
UPPAAL - Now, Next, and Future

Tobias Amnell1, Gerd Behrmann2, Johan Bengtsson1, Pedro R. D’Argenio3,
Alexandre David1, Ansgar Fehnker4, Thomas Hune5, Bertrand Jeannet2,

Kim G. Larsen2, M. Oliver Möller5, Paul Pettersson1, Carsten Weise6, and
Wang Yi1

1 Department of Information Technology, Uppsala University, Sweden,
[tobiasa,johanb,adavid,paupet,yi]@docs.uu.se.

2 Basic Research in Computer Science, Aalborg University, Denmark,
[behrmann,bjeannet,kgl]@cs.auc.dk.

3 Faculty of Computer Science, University of Twente, The Netherlands,
dargenio@cs.utwente.nl.

4 Computing Science Institute, University of Nijmegen, The Netherlands,
ansgar@cs.kun.nl.

5 Basic Research in Computer Science, Aarhus University, Denmark,
[baris,omoeller]@brics.dk.

6 Ericsson Eurolab Deutschland GmbH, Germany,
Carsten.Weise@eed.ericsson.se.

Abstract. Uppaal is a tool for modeling, simulation and verification
of real-time systems, developed jointly by BRICS at Aalborg University
and the Department of Computer Systems at Uppsala University. The
tool is appropriate for systems that can be modeled as a collection of
non-deterministic processes with finite control structure and real-valued
clocks, communicating through channels or shared variables. Typical ap-
plication areas include real-time controllers and communication proto-
cols, in particular those where timing aspects are critical.
This paper reports on the currently available version and summarizes de-
velopments during the last two years. We report on new directions that
extends Uppaal with cost-optimal exploration, parametric modeling,
stop-watches, probablistic modeling, hierachical modeling, executable
timed automata, and a hybrid automata animator. We also report on
recent work to improve the efficiency of the tool. In particular, we out-
line Clock Difference Diagrams (CDDs), new compact representations
of states, a distributed version of the tool, and application of dynamic
partitioning.
Uppaal has been applied in a number of academic and industrial case
studies. We describe a selection of the recent case studies.

1 Current Version of Uppaal

In the following, we give a brief overview on Uppaal’s maturing over the years
and explain the core functionalities of the current release version.

F. Cassez et al. (Eds.): MOVEP 2000, LNCS 2067, pp. 99−124, 2001.
 Springer-Verlag Berlin Heidelberg 2001

1.1 Background

Uppaal [LPY97] is a tool for modeling, simulation and verification of real-time
systems, developed jointly by BRICS at Aalborg University and the Depart-
ment of Computer Systems at Uppsala University. The tool is appropriate for
systems that can be modeled as a collection of non-deterministic processes with
finite control structure and real-valued clocks, communicating through channels
or shared variables. Typical application areas include real-time controllers and
communication protocols.

Uppaal consists of three main parts: a description language, a simulator and
a model checker. The description language is a non-deterministic guarded com-
mand language with real-valued clock variables and simple data types. It serves
as a modeling or design language to describe system behavior as networks of
automata extended with clock and data variables. The simulator is a validation
tool which enables examination of possible dynamic executions of a system dur-
ing early design (or modeling) stages. It provides an inexpensive mean of fault
detection prior to verification by the model checker which covers the exhaustive
dynamic behavior of the system. The simulator also allows visualization of er-
ror traces found as result of verification efforts. The model checker is to check
invariant and bounded-liveness properties by exploring the symbolic state-space
of a system, i.e., reachability analysis in terms of symbolic states represented by
constraints.

Since the first release of Uppaal in 1995, the tool has been further developed
by the teams in Aalborg and Uppsala. The run-time and space improvements in
the period December 1996 to September 1998 are reported in [Pet99]. Figures 1
and 2 show the variations of time and space consumption in the period from
November 1998 until January 2001 in terms of four examples: Fischer’s mutual
exclusion protocol with seven processes [Lam87], a TDMA start-up algorithm
with three nodes [LP97], a CSMA/CD protocol with eight nodes [BDM+98], and
the FDDI token-passing protocol with twelve nodes [Yov97]. We notice that the
time performance has improved significantly whereas the space improvement is
only marginal.

In July 1999 a new version of Uppaal, called Uppaal2k, was released. This
new version, which required almost two years of development, is designed to
improve the graphical interface of the tool, to allow for easier maintenance, and
to be portable to the most common operating systems while still preserving
Uppaal’s ease-of-use and efficiency. To meet these requirements, it is designed
as a client/server application with a verification server providing efficient C++
services to a Java client over a socket based protocol. This design also makes it
possible to execute the server and the GUI on two different machines.

The new GUI, shown in Figure 3, integrates the three main tool components
of Uppaal, i.e., the system editor, the simulator, and the verifier. Several new
functionalities have been implemented in the tool. For example, the new system
editor has been tailored and extended for the new system description language
of Uppaal2k (see below), the simulator can be used to display error traces
generated by the verifier, and the verification interface has been enriched with a

100 T. Amnell et al.

0

10

20

30

40

50

60

70

80

90

100

2000 20011999

T
im

e
(s

)

Date

TDMA Start-up
FDDI Protocol

Fischer’s Protocol
CSMA/CD Protocol

Fig. 1. Time (in seconds) benchmarks for the Uppaal version 3.x, from internal version
November 1998 to January 2001. Up to the second version in year 2000 the settings ’-
WA’ (i.e. no warnings and convex-hull approximation) were used. For the later versions
the settings ’-WAa’ (where ’-a’ activates the (in-)active clock reduction) were used. All
tool versions were compiled with gcc 2.95.2 and executed on the same Sun UltraSPARC-
II, 400 MHz machine.

requirement specification editor which stores the previous verification results of
a logical property until the property or the system description is modified.

1.2 The Latest Uppaal Release Version

The current Uppaal version has a rich modeling language, that supports process
templates and (bounded) data structures, such as data variables, constants, ar-
rays, etc. A process template is a timed automaton extended with a list of formal
parameters and a set of locally declared clocks, variables, and constants. Typi-
cally, a system description will consist of a set of instances of timed automata
declared from the process templates, and of some global data, such as global
clocks, variables, synchronization channels, etc. In addition, automata instances
may be defined from templates re-used from existing system descriptions. Thus,
the adopted notion of process templates (particularly when used in combination
with the possibility to declare local process data) allows for convenient re-use of
existing models.

101UPPAAL - Now, Next, and Future

0

2

4

6

8

10

2000 20011999

S
pa

ce
 (

M
B

)

Date

TDMA Start-up
FDDI Protocol

Fischer’s Protocol
CSMA/CD Protocol

Fig. 2. Space (in MB) benchmarks for Uppaal version 3.x, from internal version
November 1998 to January 2001. Up to the second version in year 2000 the settings
’-WAS’ (where ’-S’ activates control-structure reduction [LLPY97]) were used. For the
later versions the settings ’-WAaS 2’ (where ’-S 2’ is similar to ’-S’) were used.

The simulator allows both random and guided tracing through the model.
One symbolic state is displayed at a time, where the control locations are visual-
ized with red bullets in the timed automata graphs and data is shown by means
of equations and clock constraints. Sub-windows can be scaled or dragged out,
and the level of detail can be adjusted for user convenience. In the simulator,
the user can steer to any point of an elapsed trace and save/load traces of the
model. If the model checking engine detects an error trace, it can be handed over
to the simulator for inspection.

The Uppaal model-checking engine is the working horse of the tool. There-
fore it is implemented in C++, whereas the GUI of the tool is implemented in
Java. To interface the model-checking server, the GUI uses a socket-based pro-
tocol. This means that the GUI and verification server can be executed on two
different machines. The verification server can also handle several simultaneous
connections to serve several GUI clients running on different machines. By de-
fault the GUI automatically spawns a verification server process on the local
machine 1.

1 The command line options -serverHost host -serverPort port can be used to in-
struct the GUI to connect to a server at machine host on port port.

102 T. Amnell et al.

Fig. 3. Uppaal2k’s simulation tool on screen.

At the core of Uppaal verification engine we find a forward-style state-space
exploration algorithm. In principal, we might think of this as a variation of
searching the states (nodes) of a directed graph. For this, two data structures
are responsible for the potentially huge memory consumption. The first – the
Waiting list – contains the states that have been encountered by the algorithm,
but have not yet been explored, i.e., the successors have not been determined.
The second – the Passed list – contains all states that have been explored. The
algorithm takes a state from the Waiting list, compares it with the Passed list,
and in case it has not been explored, the state itself is added to the Passed list
while the successors are added to the Waiting list.

The properties, that the model checking engine can check, describe a subset
of timed computation tree logic (TCTL). In short, the four (un-nested) tempo-
ral quantifiers E<>, A[], E[], and A<> are supported, which stand for possibly,
always, inevitably, and potentially always. In addition the operator φ --> ϕ is
supported, which stands for the leadsto property A[](φ → A<>ϕ). An option
for deadlock checking is also implemented but it is currently only available in
the stand-alone verifier verifyta.

This Uppaal2k verification server has been extended with various optimiza-
tion options, described in our publications and elsewhere in the literature. The
current version supports the bit-state hashing under-approximation technique
which has been successfully used in the model-checking tool SPIN for several
years. A technique for generating an over-approximation of a system’s reachable

103UPPAAL - Now, Next, and Future

state-space based on a convex-hull representations of constraints is also sup-
ported. Finally, an abstraction technique based on (in-)active clock reductions
is available.

2 New Directions of Uppaal

Several research activities are conducted within the context of Uppaal. In this
section we report on developments that extend the core functionalities of the
tool.

2.1 COUppaal: Cost-Optimal Search

Uppaal was initially intended to prove the correctness of real time systems with
respect to their specification. If a system does not meet the specification Uppaal
finds an error state and can produce diagnostic information on how to reach this
error state. However, we often prefer to think of these states as desired goal states
and not as error states. To give an example. Consider four persons, who have
to cross a bridge that can only carry two persons at a time. Then, one would
like to know whether they can reach the safe side, given additional constraints
and deadlines. This can be expressed with a timed reachability question, and if
the goal state is reachable, the trace gives also a feasible schedule. We can use
this approach to generally solve timed scheduling problems. In process industry
for example, it is often valuable to know whether it is possible to schedule the
production steps such that all constraints are met. In [Feh99,HLP00], we derive
feasible schedules for a part of a steel plant in Ghent, Belgium, and a Lego
model of this plant.

Even though it is often hard to find a solution, as soon as a feasible solution
is found, the question arises, whether this solution is optimal with respect to
time or the number of actions. To address this, we included concepts that are
well known from branch and bound algorithms to Uppaal. It is then possible to
derive optimal traces for Uniformly Priced Timed Automata (UPTA) [BFH+]. In
this model the cost increases with a fixed rate as time elapses, or with a certain
amount if a transition is taken. The cost is treated as a special clock with extra
operations, but such that we can still use the efficient data structures currently
used in Uppaal. First results for the steel plant and several benchmark problems
were obtained in [BFH+], and we hope to include an option that allows to find
optimal traces to goal states in the next release of Uppaal.

To be able to find time-optimal traces is very useful, but in many situations
we would like to have a more general notion of cost. We proposed the model
of Linearly Priced Timed Automata (LPTA) to be able to model for example
machines that use a different amount of energy per time unit. This model extends
timed automata with prices on all transitions and locations. In these models,
the cost of taking an action transition is the price associated with the transition,
and the cost of delaying d time units in a location is d · p, where p is the price

104 T. Amnell et al.

associated with the location. The cost of a trace is simply the accumulated sum
of costs of its delay and action transitions.

To treat LPTA algorithmically, we introduce priced zones, which assign to
a zone a linear function that defines the minimal cost of reaching a state in
that zone. In [BFH+00] it was shown that given a set of goal states the cost-
optimal trace is computable. This result is quite remarkable since several similar
extensions of timed automata have been proven to be undecidable. A prototype
implementation allows us to perform first experiments [LBB+01].

2.2 Parametric-Uppaal: Solving Parameterized Reachability
Problems

Timed model checking if frequently applied with the intention to find out,
whether the timing constants of the model are correct. A common problem is to
adjust timing parameters in a way, that yield a desired behavior. This can be
achieved if we given a timed automaton with parameters in the guards and if
some or all values for the parameters are synthesized to make the model behave
correctly, i.e., satisfy a certain TCTL formula. We call this parametric model
checking. This problem is addressed in [AHV93], where it is shown to be un-
decidable for systems with three clocks or more. A semi-decision procedures is
suggested in [AHV93] which finds the correct values for the parameters when it
terminates.

We extend the model of timed automata to parametric timed automata by
adding a set of parameters. Guards in parametric timed automata can be on
the form x #$ e or x − y #$ e where e is a linear expression over the parameters.
Having guards of this type gives a natural way of defining a symbolic state-space
including parameters. Instead of having integers in the entries of a DBM we use
parametric DBMs (PDBMs) where the entries are linear expressions over the
parameters.

All the operations on DBMs are based on adding or comparing entries of
DBMs. Without knowing anything about the values of the parameters we can in
general not compare linear expressions over the parameters to each other or to
integers. Comparing a parameter p to the constant 3 has two possible outcomes
depending on the value of p. When such comparisons arises we will have to
distinguish both possibilities. We will do this by adding a constraint set to a
PDBM, consisting of constraints of the form e #$ e′ where e and e′ are linear
expressions and #$∈ {<,≤, >,≥}. In the example from before we will then split
into two cases, one where the constraint p < 3 is added to the constraint set and
one where p ≥ 3 is added to the constraint set. We can now compare entries of
PDMs based on their constraint sets.

Changing DBMs to PDBMs and letting symbolic states consist of the location
vector, a PDBM, and a constraint set, the standard algorithm for state-space
exploration can be used. When a state satisfying the property is found the con-
straints in the constraint set of the state gives the constraints on the parameters
needed for the state to be reachable. If we want to find all the possible values

105UPPAAL - Now, Next, and Future

for the parameters we need to search the complete state-space to find all the
different constraint sets making a goal state reachable.

We have implemented a parametric version of Uppaal allowing parameters in
clock guards and invariants. For deciding minimum between linear expressions we
have borrowed a LP solver from the PMC tool [BSdRT01]. Parametric versions of
the root-contention protocol and the bounded retransmission protocol have been
analyzed using the implementation and minor errors in two published papers on
these protocols have been discovered.

Since the problem is undecidable, Uppaal is not guaranteed to terminate.
As a pragmatic remedy, our algorithm outputs an explored state and the corre-
sponding constraint set, as soon as it if found to satisfy the property. This allows
the user to get partial results which can be very useful and in many cases are the
full results though the search has not terminated. It is also possible to give initial
constraints as input which in many case will make the search terminate much
faster, or check whether partial results obtained are actually the full results.

2.3 Stopwatch-Uppaal: From Timed Automata to Hybrid Systems

For purposes of efficiency, the modeling language of Uppaal was initially de-
signed to be rather limited in expressive power. In particular, when modeling
hybrid systems composed of discrete controller programs and continuous plants
the timed automata model underlying Uppaal is rather restrictive.

One useful extension of timed automata is that of linear hybrid automata
[HHWT97]. In this model guards may be general linear constraints and the
evolution rate of continuous variables may be given by arbitrary intervals. Con-
sequently, model-checking and reachability checking is known to be undecidable
for this model and more importantly the state-space exploration requires manip-
ulation and representation of general polyhedra, which is computationally rather
expensive.

In [CL00] an extension of Uppaal with stopwatches (clocks that may be
stopped occasionally) has been given allowing an approximate analysis of the
full class of linear hybrid automata to be carried out using the efficient data
structures and algorithms of Uppaal.

In particular, this work investigates the expressive power of stopwatch au-
tomata, and shows as a main result that any finite or infinite timed language
accepted by a linear hybrid automaton is also acceptable by a stopwatch au-
tomaton. The consequences of this result are two-fold: firstly, it shows that the
seemingly minor upgrade from timed automata to stopwatch automata imme-
diately yields the full expressive power of linear hybrid automata. Secondly,
reachability analysis of linear hybrid automata may effectively be reduced to
reachability analysis of stopwatch automata. This, in turn, may be carried out
using an easy (over-approximating) extension of the efficient reachability anal-
ysis for timed automata to stopwatch automata. In [CL00] we also report on
preliminary experiments on analyzing translations of linear hybrid automata
using a stopwatch-extension of Uppaal.

106 T. Amnell et al.

2.4 PrUppaal: Probabilistic Timed Automata

Uppaal can check whether a network of timed automata satisfies a safety or a
liveness (timed) property. Many times, this type of properties are not expres-
sive enough to assert adequately the correctness of a system. Take for instance
the well known Alternating Bit Protocol (ABP). Using Uppaal, we can check
whether the ABP satisfies properties like “every message that is sent will even-
tually be received” or “every message that is sent will be received within ∆ µsec.”
In fact we will see that the former is satisfied but not the latter, regardless of
the value of ∆. If our interest is to provide quality of service, the latest property
becomes as important as the former one. However, the fact that the ABP does
not satisfy the second property does not necessarily make it an incorrect pro-
tocol. Knowing the probability with which a message is lost or damaged during
transmission, we can determine the probability that a message is received within
∆ µsec. The correctness of the ABP is now depend on whether we consider that
such a probability measure is satisfactory.

1
100

99
100

x := 0x := 0

send!

waiting

receive?
x ≥ 10

(x ≤ 20)
transmiting

(x ≤ 20)
msg lost

Fig. 4. A lossy channel.

Verification of probabilistic timed sys-
tems is one of the future directions pursued
by Uppaal. Probabilistic timed automata
are a natural extension of timed automata
with probabilities. The probabilistic infor-
mation is attachted to edges. Now, an edge
has the form s

g,a−−−→ p where s is a con-
trol node, g is a guard, a is an action name,
and p is a probability function on pairs of set
of clocks to be reset and control nodes. Fig-
ure 4 depicts a probabilistic timed automa-
ton, that models a lossy channel. A message
that is sent can be lost with probability 1

100 ,
otherwise it is transmitted within 10 to 20 nanoseconds. You can think of this
automaton as model of the medium in the ABP.

On the setting of probabilistic timed systems we formally describe properties
using PTCTL [HJ94]. PTCTL extends TCTL with modalities to express prob-
abilities. For instance, P≥0.95(∀!≤1000received) expresses that with probability
at least 0.95, every message is received within 1000 nanoseconds in any possible
execution.

Solutions to model check probabilistic timed automata have been proposed
in [Jen96] and [KNSS99]. Unfortunately these approaches are based on the con-
struction of a region graph [ACD93] and therefore they heavily suffer from the
state explosion problem. Another solution proposed in [KNSS99] is to use a mod-
ification of the forward reachability technique implemented in Uppaal [YPD94].
Unfortunately, such a modification cannot decide the validity of simple reacha-
bility properties in general.

Our proposal is to use minimization techniques [ACH+92] in order to obtain
(probabilistic) zone graphs that are stable and which behave in a similar manner
to region graphs. However, this technique is still significantly more expensive

107UPPAAL - Now, Next, and Future

when compared to the usual forward reachability analysis. In order to reduce
the state space we plan to explore the use of CDD’s [LWYP99] to represent
non-convex zones as well as dynamic partition techniques [JHR99].

2.5 HUppaal: Hierarchical Structures for Modeling

Hierarchical structures are a popular theme in specification formalisms, such
as statecharts [Har87] and UML [BRJ98]. The main idea is that locations not
necessarily encode atomic points of control, but can serve as an abbreviation for
more complex behavior. If a non-atomic location is entered, this may trigger a
cascade of events irrelevant to a higher level of the system. If a more detailed view
is required, the explicit description of the sub-component can be found isolated,
since dependencies between the different levels of hierarchy are restricted.

The immediate benefit is a concise description, which allows to view a com-
plex system on different levels of abstraction and nevertheless contains all in-
formation in detail. Moreover, symmetries can be expressed explicitly: If two
sub-components A and B of a super-state S are structurally identical, they may
be described as instantiations of the same template (with possibly different pa-
rameters). Copies of states may exist for notational convenience, ambiguities are
resolved by a unique-name assumption.

We believe that Uppaal can benefit greatly from these concepts, since they
support a cleaner and more structured design of large systems. The model can be
constructed top down, starting with a very abstract notion that is refined subse-
quently. The simulator can then be used to validate the model against the intu-
ition of the designer. Conceptually, it is possible to reason about the model with
different stages of granularity. Compositional verification can make use of this,
if local information suffices to establish safety- and deadlock-properties. With
respect to property-preserving abstractions, the structural information gives a
natural refinement relation.

A second—however ambitious—goal is to exploit the structure in shaping
more efficient model-checking algorithms. Related work [AW99] indicates, that
locality of information can be exploited straightforward in reachability analysis.
Also, the work in [LNAB+98] indicate that—at least for un-timed systems—one
may exploit the hierarchical structure of a system during analysis. In Uppaal
this is more difficult, since all parallel processes implicitly synchronize on the
passage of time. Approaches for local-time semantics [BJLY98] have yet to be
shown to improve verification time in reasonable scenarios, i.e., where the de-
pendency between parallel sub-components is low, thus that not all interleavings
have to be taken into account.

As a first step towards this, we work on a careful definition of hierarchical
timed automata, that support encapsulation and local definitions. In particular,
the synchronization of joins raises semantic problems that can be resolved in
various ways.

Case-studies are planned to test the naturalness of these definitions in com-
plex examples. We experiment with a prototype translation of hierarchical timed
automata into a parallel composition of (flat) timed automata. This flattened

108 T. Amnell et al.

A

B

P Q

(1,2)

(4, 20)

(1,4)

x==40

x:=0x==20

x:=0

x>10

x:=0
a?

b?
x:=0

(2,10)

Fig. 5. Timed Automaton with Periodic and Sporadic Tasks.

system necessarily contains auxiliary constructs to imitate the behavior of the
hierarchical ones. We expect the case-studies to give an intuition, whether this
translation slack is tolerable.

The design of the hierarchical timed automata is meant to be close to UML
statechart diagrams. As for the real-time aspect, one output of this considera-
tions will be a real-time profile, that defines an extension of UML formalisms
with clocks and timed invariants in a standard way. This work is carried out in
the context of AIT-WOODDES project No IST-1999-10069.

2.6 ExUppaal: Executable Timed Automata

In this work we develop an executable version of timed automata. We view
a timed automaton as an abstract model of a running software. The model
describes the possible external events (alphabets accepted by the automaton)
that may occur during the execution and the occurrence of the events must follow
the timing constraints (given by the clock constraints). But the model gives no
information on how these events should be handled. We use an extended version
of timed automata ([EWY99]) with real time tasks that may be periodic and/or
sporadic.

The main idea is to associate each node of an automaton with a task (or sev-
eral tasks in the general case). A task is assumed to be an executable program
with two given parameters: its worst case execution time and deadline. An ex-
ample is shown in Figure 5. The system shown consists of 4 tasks as annotation
on nodes, where P, Q are periodic with periods 20 and 40 respectively (specified
by the constraints: x==20 and x==40), and A, B are sporadic or event driven
(by event a and b respectively). The pairs in the nodes give the computation
times and deadlines for tasks e.g. for P they are 2 and 10 respectively.

Intuitively, a discrete transition in an extended timed automaton denotes
an event releasing a task and the guard (clock constraints) on the transition
specifies all the possible arrival times of the associated task. Note that in the
simple automaton shown in Figure 5, an instance of task A could be released

109UPPAAL - Now, Next, and Future

before the preceeding instance of task P has been computed. This means that
the scheduling queue may contains at least P and A. In fact, instances of all four
tasks may appear in the queue at the same time.

Semantically, an extended automaton may perform two types of transitions
just as an ordinary timed automaton. In addition, an action transition will release
a new instance of the task associated with the destination node. Assume that
there is a queue (the scheduling queue) holding all the task instances ready to
run. It corresponds to the ready queue in an operating systems. Whenever a
task is released, it will be put in the scheduling queue for execution. A semantic
state of an extended automaton is a triple consisting of a node (the current
control node), clock assignment (the current setting of the clocks) and a task
queue (the current status of the ready queue). Then a delay transition of the
timed automaton corresponds to the execution of the task with earliest deadline
and idling for the other waiting tasks, and a sequences of discrete transitions
corresponds to a sequence of arrivals of tasks. Naturally a sequence of tasks
is schedulable if all the tasks can be executed within their deadlines and an
automaton is schedulable if all task sequences are schedulable.

In [EWY99], it is shown that the schedulability problem for extended au-
tomata can be solved by reachability analysis for non-preemptive tasks. It is
equivalent to prove that all schedulable states are schedulable. For preemptive
tasks, unfortunately the problem is undecidable. In fact the model will be as
expressive as timed automata with stop watches.

Currently we are working on automatic code synthesis for the extended
model. Inspired by the design philosophy of synchronous languages e.g. Esterel,
we assume that the underlying RT operating system guarantees the Synchrony
Hypothesis, that is the OS system functions takes little time compared to the
worst case execution times and deadlines of tasks. The idea is to use system
functions (primitives) provided by the underlying operating system or run-time
system, to code the discrete transitions (the control structure) of an automaton,
and to compute the tasks on nodes by procedure calls or light weight threads.

If an automaton is schedulable (checked by schedulability analysis that all
tasks instances can be computed within their deadlines), and the synchrony
hypothesis is guaranteed by the underlying operating system, the generated code
in execution will meet the constraints imposed on the tasks.

2.7 Hybrid Automata Animation

In several case-studies with Uppaal we have identified a need to visualize the
execution of the automata. Currently the simulator in Uppaal’s GUI allows an
interactive “execution” of the modeled system. The user can manually select
one of the enabled transitions and go to the next state of the system. This can
be very helpful in understanding the model, but it is still on the difficulty level
of the actual automaton. To make good use of the simulator the user needs to
understand all the details of the modelling language and all details of the specific
system.

110 T. Amnell et al.

Fig. 6. A protoype of the hybrid automata animation tool in Uppaal.

To describe a typical situation, consider one person performing the modeling
and verification of a system, whereas another person wants to validate that
the model is “correct” in the sense that it is an accurate description of the
actual system. Exploring all possible simulation traces is often a very tedious
work. With a visualization tool, where the user can interact with the underlying
model on a higher level via buttons, sliders, and other objects in a graphical
environment this validation task becomes much simpler.

Several other tools have responded to this demand, for example MATLAB/-
Simulink and Statemate, where graphical animation of the models are possible.
By considering simulation and animation of hybrid automata, we adopt these
techniques and aim at taking them one step further. The plan is to generalize
the model of timed automata in Uppaal to the more expressive model of hybrid
automata, where changes of a state is defined by ordinary differential equations
(ODE). To each location we associate a set of ODE’s that describe how real-
valued variables change over time. This more expressive model will be used only
in the animator to model and visualize the behavior a system’s environment.
The system itself will still normally be modeled with timed automata.

The animation is based on the values of the variables, the current location,
and the signals. The values of the variables are calculated at discrete time points
using numerical solution methods. To solve the ODE’s we use a free package
named CVODE 2. Around this we have implemented a Hybrid Automata Inter-
preter that handles the automata transitions, synchronizations, etc., and allows
the user to define the ODE’s using a library of mathematical functions. The

2 More information about the CVODE package can be found at the web site
http://www.netlib.org.

111UPPAAL - Now, Next, and Future

values that come out of the Hybrid Automata Interpreter are used to drive the
animation.

In the animation tool, the user defines a view of the whole system by set-
ting certain parameters. For instance, in a 2-dimensional view two variables x
and y could be used to give the position of an image illustrating the modeled
component, and the current location of the corresponding automaton could be
visualized as color-changes in the image. The user could also decide what actions
(e.g. mouse-clicks) should correspond to signals sent to the visualized automata
model.

Following the example of Uppaal’s multi-platform user interface (see Section
1), the animator is implemented in Java. In this way it fits seamlessly into the
existing tool architecture. Figure 6 shows the animator when used to simulate a
bouncing ball.

3 Recent Developments in Uppaal

In this section we describe the recent developments in Uppaal, which are pri-
marily aimed at improving the efficiency of the model-checker of the tool. In
particular, the development of new internal data-structures, and approximation
and partial-order reduction techniques are considered relevant.

3.1 CDD’s: Clock Difference Diagrams

Difference Bound Matrices (DBM’s) as the standard representation for time
zones in analysis of Timed Automata have a well-known shortcoming: they are
not closed under set-union. This comes from the fact that a set represented by
a DBM is convex, while the union of two convex sets is not necessarily convex.

Within the symbolic computation for the reachability analysis of Uppaal,
set-union however is a crucial operation which occurs in every symbolic step.
The shortcoming of DBM’s leads to a situation, where symbolic states which
could be treated as one in theory have to be handled as a collection of several
different symbolic states in practice. This leads to trade-offs in memory and time
consumption, as more symbolic states have to be stored and visited during in
the algorithm.

DBM’s represent a zone as a conjunction of constraints on the differences
between each pair of clocks of the timed automata (including a fictitious clock
representing the value 0). The major idea of CDD’s (Clock Difference Diagrams)
is to store a zone as a decision tree of clock differences, generalizing the ideas
of BDD’s (Binary Decision Diagrams, see [Bry86]) and IDD’s (Integer Decision
Diagrams, see [ST98])

The nodes of the decision tree represent clock differences. Nodes on the same
level of the tree represent the same clock difference. The order of the clock
differences is fixed a-priori, all CDD’s have to agree on the same ordering. The
leaves of the decision tree are two nodes representing true and false, as in the
case of BDD’s.

112 T. Amnell et al.

X

Y

[1, 3] [4, 6]

[1, 3]

True

X

Y Y Y

[1, 2] [3, 4]

[1, 3]
[1, 4]

[2, 4]

True

(2, 3)

X

Y

X − Y X − Y

[2,3]

[0,0]

[0, 2]

[0, 1]

[−3, 0]

True

Y

1 2 3 4 5 6
X

1
2
3

Y

1 2 3 4 5 6
X

1
2
3

Y

1 2 3 4 6
X

1
2
3

5
(a) (b) (c)

Fig. 7. Three example CDD’s. Intervals not shown lead implicitly to False.

Each node can have several outgoing edges. Edges are labeled with integral
intervals: open, half-closed and closed intervals with integer values as the borders.
A node representing the clock difference X − Y together with an outgoing edge
with interval I represents the constraint ”X − Y within I”. The leafs represent
the global constraints true and false respectively.

A path in a CDD from a node down to a leaf represents the set of clock values
with fulfill the conjunction of constraints found along the path. Remember that
a constraint is found from the pair node and outgoing edge. Paths going to false
thus always represent the empty set, and thus only paths leading to the true
node need to be stored in the CDD. A CDD itself represents the set given by
the union of all sets represented by the paths going from the root to the true
node. From this clearly CDD’s are closed under set-union. Figure 7 gives three
examples of two-dimensional zones and their representation as CDDs. Note that
the same zone can have different CDD representations.

All operations on DBM’s can be lifted straightforward to CDD’s. Care has
to be taken when the canonical form of the DBM is involved in the operation, as
there is no direct equivalent to the (unique) canonical form of DBM’s for CDD’s.

CDD’s generalize IDD’s, where the nodes represent clock values instead of
clock differences. As clock differences, in contrast to clock values, are not inde-
pendent of each other, operations on CDD’s are much more elaborated than the
same operations on IDD’s. CDD’s can be implemented space-efficient by using
the standard BDD’s technique of sharing common substructure. This sharing
can also take place between different CDD’s.

Experimental results have shown that using CDD’s instead of DBM’s can
lead to space savings of up to 99%. However, in some cases a moderate increase
in run time (up to 20%) has to be paid. This comes from the fact that operations
involving the canonical form are much more complicated in the case of CDD’s
compared to DBM’s. More on CDD’s can be found in [LWYP99] and [BLP+99].

113UPPAAL - Now, Next, and Future

3.2 Compact Representation of States

Symbolic states are the core objects of state space search and their representation
is one of the key issues in implementing an efficient verifier. In the earlier versions
of Uppaal each entity in a state (i.e., an element in the location vector, the value
of an integer variable or a bound in the DBM) is mapped on a machine word.
The reason for this is simplicity and speed. However, the number of possible
values for each entity is usually small, and using a whole machine word for each
of them is often a waste of space.

To solve this problem two additional, more compact, state representations
have been implemented. In both of them the discrete part of each state is encoded
as a number, using a multiply and add scheme. This encoding is much like looking
at the discrete part as a number, where each digit is an entity in the discrete
state and the base varies with the number of different digits.

In the first packing scheme, a DBM is encoded using the same technique
as the discrete part of the state. This gives a very space efficient but computa-
tionally expensive representation, where each state takes a minimum amount of
memory but where a number of bignum division operations have to be performed
to check inclusion between two DBMs.

In the second packing scheme, some of the space performance is sacrificed to
allow a more efficient inclusion check. Here each bound in the DBM is encoded
as a bit string long enough to represent all the possible values of this bound plus
one test bit, i.e., if a bound can have 10 possible values then five bits are used
to represent the bound. This allows cheap inclusion checking based on ideas of
Paul and Simon [PS80] on comparing vectors using subtraction of bit strings.

In Figure 8 we see that the space performance of these representations are
both substantially better than the traditional representation, with space savings
of between 25% and 70%. As we expect, the performance of the first packing
scheme, with an expensive inclusion check, is somewhat better, space-wise, than
the packing scheme with the cheap inclusion check.

Considering the time performance for the packed state representations (see
Figure 9), we note that the price for using the encoding with expensive inclusion
check is a slowdown of 2 – 12 times, while using the other encoding sometimes
is even faster than the traditional representation.

3.3 Partial Order Reduction for Timed Systems

Partial-order reduction is a well developed technique, whose purpose is to reduce
the usage of time and memory in state-space exploration by avoiding to explore
unnecessary interleavings of independent transitions. It has been successfully
applied to finite-state systems. However, for timed systems there has been less
progress. The major obstacle to the application of partial order reduction to
timed systems is the assumption that all clocks advance at the same speed,
meaning that all clocks are implicitly synchronized. If each process contains
(at least) one local clock, this means that advancement of the local clock of a
process is not independent of time advancements in other processes. Therefore,
different interleavings of a set of independent transitions will produce different

114 T. Amnell et al.

Field Bus B&O DACAPO
(big)

DACAPO
(small)

Fischer 5 Fischer 6

R
el

at
iv

e
S

pa
ce

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

First Second

Fig. 8. Space performance for the two packing schemes (denoted First and Second).

combinations of clock values, even if there is no explicit synchronization between
the processes or their clocks.

In [BJLY98], we have presented a partial-order reduction method for timed
systems based on a local-time semantics for networks of timed automata. The
main idea is to remove the implicit clock synchronization between processes
in a network by letting local clocks in each process advance independently of
clocks in other processes, and by requiring that two processes resynchronize
their local time scales whenever they communicate. The idea of introducing local
time is related to the treatment of local time in the field of parallel simulation.
Here, a simulation step involves some local computation of a process together
with a corresponding update of its local time. A snapshot of the system state
during a simulation will be composed of many local time scales. In our work, we
are concerned with verification rather than simulation, and we must therefore
represent sets of such system states symbolically.

A symbolic version of the local-time semantics is developed in terms of pred-
icate transformers, which enjoys the desired property that two predicate trans-
formers are independent if they correspond to disjoint transitions in different
processes. Thus we can apply standard partial order reduction techniques to the
problem of checking reachability for timed systems, which avoid exploration of
unnecessary interleavings of independent transitions. The price is that we must
introduce extra machinery to perform the resynchronization operations on local
clocks. A variant of DBM representation has been developed for symbolic states
in the local time semantics for efficient implementation of our method.

We have developed a prototype implementation based on the technique. Un-
fortunately, our experimental results are not so satisfactory, which is not so sur-
prising due to the large number of local clocks introduced. We are still struggling
for an efficient implementation.

115UPPAAL - Now, Next, and Future

Field Bus B&O DACAPO
(big)

DACAPO
(small)

Fischer 5 Fischer 6

R
el

at
iv

e
T

im
e

0
1
2
3
4
5
6
7
8
9

10
11
12
13

First Second

Fig. 9. Time performance for the two packing schemes (denoted First and Second).

3.4 DUppaal: Distributed State Space Exploration

Real time model checking is a time and memory consuming task, quite often
reaching the limits of both computers and the patience of users. An increasingly
common solution to this situation is to use the combined power of computers
connected in a cluster. Good results have recently been achieved for Uppaal by
distributing both the model checking algorithm and the main data structures
[BHV00].

Recall the basic state-space exploration described briefly in Section 1.2. The
distributed version of this algorithm is similar. Each node (processing unit) in
the cluster will hold fragments of both the Waiting list and the Passed list
according to a distribution function mapping states to nodes. In the beginning,
the distributed Waiting list will only hold the initial state. What ever node
hosts this state will compare it to its still empty Passed list fragment and
consequently explore it. Now, the successors are distributed according to the
distribution function and put into the Waiting list fragment on the respective
nodes. This process will be repeated, but now several nodes contain states in
their fragment of the Waiting list and quickly all nodes become busy exploring
their part of the state space. The algorithm terminates when all Waiting list
fragments are empty and no states are in the process of being transfered between
nodes.

The distribution function is in fact a hash function. It distributes states uni-
formly over its range and hence implements what is called random load balancing.
Since states are equally likely to be mapped to any node, all nodes will receive
approximately the same number of states and hence the load will be equally
distributed.

116 T. Amnell et al.

This approach is very similar to the one taken by [SD97]. The difference
is that Uppaal uses symbolic states, each covering (infinitely) many concrete
states. In order to achieve optimal performance, the lookup performed on the
Passed list is an inclusion check. An unexplored symbolic state taken from the
Waiting list is compared with all the explored symbolic states on the Passed
list, and only if non of those states cover (include) the unexplored symbolic state
it is explored. For this to work in the distributed case, the distribution function
needs to guarantee that potentially overlapping symbolic states are mapped to
the same node in the cluster. A symbolic state can be divided into a discrete
part and a continuous part. By only basing the distribution on the discrete part,
the above is ensured.

Peculiarly, the number of explored states is heavily dependent on the search
order. For instance, let s and t be two symbolic states such that s includes t.
Thus, if s is encountered before t, t will not be explored because s is already
on the Passed list and hence covers t. On the other hand, if we encounter t
first, both states will be explored. Experiments have shown that breadth first
order is close to optimal when building the complete reachable state-space. Un-
fortunately, ensuring strict breadth first order in a distributed setting requires
synchronizing the nodes, which is undesirable. Instead, we order the states in
each Waiting list fragment according to their distance from the initial state,
exploring those with the smallest distance first. This results in an approximation
of the breadth first order. Experiments have shown that this order drastically
reduces the number of explored states compared to simply using a FIFO order.

This version of Uppaal has been used on a Sun Enterprise 10000 with 24
CPUs and on a Linux Beowulf cluster with 10 nodes. Good speedups have been
observed on both platforms when verifying large systems (around 80% of optimal
at 23 CPUs on the Enterprise 10000).

3.5 Dynamic Partitioning: Tackling the State Explosion Problem

This line of work addresses the state-space explosion problem that has to be
overcomed in the verification of systems described by a parallel composition of
several automata.

Recall that basic algorithm implemented in Uppaal is an exact reachability
algorithm that computes for each reachable location of the global system a finite
union of zones. One promising idea here is to make use of approximations in
order to reduce the complexity of this algorithm, and nevertheless stay conser-
vative with respect to safety properties. In many cases, this greatly improves
performance without sacrificing relevant information.

The current release of Uppaal already contains options for convex-hull ap-
proximation of zones, basically associating one unique zone to each reachable
control location. Such a zone represents then an upper-approximation of the
exact reachable clock values in the considered location. Another possible ap-
proximation would consist in associating the same zone to several locations. We
will use a combination of these two techniques.

Now, a major difficulty is to adjust the level of approximation used. A tradeoff
has to be found between precision and efficiency. Rough approximations make

117UPPAAL - Now, Next, and Future

analysis cheaper but may fail in showing non-trivial properties; more precise
analyses may be too expensive to be able to deal with big systems.

The solution we propose [JHR99,Jea00,Jea] is defined within the framework
of abstract interpretation theory [CC77]. It relies on the use of an abstract
lattice combining Boolean and numerical properties (e.g. zones), and exploits
the partitioning of the state space of the system in order to adjust the precision
of the analysis. Now, given a safety property, it is hardly possible to guess the
good partition to check it, i.e., the coarsest partition that is still detailed enough
to enable the proof of this property. We propose to start the analysis with a
very coarse partition, and to automatically refine it according to the needs of
verification, until the obtained precision enables a proof of the property, or until
the partition cannot be refined in a reasonable way any more.

This technique has been implemented in the tool NBac, using convex poly-
hedra to represent numerical properties, and has been successfully applied to
the verification of synchronous programs [Jea00,Jea]. Work is currently done to
extend the tool with continuous time semantic, and to connect it to the Uppaal
language for timed automata. We are also considering to replace the convex poly-
hedra lattice used in the tool by the cheaper lattice of zones, used in Uppaal, or
possibly the new lattice of octagons [Min00], that generalizes zones by allowing
constraints of the form m ≤ xi + xj ≤ M .

4 Recent Case Studies

Uppaal2k has been applied in a number of case studies. In this section we
briefly describe a selection of the more recent ones. A more complete overview
is given on the Uppaal home page http://www.uppaal.com/ (see the section
“Documentation”).

In [DY00], David and Wang report on an industrial application of Uppaal
to model and debug a commercial field bus communication protocol, AF100
(Advant Field-bus 100) developed and implemented by process control industry
for safety-critical applications. The protocol has been running in various indus-
trial environments over the world for the past ten years. Due to the complexity
of the protocol and various changes made over the years, it shows occasionally
unexpected behaviors. During the case study, a number of imperfections in
the protocol logic and its implementation are found and the error sources are
debugged based on abstract models of the protocol; respective improvements
have been suggested.

In [HLP00], Hune et al. address the problem of synthesizing production sched-
ules and control programs for the batch production plant model built in LEGO
MINDSTORMSTM RCXTM shown in Figures 10. A timed automata model of the
plant which faithfully reflects the level of abstraction needed to synthesize con-
trol programs is described. This makes the model very detailed and complicated
for automatic analysis. To solve this problem a general way of adding guidance
to a model by augmenting it with additional guidance variables and transition
guards is presented. Applying the technique makes synthesis of control problems
feasible for a plant producing as many as 60 batches. In comparison, only two

118 T. Amnell et al.

Fig. 10. An overview of the LEGO plant.

batches could be scheduled without guides. The synthesized control programs
have been executed in the plant. Doing this revealed some model errors.

The papers [Hun99,IKL+00] also consider systems controlled by LEGO
RCXTM bricks. Here the studied problem is that of checking properties of the
actual programs, rather than abstract models of programs. It is shown how
Uppaal models can be automatically synthesized from RCXTM programs,
written in the programming language Not Quite C, NQC. Moreover, a protocol
to facilitate the distribution of NQC programs over several RCXTM bricks is
developed and proved to be correct. The developed translation and protocol
are applied to a distributed LEGO system with two RCXTM bricks pushing
boxes between two conveyer belts moving in opposite directions. The system is
modeled and some verification results with Uppaal2k are reported.

In [KLPW99], Kristoffersen et. al. present an analysis of an experimental
batch plant using Uppaal2k. The plant is modeled as a network of timed au-
tomata where automata are used for modeling the physical components of the
plant, such as the valves, pumps, tanks etc. To model the actual levels of liquid
in the tanks, integer variables are used in combination with real-valued clocks
which control the change between the (discrete) levels at instances of time which
may be predicted from a more accurate hybrid automata model. An crucial as-
sumption of this discretization is that the interaction between the tanks and the

119UPPAAL - Now, Next, and Future

rest of the plant must be such that any plant event affecting the tanks only occurs
at these time instances. If this assumption can be guaranteed (which is one of the
verification efforts in this framework), the verification results are exact and not
only conservative with respect to a more accurate model, where the continuous
change of the levels may have been given by some suitable differential equation.

The paper [LAM99] reports on the first time, that a part of the Ada
run-time complex has been formally verified. To eliminate most implementation
dependencies and constructs with not clearly specified behavior in Ada, the
Ravenscar Tasking Profile is used to implement the concurrency part. This
significantly advances the possibility to formally verify properties of concurrent
programs. The case study uses Uppaal to prove fourteen properties, where one
depends directly on an upper bound on a real-time clock value.

In an ongoing case study [AJ01], Uppaal is applied to model and analyze a
generalized version of a car looking system developed by Saab Automobile. The
looking system is distributed over several nodes in the internal communication
network that exists in all modern vehicles. The system consists of a central node
gathering information and based on this instructing sub nodes attached to the
physical hardware to lock or unlock doors, trunk lid, etc. The input sources are
different kinds of remote controllers, speed sensors, automatic re-locking time-
outs etc. which based on predefined rules may activate the locking mechanism.
The model of the system is derived from the actual functional requirements
of the looking system used at Saab Automobile. During the currently ongoing
work with verifying the functional requirements of the model, some inconsisten-
cies and other problems between requirement have been found and pointed out
to the engineers.

5 Online Available Distributions

Uppaal2k is currently available for Linux, SunOS and MS Windows platforms.
It can be downloaded from the Uppaal home page http://www.uppaal.com/.
Since July 1999, the tool has been downloaded by more than 800 different users
in 60 countries. On the home page, you also find answers to frequently asked
questions, online documentation, tutorials, and related research articles.

An open mailing list at http://groups.yahoo.com/group/uppaal serves
as a lively discussion forum for both Uppaal users and developers.

References

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model Checking in
Dense Real Time. Information and Computation, 104:2–34, 1993.

[ACH+92] Rajeev Alur, Costas Courcoubetis, Nicolas Halbwachs, David Dill, and
Howard Wong-Toi. Minimization of Timed Transition Systems. In Proc.
of CONCUR ’92, Theories of Concurrency: Unification an d Extension,
pages 340–354, 1992.

120 T. Amnell et al.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Parametric
Real-time Reasoning. In Proceedings of the Twenty-Fifth Annual ACM
Symposium on the Theory of Computing, pages 592–601, 1993.

[AJ01] Tobias Amnell and Pontus Jansson. Report from astec-rt auto project
— central locking system case study. In preparation, 2001.

[AW99] Rajeev Alur and Bow-Yaw Wang. “Next” Heuristic for On-the-fly Model
Checking. In Proc. of CONCUR ’99: Concurrency Theory, number 1664
in Lecture Notes in Computer Science, pages 98–113. Springer–Verlag,
1999.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero, Stavros Tri-
pakis, and Sergio Yovine. Kronos: A model-Checking Tool for Real-Time
Systems. In Proc. of the 10th Int. Conf. on Computer Aided Verifica-
tion, number 1427 in Lecture Notes in Computer Science, pages 546–550.
Springer–Verlag, 1998.

[BFH+] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen, Paul
Pettersson, and Judi Romijn. Efficient Guiding Towards Cost-Optimality
in uppaal. Accepted for publication in TACAS’2001.

[BFH+00] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim G. Larsen,
Paul Pettersson, Judi Romijn, and Frits Vaandrager. Minimum-
Cost Reachability for Priced Timed Automata. Submitted for
publication. Available at http://www.docs.uu.se/docs/rtmv/papers/-
bfhlprv-sub00-1.ps.gz, 2000.

[BHV00] Gerd Behrmann, Thomas Hune, and Frits Vaandrager. Distributing
Timed Model Checking – How the Search Order Matters. In Proc. of the
12th Int. Conf. on Computer Aided Verification, number 1855 in Lecture
Notes in Computer Science, pages 216–231. Springer–Verlag, 2000.

[BJLY98] Johan Bengtsson, Bengt Jonsson, Johan Lilius, and Wang Yi. Partial
Order Reductions for Timed Systems. In Proc. of CONCUR ’98: Con-
currency Theory, number 1466 in Lecture Notes in Computer Science.
Springer–Verlag, 1998.

[BLP+99] Gerd Behrmann, Kim G. Larsen, Justin Pearson, Carsten Weise, and
Wang Yi. Efficient Timed Reachability Analysis Using Clock Difference
Diagrams. In Proc. of the 11th Int. Conf. on Computer Aided Verifi-
cation, number 1633 in Lecture Notes in Computer Science. Springer–
Verlag, 1999.

[BRJ98] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley, 1998.

[Bry86] Randal E. Bryant. Graph-Based Algorithms for Boolean-Function Ma-
nipulation. IEEE Trans. on Computers, C-35(8):677–691, August 1986.

[BSdRT01] Giosuè Bandini, R. F. Lutje Spelberg, R. C. M. de Rooij, and W. J.
Toetenel. Application of Parametric Model Checking - The Root Con-
tention Protocol. In Proc. of the 34th Annual Hawaii International Con-
ference on System Sciences (HICSS-34), 2001.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation: a Unified
Lattice Model for Static Analysis of Programs by Construction or Ap-
proximation of Fixpoints. Proc. of the 4th ACM Symposium on Princi-
ples of Programming Languages, January 1977.

[CL00] Franck Cassez and Kim G. Larsen. The Impressive Power of Stopwatches.
In Proc. of CONCUR ’2000: Concurrency Theory, number 1877 in Lec-
ture Notes in Computer Science, pages 138–152. Springer–Verlag, 2000.

121UPPAAL - Now, Next, and Future

[DY00] Alexandre David and Wang Yi. Modelling and Analysis of a Commercial
Field Bus Protocol. In Proc. of 12th Euromicro Conference on Real-Time
Systems, pages 165–172. IEEE Computer Society Press, June 2000.

[EWY99] Christer Ericsson, Anders Wall, and Wang Yi. Timed Automata as Task
Models for Eventdriven Systems. In Proceedings of RTSCA 99. IEEE
Computer Society Press, 1999.

[Feh99] Ansgar Fehnker. Scheduling a Steel Plant with Timed Automata. In
Proc. of the 6th International Conference on Real-Time Computing Sys-
tems and Applications (RTCSA99), pages 280–286. IEEE Computer So-
ciety Press, 1999.

[Har87] David Harel. Statecharts: A Visual Formalism for Complex Systems.
Science of Computer Programming, 8:231–274, 1987.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A
Model Checker for Hybrid Systems. In Orna Grumberg, editor, Proc. of
the 9th Int. Conf. on Computer Aided Verification, number 1254 in Lec-
ture Notes in Computer Science, pages 460–463. Springer–Verlag, 1997.

[HJ94] Hans A. Hansson and Bengt Jonsson. A Logic for Reasoning about Time
and Reliability. Formal Aspects of Computing, 6:512–535, 1994.

[HLP00] Thomas Hune, Kim G. Larsen, and Paul Pettersson. Guided Synthesis of
Control Programs Using uppaal. In Ten H. Lai, editor, Proc. of the IEEE
ICDCS International Workshop on Distributed Systems Verification and
Validation, pages E15–E22. IEEE Computer Society Press, April 2000.

[Hun99] Thomas Hune. Modelling a Real-time Language. In Proceedings of
FMICS, 1999.

[IKL+00] Torsten K. Iversen, K̊are J. Kristoffersen, Kim G. Larsen, Morten
Laursen, Rune G. Madsen, Steffen K. Mortensen, Paul Pettersson, and
Chris B. Thomasen. Model-Checking Real-Time Control Programs —
Verifying LEGO Mindstorms Systems Using uppaal. In Proc. of 12th
Euromicro Conference on Real-Time Systems, pages 147–155. IEEE
Computer Society Press, June 2000.

[Jea] Bertrand Jeannet. Dynamic Partitioning in Linear Relation Analysis.
Application to the Verification of Reactive Systems. to appear in Formal
Methods and System Design, Kluwer Academic Press.

[Jea00] Bertrand Jeannet. Partitionnement dynamique dans l’analyse de rela-
tions linéaires et application à la vérification de programmes synchrones.
PhD thesis, Institut National Polytechnique de Grenoble, September
2000.

[Jen96] Henrik E. Jensen. Model Checking Probabilistic Real Time Systems. In
B. Bjerner, M. Larsson, and B. Nordström, editors, Proceedings of the 7th
Nordic Workshop on Programming Theory, Göteborg Sweden, Report 86,
pages 247–261. Chalmers University of Technolog, 1996.

[JHR99] Bertrand Jeannet, Nicolas Halbwachs, and Pascal Raymond. Dynamic
Partitioning in Analyses of Numerical Properties. In Static Analysis
Symposium, SAS’99, Venezia (Italy), September 1999.

[KLPW99] K̊are Kristoffersen, Kim G. Larsen, Paul Pettersson, and Carsten Weise.
Vhs Case Study 1 - experimental Batch Plant using uppaal. BRICS,
University of Aalborg, Denmark, http://www.cs.auc.dk/research/-
FS/VHS/cs1uppaal.ps.gz, May 1999.

122 T. Amnell et al.

[KNSS99] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy
Sproston. Automatic Verification of Real-Time Systems with Proba-
bility Distributions. In J.-P. Katoen, editor, Proceedings of the 5th
AMAST Workshop on Real-Time and Probabilistic System, Bamberg,
Germany, number 1601 in Lecture Notes in Computer Science, pages 75–
95. Springer–Verlag, 1999. An extended version will appear in Theoretical
Computer Science.

[Lam87] Leslie Lamport. A Fast Mutual Exclusion Algorithm. ACM Trans. on
Computer Systems, 5(1):1–11, February 1987. Also appeared as SRC
Research Report 7.

[LAM99] Kristina Lundqvist, Lars Asplund, and Stephen Michell. A Formal Model
of the Ada Ravenscar Tasking Profile; Protected Objects. In Springer-
Verlag, editor, Proc. of the Ada Europe Conference, pages 12–25, 1999.

[LBB+01] Kim G. Larsen, Gerd Behrmann, Ed Brinksma, Ansgar Fehnker, Thomas
Hune, Paul Pettersson, and Judi Romijn. As Cheap as Possible: Efficient
Cost-Optimal Reachability for Priced Timed Automata. Submitted for
publication, 2001.

[LLPY97] Fredrik Larsson, Kim G. Larsen, Paul Pettersson, and Wang Yi. Effi-
cient Verification of Real-Time Systems: Compact Data Structures and
State-Space Reduction. In Proc. of the 18th IEEE Real-Time Systems
Symposium, pages 14–24. IEEE Computer Society Press, December 1997.

[LNAB+98] Jørn Lind-Nielsen, Henrik Reif Andersen, Gerd Behrmann, Henrik Hul-
gaard, K̊are J. Kristoffersen, and Kim G. Larsen. Verification of Large
State/Event Systems Using Compositionality and Dependency Analy-
sis. In Bernard Steffen, editor, Proc. of the 4th Workshop on Tools and
Algorithms for the Construction and Analysis of Systems, number 1384
in Lecture Notes in Computer Science, pages 201–216. Springer–Verlag,
1998.

[LP97] Henrik Lönn and Paul Pettersson. Formal Verification of a TDMA Pro-
tocol Startup Mechanism. In Proc. of the Pacific Rim Int. Symp. on
Fault-Tolerant Systems, pages 235–242, December 1997.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a Nutshell.
Int. Journal on Software Tools for Technology Transfer, 1(1–2):134–152,
October 1997.

[LWYP99] Kim G. Larsen, Carsten Weise, Wang Yi, and Justin Pearson. Clock
Difference Diagrams. Nordic Journal of Computing, 6(3):271–298, 1999.

[Min00] Antoine Miné. The Numerical Domain of Octagons and Application to
the Automatic Analysis of Programs. Master’s thesis, École Normale
Supérieure de Paris, 2000.

[Pet99] Paul Pettersson. Modelling and Analysis of Real-Time Systems Using
Timed Automata: Theory and Practice. PhD thesis, Department of Com-
puter Systems, Uppsala University, February 1999.

[PS80] Wolfgang J. Paul and Janos Simon. Decision Trees and Random
Access Machines. In Logic and Algorithmic, volume 30 of Monogra-
phie de L’Enseignement Mathématique, pages 331–340. L’Enseignement
Mathématique, Université de Genève, 1980.

[SD97] Ulrich Stern and David L. Dill. Parallelizing the Murϕ Verifier. In
Orna Grumberg, editor, Proc. of the 9th Int. Conf. on Computer Aided
Verification, volume 1254 of Lecture Notes in Computer Science, pages
256–267. Springer–Verlag, June 1997. Haifa, Isreal, June 22-25.

123UPPAAL - Now, Next, and Future

[ST98] Karsten Strehl and Lothar Thiele. Symbolic Model Checking of Pro-
cess Networks Using Interval Diagram Techniques. In Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design
(ICCAD-98), pages 686–692, 1998.

[Yov97] Sergio Yovine. Kronos: A verification Tool for Real-Time Systems.
Springer International Journal of Software Tools for Technology Trans-
fer, 1(1/2), October 1997.

[YPD94] Wang Yi, Paul Pettersson, and Mats Daniels. Automatic Verification
of Real-Time Communicating Systems By Constraint-Solving. In Dieter
Hogrefe and Stefan Leue, editors, Proc. of the 7th Int. Conf. on Formal
Description Techniques, pages 223–238. North–Holland, 1994.

124 T. Amnell et al.

