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Abstract. We report on a novel development to model check quantita-
tive reachability properties on Markov decision processes together with
its prototype implementation. The innovation of the technique is that
the analysis is performed on an abstraction of the model under analy-
sis. Such an abstraction is significantly smaller than the original model
and may safely refute or accept the required property. Otherwise, the
abstraction is refined and the process repeated. As the numerical anal-
ysis necessary to determine the validity of the property is more costly
than the refinement process, the technique profits from applying such
numerical analysis on smaller state spaces.

1 Introduction

The verification of systems has nowadays reached a clear maturity. Fully auto-
matic tools, in particular model checkers, have been developed and successfully
used in industrial cases. A model checker is a tool that can answer whether the
system under study satisfies some required property. Many times, however, these
type of properties are not expressive enough to assert adequately the correct-
ness of a system. Nevertheless, it is desirable that the probability of reaching the
unavoidable error is small enough. Quantitative model checking, that is, model
checking of probabilistic models with respect to probabilistic properties, has al-
ready been studied during the last decade [13,2,5,20,4, etc.]. However, it was not
until recently that attention was drawn to efficient tool implementations. In this
paper we report on a novel development to model check quantitative properties.

We use Markov decision processes (see e.g. [27]) to describe the system under
study. This model, also called probabilistic transition system (PTS), allows to
combine probabilistic and non-deterministic steps and is a natural extension to
traditional non-deterministic models (such as labelled transition systems). Our
preference for a probabilistic model that allows non-determinism is based on two
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facts. First, PTSs are closed under parallel compostition which facilitates the
modelling process. Second, PTSs are also closed under abstraction. This reason
is fundamental as the method introduced in this paper is based on abstraction
techniques.

We focus on a restricted set of reachability properties. They allow to spec-
ify that the probability to reach a particular final condition f from any state
satisfying a given initial condition i is smaller (or greater) than a probability p.
This type of properties is not so restrictive as it seems since we can always use
checking automata to add additional constraints to the property.

The method we present is based on automatic abstraction and refinement
techniques. The basic idea is to use abstraction to reduce the high cost of proba-
bilistic analysis. The difficulty lies in finding the right abstraction level, depend-
ing on the property to prove. To address it, the method starts with a coarse
abstraction of the system which is obtained by partitioning the state space,
according to the property under study. The property is then checked on the ob-
tained abstract model. The verdict may be inconclusive, that is, p happens to be
between the calculated upper bound of the minimum and the lower bound of the
maximum actual probabilities. In this case the previous abstraction is refined
and the question posed again. The process is successively repeated until a satis-
factory answer is given, or no further refinement is possible. To efficiently store
the state space, perform abstractions and process the refinement steps, we use
Bdds and Mtbdds (more precisely Adds) [10,3]. The soundness of the method
is asserted by considering a suitable probabilistic simulation [22,28] (which pre-
serves the kind of property we consider), and by showing that abstraction by
partitioning respects this simulation relation.

The contributions of this paper are first the definition of the probabilistic
simulation relation that allows to prove the soundness of our method, and sec-
ondly, the design of efficient algorithms to abstract PTSs, to analyse and to
refine them. Finally, experimental results shows the effectiveness of the method.

Related work. The partition refinement method we use on PTSs resorts to princi-
ples already applied to finite-state systems [6] and timed automata [1]. However
our aim is not to generate a minimal model w.r.t. a bisimulation relation, but
to steer the refinement process in order to prove as early as possible an intended
(probabilistic) property.

The efficiency provided by Mtbdds to store and logically manipulate the
state space made them also the choice of recent quantitative model checkers [14,
9]. However, if it comes to model analysis via numerical recipes like simplex or
(iterative) solutions of equations systems, experience has shown that Mtbdds
do not outperform classical data structures (such as sparse matrices) [3,18,9].
The main reason appears to be that any of these algorithms tend to require the
storage of a distinct real number per actual state [16]. In our case, the use of
Mtbdds is focus on the manipulation of probabilistic transition relations and
its use in the abstraction techniques. After abstraction, the size of the problem
submitted to numerical analysis becomes a significantly smaller issue.
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Other quantitative model checkers have also been developed. The tool Prob-
Verus [14] allows to check the validity of a PCTL formula [13] on a (discrete
time) Markov chain. Therefore, models do not contain non-determinism. Instead,
Prism [9] is a quantitative model checker for PCTL formulas on (discrete time)
Markov decision processes, i.e., non-determinism is inherent to the model. Like
Prism, we also do model checking on Markov decision processes, but we restrict
to a particular kind of PCTL formula. For completeness reason, we also mention
the quantitative model checker E T MC2 [17], which model checks probabilistic
timed properties on continuous-time Markov chains.

Organization of the paper. Section 2 and Section 3 introduce the theoretical foun-
dations of the implemented tool. The algorithms, data structure, and method-
ological techniques are explained in Sections 4 and 5. An example is reported in
Section 6. Finally we present our conclusions and discuss further work. Proofs
and further details are reported in [8].

2 Probabilistic Transition Systems

Probabilistic transition systems (PTS for short) generalise the well-known tran-
sition systems with probabilistic information. In a PTS, a transition does not
lead to a single state but to a probability space whose sample space is a set of
states. The model we define is widely used (see, e.g. [28,5,23].) and is also known
as Markov decision processes [27]. We consider in addition a function that labels
each state with a property assumed to be valid in this state.

Let Distr(Ω) be the set of all discrete probability distributions over the sample
space Ω. Let PF be a set of propositional formulas closed under ∧ and ¬.

Definition 1. A probabilistic transition system (PTS for short) is a structure
T = (S,−→, f) where S is a set of states, −→ ⊆ S × Distr(S) is the transition
relation, and f : S → PF is a proposition assignment. We write s −→ π if
(s, π) ∈ −→, and s −→ if there is a π such that s −→ π; otherwise, we write
s �−→ and call s a sink state. A PTS is said to be a fully probabilistic transition
system (FPTS for short) if whenever s −→ π and s −→ ρ then π = ρ. It will be
convenient to distinguish an initial state s0 ∈ S. In this case we call the structure
(T, s0), a rooted (fully) probabilistic transition system. A proposition g ∈ PF is
satisfied in state s, notation s |= g, whenever f(s) ⇒ g holds is a tautology.

x < 20 0.5

x ≥ 20

ba

0.5
x++

Fig. 1.

Example 1. Consider a system that either increments a
counter with probability 0.5 or it deadlocks with proba-
bility 0.5 while the counter is smaller than 20. Formally,
it can be modelled by a PTS Counter = (S,−→, f) where
S = {a, b} × {0 . . 20}, f(s, i) = (s ∧ x = i), and

(a, 20) −→ {(a, 20) 
→ 1}
(a, i) −→ {(a, i + 1) 
→ 0.5, (b, i) 
→ 0.5} if i < 20

A symbolic representation of this PTS is depicted in Fig. 1. ��
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Let T = (S,−→, f). A simple path starting from s0 ∈ S in T is a finite
sequence of S-states, σ = s0s1s2 . . . sn, where for each 0 ≤ i < n there exists
πi ∈ Distr(S) such that si −→ πi and πi(si+1) > 0. Let σ(i) denote the state in
the i-th position. Let |σ | be the length of σ. Let first(σ) = σ(1) and last(σ) =
σ(|σ |). We let s-paths(T) denote the sets of simple paths in T starting from any
s ∈ S. A state t is reachable from other state s in T if there is σ ∈ s-paths(T)
with s = first(σ) and t = last(σ). Let reach(T, s) denote the set of all states
reachable from s in T.

For any rooted FPTS (F, s), the probability measure PF,s on the σ-algebra
induced by (F, s) is the unique probability measure defined such that PF,s(σ) =
if (s = s0) then π0(s1) · π1(s2) · . . . · πn−1(sn) else 0. In particular, PF,s(σ) is
the probability of σ in F starting from s

Any given PTS T defines a set of probabilistic executions, each one obtained
by iteratively scheduling one of the possible post-state distributions from each
pre-state, starting from a given state s0 ∈ S. Notice that the same state s of
T may occur more than once during a probabilistic execution and each time
a different distribution from s may be scheduled. In order to distinguish such
occurrences every state s of a probabilistic execution is extended with the past
history of s, that is, with the unique path leading from the start state to s.

Definition 2. A probabilistic path of T is a FPTS F =
(s-paths(T),−→F, f ◦ last) where q −→F ρ implies last(q) −→T π with
ρ(qs) = π(s) for all s ∈ S. If in addition, for all q ∈ s-paths(T) such that
|q | < i, last(q) −→T implies that q −→F, then the rooted FPTS (F, s0) is said
to be a probabilistic execution fragment of length i of T starting from s0 ∈ S.
If i = ∞ then (F, s0) is said to be a probabilistic execution of T starting from
s0 ∈ S.

Denote by paths(T) the set of all probabilistic paths of T, by execs(T, s0, i)
the set of all probabilistic execution fragments of length i starting from s0, and
by execs(T, s0) the set of all probabilistic executions of T starting from s0.

Given a simple path σ ∈ s-paths(T) define σ↑ ∈ s-paths(F) (F being a prob-
abilistic path of T) such that |σ↑ | = |σ | and for all 0 < i ≤ |σ |, σ↑(i) =
σ(1) . . . σ(i). We extend ↑ to sets of simple paths in the usual way. Let f ∈ PF
and define Σf

�= {σ ∈ s-paths(T) | last(σ) |= f and ∀0 < i < |σ |. σ(i) |= ¬f}, i.e.,
Σf is the set of all minimal paths in T that end in final condition f. The minimum
and maximum probabilities of reaching a final condition f ∈ PF from an initial
condition i ∈ PF in a rooted PTS (T, s0) are defined respectively by

Pinf
T,s0(i, f)

�= inf
{
PF,q(Σ↑

f ) | s ∈ reach(T, s0), s |= i, and (F, q) ∈ execs(T, s)
}

Psup
T,s0

(i, f) �= sup
{
PF,q(Σ↑

f ) | s ∈ reach(T, s0), s |= i, and (F, q) ∈ execs(T, s)
}

Example 2. Consider the Counter of Example 1. Take the initial condition i =
(a ∧ x = 0) and the final condition f = (b ∧ x ≥ 15). The reader is invited to
check that Σf = {(a, j)(a, j + 1) . . . (a, i− 1)(a, i)(b, i) | 15 ≤ i < 20 ∧ 0 ≤ j ≤ i}
and that Pinf

T,(a,0)(i, f) = Psup
T,(a,0)(i, f) = 31

220 . ��
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3 Probabilistic Simulation

Probabilistic simulation [22,28] will be central to state the correctness of the
technique proposed in this paper.

Definition 3. Let C ⊆ S × S be a relation on states defining a discrimination
criterion. R is a C-(probabilistic) simulation if, whenever sRt,

1. (s, t) ∈ C, and
2. if s −→ π, there exist ρ such that t −→ ρ and π �R ρ.

where π �R ρ if there is δ ∈ Distr(S × S) such that for all s, t ∈ S, (i) π(s) =
δ(s, S), (ii) ρ(t) = δ(S, t), and (iii) δ(s, t) > 0 =⇒ sRt. s is C-simulated by t,
notation s ≤C t, if there is a C-simulation R with sRt.

Notice that whenever the discriminating criteria C is a preorder, so is ≤C .
Our interest is to check when a PTS reaches a goal f starting from any

state satisfying some initial condition i (i, f ∈ PF). Consider the discriminating
condition (s, t) ∈ Ci,f defined by (s |= f =⇒ t |= f) and (s |= i ⇐⇒ t |= i) We
write only C whenever i and f are clear from the context. Simulations ≤C, ≤C−1 ,
and ≤C∩C−1 are the relations needed to prove correctness of the technique.

We are interested in whether the probability of reaching a particular final
condition f from any (reachable) state satisfying a given initial condition i is
smaller or greater than a given value p. The next theorem states that if a PTS
T1 satisfies this property, and another T2 (C ∩ C−1)-simulates T1, then T2 also
satisfies the property.

Theorem 1. Let (T1, s
1
0) and (T2, s

2
0) be two rooted PTSs such that none of

them contains a sink state. Then

1. (T1, s
1
0) ≤C (T2, s

2
0) implies Psup

T1,s10
(i, f) ≤ Psup

T2,s20
(i, f).

2. (T1, s
1
0) ≤C−1 (T2, s

2
0) implies Pinf

T1,s10
(i, f) ≥ Pinf

T2,s20
(i, f).

3. (T1, s
1
0) ≤C∩C−1 (T2, s

2
0) implies Psup

T1,s10
(i, f) ≤ Psup

T2,s20
(i, f) and Pinf

T1,s10
(i, f) ≥

Pinf
T2,s20

(i, f).

The requirement that every state has a transition is not really harmful as
each sink state can always be completed with a self-looping transition without
affecting the properties of the original PTS.

The proposed technique is based on successive refinements of a coarse ab-
straction of the original PTS T. Each refinement is an abstraction of the next
(finer) refinement in which T is the finest one. In the following, we state that
the refinement operation preserves simulation. A consequence of Theorem 1 is
that if a given abstraction satisfy the desired reachability property, so does T.

Definition 4. Let A = (Ai)I be a partition of S, i.e., for all i, j ∈ I, Ai ∩Aj �=
∅ ⇐⇒ i = j, and

⋃
I Ai = S. Let T = (S,−→, f). The quotient PTS according

to A is defined by T/A = (A,−→A, fA), where
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1. A −→A (π/A) if ∃s ∈ A. s −→ π and ∀A′ ∈ A. (π/A)(A′) �=
∑

s′∈A′ π(s′),
2. fA(A) �=

∧
s∈A f(s).

For a rooted PTS (T, s0), its quotient is given by (T, s0)/A �= (T/A, A) provided
s0 ∈ A ∈ A.

We say that T/A is a C-abstraction of T if for all A ∈ A, and s, t ∈ A,
(s |= i ⇐⇒ t |= i). We say that T/A is a (C ∩ C−1)-abstraction of T if for all
A ∈ A, and s, t ∈ A, (s |= f ⇐⇒ t |= f), and (s |= i ⇐⇒ t |= i).

Theorem 2. Let (T, s0) be a rooted PTS. Let B be a refinement of A (i.e., B
is also a partition of S such that ∀B ∈ B. ∃A ∈ A. B ⊆ A).

1. if T/A is a C-abstraction of T then (a) (T, s0)/B ≤C (T, s0)/A, and (b) T/B
is also a C-abstraction of T.

2. if T/A is a (C∩C−1)-abstraction of T then (a) (T, s0)/B ≤C∩C−1 (T, s0)/A,
and (b) T/B is also a (C ∩ C−1)-abstraction of T.

Example 3. Let

A =
{{(a, 0)}, {(a, i) | 1 ≤ i < 15}, {(a, i) | 15 ≤ i < 20}, {(a, 20)},
{(b, i) | 0 ≤ i < 15}, {(b, i) | 15 ≤ i < 20}, {(b, 20)}}

[(a, 0)]

[(a, 1)] [(b, 0)]

[(a, 15)]

[(a, 20)]

[(b, 15)]

[(b, 20)]

Fig. 2.

Then Counter/A = (A,−→A, fA), with −→A de-
fined by (see also Fig. 2)

[(a, 0)] −→A {[(a, 1)] 
→ 0.5, [(b, 0)] 
→ 0.5}
[(a, 1)] −→A {[(a, 1)] 
→ 0.5, [(b, 0)] 
→ 0.5}
[(a, 1)] −→A {[(a, 15)] 
→ 0.5, [(b, 1)] 
→ 0.5}
[(a, 15)] −→A {[(a, 15)] 
→ 0.5, [(b, 15)] 
→ 0.5}
[(a, 15)] −→A {[(a, 20)] 
→ 0.5, [(b, 15)] 
→ 0.5}
[(a, 20)] −→A {[(a, 20)] 
→ 1}

where [s] denotes the class of s, i.e., the set in A
such that s ∈ [s]. Notice that Counter/A is in-
deed a (C ∩ C−1)-abstraction of Counter with i and f as before. In addition,
Pinf

T,[(a,0)](i, f) = 0 and Psup
T,[(a,0)](i, f) = 1

4 , which is a sound approximation of the
actual solution (see Example 2). ��

4 Model-Checking and Partitioning

To perform model checking, the require the PTS under study to be finite. In
order to describe the encoding of PTS we need some particular notation. If
s −→ π, we call the pair (s, π) a nail. Nails have the same functionality as
probabilistic states in alternating models; they are depicted with black boxes in
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Fig. 3. Let T = (S,−→, f) be a PTS. From now on we assume the initial and
final conditions i and f are atomic propositions and for all s ∈ S, f(s) is either
true, i, f or i ∧ f. T will also be described in an equivalent manner by a tuple
(S,N,Org, τ, f) where N is the set of nails, Org : N → S associates to each nail
(s, π) its origin state s, and τ : N → Distr(S) associates its distribution π. Let
N (s) = {n ∈ N | Org(n) = s} be the set of outgoing nails of state s. Notice
that nails having different origin states can share the same distribution.

Computing Pinf(i) and Psup(i). For the rest of this section we wil use the
shorthand Pinf(s) and Psup(s) for Pinf

T,s(s, f) and Psup
T,s (s, f), respectively.

According to [5], the sets of states for which Pinf(s) = 0 or Psup(s) = 0 can be
computed by resorting to simple fixpoint computations on graphs, whereas the
infimum and supremum probabilities of the other states satisfies the following
equations:

Pinf(s) = min
n∈N (s)

∑
s′∈S τ(n)(s′)Pinf(s′) (1)

Psup(s) = max
n∈N (s)

∑
s′∈S τ(n)(s′)Psup(s′)1 (2)

To solve such a system, two methods have been explored: one can either trans-
form such a system into a linear programming problem, and use classical tech-
niques of linear programming, or consider the system as a fixpoint equation, and
compute its least fixpoint by iterative methods. The solving method is however
not the aim of this paper. We choosed linear programming with exact arithmetic,
in order to avoid numerical problems and to get exact results.

Partitioning and complexity of the analysis. Basically, the two sources of
complexity in these systems of equations are first the number of states of the
PTS, which is of the same order as the number of variables, and then the number
of nails, which gives the number of linear expressions in min or max expressions.

Partitioning the state space allows to address the first source of complexity.
The question is how to proceed with the nails. Consider the PTS depicted in
Fig. 3(a). The first effect of the abstraction is that several edges outgoing from
a nail will lead to the same class; we have to merge these edges and add their
probabilities, as shown on Fig. 3(b), where s0, s1 and s2, s3 are merged into
equivalence classes k0 and k1. A second effect is that this operation makes some
nails become equivalent, as (s0, a0) and (s0, a1) on Fig. 3(b). This effect is our
main point: we expect that partitioning the state space will equate many nails
and therefore address the second source of complexity. Such a situation is very
likely to happen in systems that are specified in a symbolic way using data
variables (see example 1).

5 Algorithms and Data Structures

Representation of states, transition relation, and partitions. As stated
in the introduction, we use Bdds to represent sets of states, and Adds to rep-
resent the transition relation.
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1/2

s1

s0 s2

s3

2/3

1/4

(s0, a0)

1/3

1/2
1/2

(s1, a0)

(s0, a1)

k1k0

s1

s0 s2

s3

1
(s0, a0)

(s0, a1)

(s1, a0)

1/2

1

1/2

(a) (b)

Fig. 3. A concrete PTS and its abstraction

As S is finite, we can encode each state s ∈ S by a Boolean vector s of
length n = �log2 |S|�. We then use Bdds to represent (sets of) states. Similarly,
we use Adds to represent the function τ , which belongs to the space N → (S →
[0, 1]), isomorphic to the space N × S → [0, 1]. In order to encode nails, we use
an auxiliary set A that solves in each state the nondeterministic choice on its
outgoing nails. Let p = log(maxs∈S |N (s)|) and B = {0, 1}. We consider that
S ⊆ B

n, A ⊆ B
p, N ⊆ S×A, and τ : S×A×S → [0, 1]. τ is then represented by

an Add using unprimed variables, auxiliary and primed variables, noted −→s , −→a ,−→
s′ . The Boolean vectors s and s′ represent states s and s′, using respectively
unprimed and primed variables. Each nail n ∈ N (s) outgoing from a state s is
thus encoded by a pair (s,a) ∈ S×A. Fig. 4(a) shows the Add representing the
system of Fig. 3(a).

A partition of a finite set S is defined by a set K of classes, and a function
def : K → 2S such that:

⋃
k∈K def (k) = S and ∀k �= k′ : def (k) ∩ def (k′) = ∅

(and ∀k : def (k) �= ∅). As usual, sets are represented by Bdds. In order to use
classes k in Bdds, we use Boolean vectors k,k′ ∈ B

n, represented with variables−→k and
−→
k′ .

Simplification of a PTS and Boolean analysis. Before performing any
abstraction, we first try to simplify the PTS, using conditions i and f. Obviously,
states that are not reachable from states satisfying i cannot influence the value of
Pinf(i) and Psup(i), so we can discard them from S and simplify τ . In a different
spirit, the states s satisfying Pinf(s) = Psup(s) = 0 or Pinf(s) = Psup(s) = 1 can
be respectively gathered in a safe partition or included in the final partition.
These partitions are then transformed in a sink state by appropriately changing
τ , since their outgoing transitions are irrelevant for the computation. Afterwards,
a new reachability analysis allows to further simplify the state space and the
transition function. The computation of such states can be done by fixpoint
computations with Bdds, by considering a suitable Boolean abstraction of a
PTS.

Notice that we do not necessarily reduce the number of nodes of Bdds and
Adds by the above simplifications. However, futile computations are avoided by
restricting partitioning only to the relevant states. Boolean fixpoint computa-
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a a

s0

s1

0 1 01
2

k′

πα
1

πα
2

The states s0, s1, s2, s3 are encoded by Boolean vectors on
variables (s0, s1), s0 being the least significant bit; a0 and a1

are encoded by variable a, and class k0 and k1 by variable k.
The left branch of a node corresponds to a false value for its
variable. For readability, leaves are sometimes duplicated.
The nodes πα

1 and πα
2 represent respectively the distribu-

tions {k0 �→ 1
2 ; k1 �→ 1

2} and {k0 �→ 0; k1 �→ 1}. We have
g(k0, π

α
1 ) = ¬s0 ∧ ¬s1 and g(k0, π

α
2 ) = ¬s1.

τα = τα
k0❀

(f)

Fig. 4. Representation and abstraction of the PTS of Fig. 3 with Adds

tions are also used on PTS abstracted by partitioning in order to compute the
set of classes k for which Pinf(k) = 0 or Psup(k) = 0, which is required to solve
equations (1) and (2) in Section 4.

Abstraction of a PTS by partitioning. The problem is the following: given
a system (S,N ⊆ S × A,Org, τ) and a partition (K, def ) of S, compute an
abstract system (Sα, Nα,Orgα, τα) with

Sα = K , Nα = N , τα : N → Distr(K)
(s, a) 
→ λk.(

∑
s′∈def (k) τ(s, a, s′))

We do not specify the function Orgα since it is not necessary to compute it.
To compute τα with Adds, we first transform the summation indexed by

s′ ∈ def (k) into an unconstrained summation. For k′ ∈ K, define the Add

τ❀k′(s,a, s′) = ite(s′ ∈ def (k′), τ(s,a, s′), 0)

where ite is the if-then-else operator on Adds (see Figs. 4(b) and (d)). Then, for
every (s,a,k′), τα(s,a,k′) =

∑
s′ τ❀k′(s,a, s′), which we note τα

❀k′(s,a). This
unconstrained summation on all valuations taken by primed variables correspond
exactly to the existential quantification of primed variables in the Add τ❀k′ , as
defined for instance in the library Cudd [30]. This operation benefits from the
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usual caching techniques of Bdds, and can be implemented in a time quadratic
in the number of nodes of the input graph. So we have

τα
❀k′(s,a) =

∑
−→
s′ τ❀k′(s,a, s′)

and τα(s,a,k′) =
∑

k′∈K ite(k′, τα
❀k′(s,a), 0)

where
∑

k′∈K is a disjoint summation on Adds implemented by a cascade of ite
operators (see Figs. 4(c), (e), and (f)). Computing τα in that way requires |K|
intersection operations (to obtain τ❀k), |K| existential quantifications on Adds,
and |K| applications of the ite operator.

From ADDs to equations on abstract system. Let (Sα, Nα,Orgα, τα) be
an abstract system defined by a partition with initial class ki and final class kf .
We want to compute Pinf(ki) and Psup(ki). Therefore we need to generate the
systems of inequalities (1) and (2) from the Add τα. That is, to each class k,
we have to associate its set of outgoing nails {(s, a) | s ∈ def (k)}, extracting
the corresponding distributions and detecting efficiently identical distributions
to avoid redundancy in equations.

We select the nails outgoing from a class k by computing

τα
k❀(s,a,k′) = ite(s ∈ def (k), τα(s,a,k′), 0)

The important point now for the extraction of the distributions is that we require
the variables

−→
k′ to be ordered below the variables −→s and −→a in Adds. This

allows to extract the distributions by performing a depth-first search of the graph
rooted at τα

k❀, stopping as soon as a node indexed by a variable belonging to
−→
k′

is encountered. Such a node corresponds to a distribution (Fig. 4(f)). Because
of this variable ordering and the sharing of nodes the Add τα

k❀, the set of its
different distributions can be obtained for free by a simple graph algorithm.

The third step, generating a linear expression from an Add representing a
distribution, is done by enumerating the valuations on variables

−→
k′ that leads to

a non-zero leaf, c.f. Fig. 4(f) and the explanations. We resort then to section 4
to solve the system of equations.

Automatic partition refinement. The choice of a suitable abstraction is a
difficult problem, because only the results of the analysis can decide whether the
abstraction offers enough precision to check the intended property. This is why
we have chosen an incremental partitioning method.

The verification starts with a rough partition of the system. If the analysis of
this abstract PTS allows to conclude that the property is satisfied by the concrete
PTS, the verification process is finished. Otherwise, a partition refinement step
is performed in order to obtain more precise information. This process is iterated
up to success or until all classes of the partition are stable. If this last situation
occurs, we can conclude that the property is false and extract a counter-example
path.

The initial partition contains three distinguished classes: the safe, initial, and
final classes, denoted ks, ki, and kf , with def (ks) = {s | Psup(s) = 0}, def (ki) = i,
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and def (kf) = f. The safe and final classes are never split. As our tool allows
to specify processes that combines an explicit control structure and operations
on data variables, we use this control structure to partition the remaining state
space.

Our refinement method tries to stabilize classes, by separating concrete states
in a class that have different future, as do all partition refinement methods
based on a bisimulation criteria [6,1,31], and most of those dealing with infi-
nite state systems [29,21]. We implement this idea by considering the set of
states g(k, πα) ⊆ def (k) in class k that can lead to the abstract distribution πα.
g(k, πα) can be seen as the guard of the distribution πα in class k. For instance,
in Fig. 3(b), if πα

1 denotes the distribution attached to the nail (s0, a0), then
g(k0, π

α
1 ) = {s0}, and if πα

2 denotes the distribution associated to nails (s0, a1)
and (s1, a0), g(k0, π

α
2 ) = {s0, s1}. If such a guard is neither empty, nor equal to

the definition of the class k, then the class k can be safely split into two classes
k′ and k′′ according to this discriminating guard, with def (k′) = g(k, πα) and
def (k′′) = def (k) \ g(k, πα), because states in class k′ are certainly not bisimilar
to states in class k′′. A guard g(k, πα) is obtained by computing the union of
paths in the Add τα

k❀ that leads from the root node to the node representing the
distribution πα (Fig. 4(f)). Such an operation can again be implemented with a
complexity linear in the number of nodes of the Add τα

k❀.
Our global strategy for refinement tries, between each analysis step, to split

once every class for which there exist a guard. After a partition refinement, a
new abstract transition function τα has to be computed. When a class k has not
been split, the Adds τ❀k and τα

❀k are reused; otherwise, we need to recompute
them, as well as the Adds τα and τα

k❀. So the refinement process require O(|K|)
Bdds operations.

Conclusion. The algorithms presented in this section allows to partition and
to refine an abstract PTS with O(|K|) Bdds operations; the complexity of these
operations is in turn linear or quadratic in the number of nodes of the input
diagrams.

6 Example

The Bounded Retransmission Protocol (BRP) [15,12,7] has become a nice bench-
mark example as it is simple to understand, yet its overall behaviour is not trivial.
The BRP is based on the alternating bit protocol but allows for a bounded num-
ber of retransmissions of a chunk, i.e., part of a file, only. So, eventual delivery
is not guaranteed and the protocol may abort the file transfer. By using our
technique, we are able to quantify the probability of such abortion.

The protocol consists of a Sender and a Receiver exchanging data via two
unreliable (lossy) channels, K and L. The Sender reads a file to be transmitted
(which is assumed to be divided in N chunks) and sets the retry counter to 0.
Then it sends the elements of the file one by one over K to the Receiver. A frame
sent through channel K consists of three bits and a chunk. The first bit indicates
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Sender:

idle NewFile F

fs := (i = 1)
ls := (i = N)

bs := ab
nrtr := 0

retransmit

fs := (i = 1), ls := (i = N)
F

TO Msg

success(i = N)

error

srep := OK
∧(i = N))
srep := DK

(nrtr < MAX )

((nrtr = MAX )

wait ack

TO Ack

next frame

B
ab := ¬ab

∧(i < N))
srep := NOK

((nrtr = MAX )

i := 1
srep := ⊥

(i < N)

bs := ab, nrtr++

i++

SyncWait

wait sync

SyncWait
ab := ff

Receiver:

G

fr := fs

lr := ls
br := bs

frame received

ab := br

idle

G

fr := fs

lr := ls
br := bs

fst safe frame
SyncWait

((ab = br) ∧ fr ∧ ¬lr)
rrep := FST

new file

( ls )
SyncWait

[recv := T ]

[recv := T ]

((ab = br) ∧ lr)
rrep := OK

(ab �= br)

A

A

ab := ¬ab

frame reported

((ab = br) ∧ ¬fr ∧ ¬lr)
rrep := INC

rrep := ⊥
SyncWait

resync

rrep := NOK

( ¬ls )
SyncWait

Channel K: Channel L:

idle

sending

lost

F

G

TO Msg

0.98

0.02

idle

sending

lost

A

B

TO Ack

0.01

0.99

Fig. 5. PTS model of the bounded retransmission protocol
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whether the chunk is the first element of the file, the second one indicates if it is
the last one, and the third bit, the so-called alternating bit, is used to guarantee
that data is not duplicated. After sending the frame, the Sender waits for an
acknowledgement or for a timeout. In case of acknowledgement, if it corresponds
to the last chunk, the sending client is informed of correct transmission (signal
OK); otherwise the next element of the file is sent. If a timeout occurs, the
frame is resent (after the counter for the number of retries is incremented), or
the transmission of the file is broken off. The latter occurs if the retry counter
exceeds its maximum value MAX . In this case the sender client is informed
whether the Sender did not complete the transmission (NOK), or whether it
sent the last chunk but it was never acknowledge (DK) in which case the success
of the transmission is unknown. Afterwards, and before sending a new file, the
Sender waits enough time to ensure that the Receiver has properly reacted to the
communication break.

The Receiver waits for a frame to arrive. This frame is delivered at the re-
ceiving client informing whether it is the first (FST), an intermediate (INC), or
the last one (OK). Afterwards, an acknowledgement is sent over L to the Sender.
Then the Receiver simply waits for more frames to arrive. The receiver remem-
bers whether the previous frame was the last element of the file and the expected
value of the alternating bit. Each frame is acknowledged, but it is handed over
to the receiving client only if the alternating bit indicates that it is new. Note
that (only) if the previous frame was last of the file, then a fresh frame will
be the first of the subsequent file and a repeated frame will still be the last of
the old file. If a long enough time had passed since the last frame was received,
the Receiver assumes that the normal communication flow broke down. If this
happen, the receiving client is informed, provided the last element of the file has
not yet been delivered. Since our model does not consider time, we assume that
premature timeouts are not possible and that the Sender and Receiver always
re-synchronise properly after normal communication is broken.

The description of the components of the protocol in terms of PTS is given
in Fig. 5. It abstracts from the data that is being transmitted. The components
synchronise through common alphabet (a la CSP [19]). Notice that the only
probabilistic features are those occurring in the medium. In this model we assume
that a frame is lost with probability 0.02, and acknowledgement is lost with
probability 0.01.

testany

NewFile
T := true

NewFile
T := false

Fig. 6.

A checking automaton (Fig. 6) ensures that the trans-
mitted file is invariant for the property under study, i.e,
the property is only interesting for exactly one file trans-
mission. Notice that the checking automata selects an arbi-
trary file to test. We study several properties. The consid-
ered initial condition is test@Check ∧ next frame@Sender ∧
(i@Sender = 1). The different final conditions are listed in
Table 1. Notice the flag recv at the Receiver side; it is used to register that
the last sent file has actually started to be received. Properties A and B define
the minimal correctness requirement of the protocol. They should not be valid.
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Table 1. Reachability Conditions

Final condition Meaning of the property

A (srep@Sender = NOK) ∧
(rrep@Receiver = OK) ∧
(recv@Receiver)

The Sender reports a certain unsuccessful
transmission but the Receiver got the complete file.
(The probability should be 0!)

B (srep@Sender = OK) ∧
¬(rrep@Receiver = OK) ∧
(recv@Receiver)

The Sender reports a certain successful transmission
but the Receiver did not get the complete file. (The
probability should be 0!)

1 error@Sender The Sender does not report a successful transmission

2 error@Sender ∧
(srep@Sender = DK)

The Sender reports an uncertainty on the success of
the transmission

3 error@Sender ∧
(srep@Sender = NOK) ∧
(i@Sender > 8)

The Sender reports a certain unsuccessful
transmission after transmitting half a file

4 ¬(srep@Sender = ⊥) ∧
¬(recv@Receiver)

The Receiver does not receive any chunk of a file, i.e.,
the first message never arrives. “¬(srep@Sender = ⊥)”
ensures that the Sender did try to send a chunk

Properties 1 to 3 are concerned with transmissions that the Sender does not
consider successful while property 4 considers an attempt for transmission with
no reaction at the Receiver side.

The exercise we perform is to try to find the minimum number of retrans-
missions (MAX ) that satisfies our probabilistic requirements for these properties
when the transmitted file has length N = 16. Table 2 reports these results. Some
remarks are in order. Each row in Table 2 reports a different instance according
to the maximum number of retransmission MAX which is specified in the first
column. The second column reports the number of reachable states in the re-
spective instance (#reach.), and the third one the number of relevant states, i.e.,
reachable states that may lead to a state satisfying the final condition (#relev).

For each property we tried two different values of desired probability. Thus,
for instance, property 1 is require to hold with probability less than 0.05 in the
first experiment and than 0.01 in the second one. The least three columns report
the last possible refinement together with its respective convergence value. For
each experiment we report the number of refinements (#refin.) necessary to con-
clude the required property and for this last refinement, the number of abstract
states (#abst.) and the upper bound for the actual minimum and maximum
probability (Pinf and Psup, respectively). We also report whether the property
holds (

√
) or not (×) on the verdict columns (Verd.)

Notice that, in this example, the proposed method do the actual verdict
on an abstract state space which is, on average, around 20 times smaller than
the concrete reachable state space. In particular it has performed quite well for
Properties 2 and 3 in the larger systems (MAX ≥ 3). We have experience two



Reachability Analysis of Probabilistic Systems by Successive Refinements 53

Table 2. Results in a BRP with file length = 16
M

A
X

#
re
ac
h.

#
re
le
v.

#
re
fi
n
.

#
a
b
st
.

Pinf Psup

V
e
rd
.

#
re
fi
n
.

#
a
b
st
.

Pinf Psup

V
e
rd
.

#
re
fi
n
.

#
a
b
st
.

Pinf = Psup

Property 1: prob. ≤ 10−3 prob. ≤ 10−5 Convergence
0 1174 269 1 12 0.0298 1 × 1 12 0.0298 1 × 88 99 0.383717
1 2068 697 6 35 1.5679e-03 1 × 1 17 6.01899e-04 1 × 92 247 0.0141144
2 2962 1125 92 404 4.22546e-04 4.24145e-04

√
3 27 1.20404e-05 1 × 94 411 4.23333e-04

3 3856 1553 94 564 1.25943e-05 1.2642e-05
√

76 459 1.02284e-05 1 × 96 575 1.26178e-05
4 4750 1981 95 724 3.75311e-07 3.76733e-07

√
95 724 3.75311e-07 3.76733e-07

√
97 739 3.76012e-07

5 5644 2409 95 884 1.11843e-08 1.12267e-08
√

95 884 1.11843e-08 1.12267e-08
√

97 903 1.12051e-08

Property 2: prob. ≤ 10−4 prob. ≤ 10−6 Convergence
0 1174 1134 85 99 0.0189293 0.0189293 × 85 99 0.0189293 0.0189293 × 85 99 0.0189293
1 2068 2028 87 244 8.76261e-04 8.76307e-04 × 87 244 8.76261e-04 8.76307e-04 × 89 247 8.76284e-04
2 2962 2922 8 54 0 2.64633e-05

√
89 404 2.64531e-05 2.64531e-05 × 91 411 2.64531e-05

3 3856 3816 9 72 0 8.88033e-06
√

10 76 0 7.88615e-07
√

93 575 7.88606e-07
4 4750 4710 9 81 0 2.64636e-05

√
11 93 0 2.64636e-07

√
96 739 2.35007e-08

5 5644 5604 9 82 0 2.64636e-05
√

11 97 0 7.88615e-07
√

99 903 7.00322e-10

Property 3: prob. ≤ 10−3 prob. ≤ 10−5 Convergence
0 1174 950 43 93 0.149825 0.149825 × 43 93 0.149825 0.149825 × 43 93 0.149825
1 2068 1844 45 229 6.15567e-03 6.15599e-03 × 45 229 6.15567e-03 6.15599e-03 × 47 232 6.15584e-03
2 2962 2738 42 360 0 1.85196e-04

√
47 379 1.85191e-04 1.85191e-04 × 49 386 1.85191e-04

3 3856 3632 59 519 0 5.52026e-06
√

59 519 0 5.52026e-06
√

68 540 5.52026e-06
4 4750 4526 43 371 0 3.04092e-04

√
46 379 0 1.64505e-07

√
102 693 1.64505e-07

5 5644 5420 52 455 0 8.8846e-06
√

52 455 0 8.8846e-06
√

128 848 4.90225e-09

Property 4: prob. ≤ 10−3 prob. ≤ 10−5 Convergence
0 1174 256 1 4 0.02 0.02 × 1 4 0.02 0.02 × 1 4 0.02
1 2068 465 1 6 4e-04 4e-04

√
1 6 4e-04 4e-04 × 1 6 4e-04

2 2962 674 1 6 0 4e-04
√

3 8 8e-06 8e-06
√

3 8 8e-06
3 3856 883 1 6 0 4e-04

√
3 8 0 8e-06

√
5 10 1.6e-07

4 4750 1092 1 6 0 4e-04
√

3 8 0 8e-06
√

7 12 3.2e-09
5 5644 1301 1 6 0 4e-04

√
3 8 0 8e-06

√
9 14 6.4e-11

Table 3. Performance (with time format “h:mm:ss.d”)

M
A

X Property 1 Property 2 Property 3 Property 4

(≤ 10−5) Converg. (≤ 10−6) Converg. (≤ 10−5) Converg. (≤ 10−5) Converg.

0 0.5 11.6 13.3 13.5 8.7 8.8 0.4 0.4
1 0.6 2:25.6 3:54.1 4:11.9 1:49.4 2:02.2 0.5 0.5
2 1.2 8:27.8 11:02.8 11:24.8 5:16.9 5:55.2 0.6 0.6
3 8:50.5 17:05.8 6.3 22:44.9 11:29.2 15:30.7 0.7 0.7
4 27:19.9 28:52.1 8.8 35:50.7 5:58.0 40:52.9 0.7 0.8
5 41:09.3 45:05.0 10.2 52:21.0 11:03.0 1:31:14.7 0.8 0.9

different situations: either there is a gradual convergence to the infimum, but
almost none to the supremum until an abrupt convergence in the last refinements
(e.g. Property 1), or vice-versa (e.g Props. 2 and 3). The first case case may
allow for an early rejection of the required property but would require many
refinements if the property does hold (compare the number of refinements and
abstract states of the × cases against the

√
cases in Property 1). Instead, the

second case will give an early report if the property holds (compare now the
different results in Property 2).

The exercise of convergence is more costly as no criterion to stop the exe-
cution is provided and it proceeds until no more refinement is possible or the
probability has definitely converged. At this maximum point notice that the
state compression ratio is 10 times on average.
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7 Concluding Remarks

In this article we introduced an efficient technique for quantitative model check-
ing. The method relies on automatic abstraction of the original system. This
allows to significantly reduce the size of the problem to which numerical analy-
sis is applied in order to compute the quantitative factor of the property under
study. Since the numerical analysis is the most costly part of the whole process
this reduction is of high importance. This reduction is achieved first because
bisimilar states are never distinguished, and secondly because using incremen-
tal abstraction refinement and confronting the analysis against a desired (or
undesired) probability allows prompt answers on very compact spaces.

The execution time is currently not the best as the tool should be optimised.
Table 3 reports the tool performance for a set of properties1. The current im-
plementation performs numerical analysis using linear programming techniques
under exact rational arithmetics. This method is very fast (compared to the
painfully slow iterative methods) and it does not suffer of numerical unstabil-
ity since numbers are represented in its exact form. Two remarks are in order.
First, numerical analysis is applied in each refinement step, which is inefficient
since a refinement step may add only few partitions with low chances of sensi-
bly affecting the result of the previous iteration. Second, the already mentioned
asymmetric convergence in which only the minimum or the maximum gradually
converges to the actual value while the other does not until the last refinements.

It is in our near future plans to develop efficiency improvements. One of these
improvements concerns the refinement strategy and the suitable alternation of
refinement and analysis that should be used. Another improvement would be to
take advantage of the fact that probabilities usually appears only in some part
of the modelled system: failures do not appear everywhere!

On a long term agenda, we plan to use this incremental refinement technique
to check probabilistic timed automata. Model checking of PTCTL properties
on such model was proven decidable by resorting to their region graphs [25].
However, region graphs are known to be impractical. Our technique would allow
to generate progressively a minimal probabilistic model, in the spirit of [1].

Acknowledgements. We thank Holger Hermanns and Joost-Pieter Katoen for
fruitful discussions.
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