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1 Instituto de Computación. Universidad de la República. Uruguay
{echague,sierra}@fing.edu.uy

2 Dept. of Computer Science. University of Twente. The Netherlands
dargenio@cs.utwente.nl

Abstract. This work studies the notion of locality in the context of
process specification. It relates naturally with other works where infor-
mation about the localities of a program is obtained information from
its description written down in a programming language.
This paper presents a new approach for this problem. In our case, the
information about the system will be given in semantic terms using asyn-
chronous transition systems. Given an asynchronous transition system we
build an algebra of localities whose models are possible implementations
of the known system. We present different results concerning the models
for the algebra of localities. In addition, our approach neatly considers
the relation of localities and non-determinism.

1 Introduction

In the framework of the so called true concurrency, the idea of causality has
been widely studied [13,12,8,7,15]. Localities, an idea somehow orthogonal to
causality, has become also interesting [1,4,5,10,11,9,3]. Causality states which
events are necessary for the execution of a new one, while localities observe in
which way the events are distributed. Both approaches have been shown not to
be equivalent or to coincide in a very discriminating point [6,17].

The idea of the work on localities is to state where an event occurs given
the already known structure of a process. Thus, the starting point is a process
written in a clearly defined syntax. For instance, consider the process

a.c.stop ||c c.b.stop (1)

where ||c is the CSP parallel composition: there are two processes running to-
gether, but they must synchronize in the action c. This process may execute
actions a@ • |∅, b@∅|•, and c@ • |•. The term in the right hand side of the @
indicates the places in which the action on the left side of @ occurs. In particular,
the • shows in which side of the parallel operation the action takes place. Notice
that a and b do not share any locality: a occurs at the left hand side of the
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parallel composition while b occurs at the right hand side. On the other hand,
the process

a.c.b.stop (2)

presents the same sequence of actions a, c, and b, although in this case they
occur exactly in the same place.

Besides, these works on localities have a nagging drawback: in some cases
where non deterministic choice and parallel composition are involved, localities
for actions do not seem to match our intuition. For instance, in the process

(a.stop || b.stop) + (c.stop || d.stop) (3)

we have that a@ • |∅ and d@∅|•. We could think that a and d do not share any
resource, but in a causal-based model they are clearly in conflict: the occurrence
of one of them forbids the occurrence of the other. From a causal point of view
actions a and d must be sharing some locality.

The approach we chose is to deduce the distribution of events from the se-
mantics of a given process. We use asynchronous transition systems [14,16] (ATS
for short) to describe its behavior. Thus, in our case the architecture (i.e., the
syntax) of the process is not known.

Our contribution consists of the statement and exploration of this original
semantic-based approach. For each ATS we define an algebra of localities with
a binary operation ∧ that returns the common places of two events, and a con-
stant 0 meaning “nowhere”. The axioms of this algebra will give the minimal
requirements needed for events to share or not to share some place. The ax-
iomatization does not specify anything if such a statement cannot be deduced
from the behavior. Thus, given the interpretation of the processes (1) and (2)
we may deduce that a and c must have some common place, and we will write
a ∧ c 6= 0.However, the axiomatization is not going to state whether a ∧ b = 0
or a ∧ b 6= 0. This will depend on the model chosen for the axiomatization, that
gives the definitive criterion for the distribution of events: our models will be
true implementations of ATS. We will show that our approach detects situations
like the one described in process (3). In this case, we will have an explicit axiom
saying that a and d share some common place, i.e, a ∧ d 6= 0.

In addition, we discuss different models for the algebra of localities of a given
ATS. These models may be associated to a program whose specification was
given in terms of the original ATS. First we introduce the non-independence
models which consider whether two events are independent in the corresponding
ATS. Then, we define models which take into account whether two events are
adjacent.

Consider two events sharing a locality in a model M for a given ATS. If they
share some locality in every possible model for this ATS, we call M a minimal
sharing model. On the other hand, if two events share a locality in M only when
they share a locality in any other model, then we call M a maximal sharing
model. We show that the models concerning adjacency introduced in this work
hold one of these properties.
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The paper is organized as follows. Section 2 recalls the definition of ATS as
well as some notions of graph theory. Section 3 introduces the algebra of locali-
ties. Six models for this algebra are presented in Section 4. Finally, conclusions
and future works are given in Section 5.

2 Preliminaries

Asynchronous Transitions Systems Asynchronous transition systems [14,16]
are a generalization of labeled transition systems. In ATSs, transitions are la-
beled with events, and each event represents a particular occurrence of an action.
In addition, ATSs incorporate the idea of independent events. Two independent
events can be executed in parallel, and so they cannot have resources in common.
Formally, we define:

Definition 1. Let A = {α, β, γ, . . .} be a set of actions. An asynchronous tran-
sition system is a structure T = (S, E, I,−→, `) where

– S = {s, t, s′, . . .} is a set of states and E = {a, b, c, . . .} is a set of events;
– I ⊆ E × E is an irreflexive and symmetric relation of independence. We

write aIb instead of (a, b) ∈ I;
– −→⊆ S × E × S is the transition relation. We write s

a−→ s′ instead of
(s, a, s′) ∈−→;

– ` : E → A is the labeling function.

In addition, T has to satisfy the following axioms,

Determinism: s
a−→s′ ∧ s

a−→s′′ =⇒ s′ = s′′

Forward stability: aIb ∧ s
a−→s′ ∧ s

b−→s′′ =⇒ ∃t ∈ E. s′ b−→ t ∧ s′′ a−→ t

Commutativity: aIb∧s
a−→s′ ∧s′ b−→ t =⇒ ∃s′′ ∈ E. s

b−→s′′ ∧s′′ a−→ t
ut

Example 1. In the Introduction we have mentioned a couple of examples. We
are going to use them as running examples. To simplify notation, we use the
same name for events and actions.

We can represent both a.c.b.stop and a.c.stop ||c c.b.stop by the ATS in
Figure 1. Notice that for the second process, we could have aIb although that is
not actually relevant. However, it is important to notice that ¬(aIc) and ¬(bIc)
in both cases.

The ATS for process (a.stop || b.stop) + (c.stop || d.stop) is depicted in
Figure 2. Notice that aIb and cId while any other pair of events is not indepen-
dent. Shadowing is used to show the independence relation between events. ut

Graphs A graph G consists of a finite set V of vertices together with a set X
of unordered pairs of distinct vertices of V . The elements of X are the edges of
G. We will note {v, w} ∈ X as vw. We will write (V, X) for the graph G. Two
vertices v and w are adjacent in G if vw ∈ X. Two edges e and f are adjacent
if e ∩ f 6= ∅.
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Fig. 1. The ATS for a.c.b.stop and
a.c.stop ||c c.b.stop

a

b c

d

da

b c

Fig. 2. The ATS for (a.stop || b.stop) +
(c.stop || d.stop)

Definition 2 (Subgraphs). We call H = (V ′, X ′) a subgraph of G = (V, X),
and note H ⊆ G, whenever V ′ ⊆ V and X ′ ⊆ X. We write ℘G for the set of
all subgraphs of G. We write ℘℘G for the power set of ℘G. ut

A clique of a graph G is a maximal complete subgraph of G. As a complete
graph is defined by its vertices, we will identify a clique with its corresponding
set of vertices. We write K(G) for the set of cliques of the graph G.

Lemma 1. Let v and w be two vertices of G = (V, X). Then, vw ∈ X iff there
exists a clique K ∈ K(G) such that vw ∈ X(K).

3 The Algebra of Localities

In this section we explain how to obtain an algebra of localities from a given
ATS. The algebra of localities is constructed over a semilattice by adding some
particular axioms for each ATS.

Definition 3. A semilattice is a structure (L,∧, 0) where ∧ : L × L → L and
0 ∈ L satisfying the following axioms:

a ∧ b = b ∧ a (commutativity) a ∧ (b ∧ c) = (a ∧ b) ∧ c (associativity)
a ∧ a = a (idempotence) a ∧ 0 = 0 (absorption)

ut
Each element in the set L refers to a set of “places”. In particular, 0 means

“nowhere”. The operation ∧ gives the “common places” between the operands.
The axioms make sense under this new nomenclature. Commutativity says that
the common places of a and b are the same as the common places of b and a.
Associativity says that the common places of a, b, and c are always the same
regardless we consider first the common places of a and b, or the common places
of b and c. According to idempotency, the common places of a and itself are
again the places of a. Finally, absorption says that any element of L has no
common place with nowhere.
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Now we introduce the concept of adjacent events. Two events are adjacent
if they label two consecutive transitions, or two outgoing transitions from the
same state.

Definition 4. Let T = (S, E, I,−→, `) be an ATS. Two events a, b ∈ E are
adjacent in T , notation adj(a, b), if and only if there exist s, s′, s′′ ∈ S such that

s
a−→s′ b−→s′′ or s

b−→s′ a−→s′′ or s
a−→s′ and s

b−→s′′

ut
We are interested in independence relation between adjacent events. When

two events are not adjacent an observer cannot differentiate whether they are
independent. For instance, in the ATS of Figure 1 it is not relevant whether a
and b are independent since that does not affect the overall behavior.

The carrier set of the algebra of localities associated to an ATS includes an
appropriate interpretation of its events. Such an interpretation refers to “the
places where an event happens”.

Definition 5. Let T = (S, E, I,−→, `) be an ATS. The algebra of localities
associated to T is a structure A = (L, E,∧, 0) satisfying:

1. E ⊆ L, and (L,∧, 0) is a semilattice
2. aIb and adj(a, b) =⇒ a ∧ b = 0
3. ¬(aIb) and adj(a, b) =⇒ a ∧ b 6= 0

ut

Example 2. For the ATS of Figure 1 we obtain the following axioms:

a ∧ c 6= 0 c ∧ b 6= 0

Notice that the axiom system does not say whether a ∧ b 6= 0 or a ∧ b = 0.
Thus, the algebra does not contradict the decision of implementing the ATS
either with process a.c.b.stop, in which a and b occur in the same place, or with
a.c.stop ||c c.b.stop, in which a and b occur in different places.

For the ATS of Figure 2 we obtain the following axioms:

a ∧ b = 0 a ∧ c 6= 0 b ∧ c 6= 0
c ∧ d = 0 a ∧ d 6= 0 b ∧ d 6= 0

Notice that the axioms state that a and d must share some places. On the other
hand, as we already said, other approaches to localities cannot identify such a
conflict. ut

4 Models for the Algebra of Localities

In this section we introduce several models for the algebra of localities associated
to a given ATS, thus proving its soundness. Each of our models may be an
implementation.The interpretation for the events will be based on the relations
of independence and adjacency. The names of the models are taken from these
basic relations.
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Fig. 3. I models for a.c.b.stop and
a.c.stop ||c c.b.stop
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Fig. 4. I model for (a.stop || b.stop) +
(c.stop || d.stop)

The I Models The non-independence models (I models for short) for the al-
gebra of localities associated to a given ATS assign common places to non-
independent events. We define the non-independent models I and I2, based on
cliques and edges respectively.

Let T = (S, E, I,−→, `) be an ATS. We define the graph GI = (E, {{a, b} ⊆
E | ¬(aIb)}). We define the interpretation of an event a in the model I (I2) to
be the set of cliques (edges) in GI in which a appears.

[[a]]I def= {A ∈ K(GI) | a ∈ A} ([[a]]I2 def= {A ∈ X(GI) | a ∈ A})

Each set A ∈ [[a]]I is a different place where a may happen: each place is
identified with the set of all events that can happen there. Moreover, an event
can happen in several places simultaneously. The operation ∧ of the algebra of
localities is interpreted as the intersection ∩ between sets, and the constant 0 is
interpreted as the empty set ∅.

Example 3. For the ATS in Figure 1 with aIb, we obtain the graph GI on the
left of Figure 3. This implementation uses two places or localities. One of them is
shared by a and c, and the other by b and c. So, this model is well suited for the
implementation a.c.stop ||c c.b.stop. In this case, both I and I2 interpretations
coincide. These could be written down as

[[a]]I = {{a, c}} [[b]]I = {{b, c}} [[c]]I = {{a, c}, {b, c}}

We have a new interpretation in case a and b are not independent. We can
see it on the right of the Figure 3. Now, every event occurs in the same place.
In other words, if ¬(aIb), the I model implements a.c.b.stop.

[[a]]I = [[b]]I = [[c]]I = {{a, b, c}}
A different interpretation is established for model I2. In this case, we have

[[a]]I2 = {{a, c}, {a, b}} [[b]]I2 = {{b, c}, {a, b}} [[c]]I2 = {{a, c}, {b, c}}

This model implements the program a.b.stop || a.c.stop || c.b.stop that uses
three localities.

For the ATS of Figure 2 we have GI depicted in Figure 4. The execution of
a requires two places, one shared with c and the other with d. Thus, the event



From Semantics to Spatial Distribution 433

a prevents the execution of d by occupying a place required by this event. This
reflects the fact that selection between non independent events occurs actually
in a place. For this implementation, we have

[[a]]I = {{a, c}, {a, d}} [[b]]I = {{b, c}, {b, d}}
[[c]]I = {{a, c}, {b, c}} [[d ]]I = {{a, d}, {b, d}}

ut
Now we prove that non-independence models are indeed models for the al-

gebra of localities.

Theorem 1 (Soundness). Let T = (S, E, I,−→, `) be an ATS, A its algebra of
localities, and [[E ]]I(I2) = {[[a]]I(I2) | a ∈ E}. Then,

MI def=
(℘℘ (

GI
)
, [[E ]]I ,∩, ∅)

and MI2 def=
(℘℘ (

GI
)
, [[E ]]I2,∩, ∅)

are models for A.

Proof. By definition, [[E ]]I2 ⊆ ℘℘ (
GI

)
. Moreover,

(℘℘ (
GI

)
,∩, ∅)

is a well
known semilattice.

Suppose that aIb and adj(a, b). They are not adjacent in GI , and so there is
no edge between a and b in GI2. Thus, [[a]]I2 ∩ [[b]]I2 = ∅.

Finally, suppose that ¬(aIb) and adj(a, b). Then, ab ∈ X(GI), and hence
[[a]]I2 ∩ [[b]]I2 6= ∅.

The proof for model I is similar, taking into account Lemma 1. ut
We can see that, although localities may change, the relation between these

two models remain substantially unchanged. More explicitly, two events sharing
resources in any of these models will share resources in the other.

Theorem 2. MI |= a ∧ b 6= 0 if and only if MI2 |= a ∧ b 6= 0

Minimal Sharing Models: IJ and IJ2 In the models IJ and IJ2 we assign
common places to events that are both adjacent and non-independent. We will
show they are minimal sharing in the following sense : whenever two events share
a place for this models, they will share a place in any other model.

Let T = (S, E, I,−→, `) be an ATS. Taking adjacent events into account we
define the graph GIJ = (E, {{a, b} ⊆ E | ¬(aIb) and adj(a, b)}). As before, we
define the interpretation of an event a to be the set of cliques or edges in GIJ

where a appears.

[[a]]IJ def= {A ∈ K(GIJ) | a ∈ A} [[a]]IJ2 def= {A ∈ X(GIJ) | a ∈ A}

Theorem 3 (Soundness). Let T = (S, E, I,−→, `) be an ATS and let A be its
algebra of localities. Then,

MIJ def=
(℘℘ (

GIJ
)
, [[E ]]IJ ,∩, ∅)

and MIJ2 def=
(℘℘ (

GIJ
)
, [[E ]]IJ2,∩, ∅)

are models for A.
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Theorem 4. MIJ |= a ∧ b 6= 0 if and only if MIJ2 |= a ∧ b 6= 0

These models enjoy the following property: if two events are distributed (i.e.,
do not share a place) in some model for the algebra of localities of a given ATS,
they are also distributed in these models. This justifies calling them minimal
sharing models. The following theorem states the counter positive of that prop-
erty.

Theorem 5. Let T = (S, E, I,−→, `) be an ATS and let A be its algebra of
localities. Let M be any model for A. Then, for all events a, b ∈ E,

MIJ2 |= a ∧ b 6= 0 =⇒ M |= a ∧ b 6= 0

Proof. Suppose MIJ2 |= a∧b 6= 0, that is [[a]]IJ2∩[[b]]IJ2 6= ∅. Thus ab ∈ X(GIJ),
which implies ¬(aIb) and adj(a, b). So, by Definition 5, A ` a ∧ b 6= 0. Hence,
for any model M of A, M |= a ∧ b 6= 0. ut

An easy application of Theorem 4 give us this corollary:

Corollary 1. MIJ is a minimal sharing model. ut

Maximal Sharing Models: InJ and InJ2 In a similar way we construct a
model of maximal sharing. In this case, two events share places unless they must
execute independently. We call them InJ models because they may require non
adjacency.

Let T = (S, E, I,−→, `) be an ATS. We define the graph GInJ = (E, {{a, b} ⊆
E | ¬ ( aIb and adj(a, b) )}). We define the interpretation of an event a to be
the set of cliques or edges in GInJ where a appears.

[[a]]InJ def= {A ∈ K(GInJ) | a ∈ A} [[a]]InJ2 def= {A ∈ X(GInJ) | a ∈ A}
Theorem 6 (Soundness). Let T = (S, E, I,−→, `) be an ATS and let A be its
algebra of localities. Then,

MInJ def=
(℘℘ (

GInJ
)
, [[E ]]InJ ,∩, ∅)

and
MInJ2 def=

(℘℘ (
GInJ

)
, [[E ]]InJ2,∩, ∅)

are models for A.

Theorem 7. MInJ2 |= a ∧ b 6= 0 if and only if MInJ |= a ∧ b 6= 0

This model describes maximal sharing in the sense that if two events are
distributed in it, they are distributed in any other model. The following theorems
state this property for the InJ models.

Theorem 8. Let T = (S, E, I,−→, `) be an ATS and let A be its algebra of
localities. Let M be any model for A. Then, for all events a, b ∈ E,

MInJ2 |= a ∧ b = 0 =⇒ M |= a ∧ b = 0
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Corollary 2. MInJ is a maximal sharing model. ut
Example 4. We can see on the right of Figure 3 the graph GInJ for the ATS
of Figure 1, no matter whether a and b are independent. Thus, we obtain the
following interpretation in the maximal sharing model.

[[a]]InJ = [[b]]InJ = [[c]]InJ = {{a, b, c}}
Thus, MInJ |= a ∧ b 6= 0. However, from Example 3 we know that when aIb,
MI |= a ∧ b = 0. So, we have that I models are not maximal sharing models.

We have that for the same ATS when a and b are not independent, MI |=
a ∧ b 6= 0 and MIJ |= a ∧ b = 0. Thus, I models are not minimal sharing models
either. ut

5 Conclusions

IJ IJ2

I2I

InJ InJ2

Fig. 5. Models of lo-
calities

In this work we have exploited the information about local-
ities hidden in the ATS definition. Such information helps
us to find implementations of systems with certain prop-
erties, like maximal or minimal sharing of localities.

The way to state how the locality of events are related
is by means of the algebra of localities. We have introduced
several models for this algebra and showed that this is not
a trivial set of models. Figure 5 summarizes our result in
Section 4. The up-going arrows in the picture mean that
sharing on the lower models implies sharing on the upper
models.

We also have shown that our semantic approach exposes clearly difficulties
arisen in syntactic language oriented approaches when dealing with non deter-
ministic choices.

As a consequence of this work we can extract locality information from a
specification written in terms of ATS. So, ATS formalism appears as a good
candidate to become a theoretical assembler for distributed programming. At
least, there are three interesting directions to continue this work. One of them is
to go on a deeper comprehension of locality models. The nature of the hierarchy
of models seems far away from being trivial, requiring more detailed studies on
its structure. We believe that research in this direction will allow us to detect
not only minimal sharing models, but also models with some constraints which
require less localities to work.

We may develop the same strategy for other semantic formalisms, that is,
to associate an algebra of localities and to obtain a model as before. Event
structures [12], from where the notion of independence can be easily derived,
would be a good candidate to study.

Another direction for future work would be to extend ATS with new char-
acteristics. Time is a natural factor to consider in this extensions, as far as
resources are used for events during certain time. A relation between a not yet
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defined timed ATS and timed graphs [2] would enable us to move into timed sys-
tems, where tools and methods for automatic verification have been developed.

Another way for continuing our work is the development of a toolkit for de-
scription of systems based in ATS. We believe that semantic studies in program-
ming must come together with software development, and so implementation of
good toolkits for both theoretical and practical developments will become more
important in future.
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