive(file))

Limitations of classical Model Checking

* Many times, correctness cannot be asserted qualitatively. Instead, the validity of a property can only be measured quantitatively
* Bounded Retransmission Protocol in Philips RC6
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

Unrealistic
Suppose transmission of a file with ABP or sliding window:
$\square($ send(file) $\Rightarrow \diamond$ receive(file) $)$
\square

Limitations of classical Model Checking

* Many times, correctness cannot be asserted qualitatively. Instead, the validity of a property can only be measured quantitatively
* Bounded Retransmission Protocol in Philips RC6
* Binary Exponential Backoff Algorithm in IEEE 802.3 "Ethernet"

If the protocol has a bounded number of retransmissions before aborting (e.g. BRP):

Probabilistic Model Checking

$$
\vDash \quad \square(\text { send }(\text { file }) \Rightarrow \diamond \text { receive(file) })
$$

Properties that
A graph representing nondeterministic behavior
represent boolean behavior on executions

Probabilistic Model Checking

Before continuing, I must say:

The course borrows from Chapter 10 of Principles of Model Checking by
Christel Baier \& Joost-Pieter Katoen published in 2008 by the MIT press

Markov Chains

Discrete Time Markov Chain (DTMC)

A DTMC is a structure

$$
\left(S, \mathbf{P}, s_{0}, A P, L\right)
$$

where
$* S$ is a denumerable set of states, where $s_{0} \in S$ is the initial state,

* $\mathbf{P}: S \times S \rightarrow[0,1]$ is the probabilistic transition function, such that, for every $s \in S$, $\sum_{s^{\prime} \in S} \mathbf{P}\left(s, s^{\prime}\right)=1$, and
* $L: S \rightarrow \mathscr{P}(A P)$ is a labelling function, where $A P$ is a a set of atomic propositions.

Discrete $\mathrm{T}_{\text {In model checking }}{ }^{\prime}$ Chain (DTMC) we only consider a finite set of states

A DTMC is a structure $\left(S, \mathbf{P}, s_{0}, A P, L\right)$
where
$\mathbf{P}\left(s, s^{\prime}\right)$ is the probability to move to state s^{\prime} conditioned to the system being at state s.

* S is a denumerable set of states, where $s_{0} \in S$ is the inital state,
* $\mathbf{P}: S \times S \rightarrow[0,1]$ is the probabilistic transition function, such that, for every $s \in S$, $\sum_{s^{\prime} \in S} \mathbf{P}\left(s, s^{\prime}\right)=1$, and
* $L: S \rightarrow \mathscr{P}(A P)$ is a labelling function, where $A P$ is a a set of atomic propositions.

A toy protocol

$$
S=\left\{s_{0}, s_{1}, s_{2}, s_{3}\right\}
$$

s_{0} is the initial state

$$
\begin{aligned}
& \mathbf{P}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & \frac{1}{10} & \frac{9}{10} \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right) \\
& A P=\{\text { start, try, delivered, lost }\} \\
& L\left(s_{0}\right)=\{\text { start }\} \\
& L\left(s_{1}\right)=\{\text { try }\} \\
& L\left(s_{2}\right)=\{\text { lost }\} \\
& L\left(s_{3}\right)=\{\text { delivered }\}
\end{aligned}
$$

Simulating a die with a coin

Simulating a die with a coin

$$
P\left(s_{0} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)+\cdots
$$

Simulating a die with a coin

$$
P\left(s_{0} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)+\cdots
$$

$$
\mathbf{P}\left(s_{0}, s_{1}\right) \cdot \mathbf{P}\left(s_{1}, s_{4}\right) \cdot \mathbf{P}\left(s_{4}, 2\right)
$$

Simulating a die with a coin

$$
P\left(s_{0} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)+P\left(s_{0} s_{1} s_{3} s_{1} s_{3} s_{1} s_{3} s_{1} s_{4} 2\right)+\cdots
$$

Simulating a die with a coin

Simulating a die with a coin

How do we calculate this formally?

Probability space defined by a DTMC

* The sample space is the set of all plausible infinite executions:

$$
\Omega=S^{\omega}
$$

* The σ-algebra is the one generated by the set of all cylinders, i.e., by all sets of the form

$$
\operatorname{Cy} /(\pi)=\left\{\rho \in S^{\omega} \mid \pi \text { es prefijo de } \rho\right\}
$$

where $\pi \in S^{*}$ is a finite sequence of states

* For each state $s \in S$ define the unique probability measure such that

$$
\operatorname{Pr}_{s}\left(C y /\left(s_{1} s_{2} \ldots s_{n}\right)\right)=\mathbf{1}_{s}\left(s_{1}\right) \cdot \mathbf{P}\left(s_{1}, s_{2}\right) \cdot \mathbf{P}\left(s_{2}, s_{3}\right) \cdots \mathbf{P}\left(s_{n-1}, s_{n}\right)
$$

where $\mathbf{1}_{s}(s)=1$ and $\mathbf{1}_{s}(t)=0$ otherwise

Probability space defined by a DTMC

* The sample space is the set of all plausible infinite executions:

$$
\Omega=S^{\omega}
$$

* The σ-algebra is the one generated by the set of all cylinders, i.e., by all sets of the form

$$
\operatorname{Cy} /(\pi)=\left\{\rho \in S^{\omega} \mid \pi \text { es prefijo de } \rho\right\}
$$

where $\pi \in S^{*}$ is a finite sequence of states

* For each state $s \in S$ define the unique probability measure such that

$$
\operatorname{Pr}_{s}\left(C y /\left(s_{1} s_{2} \ldots s_{n}\right)\right)=\mathbf{1}_{s}\left(s_{1}\right) \cdot \mathbf{P}\left(s_{1}, s_{2}\right) \cdot \mathbf{P}\left(s_{2}, s_{3}\right) \cdots \mathbf{P}\left(s_{n-1}, s_{n}\right)
$$

where $\mathbf{1}_{s}(s)=1$ and $\mathbf{1}_{s}(t)=0$ otherwise

Probability space defined by a DTMC

* The sample space is the set of all plausible infinite executions:

$$
\Omega=S^{\omega}
$$

* The σ-algebra is the one generated by the set of all cylinders, i.e., by all sets of the form

$$
\operatorname{Cy} /(\pi)=\left\{\rho \in S^{\omega} \mid \pi \text { es prefijo de } \rho\right\}
$$

where $\pi \in S^{*}$ is a finite sequence of states

* For each state $s \in S$ define the unique probability measure such that

$$
\operatorname{Pr}_{s}\left(C y /\left(s_{1} s_{2} \ldots s_{n}\right)\right)=\mathbf{1}_{s}\left(s_{1}\right) \cdot \mathbf{P}\left(s_{1} s_{2} s_{3} \ldots s_{n}\right)
$$

where $\mathbf{1}_{s}(s)=1$ and $\mathbf{1}_{s}(t)=0$ otherwise

Simulating a die with a coin

$$
\begin{aligned}
\operatorname{Pr}(\diamond 2) & =\operatorname{Pr}\left(\left\{\rho \in S^{\omega} \mid \exists i \in \mathbb{N}: \rho(i)=2\right\}\right) \\
& =\operatorname{Pr}(\bigcup\{C y /(\pi) \mid \text { last }(\pi)=2\}) \\
& =\operatorname{Pr}\left(\bigcup\left\{C y /(\pi) \mid \pi \in s_{0} s_{1}\left(s_{3} s_{1}\right)^{*} s_{4} 2\right\}\right) \\
& =\sum_{n \in \mathbb{N}} \mathbf{P}\left(s_{0} s_{1}\left(s_{3} s_{1}\right)^{n} s_{4} 2\right) \\
& =\sum_{n \in \mathbb{N}} \frac{1}{2^{2 n+3}}=\frac{1}{6}
\end{aligned}
$$

Simulating a die with a coin

$$
\begin{aligned}
\operatorname{Pr}(\diamond 2) & =\operatorname{Pr}\left(\left\{\rho \in S^{\omega} \mid \exists i \in \mathbb{N}: \rho(i)=2\right\}\right) \\
& =\operatorname{Pr}(\bigcup\{C y l(\pi) \mid \operatorname{last}(\pi)=2\}) \\
& =\operatorname{Pr}\left(\bigcup\left\{C y l(\pi) \mid \pi \in s_{0} s_{1}\left(s_{3} s_{1}\right)^{*} s_{4} 2\right\}\right) \\
& =\sum_{n \in \mathbb{N}} \mathbf{P}\left(s_{0} s_{1}\left(s_{3} s_{1}\right)^{n} s_{4} 2\right) \\
& =\sum_{n \in \mathbb{N}} \frac{1}{2^{2 n+3}}=\frac{1}{6}
\end{aligned}
$$

But, how does the computer calculate this?

Quantitative reachability properties

Reachability properties

The probability of reaching a set of states B

$$
\begin{aligned}
\operatorname{Pr}_{s}(\diamond B) & =\operatorname{Pr}_{s}\left(\left\{\rho \in S^{\omega} \mid \exists i \in \mathbb{N}: \rho(i) \in B\right\}\right) \\
& =\operatorname{Pr}_{s}(\bigcup\{C y|(\pi)| \operatorname{last}(\pi) \in B\}) \\
& =\sum_{s_{0} \ldots s_{n} \in(S \backslash B)^{*} B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \mathbf{P}\left(s_{0} \ldots s_{n}\right)
\end{aligned}
$$

If $s \in B$ then

$$
\operatorname{Pr}_{s}(\diamond B)=1
$$

Reachability properties

$$
\begin{aligned}
\operatorname{Pr}_{s}(\diamond B) & =\sum_{s_{0} \ldots s_{n} \in(S \backslash B)^{*} B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \mathbf{P}\left(s_{0} \ldots s_{n}\right) \\
& =\sum_{s_{0} \ldots s_{n} \in(S \backslash B)^{*} B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \prod_{i=0}^{n-1} \mathbf{P}\left(s_{i}, s_{i+1}\right) \\
& =\sum_{s_{0} \ldots s_{n} \in(S \backslash B)^{*} B \backslash s_{1} \notin B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \prod_{i=0}^{n-1} \mathbf{P}\left(s_{i}, s_{i+1}\right)+\sum_{s_{1} \in B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \mathbf{P}\left(s_{0}, s_{1}\right) \\
& =\sum_{s_{1} \ldots s_{n} \in(S \backslash B)^{*} B \backslash s_{1} \notin B} \mathbf{P}\left(s, s_{1}\right) \cdot \prod_{i=1}^{n-1} \mathbf{P}\left(s_{i}, s_{i+1}\right)+\sum_{s_{1} \in B} \mathbf{P}\left(s, s_{1}\right) \\
& =\sum_{s_{1} \notin B} \mathbf{P}\left(s, s_{1}\right) \cdot \underbrace{\operatorname{Pr}_{s_{1}}(\diamond B)}_{\sum_{t_{1} \ldots t_{n} \in(S \backslash B)^{*} B} \mathbf{1}_{s_{1}}\left(t_{1}\right) \cdot \prod_{i=1}^{n-1} \mathbf{P}\left(t_{i}, t_{i+1}\right)}+\sum_{s_{1} \in B} \mathbf{P}\left(s, s_{1}\right)
\end{aligned}
$$

Reachability properties

$$
\begin{aligned}
\operatorname{Pr}_{s}(\diamond B) & =\sum_{s_{0} \ldots s_{n} \in(S \backslash B)^{*} B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \mathbf{P}\left(s_{0} \ldots s_{n}\right) \\
& =\sum_{s_{0} \ldots s_{n} \in(S \backslash B)^{*} B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \prod_{i=0}^{n-1} \mathbf{P}\left(s_{i}, s_{i+1}\right) \\
& =\sum_{s_{0} \ldots s_{n} \in(S \backslash B)^{*} B \wedge s_{1} \notin B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \prod_{i=0}^{n-1} \mathbf{P}\left(s_{i}, s_{i+1}\right)+\sum_{s_{1} \in B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \mathbf{P}\left(s_{0}, s_{1}\right) \\
& =\sum_{s_{1} \ldots s_{n} \in(S \backslash B)^{*} B \wedge s_{1} \notin B} \mathbf{P}\left(s, s_{1}\right) \cdot \prod_{i=1}^{n-1} \mathbf{P}\left(s_{i}, s_{i+1}\right)+\sum_{s_{1} \in B} \mathbf{P}\left(s, s_{1}\right) \\
& =\sum_{s_{1} \notin B} \mathbf{P}\left(s, s_{1}\right) \cdot \sum_{t_{1} \ldots t_{n} \in(S \backslash B)^{*} B} \mathbf{1}_{s_{1}}\left(t_{1}\right) \cdot \prod_{i=1}^{n-1} \mathbf{P}\left(t_{i}, t_{i+1}\right)+\sum_{s_{1} \in B} \mathbf{P}\left(s, s_{1}\right) \\
& =\sum_{s_{1} \notin B} \mathbf{P}\left(s, s_{1}\right) \cdot \operatorname{Pr}_{s_{1}}(\diamond B)+\sum_{s_{1} \in B} \mathbf{P}\left(s, s_{1}\right)
\end{aligned}
$$

Reachability properties

(100)

$$
=\sum_{s_{0} \ldots s_{n} \in(S \backslash B)^{*} B \wedge s_{1} \notin B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \prod_{i=0}^{n-1} \mathbf{P}\left(s_{i}, s_{i+1}\right)+\sum_{s_{1} \in B} \mathbf{1}_{s}\left(s_{0}\right) \cdot \mathbf{P}\left(s_{0}, s_{1}\right)
$$

$$
=\sum_{s_{1} \ldots s_{n} \in(S \backslash B)^{*} B \wedge s_{1} \notin B} \mathbf{P}\left(s, s_{1}\right) \cdot \prod_{i=1}^{n-1} \mathbf{P}\left(s_{i}, s_{i+1}\right)+\sum_{s_{1} \in B} \mathbf{P}\left(s, s_{1}\right)
$$

$$
=\sum_{s_{1} \notin B} \mathbf{P}\left(s, s_{1}\right) \cdot \sum_{t_{1} \ldots t_{n} \in(S \backslash B)^{*} B} \mathbf{1}_{s_{1}}\left(t_{1}\right) \cdot \prod_{i=1}^{n-1} \mathbf{P}\left(t_{i}, t_{i+1}\right)+\sum_{s_{1} \in B} \mathbf{P}\left(s, s_{1}\right)
$$

$$
=\sum_{s_{1} \notin B} \mathbf{P}\left(s, s_{1}\right)-\operatorname{Pr}_{s_{1}}(\diamond B)+\sum_{s_{1} \in B} \mathbf{P}\left(s, s_{1}\right)
$$

Reachability properties

The following set of equations is obtained (one for each $s \notin B$)

$$
x_{s}=\sum_{t \notin B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t)
$$

Be aware! The system of equations may not have unique solution:

if $B=\left\{s_{1}\right\}$, the system of equations only contains equation:

$$
x_{s_{0}}=x_{s_{0}}
$$

which has infinite solutions

Reachability properties

Note that the only interesting states are those reaching B (otherwise the reachability probability is 0)
The following set of equations is obtained (one for each $s \notin$ r

$$
x_{s}=\sum_{t \notin B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t)
$$

Be aware! The system of equations may not have unique solution:

if $B=\left\{s_{1}\right\}$, the system of equations only contains equation:

$$
x_{s_{0}}=x_{s_{0}}
$$

which has infinite solutions

Reachability properties

The following set of equations is obtained (one for each $s \notin$,
Note that the only interesting states are those reaching B (otherwise the reachability probability is 0)

$$
x_{s}=\sum_{t \in \operatorname{Pre}^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t)
$$

Be aware! The system of equations may not have unique solution:

if $B=\left\{s_{1}\right\}$, the system of equations only contains equation:

$$
x_{s_{0}}=x_{s_{0}}
$$

which has infinite solutions
$\operatorname{Pre}^{*}(B)=\left\{s \in S \mid \operatorname{Pr}_{s}(\diamond B)>0\right\}$
is the set of all states that may reach B. Chability properties It is calculated by graph analysis

The tonuvnitg - of equations is obtained (one for each $s \notin D$

Note that the only interesting states are those reaching B (otherwise the reachability
probability is 0)

$$
x_{s}=\sum_{t \in \operatorname{Pre}^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t)
$$

Be aware! The system of equations may not have unique solution:

if $B=\left\{s_{1}\right\}$, the system of equations only contains equation:

$$
x_{s_{0}}=x_{s_{0}}
$$

which has infinite solutions

Reachability properties

The complete system of equations is defined by:

$$
\begin{array}{ll}
x_{s}=\sum_{t \in \operatorname{Pre}^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t) & \text { if } s \in \operatorname{Pre}^{*}(B) \backslash B \\
x_{s}=1 & \text { if } s \in B \\
x_{s}=0 & \text { if } s \notin \operatorname{Pre}^{*}(B) \cup B
\end{array}
$$

For the example, the system of equations is

$$
\begin{aligned}
& x_{s_{0}}=0 \\
& x_{s_{1}}=1
\end{aligned}
$$

This system of equations
has a unique solution

Reachability properties

Calculated using techniques

The complete system of equations is defined by:

$$
\begin{array}{ll}
\text { lete system of equations is defined by: } & \text { if } s \in \operatorname{Pre}^{*}(B) \backslash B \\
x_{s}=\sum_{t \in \operatorname{Pre}^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t) & \text { if } s \in B \\
x_{s}=1 & \text { if } s \notin \operatorname{Pre}^{*}(B) \cup B \\
x_{s}=0 &
\end{array}
$$

For the example, the system of equations is

$$
\begin{aligned}
& x_{s_{0}}=0 \\
& x_{s_{1}}=1
\end{aligned}
$$

This system of equations has a unique solution

Simulating a die with a coin

$$
\begin{aligned}
& x_{s}=\sum_{t \in \text { Pre }^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t) \\
& x_{s}=1 \\
& x_{s}=0
\end{aligned}
$$

if $s \in B$
if $s \notin \operatorname{Pre}^{*}(B) \cup B$

Simulating a die with a coin

$$
x_{2}=1
$$

$$
x_{s}=\sum_{t \in \operatorname{Pre}^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t)
$$

Simulating a die with a coin

$$
\begin{aligned}
& x_{s_{0}}=\frac{1}{2} \cdot x_{s_{1}} \\
& x_{s_{1}}=\frac{1}{2} \cdot x_{s_{3}}+\frac{1}{2} \cdot x_{s_{4}} \\
& x_{s_{3}}=\frac{1}{2} \cdot x_{s_{1}} \\
& x_{s_{4}}=\frac{1}{2} \\
& x_{2}=1
\end{aligned}
$$

$x_{s}=\sum_{t \in \operatorname{Pre}^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t)$	if $s \in \operatorname{Pre}^{*}(B) \backslash B$
$x_{s}=1$	if $s \in B$
$x_{s}=0$	if $s \notin \operatorname{Pre}^{*}(B) \cup B$

Simulating a die with a coin

$$
\begin{array}{lr}
x_{s_{0}}=\frac{1}{2} \cdot x_{s_{1}} & \operatorname{Pre}^{*}(B) \backslash B \\
x_{s_{1}}=\frac{1}{2} \cdot x_{s_{3}}+\frac{1}{2} \cdot x_{s_{4}} & \\
x_{s_{3}}=\frac{1}{2} \cdot x_{s_{1}} & \\
x_{s_{4}}=\frac{1}{2} & B \\
x_{2}=1 & \\
x_{s}=0, \quad \text { if } s \notin\left\{s_{0}, s_{1}, s_{3}, s_{4}, 2\right\} & S \backslash \operatorname{Pre}^{*}(B) \tag{Pre}
\end{array}
$$

$x_{s}=\sum_{t \in \operatorname{Pre}^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t)$	if $s \in \operatorname{Pr}^{*}(B) \backslash B$
$x_{s}=1$	if $s \in B$
$x_{s}=0$	if $s \notin \operatorname{Pre}^{*}(B) \cup B$

Simulating a die with a coin
It's up to you to check that indeed

$$
x_{s_{0}}=\frac{1}{6}
$$

$$
\begin{aligned}
& x_{s_{0}}=\frac{1}{2} \cdot x_{s_{1}} \\
& x_{s_{1}}=\frac{1}{2} \cdot x_{s_{3}}+\frac{1}{2} \cdot x_{s_{4}} \\
& x_{s_{3}}=\frac{1}{2} \cdot x_{s_{1}} \\
& x_{s_{4}}=\frac{1}{2}
\end{aligned}
$$

$$
\operatorname{Pr}^{*}(B) \backslash B
$$

$$
x_{2}=1
$$

$$
x_{s}=0, \quad \text { if } s \notin\left\{s_{0}, s_{1}, s_{3}, s_{4}, 2\right\}
$$

$$
S \backslash \operatorname{Pre}^{*}(B)
$$

$x_{s}=\sum_{t \in \operatorname{Pre}^{*}(B) \backslash B} \mathbf{P}(s, t) \cdot x_{t}+\sum_{t \in B} \mathbf{P}(s, t)$	if $s \in \operatorname{Pre}^{*}(B) \backslash B$
$x_{s}=1$	if $s \in B$
$x_{s}=0$	if $s \notin \operatorname{Pre}^{*}(B) \cup B$

Bounded reachability

(exact: $\operatorname{Pr}_{s_{0}}\left(\diamond^{=n} B\right)$)

* The probability transition function \mathbf{P} defines the probability of moving from one state to another in one single step
* Then the probability of moving from s to t in two steps is

$$
\sum_{s \in S} \mathbf{P}\left(s, s^{\prime}\right) \cdot \mathbf{P}\left(s^{\prime}, t\right)=(\mathbf{P} \cdot \mathbf{P})(s, t)=\mathbf{P}^{2}(s, t)
$$

Bounded reachability

(exact: $\operatorname{Pr}_{s_{0}}\left(\diamond^{=n} B\right)$)

* The probability transition function \mathbf{P} defines the probability of moving from one state to another in one single step
* Then the probability of moving from s to t in two steps is

$$
\mathbf{P} \text { is a matrix! }
$$

$$
\sum_{s \in S} \mathbf{P}\left(s, s^{\prime}\right) \cdot \mathbf{P}\left(s^{\prime}, t\right)=(\mathbf{P} \cdot \mathbf{P})(s, t)=\mathbf{P}^{2}(s, t)
$$

* In general, the probability of reaching t on n steps from the initial state is:

$$
\Theta_{n}(t)=\mathbf{P}^{n}\left(s_{0}, t\right)
$$

* Then, the probability of reaching a state in B in exactly n steps is

$$
\operatorname{Pr}_{s_{0}}\left(\diamond^{=n} B\right)=\sum_{t \in B} \Theta_{n}(t)
$$

Bounded reachability
 (upper bound)

* Given the DTMC M construct the DTMC M_{B} by making all states in B absorbing:

$$
\mathbf{P}_{M_{B}}(s, t)= \begin{cases}1 & \text { if } t=s \in B \\ 0 & \text { if } t \neq s \in B \\ \mathbf{P}_{M}(s, t) & \text { if } s \notin B\end{cases}
$$

* Then calculate

$$
\operatorname{Pr}_{s_{0}}^{M}(\diamond \leq n B)=\operatorname{Pr}_{s_{0}}^{M_{B}}(\diamond=n B)=\sum_{t \in B} \Theta_{n}^{M_{B}}(t)
$$

Constrained reachability (until operator)

* The probability of reaching states in B passing only through states in C :

$$
\operatorname{Pr}_{s_{0}}(C \mathrm{U} B) \quad \underbrace{\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=n} B\right) \quad \operatorname{Pr}_{s_{0}}(C \mathrm{U} \leq n B)}_{\text {bounded versions }}
$$

Constrained reachability (until operator)

* The probability of reaching states in B passing only through states in C :

$$
\operatorname{Pr}_{s_{0}}(C \mathrm{U} B) \quad \operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=n} B\right) \quad \operatorname{Pr}_{s_{0}}(C \mathrm{U} \leq n B)
$$

* Construct the DTMC M^{\cup} from M by making states not in $C \cup B$ absorbing:

$$
\mathbf{P}_{M^{v}}(s, t)= \begin{cases}1 & \text { if } t=s \notin(C \cup B) \\ 0 & \text { if } t \neq s \notin(C \cup B) \\ \mathbf{P}_{M}(s, t) & \text { if } s \in(C \cup B)\end{cases}
$$

* Then calculate:

$$
\begin{aligned}
& \operatorname{Pr}_{s_{0}}^{M}(C \mathrm{U} B)=\operatorname{Pr}_{s_{0}}^{M^{\mathrm{U}}}(\diamond B) \\
& \operatorname{Pr}_{s_{0}}^{M}(C \mathrm{U}=n \\
& \left.\mathrm{U}^{=n}\right)=\operatorname{Pr}_{s_{0}}^{M^{\mathrm{V}}}(\diamond=n B) \\
& \operatorname{Pr}_{s_{0}}^{M}\left(C \mathrm{U}^{\leq n} B\right)=\operatorname{Pr}_{s_{0}}^{M^{\mathrm{v}}}(\diamond \leq n B)
\end{aligned}
$$

Constrained reachability

$$
\begin{aligned}
& \text { Let } \quad C=\left\{s_{0}, s_{1}, s_{3}\right\} \\
& \text { and } B=\left\{s_{4}\right\} \\
& \operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) ?
\end{aligned}
$$

Constrained reachability

$$
\begin{aligned}
& \text { Let } \quad C=\left\{s_{0}, s_{1}, s_{3}\right\} \\
& \text { and } B=\left\{s_{4}\right\} \\
& \operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) ?
\end{aligned}
$$

Constrained reachability

$$
\begin{aligned}
& \text { Let } \quad C=\left\{s_{0}, s_{1}, s_{3}\right\} \\
& \text { and } \quad B=\left\{s_{4}\right\} \\
& \operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) ?
\end{aligned}
$$

Constrained reachability

$$
\begin{aligned}
& \text { Let } \quad C=\left\{s_{0}, s_{1}, s_{3}\right\} \\
& \text { and } B=\left\{s_{4}\right\} \\
& \operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) ?
\end{aligned}
$$

Constrained reachability

$$
\begin{aligned}
& \text { Let } C=\left\{s_{0}, s_{1}, s_{3}\right\} \\
& \text { and } B=\left\{s_{4}\right\} \\
& \operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) \text { ? } \\
& \text { 1) Calculate } M^{\mathrm{U}}
\end{aligned}
$$

Constrained reachability

Let $C=\left\{s_{0}, s_{1}, s_{3}\right\}$
and $B=\left\{s_{4}\right\}$
$\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) ?$

1) Calculate M^{U}

i.e. make states not in
 C or B absorbing

Constrained reachability

Let $C=\left\{s_{0}, s_{1}, s_{3}\right\}$ and $B=\left\{s_{4}\right\}$
$\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) ?$

1) Calculate M^{U}

i.e. make states not in
 C or B absorbing

Constrained reachability

Let $C=\left\{s_{0}, s_{1}, s_{3}\right\}$ and $B=\left\{s_{4}\right\}$
$\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) ?$

1) Calculate M^{U}
2) Calculate $\operatorname{Pr}_{s_{0}}^{M^{\mathrm{U}}}(\diamond=4 B)$

i.e. make states not in
 C or B absorbing

Constrained reachability

Let $C=\left\{s_{0}, s_{1}, s_{3}\right\}$ and $B=\left\{s_{4}\right\}$
$\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{=4} B\right) ?$

1) Calculate M^{U}
2) Calculate $\operatorname{Pr}_{s_{0}}^{M^{\mathrm{U}}}(\diamond=4 B)$
i.e. make states not in C or B absorbing

Notice that $\operatorname{Pr}_{s_{0}}(C \mathrm{U} B)$ can be obtained in this DTMC by calculating $\operatorname{Pr}_{s_{0}}^{M^{\mathrm{U}}}(\diamond B)$ instead

Constrained reachability

$$
\begin{aligned}
& \text { Let } \quad C=\left\{s_{0}, s_{1}, s_{3}\right\} \\
& \text { and } B=\left\{s_{4}\right\} \\
& \operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{\leq 4} B\right) \text { ? }
\end{aligned}
$$

Constrained reachability

$$
\begin{aligned}
& \text { Let } \quad C=\left\{s_{0}, s_{1}, s_{3}\right\} \\
& \text { and } \quad B=\left\{s_{4}\right\} \\
& \operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{\leq 4} B\right) \text { ? } \\
& \text { 1) Calculate } M^{\mathrm{U}}
\end{aligned}
$$

i.e. make states not in
 C or B absorbing

Constrained reachability

Let $C=\left\{s_{0}, s_{1}, s_{3}\right\}$
and $B=\left\{s_{4}\right\}$
$\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{\leq 4} B\right) ?$

1) Calculate M^{U}
2) Calculate M_{B}^{U}

Constrained reachability

Let $C=\left\{s_{0}, s_{1}, s_{3}\right\}$ and $B=\left\{s_{4}\right\}$
$\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{\leq 4} B\right) ?$

1) Calculate M^{U}
2) Calculate M_{B}^{U}
i.e. make states in B absorbing

Constrained reachability

Let $C=\left\{s_{0}, s_{1}, s_{3}\right\}$
and $B=\left\{s_{4}\right\}$
$\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{\leq 4} B\right) ?$

1) Calculate M^{U}
2) Calculate M_{B}^{U}
i.e. make states in B absorbing

Constrained reachability

Let $C=\left\{s_{0}, s_{1}, s_{3}\right\}$
and $B=\left\{s_{4}\right\}$
$\operatorname{Pr}_{s_{0}}\left(C \mathrm{U}^{\leq 4} B\right) ?$

1) Calculate M^{U}
2) Calculate M_{B}^{U}
3) Calculate $\operatorname{Pr}_{s_{0}}^{M_{B}^{\mathrm{U}}}\left(\diamond^{=4} B\right)$
i.e. make states in B absorbing

Qualitative properties

Qualitative properties

* These properties deal with extreme probabilities:
* something happens with probability 1 , or
* something happens with some probability (different from 0)
*We focus on:
* reachability ($\diamond B$)
* constrained reachability (C U B)
* repeated reachability $(\square \diamond B) \rightarrow$ states in B are visited infinitely often
* persistence $(\diamond \square B) \rightarrow$ reach SCCs that contain only states in B
* All these properties can be verified by doing graph analysis on the underlying graph of the DTMC

Qualitative properties

\% These properties deal with extreme probabilities:

* something happens with probability 1 , or
* something happens with some probability (different from 0)
* We focus on:

Dually: something happens with probability 0

All these properties can be proved
reachability $(\diamond B)$

* constrained reachability (C U B)
* repeated reachability $(\square \diamond B) \rightarrow$ states in B are visited infinitely often
* persistence $(\diamond \square B) \rightarrow$ reach SCCs that contain only states in B
* All these properties can be verified by doing graph analysis on the underlying graph of the DTMC

Reachability (with some probability)

An execution fragment is a sequence $s_{0} s_{1} s_{2} \ldots s_{n} \in S^{*}$ such that $\mathbf{P}\left(s_{0} s_{1} s_{2} \ldots s_{n}\right)>0$, that is, $\mathbf{P}\left(s_{i}, s_{i+1}\right)>0$ for all $0 \leq i<n$.
$\operatorname{Path}_{\text {fin }}(s)$ is the set of all execution fragments starting in the state s.

Reachability (with some probability)

An execution fragment is a sequence $s_{0} s_{1} s_{2} \ldots s_{n} \in S^{*}$ such that $\mathbf{P}\left(s_{0} s_{1} s_{2} \ldots s_{n}\right)>0$, that is, $\mathbf{P}\left(s_{i}, s_{i+1}\right)>0$ for all $0 \leq i<n$.

Path $_{\text {fin }}(s)$ is the set of all execution fragments starting in the state s.
The (immediate) predecesors of a set of states $B \subseteq S$ is defined by

$$
\operatorname{Pre}(B)=\{s \mid \exists t \in B: \mathbf{P}(s, t)>0\}
$$

Reachability (with some probability)

An execution fragment is a sequence $s_{0} s_{1} s_{2} \ldots s_{n} \in S^{*}$ such that $\mathbf{P}\left(s_{0} s_{1} s_{2} \ldots s_{n}\right)>0$, that is, $\mathbf{P}\left(s_{i}, s_{i+1}\right)>0$ for all $0 \leq i<n$.
$\operatorname{Path}_{\text {fin }}(s)$ is the set of all execution fragments starting in the state s.
The (immediate) predecesors of a set of states $B \subseteq S$ is defined by

$$
\operatorname{Pre}(B)=\{s \mid \exists t \in B: \mathbf{P}(s, t)>0\}
$$

Reachability (with some probability)

An execution fragment is a sequence $s_{0} s_{1} s_{2} \ldots s_{n} \in S^{*}$ such that $\mathbf{P}\left(s_{0} s_{1} s_{2} \ldots s_{n}\right)>0$, that is, $\mathbf{P}\left(s_{i}, s_{i+1}\right)>0$ for all $0 \leq i<n$.
$\operatorname{Path}_{\text {fin }}(s)$ is the set of all execution fragments starting in the state s.
The (immediate) predecesors of a set of states $B \subseteq S$ is defined by

$$
\operatorname{Pre}(B)=\{s \mid \exists t \in B: \mathbf{P}(s, t)>0\}
$$

Then, is the set of states reaching B is defined by

$$
\operatorname{Pr}^{*}(B)=\bigcup_{i \geq 0} \operatorname{Pre}^{i}(B)=\left\{s \in S \mid \exists \pi \in \operatorname{Path}_{f i n}(s): \operatorname{last}(\pi) \in B\right\}
$$

Reachability (with some probability)

An execution fragment is a sequence $s_{0} s_{1} s_{2} \ldots s_{n} \in S^{*}$ such that $\mathbf{P}\left(s_{0} s_{1} s_{2} \ldots s_{n}\right)>0$, that is, $\mathbf{P}\left(s_{i}, s_{i+1}\right)>0$ for all $0 \leq i<n$.

Path $_{\text {fin }}(s)$ is the set of all execution fragments starting in the state s.
The (immediate) predecesors of a set of states $B \subseteq S$ is defined by

$$
\operatorname{Pre}(B)=\{s \mid \exists t \in B: \mathbf{P}(s, t)>0\}
$$

Then, is the set of states reaching B is defined by

$$
\operatorname{Pr}^{*}(B)=\bigcup_{i \geq 0} \operatorname{Pre}^{i}(B)=\left\{s \in S \mid \exists \pi \in \operatorname{Path}_{f i n}(s): \operatorname{last}(\pi) \in B\right\}
$$

Reachability (with some probability)

An execution fragment is a sequence $s_{0} s_{1} s_{2} \ldots s_{n} \in S^{*}$ such that $\mathbf{P}\left(s_{0} s_{1} s_{2} \ldots s_{n}\right)>0$, that is, $\mathbf{P}\left(s_{i}, s_{i+1}\right)>0$ for all $0 \leq i<n$.
$\operatorname{Path}_{\text {fin }}(s)$ is the set of all execution fragments starting in the state s.
The (immediate) predecesors of ac This equality can $\quad \mathrm{d}$ by be proved by induction

$$
\operatorname{Pre}(B)=\{s \mid \exists t \in B: \mathbf{P}(s, t) \text { from which the theorem }
$$

follows

Then, is the set of states reaching is defined by

$$
\operatorname{Pr}^{*}(B)=\bigcup_{i \geq 0} \operatorname{Pre}^{i}(B)=\left\{s \in S \mid \exists \pi \in \operatorname{Path}_{f i n}(s): \operatorname{last}(\pi) \in B\right\}
$$

Theorem: $\operatorname{Pr}_{s}(\diamond B)>0$ if and only if $s \in \operatorname{Pre}^{*}(B)$

Reachability (with some probability)

An execution fragment is a sequence $s_{0} s_{1} s_{2} \ldots s_{n} \in S^{*}$ such that $\mathbf{P}\left(s_{0} s_{1} s_{2} \ldots s_{n}\right)>0$, that is, $\mathbf{P}\left(s_{i}, s_{i+1}\right)>0$ for all $0 \leq i<n$.
$\operatorname{Path}_{\text {fin }}(s)$ is the set of all execution fragments starting in the state s.
The (immediate) predecesors of ac This equality can $\quad \mathrm{d}$ by be proved by induction

$$
\operatorname{Pre}(B)=\{s \mid \exists t \in B: \mathbf{P}(s, t) \text { from which the theorem }
$$

follows

Then, is the set of states reaching is defined by

$$
\operatorname{Pr}^{*}(B)=\bigcup_{i \geq 0} \operatorname{Pre}^{i}(B)=\left\{s \in S \mid \exists \pi \in \operatorname{Path}_{f i n}(s): \operatorname{last}(\pi) \in B\right\}
$$

Theorem: $\operatorname{Pr}_{s}(\diamond B)>0$ if and only if $s \in \operatorname{Pre}^{*}(B)$

Bottom strongly connected component

Let $M=\left(S, \mathbf{P}, s_{0}, A P, L\right)$ be a DTMC. Then $T \subseteq S$ is

* strongly connected if every pair of states in T is connected with an execution fragment, i.e., $\forall t, u \in T: \exists \pi \in \operatorname{Path}_{f i n}(t): \operatorname{last}(\pi)=u$.

Bottom strongly connected component

Let $M=\left(S, \mathbf{P}, s_{0}, A P, L\right)$ be a DTMC. Then $T \subseteq S$ is

* strongly connected if every pair of states in T is connected with an execution fragment, i.e., $\forall t, u \in T: \exists \pi \in \operatorname{Path}_{f n}(t): \operatorname{last}(\pi)=u$.
* a strongly connected component (SCC) if it is a maximal strongly connected set, i.e.
i. T is strongly connected and
ii. for every strongly connected T^{\prime} such that $T \cap T^{\prime} \neq \varnothing, T^{\prime} \subseteq T$.

Bottom strongly connected component

Let $M=\left(S, \mathbf{P}, s_{0}, A P, L\right)$ be a DTMC. Then $T \subseteq S$ is

* strongly connected if every pair of states in T is connected with an execution fragment, i.e., $\forall t, u \in T: \exists \pi \in \operatorname{Path}_{f n}(t): \operatorname{last}(\pi)=u$.
* a strongly connected component (SCC) if it is a maximal strongly connected set, i.e.,
i. T is strongly connected and
ii. for every strongly connected T^{\prime} such that $T \cap T^{\prime} \neq \varnothing, T^{\prime} \subseteq T$.

Bottom strongly connected component

Let $M=\left(S, \mathbf{P}, s_{0}, A P, L\right)$ be a DTMC. Then $T \subseteq S$ is

* strongly connected if every pair of states in T is connected with an execution fragment, i.e., $\forall t, u \in T: \exists \pi \in \operatorname{Path}_{f n}(t): \operatorname{last}(\pi)=u$.
* a strongly connected component (SCC) if it is a maximal strongly connected set, i.e.
i. T is strongly connected and
ii. for every strongly connected T^{\prime} such that $T \cap T^{\prime} \neq \varnothing, T^{\prime} \subseteq T$.
* a bottom strongly connected component (BSCC) if it is a SCC and no state outside T is reached from T, i.e.,

i. T is a SCC and
ii. $\forall t \in T: \mathbf{P}(t, S \backslash T)=0 \quad$ (or alternatively, $\mathbf{P}(t, T)=1$).

Bottom strongly connected component

Let $M=\left(S, \mathbf{P}, s_{0}, A P, L\right)$ be a DTMC. Then $T \subseteq S$ is

* strongly connected if every pair of states in T is connected with an execution fragment, i.e., $\forall t, u \in T: \exists \pi \in \operatorname{Path}_{f n}(t): \operatorname{last}(\pi)=u$.
* a strongly connected component (SCC) if it is a maximal strongly connected set, i.e.,
i. T is strongly connected and
ii. for every strongly connected T^{\prime} such that $T \cap T^{\prime} \neq \varnothing, T^{\prime} \subseteq T$.
* a bottom strongly connected component (BSCC) if it is a SCC and no state outside T is reached from T, i.e.,
i. T is a SCC and

ii. $\forall t \in T: \mathbf{P}(t, S \backslash T)=0 \quad$ (or alternatively, $\mathbf{P}(t, T)=1$).

Bottom strongly connected component

Let $M=\left(S, \mathbf{P}, s_{0}, A P, L\right)$ be a DTMC. Then $T \subseteq S$ is

* strongly connected if every pair of states in T is connected with an execution fragment, i.e., $\forall t, u \in T: \exists \pi \in \operatorname{Path}_{f n}(t): \operatorname{last}(\pi)=u$.
* a strongly connected component (SCC) if it is a maximal strongly connected set, i.e.
i. T is strongly connected and
ii. for every strongly connected T^{\prime} such that $T \cap T^{\prime} \neq \varnothing, T^{\prime} \subseteq T$.
* a bottom strongly connected component (BSCC) if it is a SCC and no state outside T is reached from T, i.e.,
i. T is a SCC and
ii. $\forall t \in T: \mathbf{P}(t, S \backslash T)=0 \quad$ (or alternatively, $\mathbf{P}(t, T)=1$).

BSCC

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

$$
\operatorname{Pr}_{s}(\{\rho \in \operatorname{Path}(s) \mid \operatorname{infty}(\rho) \in B S C C(M)\})=1
$$

$\operatorname{Path}(s) \subseteq S^{\omega}$ is the set of all (infinite) executions of M starting in s, i.e., infinite sequences $s_{0} s_{1} s_{2} s_{3} \ldots$ such that $s_{0}=s$ and $\mathbf{P}\left(s_{i}, s_{i+1}\right)>0$ for all $i \geq 0$.

$$
\begin{aligned}
& \operatorname{infty}(\rho)=\{s \mid \exists i \geq 0: s=\rho(i)\} \\
& \text { is the set of all states that repeats } \\
& \text { infinitely often in } \rho
\end{aligned}
$$

BSCC(M) denotes the set of all BSCC in M.

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

$$
\operatorname{Pr}_{s}(\{\rho \in \operatorname{Path}(s) \mid \operatorname{infty}(\rho) \in B S C C(M)\})=1
$$

In other words:
the probability of getting trapped
in a BSCC is 1

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

$$
\operatorname{Pr}_{s}(\{\rho \in \operatorname{Path}(s) \mid \operatorname{infty}(\rho) \in B S C C(M)\})=1
$$

In other words:
the probability of getting trapped
in a BSCC is 1

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

$$
\operatorname{Pr}_{s}(\{\rho \in \operatorname{Path}(s) \mid \operatorname{infty}(\rho) \in B S C C(M)\})=1
$$

There is always some probability to leave the SCC

Limit behavior of Markov chains

Theorem: For every state s of a finite DTMC M,

$$
\operatorname{Pr}_{s}(\{\rho \in \operatorname{Path}(s) \mid \operatorname{infty}(\rho) \in B S C C(M)\})=1
$$

BSCC:
you are trapped by definition!

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

B

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pre}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\operatorname{Pre}^{*}(B)
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pre}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\underbrace{\operatorname{Pre}^{*}(B)}_{\operatorname{Pr}_{s}(\diamond B)>0}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
S \underbrace{S \backslash \operatorname{Pre}^{*}(B)}_{\operatorname{Pr}_{s}(\diamond B)>0}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\begin{aligned}
& \underbrace{S \backslash \underbrace{}_{s}(\diamond B)>0}_{\operatorname{Pr}_{s}(\diamond B)=0}{\operatorname{Pr} e^{*}(B)}^{\operatorname{Pr}_{s}}
\end{aligned}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\begin{gathered}
\underbrace{S \backslash \operatorname{Pr}_{s}(\diamond B)>0}_{\operatorname{Pr}_{s}(\neg \diamond B)=1}
\end{gathered}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\begin{array}{r}
\operatorname{Pre} \underbrace{*}(\underbrace{\operatorname{Pr}_{s}(\diamond B)>0}_{\operatorname{Pr}_{s}(\neg \diamond B)=1} \underbrace{\operatorname{Pr} e^{*}(B)}) \\
\hline
\end{array}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\begin{aligned}
& \operatorname{Pre}^{\operatorname{Pr}^{*}(\underbrace{\operatorname{Pr}_{s}(\diamond B)>0}_{\operatorname{Pr}_{s}(\neg \diamond B)=1} \underbrace{\operatorname{Pr} e^{*}(B)}_{\operatorname{Pr}_{s}(\neg \diamond B)>0})}
\end{aligned}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\begin{aligned}
& S \backslash \underbrace{\underbrace{\operatorname{Pr}_{s}(\neg \diamond B)=1}_{\operatorname{Pr}_{s}(\diamond B)>0}}_{\operatorname{Pre}^{*}(\underbrace{S \backslash \underbrace{\operatorname{Pr} e^{*}(B)})}} \underbrace{\left.\operatorname{Pr}_{s} \diamond B\right)>0}
\end{aligned}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\underbrace{\underbrace{}_{\operatorname{Pr}_{s}(\diamond B)>0} \underbrace{S \backslash \operatorname{Pre}^{*}(B)}_{\operatorname{Pr}_{s}(\neg \diamond B)=0})}_{\underbrace{\operatorname{Pr}_{s}(\neg \diamond B)>0}_{\operatorname{Pr}_{s}(\neg \diamond B)=1}}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\underbrace{\underbrace{}_{\operatorname{Pr}_{s}}}_{\underbrace{\operatorname{Pr}_{s}(\neg \diamond B)>0}_{\operatorname{Pr}_{s}(\neg \diamond B)=1} \underbrace{S \backslash e^{*}(S \underbrace{\operatorname{Pr} e^{*}(B)})}_{\operatorname{Pr}_{s}(\diamond B)=1}}
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\underbrace{\operatorname{Pr}_{s}(\neg \diamond B)>0}_{\underbrace{\operatorname{Pr}_{s}(\diamond B)>0}_{\operatorname{Pr}_{s}(\neg \diamond B)=1}} \underbrace{\operatorname{Pr}_{s}(\diamond B)=1}_{\operatorname{Pr}_{s}^{*}(\diamond \underbrace{S r e^{*}(B)})}
$$

Recall:

 linear time

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pre}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\underbrace{\operatorname{Pr}_{s}(\diamond B)>0}_{\underbrace{\operatorname{Pr}_{s}(\neg \diamond B)=1}_{\operatorname{Pr}_{s}(\neg \diamond B)>0}} \underbrace{S \backslash \operatorname{Pr}^{*}(B)}_{\operatorname{Pr}_{s}(\diamond B)=1})
$$

Computed in linear time

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pre}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\underbrace{\underbrace{\operatorname{Pr}^{\prime}}}_{\underbrace{\operatorname{Pr}_{s}(\diamond B)>0}_{\operatorname{Pr}_{s}(\neg \diamond B)=1} \underbrace{S \backslash \operatorname{Pr}_{s}(\diamond B)=1}_{\operatorname{Pr}_{s}(\neg \diamond B)>0} \underbrace{\operatorname{Pre}^{*}(B)}_{\operatorname{Pr}_{s}})}
$$

Computed in linear time

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

B

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pre}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\operatorname{Pr} e^{*}(B)
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
S \backslash \operatorname{Pr}^{*}(B)
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

What if B is not
absorbing?

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pre}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
\operatorname{Pr}^{*}\left(S \backslash \operatorname{Pr}^{*}(B)\right)
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
S \backslash \operatorname{Pr} e^{*}\left(S \backslash \operatorname{Pr} e^{*}(B)\right)
$$

Almost sure reachability

Theorem: Let $s \in S$ and $B \subseteq S$ be a set of absorbing states. Then

$$
\operatorname{Pr}_{s}(\diamond B)=1 \quad \text { if and ony if } \quad s \in S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pre}^{*}(B)\right)
$$

$$
S \backslash \operatorname{Pr}^{*}\left(S \backslash \operatorname{Pr} e^{*}(B)\right)
$$

Therefore, for the general case, first construct M_{B}

Qualitative repeated reachability

$$
\rho \in \square \diamond B \quad \text { iff } \quad \operatorname{infty}(\rho) \cap B \neq \varnothing
$$

Qualitative repeated reachability

$$
\rho \in \square \diamond B \quad \text { iff } \quad \operatorname{infty}(\rho) \cap B \neq \varnothing
$$

Some state of B should repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{array}{ll}
\operatorname{Pr}_{s}(\square \diamond B)=1 & \text { iff } \quad \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \cap B \neq \varnothing \\
& \text { iff } \quad s \in \operatorname{Pre}^{*}(\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\})
\end{array}
$$

Qualitative repeated reachability

$$
\rho \in \square \diamond B \quad \text { iff } \quad \text { infty }(\rho) \cap B \neq \varnothing
$$

Some state of B should repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{array}{ll}
\operatorname{Pr}_{s}(\square \diamond B)=1 & \text { iff } \quad \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \cap B \neq \varnothing \\
& \text { iff } \quad s \in \operatorname{Pre}^{*}(\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\})
\end{array}
$$

Theorem: For every state s of a finite DTMC M,
$\operatorname{Pr}_{s}(\{\rho \in \operatorname{Path}(s) \mid \operatorname{infty}(\rho) \in B S C C(M)\})=1$.
Follows from the limit behavior of Markov
chains

Qualitative repeated reachability

$$
\rho \in \square \diamond B \quad \text { iff } \quad \text { infty }(\rho) \cap B \neq \varnothing
$$

Some state of B should repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{array}{cl}
\operatorname{Pr}_{s}(\square \diamond B)=1 & \text { iff } \quad \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \cap B \neq \varnothing \\
& \text { iff } \quad s \in \operatorname{Pre}^{*}(\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\})
\end{array}
$$

Qualitative repeated reachability

$$
\rho \in \square \diamond B \quad \text { iff } \quad \text { infty }(\rho) \cap B \neq \varnothing
$$

Some state of B should repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\square \diamond B)=1 \quad \text { iff } \quad \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \cap B \neq \varnothing
$$

$$
\text { iff } \quad s \in \operatorname{Pr} e^{*}(\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\})
$$

Computed in linear time

$$
B=\left\{s_{3}, s_{4}, s_{5}\right\}
$$

Qualitative persistence

$$
\rho \in \diamond \square B \quad \text { iff } \quad \operatorname{infty}(\rho) \subseteq B
$$

Qualitative persistence

$$
\rho \in \diamond \square B \quad \text { iff } \quad \operatorname{infty}(\rho) \subseteq B
$$ repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{array}{lll}
\operatorname{Pr}_{s}(\diamond \square G)=1 & \text { iff } \quad \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \subseteq B \\
& \text { iff } \quad s \in \operatorname{Pre}^{*}(\bigcup\{T \in B S C C(M) \mid T \subseteq B\})
\end{array}
$$

Qualitative persistence

$$
\rho \in \diamond \square B \quad \text { iff } \quad \operatorname{infty}(\rho) \subseteq B
$$

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{array}{lll}
\operatorname{Pr}_{s}(\diamond \square G)=1 & \text { iff } \quad \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \subseteq B \\
& \text { iff } \quad s \in \operatorname{Pre}^{*}(\bigcup\{T \in B S C C(M) \mid T \subseteq B\})
\end{array}
$$

Like before, follows
from the limit behavior of
Markov chains

Qualitative persistence

$$
\rho \in \diamond \square B \quad \text { iff } \quad \operatorname{infty}(\rho) \subseteq B
$$

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{array}{lll}
\operatorname{Pr}_{s}(\diamond \square G)=1 & \text { iff } & \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \subseteq B \\
& \text { iff } \quad s \in \operatorname{Pre}^{*}(\bigcup\{T \in B S C C(M) \mid T \subseteq B\})
\end{array}
$$

$$
B=\left\{s_{3}, s_{4}, s_{5}\right\}
$$

Qualitative persistence

$$
\rho \in \diamond \square B \quad \text { iff } \quad \operatorname{infty}(\rho) \subseteq B
$$

Only states from B can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{array}{lll}
\operatorname{Pr}_{s}(\diamond \square G)=1 & \text { iff } & \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \subseteq B \\
& \text { iff } \quad s \in \operatorname{Pre}^{*}(\bigcup\{T \in B S C C(M) \mid T \subseteq B\})
\end{array}
$$

Qualitative persistence

$$
\rho \in \diamond \square B \quad \text { iff } \quad \operatorname{infty}(\rho) \subseteq B
$$

Only states from B can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{array}{lll}
\operatorname{Pr}_{s}(\diamond \square G)=1 & \text { iff } \quad \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \subseteq B \\
& \text { iff } \quad s \in \operatorname{Pr}^{*}(\bigcup\{T \in B S C C(M) \mid T \subseteq B\})
\end{array}
$$

$$
B=\left\{s_{3}, s_{4}, s_{5}, s_{6}\right\}
$$

Qualitative persistence

$$
\rho \in \diamond \square B \quad \text { iff } \quad \operatorname{infty}(\rho) \subseteq B
$$

Only states from B can repeat infinitely often

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\diamond \square G)=1 \quad \text { iff } \quad \text { for all } T \in B S C C(M) \text { reachable from } s \in S, T \subseteq B
$$

$$
\text { iff } \quad s \in \operatorname{Pr} e^{*}(\bigcup\{T \in B S C C(M) \mid T \subseteq B\})
$$

Computed in linear time

$$
B=\left\{s_{3}, s_{4}, s_{5}, s_{6}\right\}
$$

More quantitative properties

Quantitative repeated reachability

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\square \diamond B)=\operatorname{Pr}_{s}(\diamond U)
$$

where $U=\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\}$.

$$
B=\left\{s_{4}, s_{5}\right\}
$$

Quantitative repeated reachability

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\square \diamond B)=\operatorname{Pr}_{s}(\diamond U)
$$

where $U=\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\}$.

* Compute U
(linear time)

$$
B=\left\{s_{4}, s_{5}\right\}
$$

Quantitative repeated reachability

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\square \diamond B)=\operatorname{Pr}_{s}(\diamond U)
$$

where $U=\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\}$.

* Compute U
(linear time)

$$
\begin{gathered}
B=\left\{s_{4}, s_{5}\right\} \\
U=\left\{s_{2}, s_{4}, s_{5}\right\}
\end{gathered}
$$

Quantitative repeated reachability

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\square \diamond B)=\operatorname{Pr}_{s}(\diamond U)
$$

where $U=\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\}$.

* Compute U
* Compute $\operatorname{Pr}_{s}(\diamond U)$
(linear time)
(polynomial time)

$$
\begin{gathered}
B=\left\{s_{4}, s_{5}\right\} \\
U=\left\{s_{2}, s_{4}, s_{5}\right\}
\end{gathered}
$$

Computed in polynomial time

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\begin{aligned}
& \qquad \operatorname{Pr}_{s}(\square \diamond B)=\operatorname{Pr}_{s}(\diamond U) \\
& \text { where } U=\bigcup\{T \in B S C C(M) \mid T \cap B \neq \varnothing\} .
\end{aligned}
$$

* Compute U
* Compute $\operatorname{Pr}_{s}(\diamond U)$

Quantitative repeated reachability

(linear time)
(polynomial time)

$$
\begin{gathered}
B=\left\{s_{4}, s_{5}\right\} \\
U=\left\{s_{2}, s_{4}, s_{5}\right\}
\end{gathered}
$$

Quantitative persistence

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\diamond \square B)=\operatorname{Pr}_{s}(\diamond U)
$$

where $U=\bigcup\{T \in B S C C(M) \mid T \subseteq B\}$.

$$
B=\left\{s_{4}, s_{5}\right\}
$$

Quantitative persistence

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\diamond \square B)=\operatorname{Pr}_{s}(\diamond U)
$$

where $U=\bigcup\{T \in B S C C(M) \mid T \subseteq B\}$.

* Compute U

$$
B=\left\{s_{4}, s_{5}\right\}
$$

Quantitative persistence

Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\diamond \square B)=\operatorname{Pr}_{s}(\diamond U)
$$

where $U=\bigcup\{T \in B S C C(M) \mid T \subseteq B\}$.

* Compute U

$$
\begin{gathered}
B=\left\{s_{4}, s_{5}\right\} \\
U=\left\{s_{4}\right\}
\end{gathered}
$$

Computed in polynomial
time
Theorem: Let $s \in S$ and $B \subseteq S$. Then

$$
\operatorname{Pr}_{s}(\diamond \square B)=\operatorname{Pr}_{s}(\diamond U)
$$

where $U=\bigcup\{T \in B S C C(M) \mid T \subseteq B\}$.

* Compute U
* Compute $\operatorname{Pr}_{s}(\diamond U)$

Quantitative persistence

$$
\begin{gathered}
B=\left\{s_{4}, s_{5}\right\} \\
U=\left\{s_{4}\right\}
\end{gathered}
$$

ω-regular properties

* Can be expressed with ω-automata such as Büchi automata, Rabin automata, Strett automata, etc.
* Repeated reachability and persistence are central, since, e.g., the Rabin acceptance condition of can be expressed as properties of the form:

$$
\bigvee_{i \in I}\left(\diamond \square \neg G_{i} \wedge \square \diamond H_{i}\right)
$$

* The verification of ω-properties proceed by
i. obtaining the synchronous product of the DTMC with the deterministic Rabin automata (DRA) of the property, and
ii. calculating the reachability property of a set U very much like for repeated reachability and persistence.

ω-regular properties

Though polynomial
w.r.t. the DTMC and the DRA, the DRA normally grows exponentially large w.r.t. the ω-property

* Can be expressed with ω-automata such as Büchi automata, expressed in e.g. LTL automata, etc.
* Repeated reachability and persistence are central, since, e.g., tb кabin acceptance condition of can be expressed as properties of the form:

$$
\bigvee_{i \in I}\left(\diamond \square \neg G_{i} \wedge \square \diamond H_{i}\right)
$$

* The verification of ω-properties proceed by
i. obtaining the synchronous product of the DTMC with the deterministic Rabin automata (DRA) of the property, and
ii. calculating the reachability property of a set U very much like for repeated reachability and persistence.

PCTL

PCTL: Probabilistic Computational Tree Logic

* Syntax

state formulas

$$
\begin{aligned}
\Phi & =\text { true }
\end{aligned} \left\lvert\, \begin{array}{llll|l}
& p & \neg \Phi & \mid \Phi_{1} \wedge \Phi_{2} & \mid \\
\mathrm{P}_{\bowtie a}(\phi) \\
\phi & =O \Phi & \mid & \Phi_{1} \mathrm{U} \Phi_{2} & \mid \\
\Phi_{1} \mathrm{U}^{\leq n} \Phi_{2}
\end{array}\right.
$$

where

- $p \in A P$ is an atomic proposition, and
- $\bowtie \in\{<, \leq, \geq,>\}$ and $a \in \mathbb{R}$.

PCTL: Probabilistic Computational Tree Logic

- Syntax
state formulas

$$
\begin{aligned}
\Phi & =\text { true }
\end{aligned} \left\lvert\, \begin{array}{llll|l}
& p & \neg \Phi & \mid \Phi_{1} \wedge \Phi_{2} & \mid \\
\mathrm{P}_{\bowtie a}(\phi) \\
\phi & =O \Phi & \mid & \Phi_{1} \mathrm{U} \Phi_{2} & \mid \\
\Phi_{1} \mathrm{U}^{\leq n} \Phi_{2}
\end{array}\right.
$$

where

- $p \in A P$ is an atomic proposition, and
- $\bowtie \in\{<, \leq, \geq,>\}$ and $a \in \mathbb{R}$.

Some abbreviations:

$$
\begin{array}{ll}
\mathrm{P}_{(a, b]}(\phi) \equiv \mathrm{P}_{>a}(\phi) \wedge \mathrm{P}_{\leq b}(\phi) & \\
\mathrm{P}_{\bowtie a}(\diamond \Phi) \equiv \mathrm{P}_{\bowtie a}(\text { true } \mathrm{U} \Phi) & \mathrm{P}_{\bowtie a}(\diamond \leq n \Phi) \equiv \mathrm{P}_{\bowtie a}\left(\text { true } \mathrm{U}^{\leq n} \Phi\right) \\
\mathrm{P}_{\leq a}(\square \Phi) \equiv \mathrm{P}_{\geq 1-a}(\diamond \neg \Phi) & \mathrm{P}_{>a}\left(\square^{\leq n} \Phi\right) \equiv \mathrm{P}_{<1-a}(\diamond \leq n \neg \Phi)
\end{array}
$$

in addition to the boolean abbreviations

Some examples

*On the "die with a coin" example:

$$
\mathrm{P}_{=\frac{1}{6}}(\diamond 1) \wedge \mathrm{P}_{=\frac{1}{6}}(\diamond 2) \wedge \mathrm{P}_{=\frac{1}{6}}(\diamond 3) \wedge \mathrm{P}_{=\frac{1}{6}}(\diamond 4) \wedge \mathrm{P}_{=\frac{1}{6}}(\diamond 5) \wedge \mathrm{P}_{=\frac{1}{6}}(\diamond 6)
$$

"Each of the six sides will eventually appear with $1 / 6$ probability"

* On the "toy protocol":

$$
\mathrm{P}_{=1}(\diamond \text { delivered })
$$

"The message is almost surely delivered"

$$
\mathrm{P}_{=1}\left(\square\left(\text { start } \Rightarrow \mathrm{P}_{\geq 0.99}(\diamond \leq 4 \text { delivered })\right)\right)
$$

"Almost surely always each time a communication is started, the message is eventually delivered in at most 4 steps with probability $0.99^{\prime \prime}$
 enall $0.9{ }^{2}$

$\mathrm{P}_{=1}(\diamond$ delivered $)$

Semantics of PCTL

$$
\begin{array}{llll}
s & \models p & \text { iff } & p \in L(s) \\
s & \models \neg \Phi & \text { iff } & s \not \models \Phi \\
s \models \Phi_{1} \wedge \Phi_{2} & & \text { iff } & s \models \Phi_{1} \text { and } s \models \Phi_{2} \\
s & \models \mathrm{P}_{\bowtie a}(\phi) & & \text { iff }
\end{array} \quad \operatorname{Pr}(s \models \phi) \bowtie a
$$

where $\operatorname{Pr}(s \models \phi)=\operatorname{Pr}_{s}(\{\rho \in \operatorname{Path}(s) \mid \rho \models \phi\})$ and
path formulas

$$
\begin{array}{ll}
\rho \models O \Phi & \text { iff } \quad \rho(1) \models \Phi \\
\rho \models \Phi \mathrm{U} \Psi \quad \text { iff } \quad \text { exists } j \geq 0 \text { s.t. } \quad \rho(j) \models \Psi \text { and for all } 0 \leq k<j, \rho(k) \models \Phi \\
\rho \models \Phi \mathrm{U}^{\leq n} \Psi \quad \text { iff } \quad \text { exists } 0 \leq j \leq n \text { s.t. } \rho(j) \models \Psi \text { and for all } 0 \leq k<j, \rho(k) \models \Phi
\end{array}
$$

A PCTL formula Φ holds in state $s \in S$ of a DTMC M, denoted by $s \models \Phi$, whenever:

fun $\operatorname{Sat}(\Phi)$ \{

// input: a PCTL (state) formula Φ
// output: $\{s \in S \mid s \models \Phi\}$
case $\{\quad \Phi \in A P$
return $\{s \in S \mid \Phi \in L(s)\}$

$$
\Phi \equiv \neg \Psi
$$

return $S \backslash$ Sat (Ψ)
$\Phi \equiv \Psi_{1} \wedge \Psi_{2}$
$\Phi \equiv \mathrm{P}_{J}(\phi)$
\}
\}
fun $\operatorname{Prob}(s, \phi)\{$
// input: a state s and a path formula ϕ
$/ /$ output: $\operatorname{Pr}_{s}(s \models \phi)$
case $\left\{\quad \phi \equiv \bigcirc \Phi \quad\right.$ return $\left(\mathbf{P} \cdot \mathbf{1}_{\text {Sat }(\Phi)}\right)(s)$

$$
\phi \equiv \Phi \cup \Psi \quad \text { let } B=\operatorname{Sat}(\Psi) ; \text { let } C=\operatorname{Sat}(\Phi)
$$

return $\operatorname{Pr}_{s}(C \cup B) \quad / /$ constrained reachability

$$
\begin{array}{ll}
\phi \equiv \Phi \mathrm{U}^{\leq n} \Psi \quad & \text { let } B=\operatorname{Sat}(\Psi) \text {; let } C=\operatorname{Sat}(\Phi) \\
& \text { return } \operatorname{Pr}_{s}\left(C \mathrm{U}^{\leq n} B\right) \quad / / \text { bounded constrained reachability }
\end{array}
$$

Algorithm for PCTL model checking

Polynomial on the size of M Linear on the size of Φ Linear on the largest n

Markov Decision Processes

The need of non-determinism

- Parallel composition / distributed components:
* relative probabilities of events occurring in different physical locations may be hard to estimate.
* Sub-specification:
* many probabilities may be unknown at modeling time
* Abstraction:
* models are intentional abstractions of the system under study
* Control synthesis and planning:
* sub-specification is intentional to synthesize optimal decisions

Markov Decision Processes (MDP)

A MDP is a structure

$$
\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)
$$

where
$* S$ is a finite set of states, where $s_{0} \in S$ is the initial state,

* Act is a finite set of actions,
* $\mathbf{P}: S \times$ Act $\times S \rightarrow[0,1]$ is the probabilistic transition function, such that, for every
$s \in S$, and $\alpha \in A c t, \sum_{s^{\prime} \in S} \mathbf{P}\left(s, \alpha, s^{\prime}\right) \in\{0,1\}$, and
* $L: S \rightarrow \mathscr{P}(A P)$ is a labelling function, where $A P$ is a a set of atomic propositions.

If $A c t=\{\alpha\}$, the MDP is a DTMC

Markov Decision Processes (MDP)

A MDP is a structure

$$
\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)
$$

where

$$
\mathbf{P}\left(s, \alpha, s^{\prime}\right) \text { is the probability }
$$ to move to state s^{\prime} conditioned to the system being at state s and action α being selected

* S is a finite set of states, where $s_{0} \in S$ is the initial state,
* Act is a finite set of actions,
* $\mathbf{P}: S \times \operatorname{Act} \times S \rightarrow[0,1]$ is the probabilistic transition function, such that, for every
$s \in S$, and $\alpha \in A c t, \sum_{s^{\prime} \in S} \mathbf{P}\left(s, \alpha, s^{\prime}\right) \in\{0,1\}$, and
* $L: S \rightarrow \mathscr{P}(A P)$ is a labelling function, where $A P$ is a a set of atomic propositions.

Act (s) is the set of all actions enabled in s

At least one action should be enabled in every state

Financial decisions

$\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$

Financial decisions
(t)
$\begin{array}{lllll}\text { (1) } & (2) & (4) & 8 & 16\end{array}$
(1 .

$$
\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)
$$

Financial decisions
(th)

(1 b

$$
\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)
$$

Financial decisions

($l_{\text {s }}$
stock_market

(2)
(4)

16
casino

$$
\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)
$$

Financial decisions

Financial decisions

Financial decisions

Financial decisions

Resolving the non-determinism

* To compute the probabilities in a MDP, non-determinism needs to be resolved
* Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

Resolving the non-determinism

* To compute the probabilities in a MDP, non-determinism needs to be resolved
* Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

Resolving the non-determinism

* To compute the probabilities in a MDP, non-determinism needs to be resolved
* Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

Resolving the non-determinism

* To compute the probabilities in a MDP, non-determinism needs to be resolved
* Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

Resolving the non-determinism

* To compute the probabilities in a MDP, non-determinism needs to be resolved
* Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

A scheduler defines a (maybe infinite) DTMC

Resolving the non-determinism

* To compute the probabilities in a MDP, non-determinism needs to be resolved
* Schedulers (also adversaries or policies) are functions that select the next action based on the past execution.

A scheduler defines a (maybe infinite) DTMC

A scheduler can also chose with randomness

Schedulers

Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP.

A scheduler is a funciton $\mathfrak{S}: S^{+} \rightarrow$ Act $\rightarrow[0,1]$ such that

1. $\mathfrak{S}\left(s_{0} s_{1} \ldots s_{n}\right)$ is a probability distribution on Act, i.e., $\sum_{\alpha \in A c t} \mathfrak{S}\left(s_{0} s_{1} \ldots s_{n}\right)(\alpha)=1$, and
2. if $\mathfrak{S}\left(s_{0} s_{1} \ldots s_{n}\right)(\alpha)>0$, then $\alpha \in \operatorname{Act}\left(s_{n}\right)$.

A scheduler \mathfrak{S} induces the DTMC $\mathcal{M}_{\mathfrak{S}}=\left(S^{+}, \mathbf{P}_{\mathfrak{S}}, s_{0}, A P, L^{\prime}\right)$ where
$* \mathbf{P}_{\mathfrak{S}}\left(s_{0} s_{1} \ldots s_{n}, s_{0} s_{1} \ldots s_{n} s_{n+1}\right)=\sum_{\alpha \in A c t} \mathfrak{S}\left(s_{0} s_{1} \ldots s_{n}\right)(\alpha) \cdot \mathbf{P}\left(s_{n}, \alpha, s_{n+1}\right)$

* $L^{\prime}\left(s_{0} s_{1} \ldots s_{n}\right)=L\left(s_{n}\right)$

DTMC induced by a scheduler

DTMC induced by a scheduler

$$
\varnothing
$$

stock_market

\mathfrak{S} always chooses casino

$$
\left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.0816
$$

DTMC induced by a scheduler

casino

\mathfrak{S} always chooses casino
\mathfrak{S} always chooses stock_market

$$
\begin{aligned}
& \operatorname{Pr}^{\mathfrak{S}}\left(\mathbb{1} \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.0816 \\
& \operatorname{Pr}^{\mathfrak{S}}\left(\mathbb{1} \models \diamond^{\prime \prime} a l_{t t^{\prime \prime}}\right) \approx 0.0443
\end{aligned}
$$

DTMC induced by a scheduler

\mathfrak{S} always chooses casino
\mathfrak{S} always chooses stock_market
\mathfrak{S} chooses stock_market on (1) and (4) and casino otherwise

$$
\begin{aligned}
& \operatorname{Pr}^{\mathfrak{S}}\left(\mathbb{1} \models \diamond^{\prime} a l o t^{\prime \prime}\right) \approx 0.0816 \\
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.0443 \\
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.1504
\end{aligned}
$$

DTMC induced by a scheduler

\mathfrak{S} always chooses casino
\mathfrak{S} always chooses stock_market
\mathfrak{S} chooses stock_market on (1) and (4) and casino otherwise \mathfrak{S} chooses on the other way around

$$
\begin{aligned}
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime} a l o t^{\prime \prime}\right) \approx 0.0816 \\
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.0443 \\
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.1504 \\
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.1332
\end{aligned}
$$

DTMC induced by a scheduler

But then,... what is the probability

\mathfrak{S} always chooses casino
\mathfrak{S} always chooses stock_market
S chooses stock_market on (1) and (4) and casino otherwise \mathfrak{S} chooses on the other way around

$$
\begin{aligned}
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime} a l o t^{\prime \prime}\right) \approx 0.0816 \\
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.0443 \\
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.1504 \\
& \left.\operatorname{Pr}^{\mathfrak{S}}(1) \models \diamond^{\prime \prime} a l o t^{\prime \prime}\right) \approx 0.1332
\end{aligned}
$$

Supremum and infimum probabilities

* There are uncountably many resolutions
* Only the best or worst bound for the probability can guarantee the satisfaction of a property, e.g:
* an error occurs with probability less than 0.001
* a message is transmitted successfully with probability over 0.95
*Therefore, if Φ is the property of interest, we search for

$$
\begin{aligned}
& \operatorname{Pr}^{\max }(s \models \Phi) \triangleq \sup _{\mathfrak{S}} \operatorname{Pr}^{\mathfrak{S}}(s \models \Phi), \quad \text { and } \\
& \operatorname{Pr}^{\min }(s \models \Phi) \triangleq \inf _{\mathfrak{S}} \operatorname{Pr}^{\mathfrak{S}}(s \models \Phi)
\end{aligned}
$$

Supremum and infimum probabilities

* There are uncountably many resolutions
* Only the best or worst bound for the probability can guarantee the satisfaction of a property, e.g:
* an error occurs with probability less than 0.001
* a message is transmitted successfully with probability over 0.95
$\%$ Therefore, if Φ is the property of interest, we search for calculate this?

$$
\begin{aligned}
& \operatorname{Pr}^{\max }(s \models \Phi) \triangleq \sup _{\mathfrak{S}} \operatorname{Pr}^{\mathfrak{S}}(s \models \Phi), \quad \text { and } \\
& \operatorname{Pr}^{\min }(s \models \Phi) \triangleq \inf _{\mathfrak{S}} \operatorname{Pr}^{\mathfrak{S}}(s \models \Phi)
\end{aligned}
$$

Type of schedulers

A scheduler \mathfrak{S} is:
deterministic:
if for all $s_{0} s_{1} \ldots s_{n}, \mathfrak{S}\left(s_{0} s_{1} \ldots s_{n}\right)(\alpha)=1$ for some $\alpha \in A c t$ memoryless:
if for all $s_{0} s_{1} \ldots s_{n}, \mathfrak{S}\left(s_{0} s_{1} \ldots s_{n}\right)=\mathfrak{S}\left(s_{n}\right)$
memoryless and deterministic:
if it is memoryless and deterministic at the same time $;$

Type of schedulers

A scheduler \mathfrak{S} is:
deterministic:
if for all $s_{0} s_{1} \ldots s_{n}, \mathfrak{S}\left(s_{0} s_{1} \ldots s_{n}\right)(\alpha)=1$ for some $\alpha \in A c t$
memoryless:
if for all $s_{0} s_{1} \ldots s_{n}, \mathfrak{S}\left(s_{0} s_{1} \ldots s_{n}\right)=\mathfrak{S}\left(s_{n}\right)$
memoryless and deterministic:

There are
only finitely many of these
if it is memoryless and deterministic at the same time $;$

Quantitative reachability

Theorem:
Let $B \subseteq S$. Then:

* There exists a memoryless and deterministic scheduler $\mathfrak{S}^{\max }$ such that

$$
\operatorname{Pr}^{\mathfrak{S}^{\max }}(s \models \diamond B)=\operatorname{Pr}^{\max }(s \models \diamond B)
$$

* There exists a memoryless and deterministic scheduler $\mathfrak{S}^{\text {min }}$ such that

$$
\operatorname{Pr}^{\mathfrak{S}^{\min }}(s \models \diamond B)=\operatorname{Pr}^{\min }(s \models \diamond B)
$$

Quantitative reachability

Not any property! only reachability
Theorem:
Let $B \subseteq S$. Then:
*. There exists a memoryless and deterministic scheduler $\mathfrak{S}^{\text {max }}$ such that

$$
\operatorname{Pr}^{\mathfrak{E}^{\max }}(s \models \diamond B)=\operatorname{Pr}^{\max }(s \models \diamond B)
$$

* There exists a memoryless and deterministic scheduler $\mathfrak{S}^{\text {min }}$ such that

$$
\operatorname{Pr}^{\mathfrak{G}^{\min }}(s \models \diamond B)=\operatorname{Pr}^{\min }(s \models \diamond B)
$$

Quantitative reachability

$$
\begin{aligned}
& P_{l_{s}}^{+}=P_{l_{c}}^{+}=0 \\
& P_{a l}^{+}=1 \\
& P_{1}^{+}=\max \left(0.7 P_{1}^{+}+0.2 P_{2}^{+}+0.1 P_{l_{s}}^{+}, 0.3 P_{1}^{+}+0.2 P_{8}^{+}+0.5 P_{l_{c}}^{+}\right) \\
& P_{2}^{+}=\max \left(0.55 P_{2}^{+}+0.25 P_{4}^{+}+0.1 P_{1}^{+}+0.1 P_{l s}^{+}, 0.3 P_{2}^{+}+0.2 P_{a l}^{+}+0.5 P_{l+c}^{+}\right) \\
& P_{3}^{+}=\max \left(0.55 P_{4}^{+}+0.25 P_{8}^{+}+0.1 P_{2}^{+}+0.1 P_{l s}^{+}, 0.3 P_{4}^{+}+0.2 P_{a l}^{+}+0.5 P_{l+c}^{+}\right) \\
& P_{4}^{+}=\max \left(0.55 P_{8}^{+}+0.25 P_{a l}^{+}+0.1 P_{4}^{+}+0.1 P_{l s}^{+}, 0.3 P_{8}^{+}+0.2 P_{a l}^{+}+0.5 P_{l+c}^{+}\right)
\end{aligned}
$$

Quantitative reachability

$$
\left.\operatorname{Pr}^{\max }(1) \models \diamond^{\prime} a \text { lot" }\right) \approx 0.1905
$$

and the (memoryless and determinstic) scheduler \mathfrak{S} that maximizes it is

$$
\begin{aligned}
& \mathfrak{S}(1)=\text { stock_market } \\
& \mathfrak{S}((2)=\text { casino }
\end{aligned}
$$

$$
\mathfrak{S}(4)=\text { stock_market }
$$

$$
\mathfrak{S}(8)=\text { stock_market }
$$

Quantitative reachability (max)

Theorem:

The family of values $\left\{\mathbf{x}_{s}\right\}_{s \in S}$ with $\mathbf{x}_{s}=\operatorname{Pr}^{\max }(s \models \diamond B)$ is the unique solution to the following equation system:

$$
\begin{array}{ll}
x_{s}=1 & \text { if } s \in B \\
x_{s}=0 & \text { if } \operatorname{Pr}^{\max }(s \models \diamond B)=0 \\
x_{s}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in \operatorname{Act}(s)\right\} & \text { if } \operatorname{Pr}^{\max }(s \models \diamond B)>0 \text { and } s \notin B
\end{array}
$$

Quantitative reachability (max)

Theorem:

The family of values $\left\{\mathbf{x}_{s}\right\}_{s \in S}$ with $\mathbf{x}_{s}=\operatorname{Pr}^{\max }(s \models \diamond B)$ is the unique solution to the following equation system:

$$
\begin{array}{ll}
x_{s}=1 & \text { if } s \in B \\
x_{s}=0 & \text { if } \operatorname{Pr}^{\max }(s \models \diamond B)=0 \\
x_{s}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in \operatorname{Act}(s)\right\} & \text { if } \operatorname{Pr}^{\max }(s \models \diamond B)>0 \text { and } s \notin B
\end{array}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,
$* \operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$

* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,
$* \operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$

* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states.
Then, for $s \in S$,

* $\operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,
$* \operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$

* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states.
Then, for $s \in S$,

* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,
$* \operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$

* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,
$* \operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$

* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,
$* \operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$

* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{array}{ll}
\exists \operatorname{Pr}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} & \exists \operatorname{Pr}^{*}(C) \triangleq \bigcup_{n \geq 0} \exists \operatorname{Pre}^{n}(C) \\
\forall \operatorname{Pr}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} & \forall \operatorname{Pr}^{*}(C) \triangleq \bigcup_{n \geq 0} \forall \operatorname{Pre}^{n}(C)
\end{array}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states.
Then, for $s \in S$,

* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr} e^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
where

$$
\begin{array}{ll}
\exists \operatorname{Pr}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} & \exists \operatorname{Pr}^{*}(C) \triangleq \bigcup_{n \geq 0} \exists \operatorname{Pr}^{n}(C) \\
\forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} & \forall \operatorname{Pr}^{*}(C) \triangleq \bigcup_{n \geq 0} \forall \operatorname{Pre}^{n}(C)
\end{array}
$$

Qualitative reachability (max)

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states. Then, for $s \in S$,

* $\operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr}^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pr}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{m a x}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pre}^{*}(B)\right)$

where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

$$
\begin{aligned}
& \exists \operatorname{Pre}^{*}(C) \triangleq \bigcup_{n \geq 0} \exists \operatorname{Pre}^{n}(C) \\
& \forall \operatorname{Pr}^{*}(C) \triangleq \bigcup_{n \geq 0} \forall \operatorname{Pre}^{n}(C)
\end{aligned}
$$

first make states in B absorbing then apply the corresponding algorithm

Lemma: Let $\mathcal{M}=\left(S, A c t, \mathbf{P}, s_{0}, A P, L\right)$ be a MDP and let $B \subseteq S$ be a set of absorbing states.
Then, for $s \in S$,

* $\operatorname{Pr}^{\max }(s \models \diamond B)>0 \quad$ iff $\quad s \in \exists \operatorname{Pre}^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)=0 \quad$ iff $\quad s \in S \backslash \exists \operatorname{Pr}^{*}(B)$
* $\operatorname{Pr}^{\max }(s \models \diamond B)<1 \quad$ iff $\quad s \in \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$
* $\operatorname{Pr}^{\text {max }}(s \models \diamond B)=1 \quad$ iff $\quad s \in S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pr}^{*}(B)\right)$

where

$$
\begin{aligned}
& \exists \operatorname{Pre}(C) \triangleq\{s \in S \mid \exists \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\} \\
& \forall \operatorname{Pre}(C) \triangleq\{s \in S \mid \forall \alpha \in \operatorname{Act}(s): \mathbf{P}(s, \alpha, C)>0\}
\end{aligned}
$$

$$
\begin{aligned}
& \exists \operatorname{Pre}^{*}(C) \triangleq \bigcup_{n \geq 0} \exists \operatorname{Pre}^{n}(C) \\
& \forall \operatorname{Pr}^{*}(C) \triangleq \bigcup_{n \geq 0} \forall \operatorname{Pre}^{n}(C)
\end{aligned}
$$

Quantitative reachability (max)

Theorem:

The family of values $\left\{\mathbf{x}_{s}\right\}_{s \in S}$ with $\mathbf{x}_{s}=\operatorname{Pr}^{\max }(s \models \diamond B)$ is the unique solution to the following equation system:

$$
\begin{array}{ll}
x_{s}=1 & \text { if } s \in B \\
x_{s}=0 & \text { if } \operatorname{Pr}^{\max }(s \models \diamond B)=0 \\
x_{s}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in \operatorname{Act}(s)\right\} & \text { if } \operatorname{Pr}^{\max }(s \models \diamond B)>0 \text { and } s \notin B
\end{array}
$$

Quantitative reachability (max)

Theorem:

The family of values $\left\{\mathbf{x}_{s}\right\}_{s \in S}$ with $\mathbf{x}_{s}=\operatorname{Pr}^{\max }(s \models \diamond B)$ is the unique solution to the following equation system:

$$
\begin{array}{ll}
x_{s}=1 & \text { if } s \in S_{=1}^{\max } \\
x_{s}=0 & \text { if } s \in S_{=0}^{\max } \\
x_{s}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in \operatorname{Act}(s)\right\} & \text { if } s \in S_{>0}^{\max } \backslash S_{=1}^{\max }
\end{array}
$$

Quantitative reachability (max)

Theorem:

The family of values $\left\{\mathbf{x}_{s}\right\}_{s \in S}$ with $\mathbf{x}_{s}=\operatorname{Pr}^{\max }(s \models \diamond B)$ is the unique solution to the following equation system:

$$
\begin{array}{ll}
x_{s}=1 & \text { if } s \in S_{=1}^{\max } \\
x_{s}=0 & \text { if } s \in S_{=0}^{\max } \\
x_{s}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in \operatorname{Act}(s)\right\} & \text { if } s \in S_{>0}^{\max } \backslash S_{=1}^{\max }
\end{array}
$$

First make states in B absorbing

$$
\begin{aligned}
& S_{=1}^{\max }=S \backslash \forall \operatorname{Pre}^{*}\left(S \backslash \exists \operatorname{Pre}^{*}(B)\right) \\
& S_{=0}^{\max }=S \backslash \exists \operatorname{Pre}^{*}(B) \\
& S_{>0}^{\max }=\exists \operatorname{Pre}^{*}(B)
\end{aligned}
$$

Quantitative reachability (max)
 Value iteration algorithm

```
for all \(s \in S_{=1}^{\max }, \quad x_{s}^{(0)}=1\)
for all \(s \notin S_{=1}^{\max }, x_{s}^{(0)}=0\)
\(i=0\)
repeat
    \(i=i+1\)
    for all \(s \in S_{=1}^{\max }, \quad x_{s}^{(i)}=1\)
    for all \(s \in S_{=0}^{\max }, \quad x_{s}^{(i)}=0\)
    for all \(s \in S_{>0}^{\max } \backslash S_{=1}^{\max }\),
        \(x_{s}^{(i)}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t}^{(i-1)} \mid \alpha \in \operatorname{Act}(s)\right\}\)
until \(\left(\max _{s \in S}\left|x_{s}^{(i)}-x_{s}^{(i-1)}\right|<\varepsilon\right)\)
```


Quantitative reachability (max)
 Value iteration algorithm

```
for all }s\in\mp@subsup{S}{=1}{max},\quad\mp@subsup{x}{s}{(0)}=
for all }s\not\in\mp@subsup{S}{=1}{\operatorname{max}},\quad\mp@subsup{x}{s}{(0)}=
i=0
```

repeat

a consequece of

$$
x_{s}=\lim _{i \rightarrow \infty} x_{s}^{(i)}
$$

repeat

```
    \(i=i+1\)
```

 \(i=i+1\)
 for all \(s \in S_{=1}^{\max }, \quad x_{s}^{(i)}=1\)
 for all \(s \in S_{=1}^{\max }, \quad x_{s}^{(i)}=1\)
 for all \(s \in S_{=0}^{\max }, \quad x_{s}^{(i)}=0\)
 for all \(s \in S_{=0}^{\max }, \quad x_{s}^{(i)}=0\)
 for all \(s \in S_{>0}^{\max } \backslash S_{=1}^{\max }\),
 for all \(s \in S_{>0}^{\max } \backslash S_{=1}^{\max }\),
 \(x_{s}^{(i)}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t}^{(i-1)} \mid \alpha \in \operatorname{Act}(s)\right\}\)
 \(x_{s}^{(i)}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t}^{(i-1)} \mid \alpha \in \operatorname{Act}(s)\right\}\)
 until $\left(\max _{s \in S}\left|x_{s}^{(i)}-x_{s}^{(i-1)}\right|<\varepsilon\right)$

```
until \(\left(\max _{s \in S}\left|x_{s}^{(i)}-x_{s}^{(i-1)}\right|<\varepsilon\right)\)
```

What about

$$
\operatorname{Pr}^{\max }\left(\diamond^{=n} B\right) \text { and }
$$

$$
\operatorname{Pr}^{\max }(\diamond \leq n B) ?
$$

Quantitative bounded reachability

* Only two memoryless deterministic schedulers:

$$
\begin{array}{ll}
\mathfrak{S}_{1}(\circledast)=\alpha & \mathfrak{S}_{2}(\circledast)=\beta \\
\operatorname{Pr}^{\mathfrak{S}_{1}}(\diamond \leq 2 \odot)=0.875 & \operatorname{Pr}^{\mathfrak{S}_{2}}(\diamond \leq 2 \Theta)=0.9
\end{array}
$$

Quantitative bounded reachability

* Only two memoryless deterministic schedulers:

$$
\begin{array}{ll}
\mathfrak{S}_{1}(\circledast)=\alpha & \mathfrak{S}_{2}(\circledast)=\beta \\
\operatorname{Pr}^{\mathfrak{S}_{1}}(\diamond \leq 2 \odot)=0.875 & \operatorname{Pr}^{\mathfrak{S}_{2}}(\diamond \leq 2 \odot)=0.9
\end{array}
$$

*However $\operatorname{Pr}^{\max }(\diamond \leq 2 \odot)=0.975$ with

Memoryless deterministic schedulers are not sufficient

Quantitative bounded reachability (max)

repeat
$i=i+1$
for all $s \in S_{=1}^{\max }, \quad x_{s}^{(i)}=1$
for all $s \in S_{=0}^{\max }, \quad x_{s}^{(i)}=0$
for all $s \in S_{>0}^{\max } \backslash S_{=1}^{\max }$,
$x_{s}^{(i)}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t}^{(i-1)} \mid \alpha \in \operatorname{Act}(s)\right\}$
until $\left(\max _{s \in S}\left|x_{s}^{(i)}-x_{s}^{(i-1)}\right|<\varepsilon\right)$

```
```

```
for all }s\in\mp@subsup{S}{=1}{max},\quad\mp@subsup{x}{s}{(0)}=
```

```
for all }s\in\mp@subsup{S}{=1}{max},\quad\mp@subsup{x}{s}{(0)}=
for all }s\not\in\mp@subsup{S}{=1}{\operatorname{max}},\mp@subsup{x}{s}{(0)}=
for all }s\not\in\mp@subsup{S}{=1}{\operatorname{max}},\mp@subsup{x}{s}{(0)}=
i=0
```

i=0

```

\section*{Quantitative bounded reachability (max)}
```

for all }s\inB,\quad\mp@subsup{x}{s}{(0)}=
for all }s\not\inB,\quad\mp@subsup{x}{s}{(0)}=
i=0
$i=0$

```
repeat
\[
\begin{aligned}
& i=i+1 \\
& \text { for all } s \in B, \quad x_{s}^{(i)}=1 \\
& \text { for all } s \in S_{=0}^{\max }, \quad x_{s}^{(i)}=0 \\
& \text { for all } s \in S_{>0}^{\max } \backslash B,
\end{aligned}
\]
until \((i=n)\)

\section*{Computes}
```

Pr}\mp@subsup{}{}{\operatorname{max}}(\diamond=n B

```
repeat

To compute \(\operatorname{Pr}^{\max }(\diamond \leq n B)\) first make states in \(B\) absorbing
\[
x_{s}^{(i)}=\max \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t}^{(i-1)} \mid \alpha \in \operatorname{Act}(s)\right\}
\] then apply this algorithm

\section*{Qualitative reachability (min)}

Lemma: Let \(B \subseteq S\) be a set of absorbing states. Then, for \(s \in S\),
\(* \operatorname{Pr}^{\min }(s \models \diamond B)>0 \quad\) iff \(\quad s \in \forall \operatorname{Pr}^{*}(B)\)
* \(\operatorname{Pr}^{\min }(s \models \diamond B)=0 \quad\) iff \(\quad s \in S \backslash \forall \operatorname{Pre}^{*}(B)\)
* \(\operatorname{Pr}^{\text {min }}(s \models \diamond B)<1 \quad\) iff \(\quad s \in \exists \operatorname{Pre}^{*}\left(S \backslash \forall \operatorname{Pre}^{*}(B)\right)\)
* \(\operatorname{Pr}^{\text {min }}(s \models \diamond B)=1 \quad\) iff \(\quad s \in S \backslash \exists \operatorname{Pre} e^{*}\left(S \backslash \forall \operatorname{Pre}^{*}(B)\right)\)

Note the inversion of \(\forall\) and \(\exists\) respect to max qualitative reachability

\section*{Qualitative reachability (min)}

Lemma: Let \(B \subseteq S\) be a set of absorbing states. Then, for \(s \in S\),
- \(\operatorname{Pr}^{\min }(s \models \diamond B)>0\) iff \(s \in \forall \operatorname{Pr}^{*}(B)\)
* \(\operatorname{Pr}^{\min }(s \models \diamond B)=0 \quad\) iff \(\quad s \in S \backslash \forall \operatorname{Pre}^{*}(B)\)
\(\mathcal{O}(\operatorname{size}(\mathcal{M}))\)
* \(\operatorname{Pr}^{\text {min }}(s \models \diamond B)<1\) iff \(s \in \exists \operatorname{Pre}^{*}\left(S \backslash \forall \operatorname{Pre}^{*}(B)\right)\)
* \(\operatorname{Pr}^{\text {min }}(s \models \diamond B)=1 \quad\) iff \(\quad s \in S \backslash \exists \operatorname{Pre}^{*}\left(S \backslash \forall \operatorname{Pre}^{*}(B)\right)\)
\(\mathcal{O}(\operatorname{size}(\mathcal{M}))\)

Note the inversion of \(\forall\) and \(\exists\) respect to max qualitative reachability

Lemma: Let \(B \subseteq S\) be a set of absorbing states. Then, for \(s \in S\),
* \(\operatorname{Pr}^{\min }(s \models \diamond B)>0 \quad\) iff \(\quad s \in \forall \operatorname{Pr}^{*}(B)\)
* \(\operatorname{Pr}^{\min }(s \models \diamond B)=0\) iff \(s \in S \backslash \forall \operatorname{Pr}^{*}(B)\)
\(\mathcal{O}(\operatorname{size}(\mathcal{M}))\)
* \(\operatorname{Pr}^{\min }(s \models \diamond B)<1\) iff \(s \in \exists \operatorname{Pre}^{*}\left(S \backslash \forall \operatorname{Pre}^{*}(B)\right)\)
* \(\operatorname{Pr}^{\text {min }}(s \models \diamond B)=1 \quad\) iff \(\left.\quad s \in S \backslash \exists \operatorname{Pre}^{*}\left(S \backslash \forall \operatorname{Pre}^{*}(B)\right)\right\}\)


Actually achieved with a different algorithm*


\section*{Quantitative reachability (min)}

\section*{Theorem:}

The family of values \(\left\{\mathbf{x}_{s}\right\}_{s \in S}\) with \(\mathbf{x}_{s}=\operatorname{Pr}^{\min }(s \models \diamond B)\) is the unique solution to the following equation system:
\[
\begin{aligned}
& x_{s}=1 \\
& x_{s}=0
\end{aligned}
\]
\[
\text { if } s \in B
\]
\[
\text { if } \operatorname{Pr}^{\min }(s \models \diamond B)=0
\]
\[
x_{s}=\min \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in \operatorname{Act}(s)\right\} \quad \text { if } \operatorname{Pr}^{\min }(s \models \diamond B)>0 \text { and } s \notin B
\]

\section*{Quantitative reachability (min)}

\section*{Theorem:}

The family of values \(\left\{\mathbf{x}_{s}\right\}_{s \in S}\) with \(\mathbf{x}_{s}=\operatorname{Pr}^{\min }(s \models \diamond B)\) is the unique solution to the following equation system:
\[
\begin{array}{ll}
x_{s}=1 & \text { if } s \in S_{=1}^{\min } \\
x_{s}=0 & \text { if } s \in S_{=0}^{\min } \\
x_{s}=\min \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t} \mid \alpha \in \operatorname{Act}(s)\right\} & \text { if } s \in S_{>0}^{\min } \backslash S_{=1}^{\min }
\end{array}
\]

\title{
Quantitative reachability (min) \\ Value iteration algorithm
}
```

```
for all \(s \in S_{=1}^{\min }, x_{s}^{(0)}=1\)
```

```
for all \(s \in S_{=1}^{\min }, x_{s}^{(0)}=1\)
for all \(s \notin S_{=1}^{\min }, x_{s}^{(0)}=0\)
for all \(s \notin S_{=1}^{\min }, x_{s}^{(0)}=0\)
\(i=0\)
\(i=0\)
repeat
repeat
    \(i=i+1\)
    \(i=i+1\)
    for all \(s \in S_{=1}^{\min }, x_{s}^{(i)}=1\)
    for all \(s \in S_{=1}^{\min }, x_{s}^{(i)}=1\)
    for all \(s \in S_{=0}^{\min }, x_{s}^{(i)}=0\)
    for all \(s \in S_{=0}^{\min }, x_{s}^{(i)}=0\)
    for all \(s \in S_{>0}^{\min } \backslash S_{=1}^{\max }\),
    for all \(s \in S_{>0}^{\min } \backslash S_{=1}^{\max }\),
        \(x_{s}^{(i)}=\min \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t}^{(i-1)} \mid \alpha \in \operatorname{Act}(s)\right\}\)
        \(x_{s}^{(i)}=\min \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t}^{(i-1)} \mid \alpha \in \operatorname{Act}(s)\right\}\)
until \(\left(\max _{s \in S}\left|x_{s}^{(i)}-x_{s}^{(i-1)}\right|<\varepsilon\right)\)
```

```
until \(\left(\max _{s \in S}\left|x_{s}^{(i)}-x_{s}^{(i-1)}\right|<\varepsilon\right)\)
```

```

\section*{Quantitative bounded reachability (min)}
\[
\begin{aligned}
& \text { for all } s \in B, x_{s}^{(0)}=1 \\
& \text { for all } s \notin B, x_{s}^{(0)}=0
\end{aligned}
\]

\section*{Computes}
\[
\operatorname{Pr}^{\min }\left(\diamond^{=n} B\right)
\]
\(i=0\)
repeat
\[
i=i+1
\]
\[
\text { for all } s \in B, x_{s}^{(i)}=1
\]
\[
\text { for all } s \in S_{=0}^{\min }, x_{s}^{(i)}=0
\]

To compute \(\operatorname{Pr}^{\min }(\diamond \leq n B)\)
\[
\text { for all } s \in S_{>0}^{\min } \backslash B
\] first make states in \(B\) absorbing
\[
x_{s}^{(i)}=\min \left\{\sum_{t \in S} \mathbf{P}(s, \alpha, t) \cdot x_{t}^{(i-1)} \mid \alpha \in \operatorname{Act}(s)\right\}
\] then apply this algorithm
```

until (i=n)

```

\section*{Quantitative reachability}
*We gave approximating algorithms (value iteration) to calculate quantitative reachability (max or min)
* However, the exact values can be computed by solving a linear programming problem
* Therefore, quantitative reachability (max or min) can be computed in polynomial time

\section*{Constrained reachability}

To compute
\[
\begin{array}{rlll}
\operatorname{Pr}^{\max }(s \models C \mathrm{U} B) & \operatorname{Pr}^{\max }\left(s \models C \mathrm{U}^{\leq n} B\right) & \operatorname{Pr}^{\max }(s \models C \mathrm{U} B)=1 \\
\operatorname{Pr}^{\min }(s \models C \mathrm{U} B) & \operatorname{Pr}^{\min }\left(s \models C \mathrm{U}^{\leq n} B\right) & \operatorname{Pr}^{\min }(s \models C \mathrm{U} B)=1 & \text { etc. }
\end{array}
\]
in a MDP \(\mathcal{M}\) do:
1. Obtain \(\mathcal{M}_{\mathrm{U}}\) from \(\mathcal{M}\) by making states in \(S \backslash(C \cup B)\) absorbing.
2. Apply the algorithm in \(\mathcal{M}_{\mathrm{U}}\) to verify the reachability property \(s \models \diamond B\).

\section*{PCTL in MDP}

A PCTL formula \(\Phi\) holds in state \(s \in S\) of a MDP \(\mathcal{M}\), denoted by \(s \models \Phi\), whenever:
formulas
\[
\begin{array}{llll}
s & \models p & \text { iff } & p \in L(s) \\
s & \models \neg \Phi & & \text { iff }
\end{array} \quad s \not \models \Phi
\]
\[
\begin{array}{ll}
\rho \models O \Phi & \text { iff } \quad \rho(1) \models \Phi \\
\rho \models \Phi \mathrm{U} \Psi \quad \text { iff } \quad \text { exists } j \geq 0 \text { s.t. } \quad \rho(j) \models \Psi \text { and for all } 0 \leq k<j, \rho(k) \models \Phi \\
\rho \models \Phi \mathrm{U}^{\leq n} \Psi \quad \text { iff } \quad \text { exists } 0 \leq j \leq n \text { s.t. } \rho(j) \models \Psi \text { and for all } 0 \leq k<j, \rho(k) \models \Phi
\end{array}
\]

\section*{PCTL in MDP}

A PCTL formula \(\Phi\) holds in state \(s \in S\) of a MDP \(\mathcal{M}\), denoted by \(s \models \Phi\), whenever:
\[
\begin{array}{lll}
s \models p & \text { iff } & p \in L(s) \\
s \models \neg \Phi & & \text { iff }
\end{array} \quad s \not \models \Phi
\]
where \(\operatorname{Pr}^{\mathfrak{S}}(s \models \phi)=\operatorname{Pr}_{s}^{\mathfrak{G}}(\{\rho \in \operatorname{Path}(s) \mid \rho \models \phi\})\) and
formulas
\[
\begin{array}{ll}
\rho \models O \Phi & \text { iff } \quad \rho(1) \models \Phi \\
\rho \models \Phi \mathrm{U} \Psi \quad \text { iff } \quad \text { exists } j \geq 0 \text { s.t. } \rho(j) \models \Psi \text { and for all } 0 \leq k<j, \rho(k) \models \Phi \\
\rho \models \Phi \mathrm{U}^{\leq n} \Psi \quad \text { iff } \quad \text { exists } 0 \leq j \leq n \text { s.t. } \rho(j) \models \Psi \text { and for all } 0 \leq k<j, \rho(k) \models \Phi
\end{array}
\]

\section*{PCTL in MDP}

A PCTL formula \(\Phi\) holds in state \(s \in S\) of a MDP \(\mathcal{M}\), denoted by \(s \models \Phi\), whenever:
\[
\begin{array}{lll}
s \models p & \text { iff } & p \in L(s) \\
s \models \neg \Phi & & \text { iff }
\end{array} \quad s \not \models \Phi
\]
where \(\operatorname{Pr}^{\mathfrak{S}}(s \models \phi)=\operatorname{Pr}_{s}^{\mathfrak{S}}(\{\rho \in \operatorname{Path}(s) \mid \rho \models \phi\})\) and
\[
\begin{aligned}
& \rho \models \bigcirc \Phi \quad \text { iff } \quad \rho(1) \models \Phi \\
& \rho \models \Phi \mathrm{U} \Psi \quad \text { iff } \quad \text { exists } j \geq 0 \text { s.t. } \rho(j) \models \Psi \text { and for all } 0 \leq k<j, \rho(k) \models \Phi \\
& \rho \models \Phi U^{\leq n} \Psi \quad \text { iff } \quad \text { exists } 0 \leq j \leq n \text { s.t. } \quad \rho(j) \models \Psi \text { and for all } 0 \leq k<j, \rho(k) \models \Phi
\end{aligned}
\]
```

fun Sat(\Phi) {
// input: a PCTL formula }
// output: {s\inS|s\models\Phi}
case { }\Phi\inA
\Phi\equiv\neg\Psi
\Phi\equiv\mp@subsup{\Psi}{1}{}\wedge \Psi \Psi
\Phi\equiv\mp@subsup{\textrm{P}}{\trianglelefta}{}(\phi)
\Phi\equiv\mp@subsup{P}{\trianglerighta}{}(\phi)
return {s\inS| \Phi\inL(s)}
return S\Sat(\Psi)
return Sat (}\mp@subsup{\Psi}{1}{})\cap\operatorname{Sat}(\mp@subsup{\Psi}{2}{}
return {s\inS |maxProb}(s,\phi)\trianglelefta
return {s\inS | minProb (s,\phi)\trianglerighta}
}
}
fun maxProb (s,\phi) {
// input: a state s and a path formula }
// output: }\mp@subsup{\operatorname{Pr}}{s}{max}(s\models\phi

```

```

 \phi\equiv\PhiU\Psi
 \phi\equiv\Phi U}\mp@subsup{\mathbb{U}}{}{\leqn}
 let B=Sat(\Psi); let C=Sat(\Phi)
 return }\mp@subsup{\operatorname{Pr}}{s}{max}(C\textrm{U}B)\quad// constrained reachabilit
    ```

\section*{Algorithm for PCTL model checking}
\[
\begin{array}{ll}
\phi \equiv \Phi \mathrm{U}^{\leq n} \Psi \quad & \text { let } B=\operatorname{Sat}(\Psi) ; \text { let } C=\operatorname{Sat}(\Phi) \\
& \text { return } \operatorname{Pr}_{s}^{\max }\left(C \mathrm{U}^{\leq n} B\right) \quad / / \text { bounded constrained reachability }
\end{array}
\]
\}
\[
\text { case } \begin{aligned}
\{ & \Phi \in A P \\
& \Phi \equiv \neg \Psi \\
& \equiv \Psi_{1} \wedge \Psi_{2} \\
\Phi & \equiv \mathrm{P}_{\triangleleft a}(\phi) \\
\Phi & \equiv \mathrm{P}_{\triangleright a}(\phi)
\end{aligned}
\]
\}
fun maxProb \((s, \phi)\) \{
// input: a state \(s\) and a path formula \(\phi\)
// output: \(\operatorname{Pr}_{s}^{\max }(s \models \phi)\)
case \(\{\quad \phi \equiv \bigcirc \Phi\)
let \(B=\operatorname{Sat}(\Psi)\); let \(C=\operatorname{Sat}(\Phi)\)
return \(\operatorname{Pr}_{s}^{\max }(C \mathrm{U} B) \quad / /\) constrained reachability
 changing max for min

Polynomial on the size of \(M\)

Linear on the size of \(\Phi\)
Linear on the largest \(n\)
```

\triangleleft\in{<,\leq}

```
\triangleleft\in{<,\leq}
\triangleright\in{\geq,>}
```

\triangleright\in{\geq,>}

```

\title{
Probabilistic model checkers
}

\section*{The quantitative automata zoo}


\section*{The quantitative automata zoo}



\section*{The quantitative automata zoo}



\section*{State of the Art PMC}


\section*{PRISM}
* First appeared in 2000 [KNP00, dAKNPS00]
- https://www.prismmodelchecker.org/
* In addition POMDP, POPTA, IMDP
* PRISM language \(\rightarrow\) network of modules
* Properties: PCTL, CSL, LTL, PCTL*, steady state, rewards and costs, multi-objective
* Symbolic, hybrid, and explicit engines
* Also SMC on deterministic models
* Alternate version for stochastic games

\section*{State of the Art PMC}


\section*{The Modest toolset}
* First appeared in 2009 [Hartmanns09]
* https://www.modestchecker.net/
* Modest language includes conventional programming constructs with ideas from process algebra [DHKK01]
* Properties: reachability, bounded reachability, steady state, expected rewards
* mcsta: disk-based explicit engine
* modes: SMC for non-det. models and RES
* More tools: prohver, modysh, mosta, moconv

\section*{State of the Art PMC}


\section*{Storm}
* First appeared in 2017 [DJKV17]
* https://www.stormchecker.org/
* In addition POMDP, Parametric models
* Languages: PRISM, cpGCL, GSPN, DFT
* Properties: PCTL, CSL, LTL, steady state, expected rewards, multi-objective, conditional probabilies
* Counterexample generation
* Explicit and symbolic engine

\section*{State of the Art PMC}


\title{
Probabilistic Model Checking
}

\author{
Pedro R. D'Argenio \\ Universidad Nacional de Córdoba - CONICET \\ https://cs.famaf.unc.edu.ar/~dargenio/
}```

