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Abstract. We report on new strategies for model checking quantita-
tive reachability properties of Markov decision processes by successive
re�nements. In our approach, properties are analyzed on abstractions
rather than directly on the given model. Such abstractions are expected
to be signi�cantly smaller than the original model, and may safely refute
or accept the required property. Otherwise, the abstraction is re�ned
and the process repeated. As the numerical analysis involved in settling
the validity of the property is more costly than the re�nement process,
the method pro�ts from applying such numerical analysis on smaller
state spaces. The method is signi�cantly enhanced by a number of novel
strategies: a strategy for reducing the size of the numerical problems to
be analyzed by identi�cation of so-called essential states, and heuristic
strategies for guiding the re�nement process.

1 Introduction

Fully automatic veri�cation of a given (traditionally) �nite-state system with
respect to a given temporal logic property is known as model checking. For �nite
state systems, model checking has reached a clear level of maturity as witnessed
by a number of successful industrial cases (e.g. [18,11]). Model checking of �nite
state systems allows settlement of qualitative properties such as �the system will
never reach an erroneous situation�. However, it is often vital that additional
quantitative properties are established in order for the system to be considered
correct. Such properties include real-time requirements such as �a desired state
will be reached within 105 seconds� and probabilistic properties of the type �a de-
sired state will be reached with probability at least 99%�. While real-time model
checking tools have been subject to signi�cant research e�orts leading to mature
tools such as UPPAAL [24] and Kronos [8], it was not until recently that atten-
tion was drawn to e�cient tool implementations for probabilistic model checking
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despite theoretical studies carried out during the last decade [14,2,7,19,4, etc.].
In this paper we report on a signi�cant technical improvement on a recent tool
of ours [9] to model check probabilistic properties.

In our context systems are described in terms of Markov decision processes
[29], also called probabilistic transition systems (PTS) or probabilistic automata.
This model allows to combine probabilistic and non-deterministic steps providing
a natural extension to traditional non-deterministic models. The choice of this
model is partly due to the fact that it is closed under parallel composition (which
facilitates modeling and compositional reasoning), but primarily because PTSs
are amenable to abstractions. This is a key factor for the techniques introduced
in this paper.

We focus on a restricted class of reachability properties. These properties
allow to specify that the probability of reaching a particular �nal condition
φf from any reachable state satisfying a given initial condition φi is smaller (or
greater) than a given probability p regardless of how non-deterministic choices of
the model are resolved. Though apparently restrictive, the use of test-automata
allow the range of properties that can be speci�ed to be broadened substantially.

Our method [9] is based on automatic abstraction and re�nement. The basic
idea is to use abstractions in order to reduce the high cost of the numerical analy-
sis involved in computing the minimum and maximum reachability probabilities
for PTSs. The abstractions considered are obtained via successive re�nements,
starting from an initial coarse partitioning of the state space derived from the
property under study. For a given re�nement the property is checked on the
induced abstract model, hopefully settling the property. However, the verdict
may be inconclusive, when threshold probability p happens to be between the
calculated minimum and the maximum abstract probabilities. In this case, the
abstraction is further re�ned and the property checked again. This process is
successively repeated until either the property is settled, or no further re�ne-
ment is possible. To e�ciently store the state space, perform abstractions and
process the re�nement steps, we use Bdds and Mtbdds (or Adds) [9,12,3].

The performance of our method depends intimately on the e�ciency of the
numerical analysis performed on abstract models as well as the choice of re-
�nements and initial partitioning. As main contributions of this paper we pro-
vide strategies for reducing the size of the numerical problems to be analyzed
(by identi�cation of so-called essential states) as well as strategies for guiding
the re�nement process. Finally, a number of comparative experimental results
demonstrate the e�ectiveness of our method and suggested strategies.

The paper is organized as follows: Sections 2, 3, and 4 recall the theoretical
foundation of the method and the implemented tool, which has been presented
in [9]. Sections 5 and 6 present our reduction and re�nement strategies. Sec-
tion 7 provides details on implementation and experimental results. Section 8
concludes.

Related Work. Other quantitative model checkers have been developed. The
tool ProbVerus [15] allows to check the validity of a PCTL formula [14] on a
(discrete time) Markov chain. Prism [22,28] is a quantitative model checker
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for PCTL formulas on (discrete time) Markov decision processes, i.e., non-
determinism is inherent to the model, and on continuous-time Markov chains.
Like Prism, we also do model-checking on Markov decision processes, but we re-
strict to a particular kind of PCTL formula. Another quantitative model checker
is E � MC2 [17], which model checks probabilistic timed properties on continuous-
time Markov chains.

2 Probabilistic Transition Systems

Probabilistic transition systems (PTS for short) generalize the well-known tran-
sition systems with probabilistic information. In a PTS, a transition does not
lead to a single state but to a probability space whose sample space is a set of
states. The model we de�ne is widely used (see, e.g. [30,7,21]) and is also known
as Markov decision processes [29].

Let Distr(Ω) denote the set of all probability distributions over the sample
space Ω.

De�nition 1 (Probabilistic Transition Systems). A probabilistic transi-
tion system (PTS for short) is a structure T = (S,→) where S is a set of states,
and →⊆ S × Distr(S) is the transition relation. We write s→ π for (s, π) ∈ →.
A PTS is said to be a fully probabilistic transition system (FPTS for short) if
(s → π ∧ s → ρ) ⇒ π = ρ. A rooted PTS (resp. FPTS) (T, s0) is a PTS (resp.
FPTS) equipped with an initial state s0 ∈ S. A PTS may be equipped with a
proposition assignment p : S → P(AP), where AP is a �nite set of atoms and
P(AP) the set of propositional formula on AP. We de�ne |=⊆ S × P(AP) by
s |= g i� p(s) ⇒ g is a tautology.

We write s → whenever there is a π such that s → π; otherwise, we write
s 
→. We let supp(π) = {s′ | π(s′) > 0}. We call s a sink state if s 
→.

x < 2 0.75

0.25x < 2

0.75 x++

0.25 x++

i f

x ≥ 2

Fig. 1. A PTS

Figure 1 shows (a symbolic representation)
of an example PTS T = (S,→) where S =
{i, f}×{0, 1, 2}. An example transition is (i, 0)→
{(i, 1) �→ 0.75, (f, 0) �→ 0.25}. T is nondetermin-
istic as exhibited by the additional transition
(i, 0) → {(i, 1) �→ 0.25, (f, 0) �→ 0.75} originat-
ing from state (i, 0). We can assume that T is
equipped with a proposition assignment p such
that p(l, v) = (l ∧ x = v).

Let T = (S,→) be a PTS. A simple path in
T is a �nite sequence of states σ = s0s1s2 . . . sn,
where for each 0 ≤ i < n there exists πi ∈
Distr(S) such that si → πi and πi(si+1) > 0. Let σ(i) denote the state in the i-th
position. Let |σ | be the length of σ and let �rst(σ) = σ(1) and last(σ) = σ(|σ |).
A simple path starting from s ∈ S is a simple path σ with σ(1) = s. A state t is
reachable from another state s in T if there is a simple path in T with s = �rst(σ)
and t = last(σ).
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A full path in T is a sequence of states σ being either a simple path with
last(σ) 
→, or an in�nite sequence. We denote by s-paths(T ) and f-paths(T ) the
sets of simple paths and fullpaths in T , and by s-paths(T, s) and f-paths(T, s) the
sets of simple paths and fullpaths in T starting from s. Let reach(T, s) denote
the set of all states reachable from s in T .

We now de�ne a probability measure on the full paths of a FPTS F . For
any simple path σ ∈ s-paths(F ), de�ne σ↑ = {π ∈ f-paths(F ) | σ ≤ π} where
≤ is the classical pre�x order on sequences. Let F(F ) be the smallest σ-�eld on
f-paths(F ) which contains σ↑ for each σ ∈ s-paths(F ). Then for any state s of
F , PF,s is the uniquely de�ned probability measure on F(F ) such that for any
σ = s0s1 . . . sn ∈ s-paths(F ) such that si →F πi for all i, 0 ≤ i < n:

PF,s(σ↑)
�= if (s = s0) then π0(s1) · π1(s2) · . . . · πn−1(sn) else 0

We will write PF,s(σ) to denote PF,s(σ↑). Intuitively, PF,s(σ) is the probability
of σ in F starting from s.

Any given PTS T de�nes a set of probabilistic executions, each one obtained
by iteratively scheduling one of the possible post-state distributions from each
pre-state, starting from a given state s0 ∈ S. Notice that the same state s of
T may occur more than once during a probabilistic execution and each time a
di�erent distribution from s may be scheduled. In order to distinguish such oc-
currences we include in all states s of a probabilistic execution the past history of
s which is the unique path leading from the start state to s. Thus, a probabilistic
execution essentially de�nes a �nite or in�nite tree.

De�nition 2 (Probabilistic Execution). A probabilistic execution of a PTS
T = (S,→T ) is a FPTS F = (s-paths(T ),→F ) such that (q →F ρ) ⇔ (∃π :
last(q) →T π ∧ ∀s ∈ S : ρ(qs) = π(s))

We denote by execs(T, s0) the set of all probabilistic executions of T rooted in
s0.

3 Computing Extremum Probabilities

For a given rooted PTS (T, s0) we are interested in the extremum probabilities
of reaching some �nal condition from a given initial condition. For any given
formula φ ∈ P(AP) we de�ne the set of all minimal simple paths of T that end
in a state satisfying condition φ as:

ΣT
φ

�= {σ ∈ s-paths(T ) | last(σ) |=T φ ∧ ∀i, 0 < i < |σ | : σ(i) |=T ¬φ}

By recording history information in states, the above set characterizes uniquely a
set of simple paths of probabilistic executions of T . We also use ΣT

φ to denote this
alternative characterization. It should be clear from the context which alternative
is used. We omit T in the notation whenever clear from context.
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De�nition 3 (Extremum Probabilities). The minimum and maximum
probabilities of reaching a �nal condition φf from an initial condition φi in
a rooted PTS (T, s0) equipped with a proposition assignment are de�ned respec-
tively by

Pinf
T,s0

(φi, φf ) �= inf
{
PF,s(Σφf

) | s ∈ reach(T, s0)∧
s |= φi ∧ (F, s) ∈ execs(T, s)

} (1)

Psup
T,s0

(φi, φf ) �= sup
{
PF,s(Σφf

) | s ∈ reach(T, s0)∧
s |= φi ∧ (F, s) ∈ execs(T, s)

} (2)

We talk of an extremum probability to refer to either the in�mum or supremum
probability.

We use the shorthand Pinf(s) and Psup(s) for Pinf
T,s0

(s = s0, φf ) and Psup
T,s0

(s =
s0, φf ), respectively. We denote by I and F the sets of states satisfying φi and

φf , respectively. Our aim is to e�ciently compute Pinf(I) �= infs∈I Pinf(s) and

Psup(F ) �= sups∈I Psup(s).
Consider again the PTS T of Figure 1. Take the initial condition φi = (i ∧

x = 0) (which correspond to the initial state) and the �nal condition φf = f. It is
easy to see that Pinf(φi, φf ) is obtained by always resolving the nondeterminism
from state i in favor of the upper transition. Thus, Pinf(φi, φf ) = 0.25 + (0.75 ·
0.25) = 0.4375. Analogously, Psup(φi, φf ) is obtained by always resolving in favor
of the lower transition and thus Psup(φi, φf ) = 0.75 + (0.25 · 0.75) = 0.9375.

The equations 1 and 2 of de�nition 3 de�ne extremum probabilities, but
do not provide an e�ective way of computing them. However, it is well known
[7,5] that Pinf and Psup can be characterized as the least �xpoints of operators
F inf , F sup : (S → [0, 1]) → (S → [0, 1]) de�ned as follows. If s ∈ F then
F inf(f)(s) = F sup(f)(s) = 1. If s 
∈ F then

F inf(f)(s) = min
s→π

∑
s′∈S

π(s′) · f(s′) and F sup(f)(s) = max
s→π

∑
s′∈S

π(s′) · f(s′)

(3)
Based on the above equations, two methods have been explored to compute
Pinf(s) and Psup(s). One can either compute the least �xpoints by iterative
methods, or the equations can be transformed into a linear optimization problem
that can be solved using classical techniques of linear programming. In this work
we choose the linear programming method.

We use a standard precomputation of certain sets of system states in order
to simplify the system before applying linear programming techniques. These
sets are: the set of all reachable states Reach, and for each p ∈ {0, 1} the set
of states having in�mum (resp. supremum) probability p of reaching φf . These
latter sets of states are denoted Pinf

=0, Pinf
=1, Psup

=0 , and Psup
=1 , respectively. All of the

above sets can be computed using discrete �xpoint analysis [10] on a boolean
abstraction of the system.
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Based on the above precomputations our linear programming problems for
computing Pinf and Psup become as follows:

maximize Pinf under the constraints


Pinf ≤ Pinf(s), s ∈ I
Pinf(s) = 0, s ∈ Psup

=0

Pinf(s) = 1, s ∈ (F ∪ Pinf
=1)

Pinf(s) ≤
∑
s′∈S

π(s′) · Pinf(s′), s→ π, s ∈ S \ (Psup
=0 ∪ Pinf

=0 ∪ F )

(4)

minimize Psup under the constraints


Psup ≥ Psup(s), s ∈ I
Psup(s) = 0, s ∈ Psup

=0

Psup(s) = 1, s ∈ F ∪ Psup
=1

Psup(s) ≥
∑
s′∈S

π(s′) · Psup(s′), s→ π, s ∈ S \ (Psup
=0 ∪ Psup

=1 ∪ F )

(5)

4 Simulations and Partitioning

Probabilistic simulation [20,30] is central to state the correctness of the abstrac-
tion technique proposed in this paper. For any δ ∈ Distr(S × S), s ∈ S and
X ⊆ S, δ(s,X) and δ(X, s) will denote resp.

∑
x∈X δ(s, x) and

∑
x∈X δ(x, s).

De�nition 4 (Simulation). Let C ⊆ S × S be a relation on states de�ning a
discrimination criterion. A relation R ⊆ S × S is a C-(probabilistic) simulation
if, whenever sRt,

1. (s, t) ∈ C, and
2. if s→ π, there exist ρ such that t→ ρ and π �R ρ.

where π �R ρ if there is δ ∈ Distr(S × S) such that for all s, t ∈ S, (i) π(s) =
δ(s, S), (ii) ρ(t) = δ(S, t), and (iii) δ(s, t) > 0 ⇒ sRt. s is C-simulated by t,
notation s �C t, if there is a C-simulation R with sRt.

Our interest is to check when a PTS reaches a goal φf starting from any
state satisfying some initial condition φi (φi, φf ∈ P(AP)). Let Cφi,φf

be the
discriminating criterion de�ned by

(s, t) ∈ Cφi,φf
⇐⇒ (s |= φf ⇔ t |= φf ) ∧ (s |= φi ⇔ t |= φi)

We write only C whenever φi and φf are clear from the context. Notice that C
is equivalence relation. Simulation �C provides a su�cient condition for preser-
vation of extremum probabilities, as made precise by the following theorem.

Theorem 1. Let (T1, s
1
0) and (T2, s

2
0) be two rooted PTSs such that none of

them contains a sink state, and let C = Cφi,φf
. Then (T1, s

1
0) �C (T2, s

2
0) implies

Psup
T1,s1

0
(φi, φf ) ≤ Psup

T2,s2
0
(φi, φf ) and Pinf

T1,s1
0
(φi, φf ) ≥ Pinf

T2,s2
0
(φi, φf ).
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s1

s0 s2

s3

1/3

1/41/4

1/2

1/2

1/2

1/31/3

A1A0
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s0 s2

s3

2/3

1/2

1

1/3

1/2

(a) (b)

Fig. 2. A PTS and its quotient by the partition A = {{s0, s1}, {s2, s3}}
The requirement that every state has a transition is not really harmful as each
sink state can always be completed with a self-looping transition without a�ect-
ing the properties of our interest on the original PTS.

We can abstract a PTS by partitioning its state space, and any such parti-
tioning will induce an abstract PTS which will simulate the original (concrete)
one. As a result extremum properties will be preserved by the abstract system.

De�nition 5 (Quotient PTS). Let T = (S,→T ) a PTS equipped with the
proposition assignment p. Let A = (Ak)k∈K be a partition of S. The quotient
PTS according to A is the PTS T/A = (A,→A, p/A), where

1. A→A π/A ⇔ ∃s ∈ A : s→ π ∧ ∀A′ ∈ A : (π/A)(A′) �=
∑

s′∈A π(s
′), and

2. p/A(A) �=
∨

s∈A p(s).

For a rooted PTS (T, s0), its quotient is given by (T, s0)/A �= (T/A, A) provided
s0 ∈ A ∈ A.
Figure 2 gives an example of a quotient PTS. In the following we state the formal
relationships between abstraction by partitioning and simulation. For any two
partitions A and B of the same set, de�ne A ≤ B ⇔ ∀A ∈ A. ∃B ∈ B. A ⊆ B.
Theorem 2. Let (T, s0) be a rooted PTS with a set of states S and let C be an
equivalence relation de�ning a partition A of S. Then for any partition B of S
such that B ≤ A, (T, s0)/B �C (T, s0)/A
Notice the special case of the theorem where B partitions S into singleton sets.
In this case (T, s0)/B is isomorphic to (T, s0). The following corollary states
the relationship of abstraction by partitioning and preservation of extremum
probabilities.

Corollary 1. Let (T, s0) be a rooted PTS equipped with a proposition assign-
ment. Let φi and φf be the initial and �nal conditions. Let C be the equivalence
relation C = Cφi,φf

de�ning a partition C of S. Then for any two partitions A
and B such that B ≤ A ≤ C,
Psup

(T,s0)/B(φi, φf ) ≤ Psup
(T,s0)/A(φi, φf ) and Pinf

(T,s0)/B(φi, φf ) ≥ Pinf
(T,s0)/A(φi, φf )
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(a) Initial situation
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(b) After reduction

Fig. 3. Example of an essential state

5 Reduction Strategies

In this section we present new reduction strategies, that allow for simpli�cations
of the linear programming problem characterizing the extremum probabilities
of a PTS. First, we describe some optimizations which can be applied to the
obtained linear programming problem. Then, we describe a new reduction tech-
nique which can be applied to a PTS before generating the corresponding linear
programming problem. This reduction removes all but a particular type of es-
sential states.

Our reduction techniques are orthogonal to our abstraction and re�nement
techniques and are therefore generally applicable as preprocessing steps for com-
puting extremum probabilities of any PTS.

Optimizing Linear Programming Problems. Some optimizations are possible be-
fore solving an obtained linear programming problem. First, it is worth substitut-
ing the constant values 0 or 1 associated to special states. Notice that this a very
simple case of Gaussian elimination and the substitution can make some inequa-
tions redundant; such inequations can be removed. Last and most important,
when we obtain a single inequation of the form Pinf(s) ≥ . . . or Psup(s) ≤ . . .,
we can replace the inequality by an equality, then perform Gaussian elimination,
and �nally remove new redundant inequations. Such transformations reduce the
number of both variables and constraints.

Abstracting to Essential States. Suppose that a fragment of a PTS looks like
the one depicted in Fig. 3(a). All probabilistic paths starting from s1, s2, s3, s4
are leading to the state se with probability 1 in a �nite number of steps and
therefore Pinf(si) = Pinf(se) and Psup(si) = Psup(se), for i = 1, 2, 3, 4. Thus, we
could reduce the system by representing all of the above states via the single
state se, and in addition merge (add) the probabilities for any distribution to
enter the states represented by se. This analysis may at �rst seem quite identical
to performing Gaussian elimination on the induced linear programming problem.
However, this is not completely true. Besides reducing the size of the PTS, our
analysis can also remove some non-determinism in the system, thus allowing
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to replace inequations by equations in the corresponding linear programming
problem. In the �gure on the right, we have Pinf(s1) ≤ Pinf(s3) = Pinf(se)
and Pinf(s2) ≤ Pinf(s4) = Pinf(se). Gaussian elimination would remove Pinf(s3)
and Pinf(s4), but would not replace the inequations on Pinf(s1) and Pinf(s4) by
equations, thus limiting further eliminations.

Consider states s5 and s6 on Fig. 3(a). They also agree with state se on their
in�mum and supremum probabilities. However, due to the loop between s5 and
s6, these properties appear only when taking into account in�nite paths. The
corresponding analysis is thus more expensive than the one in which only �nite
paths needs consideration. We consider only the analysis based on �nite paths.

We now formalize the intuitive ideas of the previous paragraph. Let T =
(S,→) be a PTS equipped with a set of �nal states F that are supposed to
be sink. We de�ne a domination relation �⊆ S × S with the intuition that
s1 � s2 whenever all probabilistic paths starting from s1 will pass through s2
with probability 1. This intuitive semantic de�nition can be characterized as a
least �xpoint as follows.

De�nition 6 (Domination Relation, Essential States, and Domination
Equivalence). Let � be the smallest relation satisfying the following. For all
s ∈ S, s � s, and for all s, t ∈ S s.t. s 
= t,

s � t ⇐ (s→) ∧ ∀π : (s→ π ⇒ (∀s′ ∈ supp(π) : s′ � t)) (6)

The relation � can be shown to be a partial order under the condition all states
in Psup

=0 have been removed. States that are maximal with respect to � are called
essential states. We let ∼ denote the relation induced from � as follows:

s1 ∼ s2 ⇔ ∃t : s1 � t ∧ s2 � t (7)

In other words, states related by ∼ are dominated by the same state. Relation ∼
is an equivalence relation.

We will reduce a concrete PTS to an abstract one containing only essential
states, and such that the abstract PTS preserves the exact extremum probabili-
ties of the concrete PTS. We call the abstract PTS an essential state abstraction.
To compute the essential state abstraction, we could try to use the quotient
construction of De�nition 5 with respect to the partition corresponding to the
equivalence relation ∼. However, this will not guarantee an exact abstraction.
Intuitively, the transitions linking states inside an equivalence class will gener-
ate loops on the abstract graph, and thus Pinf may be lower than on the initial
system. For states inside a class with a looping transition Pinf will be 0.

However, by de�nition of ∼, we know that each equivalence class has a unique
essential state. These essential states can be taken as abstract states representing
all the equivalence classes. Also, any concrete distribution can be abstracted by
merging (adding) all probabilities for states in the same equivalence class onto
the essential state representing this class. The following de�nition formalizes this
construction.
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De�nition 7 (Essential State Abstraction of a PTS). Let T = (S,→) be
a PTS equipped with a set of �nal states F supposed to be sink. Let E be the
partition of S associated to ∼, and let E ⊆ S be the set of essential states.
For any e ∈ E let [e] denote the equivalence class of e in E. The essential PTS
of T is the PTS Tε = (E,→ε) with �nal condition F ⊆ E, and where →ε is
de�ned by: e →ε π/E ⇔ e → π where π/E ∈ Distr(E) is the distribution st.
π/E(e) =

∑
s∈[e] π(s).

Proposition 1 (Preservation of Extremum Probabilities). Let T = (S,→
) be a PTS equipped with a set of �nal states F that are sink, and let Tε = (E,→ε)
be its essential abstraction. For s ∈ S dominated by e ∈ E, we have:

Pinf
T (s, F ) = Pinf

Tε
(e, F ) and Psup

T (s, F ) = Psup
Tε

(e, F )

se

s3 s4

s1
s2

s
s5

s6

Fig. 4.

Algorithm and Complexity. Given a PTS T = (S,→), we
want to compute the essential elements of T , as well as
their associated set of dominated elements. This is done by
using the �xpoint de�nition of �, and using the Union-
Find data structure, with path compression and weighted
union techniques [27]. The basic Union-Find data struc-
ture is an inverted tree (Fig. 4) where sons are pointing to
their father and where the root represents both itself and
the set of the nodes pointing to it. Figure 4 depicts the
situation of the algorithm applied to the PTS of Fig. 3(a)
after two steps. At that point we know that s1, s3, s4 are
dominated by se, and in the next step, s2 will also be incorporated to the ele-
ments dominated by se, because all paths starting from s2 lead to states that
are dominated by se.

The only modi�cation we have to bring to this algorithm is that we need to
maintain, together with each tree, the essential state dominating all elements of
the tree. Indeed, the root of a tree is not necessarily the essential state dominating
all the elements of the tree, when weighted union is performed. According to [27],
if m Find operations and n Union operations are performed, the global time
to carry out these operations is O(n+mα(m,n)), where α is the inverse of the
Ackerman function. Let us evaluate n and m in the algorithm sketched above.
We have obviously n ≤ |S|. For m, at each step, we do in the worst case N ·D ·d
Find operations, whereN is the number of equivalent classes,D is the maximum
number of distributions outgoing from a state, and d the maximum size of their
support. The maximum number of steps is |S|, and at each step we haveN ≤ |S|,
som ≤ |S|2 ·D ·d. As a result, an upper bound of the complexity of the algorithm
is O(|S|+ |S|2 ·D · d · α(|S|2 ·D · d, |S|)). Notice that in practice the number of
steps is likely to be much smaller than |S|.

6 Re�nement Strategies

Our method of veri�cation via abstraction follows the classical partition re�ne-
ment scheme and it has been presented earlier in [9]. It starts with a coarse
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abstraction of the concrete system under investigation. If the analysis of the
abstract system allows to conclude on the properties under investigation then
the veri�cation process is �nished. Otherwise, a partition re�nement step is per-
formed in order to obtain more precise information. This process is iterated up
to success or until all classes of the partition are stable.

This section reports on new results of ours to enhance the method of [9] with
new strategies for constructing an initial partition, for re�ning individual classes,
and for choosing intelligently the classes to re�ne.

Initial Partition. Before constructing the initial partition, we use the precom-
putations described in section 3 to simplify the system as follows: (1) We �rst
restrict to the reachable (from the root) state space, since the de�nition of Pinf

and Psup involves only reachable states. (2) We then augment the set of �nal
states F with Pinf

=1, we compute Psup
=0 and we make all these states sink. (3) Fi-

nally, we restrict the state space to states reachable from the initial ones. Each
of these transformations preserves extremum probabilities and can give large
reductions in the state space.

Let T = (S,→) be a PTS on which the above preprocessing has been per-
formed. Let I and F be the sets of states satisfying φi and φf . Since we want
to compute safe approximations of Pinf

T,s0
(φi, φf ) and Psup

T,s0
(φi, φf ), our initial

partition should be at least a re�nement of the partition {I, F, S \ (I ∪ F )}. In
addition, we distinguish the sets of states Psup

=0 , Pinf
=0 and Psup

=1 (the states Pinf
=1

have already been merged with the �nal states). This is wise since we already
have these sets of states from the precomputation, and since joining these states
with other states will inevitably lead to a loss of precision in the extremum prob-
abilities of the latter ones. In the case that the above sets are not disjoint, we
make a proper partition.

We further re�ne the obtained partition according to the explicit control
structure of our PTS, such that only the values of variables are abstracted. In
our tool, this default behavior can be user modi�ed by specifying the variables
and the processes which should not be abstracted.

Re�ning Individual Classes. Our re�nement method tries to stabilize classes in
the standard way by splitting classes based on di�erent futures for their contained
sets of states. However, we allow for a more strategic splitting of a class than
simply splitting it with respect to all its outgoing transitions.

Let T be the concrete PTS and let T/A = (A,→A) be its quotient in the
current re�nement step. For any abstract transition t : A →A Π where A ∈
A and Π ∈ Distr(A), we de�ne the guard of t as: g(t) = {s ∈ A | ∃s →T

π. ∀i. π(Ai) = Π(Ai)} where π(A) =
∑

s∈A π(s). Now, if g(t) 
= ∅ and g(t) 
= A,
then the class A can be split into two new classes: g(t) and A\g(t).

For a given class A our method allows di�erent strategies for choosing the
transitions A→A Π to serve as basis for splitting A.

1. Binary splitting: This means that we do not split A with respect to all
outgoing transitions, but we choose one particular transition. Candidates
are transitions A→A Π where
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(a) Π(A) = 1: Splitting with respect to these transitions is an attempt to
raise the abstract in�mum probabilities. If Π(A) = 1 then at least class
A will have in�mum probability 0. Transitions of this type are denoted
l-transitions (l for looping).

(b) ∃B 
= A. Π(B) = 1: Splitting with respect to these transitions is an
attempt to lower the abstract supremum probabilities. If Π(B) = 1 and
the supremum probability of B is 1 then so is the supremum probability
of A. Transitions of this type are denoted s-transitions (s for single).

(c) neither of the above hold. Transitions of this type are denoted
o-transitions (o for other).

2. N -ary splitting: This means that we split A with respect to all its outgoing
transitions, or to all the transitions of exactly one of the above types.

These types of splitting will be discussed in section 7.

Choosing Classes to Re�ne. We discuss here how we choose the classes to be
re�ned. Our standard strategy tries to split once every class for which there exist
a splitting guard, using the strategies from above to decide which transition to
use as the basis for the split. However, we can do better if we take advantage of
the dominance relation (section 5). Indeed, if A � Ae then any �nite probabilistic
path starting from A leads with probability 1 to Ae. As a consequence, re�ning
class A without re�ning class Ae will not change the computed values of Pinf(A)
and Psup(A). For that reason, we allow the possibility to re�ne only essential
classes in an abstract PTS.

Tradeo� between Re�nement and Analysis. Stopping the re�nement process as
soon as possible, i.e. with the fewest number of classes enabling the proof of the
property or its negation, requires to split only one class at a time, and then to
perform an analysis to check the property. However, as probabilistic analysis is
rather expensive, even on an abstract system, it should not be applied too often.

Our technique is to re�ne a partition A into a partition A′ such that |A′|
|A| ≥ r,

with r speci�ed by the user. A small value of r (close to 1) produces frequent
analysis, whereas a large value favorizes re�nement over analysis. If the goal is to
produce the minimal stable partition of the concrete PTS, a in�nite ratio allows
to obtain it without any intermediate probabilistic analysis.

7 Implementation and Experiments

A tool called Rapture and based on the principles presented in this paper has
been implemented. Its architecture (see Fig. 5) is the following: (1) the front-
end parses the input language, that speci�es both the system to be analyzed, the
property and possibly the components (processes and variables) not abstracted
in the initial abstraction. The output is a symbolic representation of the system
(i.e., the probabilistic transition function and sets of root, initial and �nal states).
(2) Boolean analysis is then performed. If it allows to prove or disprove the
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Fig. 5. Architecture of the Rapture tool

property, the verdict is emitted. (3) Otherwise, the initial abstraction is build,
and the veri�cation process alternating numerical analysis and re�nement steps
starts. The thick boxes on �gure 5 indicate the new or updated modules since
the prototype reported in [9].

As stated before, we use linear programming to compute extremum proba-
bilities. Because of precision problems arising with some case studies, we o�er
the following possibilities in our tool :

� Use of the sparse matrix based solver Lp_solve [6], with coe�cients being
ordinary real numbers (1);

� Use of the dense matrix based solver Cddlib [13], with coe�cients being
either exact rational numbers (2), multi-precision �oating point numbers
(3), or ordinary real numbers (4).

The possibilities that give the best results are (1) and (2). (1) is better when-
ever there is no precision problems, because it uses sparse matrices and our LP
problems are sparse, whereas (2) is very useful when precision problems arise
and/or when exact results are wanted.

Experiments. We have conducted several experiments in order to evaluate our
reduction and re�nement strategies as well as our implementation. The aim is
to analyze the practical usefulness of our reduction strategies and the e�ciency
of our re�nement strategies.

Our �rst case study is the Bounded Retransmission Protocol (BRP) [16]. The
BRP is based on the well-known alternating bit protocol but allows for a bounded
number of retransmissions of a chunk, i.e., part of a �le, only. So, eventual
delivery is not guaranteed and the protocol may abort the �le transfer. We use
the version presented in [9], where probabilities model the possible failures of
the two channels used for sending chunks and acknowledgments, respectively. In
Table 1 we check the maximum probabilities that the sender does not report a
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successful transmission. We consider a �le composed of either 16 or 64 chunks,
and N is the number of allowed retransmissions. We have to use here the dense
matrix based solver with exact arithmetic, because probabilities of very di�erent
magnitude order appear in LP problems, which makes the usual �oating point
arithmetic unusable. The initial partitioning is here performed w.r.t. the explicit
control structure of the speci�cation: only variables are abstracted.

The meaning of row labels in the table is the following: #reach is the number
of states reachable from root states, #rel is the number of relevant states after
Boolean preprocessing, and time is the time needed for building and preprocess-
ing. The three next sets of rows details the re�nement process for di�erent upper
bounds for Psup. #refin is the number of re�nement steps, #abst the number
of states of the most re�ned abstract PTS, #ess the number of its essential
states, psup the computed probability, verd is the verdict (true or false), and
time(a+r) gives the time spent in numerical analysis and in re�nement process.
When the verdict is false, the re�nement has gone to the stable partitioning of
the PTS and gives the actual Psup of the concrete PTS.

The �rst observation is that Boolean preprocessing is here very e�cient to
reduce the state space: the reduction is one third in average. Second, the essential
state reduction allows again a reduction of one third. The third observation is
that it is nearly as easy to prove Psup ≤ 10−3 for big instances of BRP than
for small ones: that means that the re�nement strategy works well and will not
perform too many useless splits. It can also be observed that checking smaller
upper bounds can still be performed on very small abstract PTSs, compared
to the concrete one, even reduced by preprocessing, and also compared to the
stable partitioning (row Psup ≤ 10−90). Last, as we try to check bigger instances,
time spent in re�nement is much smaller than time spent in analysis, if we re�ne
up to stabilization. Again, this shows the relevance of our method. We do not
illustrate here the e�ect of the di�erent options for re�nement, because they give
equivalent results on this example.

Our second example is the Probabilistic Dining Philosopher from [25], studied
by [26] and analyzed by the the PRISM team [28]. In this exampleN philosophers
are trying to eat and we want to prove a lower bound on the probability for some
process to eat after a number of time units speci�ed by value of deadline. As the
philosophers perform asynchronous moves, we add the following bounded fairness
constraint : a philosopher cannot stay idle for more than K steps1. Table 2 shows
results for N = 3 and di�erent values of K. The chosen deadline corresponds to
the smallest one for which the property holds with a probability more than 0. We
try to prove successively Pinf ≥ 1

16 and Pinf ≥ 1
8 (this last bound is the real one,

according to [28]). Compared to the previous case study, the number of states
is much bigger, as well as the BDDs and MTBDDs representing respectively
sets of states and the transition relation. We give in the table not only the
number of abstract and essential states, but also in each case the number of
abstract distributions. We use here the sparse matrix based solver with ordinary

1 Without the fairness constraint, the lower bound is zero and can be checked by the
discrete �xpoint computations mentioned in section 3.
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Table 1. Results in BRP

�le length 16 �le length 64

MAX 2 4 8 15 15

#reach. 3908 6060 10364 17896 58024
#relev. 1014 1790 3342 6058 26362
time 0.94 1.10 1.59 1.75 5.20

≤
1
0
−

3

#re�n. 4 5 6 6 6
#abst. 52 89 161 161 161
#ess. 24 42 85 85 85
psup 3.09e-04 4.27e-06 7.89e-06 7.89e-06 7.89e-06
verd. T T T T T
time(a+r) 0.07+0.88 0.72+0.83 2.96+1.68 2.95+1.72 2.97+2.62

≤
1
0
−

1
0

#re�n. 9 10 7 7 7
#abst. 375 675 242 247 247
#ess. 152 272 108 115 115
psup 2.65e-05 2.35e-08 7.01e-12 7.01e-12 7.01e-12
verd. F F T T T
time(a+r) 0.58+2.56 3.30+5.42 3.15+2.07 3.54+2.33 3.51+3.55

≤
1
0
−

9
0

#re�n. 9 10 11 12 16
#abst. 375 675 1275 2325 9765
#ess. 152 272 512 932 3908
psup 2.65e-05 2.35e-08 1.85e-14 3.87e-25 3.87e-25
verd. F F F F F
time(a+r) 0.58+2.56 3.30+5.42 15.87+11.00 186.58+22.06 1209.72+165.3

�oating point arithmetic. We choose as the initial partition the one obtained
by abstracting everything but the counter used for the deadline, as it is clear
the value of the deadline is of fundamental importance for the studied property.
Most of the encouraging observations made for the BRP are still true. The only
exception is that essential state reduction is not very useful here. Execution
times are much higher, because the abstract PTSs are much more complex, and
the corresponding LP problems are very big. Still, re�nement remains much
cheaper than analysis, and state space reduction between the concrete PTS and
the abstract one allowing to prove the property is impressive.

Table 3 shows veri�cation of this case study for K = 3, with various re�ne-
ment options and initial control structures. The �rst column corresponds to the
options that work best and that were used in the previous table: the initial par-
tition detail only the counter for the deadline, and we use n-ary division, giving
priority to respectively o s and l types of probabilistic transitions, as described
in section 6. Using binary divisions gives similar results (second column). Col-
umn 3 shows that inverting the priority of the di�erent types of split in column 1
gives very bad results: a much more re�ned system is needed to prove the prop-
erty. This is quite counter-intuitive (cf. our remark in section 6) but has been
observed on nearly all case studies we performed. We conjecture that splitting a
abstract state according to its looping transition most often leads to an unbal-
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Table 2. Results in Dining Philosophers with N = 3

K 4 5 6
deadline 23 27 31

#reach. 1.00e06 1.97e06 3.40e06
#relev. 121041 271287 488859
time 14.4 23.6 34

≥
1 1
6

#re�n. 5 7 8
#abst. 3064/11536 16903/52435 35780/111084
#ess. 2778/11250 14442/49974 30361/105665
pinf 0.0625 0.0625 0.0625
verd. T T T
time(a+r) 49.6+79.5 2120+590 10353+1462

≥
1 8

#re�n. 7 8 9
#abst. 8512/22757 21011/59866 37542/114703
#ess. 6668/20913 16996/55851 31656/108817
pinf 0.125 0.125 0.125
verd. T T T
time(a+r) 290+220 3683+712 20335+1575

anced division, that separates a few concrete states from a huge set of concrete
states. Column 4 corresponds to the strategy where we fully stabilize all abstract
states wrt. the current partition. Last, column 5 illustrates the importance of
a good initial partition. Here, we generated it according to the explicit control
structure of the philosopher, and it produces very bad result.

We also tried the IEEE FireWire root contention protocol [32,31], using the
model developed by [28]. The property we want to prove is that a leader (root) is
chosen before the time bound deadline is reached with some probability. Results
are depicted in table 4, where we re�ne until we reach the probability given in
row pinf. Here Boolean analysis is very expensive, because counters involved in
the model make the BDDs huge (∼ 4 · 105 nodes) and the number of iterations
is also big (> 200, 300, 400). For deadline=200, Boolean analysis allows to show
that Pinf = 0. The table shows also that the number of relevant states is here
really smaller than the number of reachable states. That comes from the fact
that at least all the states corresponding to deadline less than 200 satisfy the
property with probability 0 and are removed, as shown by column 1.

8 Conclusion

In this paper we have introduced new e�cient strategies for model checking quan-
titative reachability properties of Markov decision processes. The fundamental
method of our approach is based on automatic abstraction and re�nement [9],
where properties are analyzed on abstractions rather than on the original sys-
tem. The abstractions are safe with respect to the property under consideration
and moreover they are expected to have signi�cantly smaller state spaces than
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Table 3. Results in Dining Philosophers with N = K = 3 and deadline = 19

control deadline deadline deadline deadline ctrl. struct.
option nary+osl bin+osl nary+lso nary+a nary+osl

#reach. 408397
#relev. 30018
time 6.14

≥
1 4

#re�n. 2 2 4 2 4
#abst. 51/87 35/122 882/2880 140/680 5861/12972
#ess. 51/87 35/122 827/2825 140/680 4109/11196
pinf 0.25 0.25 0.25 0.25 0.25
verd. T T T T T
time(a+r) 0.03+3.85 0.02+3.48 5.16+16.79 0.19+5.09 53.6+44.8

Table 4. Results in FireWire

deadline 200 300 400 400

#reach. 6.8e6 2.3e07 4.4e07 4.4e07
#relev. - 21 129661 129661
time 512 3240 8018 8018

#re�n. - 2 2 11
#abst. - 6/4 11/15 530/1295
#ess. - 5/3 5/7 71/178
pinf 0.0 0.5 0.5 0.625
time(a+r) - 0.01 + 0.05 0.01+39 0.26+104

their corresponding concrete system. If an abstraction cannot prove or disprove
a considered property, the abstraction is re�ned and the analysis is repeated on
the re�ned system.

The overall performance of our method depends crucially on the e�ciency of
the numerical analysis performed on abstract systems as well as on the choice of
re�nement method. A main contribution of this paper has been the development
of strategies for reducing the size of the numerical problems to be analyzed as
well as strategies for guiding the re�nement process.

Our experiments have shown that our reduction and re�nement strategies are
relevant for several case studies of various type, and the method of abstraction
and re�nement allows considerable simpli�cations. This is especially true when
the property of interest does not require the computation of exact probabilities,
but also holds in general.

It is worth to mention that the techniques reported in this article consider-
ably improved the performance of our tool with respect to the prototype reported
in [9]. We highlight that the processing speed has increased around 3 orders of
magnitudes: whereas checking the BRP (MAX=4, length=16) for unsuccessful
transmission with probability ≤ 10−5 took about half an hour, now it only takes
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around 2 seconds. There are two fundamental reasons. The �rst one is due to
the fact that the new implementation is smarter on doing the re�nements and
therefore less number of steps are required to reach the result. Second, the LP
problem in [9] was constructed with one variable per abstract state and one in-
equality per transition on this abstract representation. Now, instead, considering
a variable per essential state reduces the number of variable to the 50% (in the
BRP, see Table 1). Of course this percentage is sensible to the problem under
study. Compare the 90% in the Dining Philosophers to the 13% in the FireWire
(Tables 2 and 4, respectively). Last but not least, we tuned more carefully the
abstraction and re�nement algorithms described in [9] (data-structures, custom
operations and variable ordering inMtbdds). These improvements were however
too technical to be described here.

Our near future goal is to apply the results of this paper to model check
probabilistic timed automata. Decidability of the model checking of properties
on such automata has been proven, by resorting to their region graphs [23].
However, region graphs are known to be practically unusable, and our technique
would allow to generate progressively a minimal probabilistic model, in the spirit
of [1]. The di�erent structure of the state space naturally requires the design of
new abstraction algorithms, compared to the ones currently implemented in our
tool.
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