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Abstract stringent. Rather than requiring that certain activitimsst
alwaysoccur before time, in practice one is usually inter-
This paper presents a process algebra for specifying softested in more ‘soft’ real-time constraints, where a system is
real-time constraints in a compositional way. For these soft required to perform the activitghostlybeforet. In this pa-
constraints we take a stochastic point of view and allow ar- per we concentrate on such soft real-time constraints. The
bitrary probability distributions to express delays of activi- soft real-time requirements of systems typically have to do
ties. The semantics of this process algebra is given in termswith their performance characteristics, and are often also
of stochastic automata, a variant of timed automata where referred to as their quality-of-service parameters. They are
clocks are initialised randomly and run backwards. To usually related to stochastic aspects of various forms of time
analyse quantitative properties, an algorithm is presented delay, such as, for example, mean and variance of message
for the on-the-fly generation of a discrete-event simulation transfer delay, service waiting times, failure rates, utilisa-
model from a process algebra specification. On the quali- tions, etc.
tative ;ide, a symbo!ic technique'for classical reachability Traditionally, there has been a clear separation between
analysis of stochastic automata is presented. As a resultyye functional and performance aspects of systems, and as a
a unifying framework for the specification and analysis of (egy|t different communities have constructed and analysed
quantitative and qualitative properties is obtained. We dis- peir own, largely unrelated models for the aspects under
cuss an implementation of both analytic methods and spectneir responsibility. In modern systems, though, the dif-
ify and analyse a fault-tolerant multi-processor system.  farence between functional and performance features has
become blurred, and both features are becoming of com-
parable interest. Thus, it would be beneficial to be able to
1. Introduction check how changes in functionality affect performance is-
sues, and vice versa. In addition, one would like to have
a better relationship between the models that are used for

The design and analysis of various types of systems, III(equalitative and quantitative analysis, and avoid the use of

embedded systems or communication protocols, require Ndifferent models for different aspects that are mutually in-

sight in not only the functional, but also in the real-time and compatible. A single framework where both aspects could
performance aspects of applications involved. Research ir})e defined Would be highly desirable

formal methods has recognised the need for the additional
support of quantitative aspects, and various initiatives have N this paper we take a stochastic point of view with re-
been taken to accomplish such support. A prominent ex-SPect to soft real-time constraints. Typical constraints that
ample is the treatment of real-time constraints, where specWe support are of the form: “the system should perform an
ification formalisms like timed automata [2] have emerged, activity before timet in 92% of the cases”. We propose a
and impressive progress has been made in the developmertigh-level specification language for soft real-time systems.
of efficient verification algorithms [21, 5]. This has resulted Here, state changes take place at discrete points in time, but
in a number of tools (model checkers) that provide interest- the time of occurrence of activities is controlled by random
ing experimental platforms. variables. In contract to most formalisms that are restricted
The real-time constraint that one considers in this set- 10 @ particular set of probability distributions, like negative
ting is typically ‘hard’, for instance, “the system must al- equner)tial or 'discrete distriputions, We'support arbitrary
ways do a certain activity before timg. For many ap- distributions, dlscretg or continuous. Th!s makes the an-
plications, though, real-time constraints are typically less 9Uage more expressive and more interesting from a practical
point of view. The language is based on process algebra and
*Supported by the NWO/SION project 612-33-006. has been christened SPADES (Stochastic Process Algebra
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for Discrete-Event Simulation, symbolised ). The use  tions is determined by (continuous) distribution functions.
of a process algebra facilitates the description of systemsln languages like TIPP [15], PEPA [17] and EMPA [3] ex-
in a modular and well-structured way. The algebraic nature ponential distributions are used. Due to the memoryless
of the language allows reasoning about specifications in anproperty of exponential distributions the semantics of these
equational way, thus facilitating step-wise design and min- languages can be adequately described using labelled transi-
imisation. tion systems that closely resemble continuous-time Markov
Stochastic automata, a variant of timed automata [2] chains. In fact, our approach can be considered as general-
where clocks are initialised randomly and run backwards, ising this line of research in the direction of simulation. We
are used as the underlying semantic model. These automatsupport arbitrary distributions and combine simulation with
have an interpretation in measure theory, and due to the posgualitative analysis.
sibly continuous nature of probability distributions, the re-  Another process algebra for discrete-event simulation
sulting interpretation model is infinite. We will, however, has been presented in [13] and applied to a cache coherency
show that for checking qualitative properties, in particu- protocol in [9]. The semantic objects are infinite. To sim-
lar reachability analysis — the key technique in checking ulate a specification it is translated in@++ and some
safety properties — a symbolic algorithm at the level of simulation libraries are used. Although their work is re-
finite stochastic automata suffices. Reasoning about suchiated to ours, we use a different process algebra, allow non-
properties can thus take place without delving into the mea-determinism and use the concept of adversaries [28, 24] for
sure theory underlying the formalism. In fact, it turns its resolution, and obtain (for most processes) finite stochas-
out that such an analysis can be viewed as being carriedic automata. Recently, an alternative process algebra to de-
out on ordinary labelled transition systems. Consequently,rive simulation models, called GSMPA [6], was proposed.
well-known techniques can be applied to reduce the com-To our knowledge for this language there is no tool support
plexity of the reachability analysis. In the prototype tool- available. No support for qualitative analysis is incorpo-
implementation, partial-order reduction techniques [11] are, rated in [6, 13, 9].
for instance, applied. Other works that relate simulation models (or languages)
In addition we will show how a stochastic simulation to process algebra are [23, 4]. In these works, the approach
model can be obtained from@-specification in an auto- is different: rather than generating a simulation automati-
matic way. This facility enables a discrete-event simulation cally from a process algebra specification (as we do), they
that gathers statistics about the system specification to baise process algebra as a semantical model for simulation
carried out. An interesting aspect of this algorithm is that languages. In addition, these works do not take probabilis-
the modularity of facilitates the “on-the-fly” generation tic timing into consideration.
of the simulation model in the sense that the state space is
constructed dynamically and requires minimal stqrage. Thisz_ The stochastic process algebré@
means that we are not forced to construct the entire stochas-
tic automaton a priori, as it suffices to store only the current ) .
state, and generate new states when they are needed. ~ SYntax. Let A be a set ofictions V' a set ofprocess vari-
A prototype implementation of the simulation and reach- @Ples andC a set of clocks with(z, G) € C for z a clock
ability algorithms has been made and several case-studie§2Me ands an arbitrary probability distribution function
have been specified and analysed: the IEEE 1394 root-SatisfyingG(¢) = 0for¢ < 0. We abbreviat¢z, G) by z-

contention protocol [27], several classical queueing systemspefinition 1. The syntax of) is defined by:
known from performance analysis, and a dynamic wave-

length reconfiguration in optical networks [26]. p == stop | a;p | C—p | p+p | {Clp |

o S pllap|olf] | X.
Organisation of the paper. Section 2 introduces the pro-
cess algebrd and stochastic automata. Probabilistic tran- WhereC' C C is finite,a € A, A C A, f: A -+ A, and
sition systems are presented in Section 3. Section 4 present& € V. A recursive specificatiol? is a set of recursive
the discrete-event simulation. Section 5 covers the reachagquations of the fornX’ = pforeachX € V, wherep € Q.
bility analysis. A fault-tolerant multiprocessor case-study is £ is calledguardedif for every recursive equatioX = p

described in Section 6. Section 7 concludes the paper. i E, all process variables ip appear in a sub-term of the
forma;q. |

Related work. Sincg 1990, many exte_nSiOHS of process The basic proceﬁop cannot perform any action. The

1A preliminary version was presented at the PAPM workshop (Tech. pehaves likep. Pr_ocesg'_’P behaves likep after. expira-
Rep., Univ. Verona, pp 85-102, 1998). tion of all clocks inC. Proces® + ¢ behaves either gs
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or g, but not both. During execution the fastest process, i.e. Table 1. Stochastic automata fdb

the process that is enabled first, is selected. This is known

as therace condition If this fastest process is not uniquely a;pisp pfp
determined, a non-deterministic selection among the fastes ) p+ q <&y p'
processes is maddC[p behaves like after all clocks in p &5 p' q+pls
C have been initialised according to their distribution func- {]Cﬁpgé&é»pf

tion. || stands for parallel composition. In processaq, , &y
processe® and g perform actions autonomously, but ac- p S p/ P P
tions in A should be synchronised. Finally, the procgls§ Crrp &S5y pf plf) S v/ f]
behaves likep except that actions are renamed by function

£. We abbreviatdzc } {zc}—a; P by a(z¢); P. pfp p s p'
Stochastic automataThe semantics of our process algebra X <& pf ck(p) <& p!
is defined in terms of stochastic automata, a model that is

related to timed automata [2] and generalised semi-Markov p <& (a ¢ 4)
processes (GSMPs, [10]). plla q &L 1|4 ck(q)

Definition 2. A stochastic automatoris a tuple qllap s ck(q) [|ap’

(S,50,C, A, &k, F)whereS is a non-empty set dbca-

tions so € S is theinitial location, C is a (countable) set of p ks p! q@gg.;» q

clocks A is a set ofactions & C Sx (A x §4,(C)) xSis — ; (a € A)
the set ofedgesk : S — §2,(C) is theclock-setting func- pllagedssonp'llag

tion, andF : ¢ — (R — |0, 1]) is theclock-distribution

function |
The set of edges= between locations is defined as the

We denote(s,a,C,s') € < by s<&&s s', usez and smallest relation satisfying the rules in Table 1. The func-
y to denote clocks, and abbrevidtéz) by F,.. To each lo- tion F'is defined byF'(z¢) = G for each clocke in p. The
cations a finite set of clocks(s) is associated. As soon as other components are defined as for the syntay.of
locations is entered any clock in this set is initialised ran- Stochastic automata arfl are equally expressive [7].
domly according to its probability distribution functidt} . This means that for any (finitely branchijgtochastic au-
Once initialised, the clocks start counting down, all with the tomaton a Corresponding (guarded recursive) term in the
same rate. A clock expires if it has reached the value 0. Thejanguage can be given in which the reachable part of its
occurrence of an action is controlled by the expiration of stochastic automaton is identical to the stochastic automa-
clocks. Thus, whenever<&&s s’ and the system is in lo-  ton at hand.
cations, actiona can happen as soon as all clocks in the set
C have expired. The next location will then ble Example 3. Consider a processor that can process user jobs
(like database transactions) and programmer jobs (like com-
pilation). Jobs are queued according to the FIFO principle;
there is a single queue per job type. There is no priority
on the processing of jobs: if there is a job of both types to
be processed, a job is selected non-deterministically. Trans-
ferring a job from the queue to the processor takéisne
units with a fluctuation of, distributed uniformly. (To
model this, the activity is split into two actions and a de-
lay is incorporated between them.) After loading a job,
the processor executes it. The execution time of a job is
- distributed according to g-distribution with parameters

Semantics. To associate a stochastic automaA(p) to

a given termp in Q, we define the different components
of SA(p)2. In order to define the automaton associated to
a parallel composition, we introduce the additional opera-
tion ck. ck(p) is a process that behaves ligexcept that no
clock is set at the very beginning. As usual in structured op-
erational semantics, a location corresponds to a term. Thus
the set of locations equafsu {ck}. The clock setting func-
tion x is defined by induction on the structure of expression:

ngc«tj;))__n(&[%)_ ,S(: )(p)) -7 (a,a") for user jobs and witl{b, ") for programmer jobs.
Kk(p+q) = r(p|laq) = k(p) U &(q) The system is subject' to fai!u'res. When a failure occurs,
k({Cp) = C U k(p) the processor aborts its activity. When the system is re-
Kk(X) = K(p) for X = p paired, which takes a certaiprdistributed delay, the pro-

cessor restarts in its initial state. @ specification of this

2Here we assume that does not contain any name clashes of clock
variables. This is not a severe restriction since any term that suffers froma  3A stochastic automaton is finitely branching if for every location the
name clash can be properly renamed into a term without a name clash [7].set of outgoing edges is finite.
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System is:P||( t4it, repairy Maintain where Since we are interested in the timing of actions det
A x R, whereA is a set of action names ailRl;, is the

P= getUJobBeg; (getUJobEnd(yc); PWU+ PR set of non-negative real numbers. We demdtd instead of

+ getPJobBeg; (getPJobEnd (yc); PWP+ PF

+ PF (a,d) for (a,d) € L. The meaning ob &4 o' is that action
PWU = UJobReady(v,(a,a1y); P+ PF a occurs after the system has been idleddime units in
PWP= PJobReady(w~ @ )); P+ PF states, and stater changes inte'.

PF= fail; repair; P In the following we give two interpretations of stochastic
Maintain= fail; repair (2 c,c'y); Maintain automata in terms of PTSs and describe their difference.

HereG stands for a uniform distribution dd<s, d+¢]. The
stochastic automaton correspondingPtis: Closed interpretation. In order to study the performance
characteristics of a system, it is usually regarded@ssed
system, i.e. a system which is complete by itself and which
needs no external interaction. Typically, a closed system
consists of the components of the intended system together
with the environment with which it interacts. In this closed
system view there is no need to delay activities any further
once they are enabled, since there will be no further (ex-
ternal) processes that can delay their execution. Formally,
this means that closed systems displayniaimal progress
property. This is made explicit in the following interpreta-
tion.

For clockz letv(z) € IR denote the value af; function
v is called avaluation LetV be the set of all valuations on
C. Ford € R, we define valuatiom<d by (v&d)(z) def
v(z)<d, for all clocksz.

Let SA = (S,s0,C, A, & ,k,F) be a stochastic au-
tomaton andn the cardinality ofC. A probabilistic state
is a pair consisting of a location and a valuation. The
setS x R™ is the set of non-deterministic states and acts
as the sample set for the underlyingalgebra for which
we take the Borel algebrB(S x IR™) [20]. Notice that
for any locations and valuatiorw there is a unique tuple
(s,v(z1),...,v(z,)) € S x R™ We denote such ele-
ments simply by[s, v]. For convenience we use the predi-
cateexp,(v, C') whichis true iff all clocks inC' have expired
in v afterd time units, i.e.

o
k= c
] w
) o)
2 e}
S S
=) Q
] B
g )

3. Probabilistic transition systems

Timed automata have a formal interpretation in terms of
timed transition systems where states keep information
about the current location and the values of the clocks [2].
Similarly, stochastic automata have a formal semantics in
terms of a probabilistic transition system (PTS). We define
the notion of a PTS and show how locations and values of
clocks will come into play. A PTS is related to the alternat-
ing model of [12]. We assume some familiarity with basic
measure theory; for an introduction see [20]. Kebe a
sample space anfl be as-algebra or2.

Definition 4. A probabilistic transition systertPTS) is a
tuple (2, Q, oo, £, T, <) whereX and( are disjoint sets Vz € C. (ved)(z) <0
of states oy € X is theinitial state, £ a set oflabels T :
Y — (F — [0, 1]) theprobabilistic transition relationand
S C Q x L x X is thelabelled (or non-deterministic)

and the predicatepr,(s, v, C') which is true iff there is no
possibility to leaves within d time units, i.e. for alld’ €

transition relation such that [0,d) we have
Vo € X.T (o) is a probability measure off Vs, b,C'. s o Ay e C'. (ved)(y) >0
m]
3 is the set Ofprobabi”stic states and) the set ofnon- Definition 5. Theclosed interpretation ofAin the initial

deterministicstates. Sinc& is defined as a (total) function, Vvaluationvo, denoted’[ SA]™, is the PTS

each probabilistic state has exactly one outgoing transition "

to a function onr-algebras. Intuitively, in general there is a (§xV,8 xR™, (s0,v0), A X R0, T, &)
continuum of transitions each attached with a certain prob-
ability. We writeo’ <5 o for (o', £, ) € <, ando’ <5

for -3o. o' <5 0. T(s,v) < p? (1)

where the probabilistic transition relatidhis defined by:
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whereP is the unique probability measure 8¢S x R™)

induced by the distribution function&, Ly, andF; &
if z; € k(s) then F;, else I,(,,), with 0 < i < n andI

being the indicator function defined fy(d') Llitd=a

then 1 elseO.

whereT is obtained as in Definition 5, ang—~ is defined
for non-negativel by the rule

s <&y s' A expy(v, C)
Is,0] 84 (57, vsd)

3)

O

Ford € R»o, relation«- is defined by: Notice that the only difference between the open and closed
aQ., o semantics is that the constraint of maximal progress is
5 s A expg(v,C) A mpry(s, v, C) present in (2) but not in (3).

[s,0] 83 (57, vsd)

(2)

O 4 Discrete event simulation

An edge s<&&; s’ is enabled in valuatiorw, which
we denoteenabled(s &%+ s',v), if it induces a non-
probabilistic transition fronis, v]. In particular, notice that
s <445 5" is enabled for any valuation

Rule (1) is concerned with the setting of the clocks.
Since the values of clocks are assigned randomly, a prob
abilistic transition corresponds to this step. Clocks{m)

A system specification i) contains functional and quan-
titative aspects. In order to understand the impact of the
stochastic delays in the specification on measures of in-
terest like throughput and response time, we consider the
analysis of &) specification. Since arbitrary distributions
‘are allowed ing, we cannot use analytical or numerical
X ; ) ") techniques as they are applicable only in restricted cases,
randomly take a value according to their associated dlstrlbu-e_g_, when all delays are governed by negative exponential

tion functiqn. The indicatorf_unctions take care that the sys- jiciributions. We therefore take a more general approach
tem stays in the same location and that the values of clocks,,y sesimulation in particular discrete-event simulation,

that are notintended to be set (i.. those nei(i)) remain \here in contrast to continuous-time simulation techniques,
unchanged. , , , state changes take place at discrete points in time — but

Rule (2) deals with the triggering of an edge. If we have i jtself is continuous. In a simulation, runs (also called
an edges <45 ¢/, in which actiona occurs at timel, and sample paths) are generated, and on the basis of these runs
all clocks inC have expired at timd, and there is no edge  gata is gathered and analysed to determine (an estimation
that has all its clocks expire befodethen the edge is trig-  of) the desired measure of interest. The reliability of the es-
gered. Note that maximal progress is ensured by the lastimate is given by a confidence interval. This approach will
predicate. be illustrated later; here we address the problem of gen-

erating simulation runs from a stochastic automaton, ex-
Open interpretation.  In order to study reachability prop- pressed as & specification. The main problem we must
erties like freedom from deadlock, it is important to observe address is the resolution of possible non-determinism in a
how the system behaves in an arbitrary context. That is, thestochastic automaton. Although it is widely recognised that
interaction of a system with a certain “well-behaved” com- non-determinism is of significant importance in a step-wise
ponent may not induce a deadlock, while a “badly-behaved” design methodology for the purpose of under-specification,
component could take the system through an undesired patft must be resolved when a simulation is carried out. We
that will end in a deadlock situation. For this reason the in- discuss how non-determinism is resolved for PTSs, and for
terpretation of a stochastic automata as a closed system istochastic automata.
not sufficient.

If we interpret a stochastic automaton as an open systemRuns and adversaries. A run of a PTS T
we let the system interact with its environment. The envi- (Z,Q, 09, £, T, <) is a path obtained by traversirf
ronment can be a user or another system. Basically, an opestarting from its initial stater.
system Is a component of a larger system. In an OPEN SYSHefinition 7. A run p of T is a (finite or infinite) sequence
tem, an action that is enabled may not be executed until the , ,

) . ) 000l10101Ls . . Lponol, forn € INU {oo} such that, for
environmentis also ready to execute such an action. There- _ N5 O
fore, an activity may not take place as soon as it is enabled @l 0 < ¢ < n: (i) 55 F(07) > 0, (i) o7 <= o441, and (iii)

In other words, the maximal progress property is no longer if £ is finite and non-empty, thesy, € Q. o
valid. Here,-2 F can be interpreted as the density functiodof
Constraint (i) states that probabilistic steps should be prob-
able ones, as we want the simulator to generate runs with

Definition 6. Theopen interpretation oBA in the initial
valuationvg, denoted?[ SA]*, is the PTS

4Because we allow arbitrary distributions, the definition of the differ-
ential operato% is quite involved [20].

(S xV,8 xR, (s0,v0), A x R0, T, &)
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positive probability only. Constraint (i) is self-explanatory, In our setting, the simulation algorithm requires the fol-
and constraint (iii) states that a non-empty and finite run lowing inputs: (i) a specificationE representing the sys-

should end in a non-deterministic state. If rpnis finite, tem, (i) an adversary that resolves non-determinism in
then we letlas{p) denote its final state. We denote the set E, and (iii) the initial procesgy. It is assumed that the ini-
of finite runs of 7 by RungT). tial valuationwvg equals O for all clocks. (For a process

Non-determinism is useful for under-specifying “how that does not contain free clock variables this poses no re-
often” an alternative is chosen. This information is usu- striction.) The detailed structure of the simulation algorithm
ally not available in the early steps of the design, or it is is depicted in Figure 1.
deliberately left unspecified. If we are to study the perfor-  Since in our semantics (cf. Table 1) a location corre-
mance of such system specifications, the idea is to imposesponds to a term, simulation can be carried out on the ba-
an additional mechanism — calledeheduleor adversary sis of expressions rather than using their semantic repre-
[28, 24] — on top of the system. If the system has reachedsentation. This means that the stochastic automaton is not
a state in which a choice must be made between severaéntirely generated a priori but only the parts that are re-
non-deterministic possibilities, the adversary will make the quired to choose the next step. The simulation starts in
choice. One thus considers a system (in our case a PTState(pg, vo), the initial state of the (closed) PTS underly-
T), that contains a certain implementation freedom, in the ing SA(py). Once started, the stochastic automaton is con-
context of an adversaml. 7 can be viewed as the system structed in an on-the-fly fashion on the basis of the current
specification, andi as the representation of the architecture termp; (i.e. location) and the input specificatidh From
on which the system is realised. The p@fr, A) is thusthe  termp; the set of clocks:(p;) to be set is determined (by
entire system under consideration. Furthermore, the simu-module (A) in Figure 1) and the set of possible next edges
lation data for7 that is obtained should be considered with is computed according to the inference rules of Table 1 (by
respect to the adversad. module (B)).

To compute the next valuation we only need to keep
track off the last valuatiow;. Each clockzg in x(p;) is
assigned a random value according to the distribu@on

Definition 8. An adversary A is a partial function
Rung7T) — ((&=) — [0,1]) such that for allp €

RungT) for which the (countable) sample spaee) Iie? while the other clocks remain unchanged (this is done by

J4
non-empty subset 0{‘7' & 0| lastp) = ‘7'} - Alp) = module (C)). This step corresponds to the rule (1) in Defi-
P for some discrete probability measupPeon the (discrete)  nition 5.
o-algebraf’((p)). O Given the new valuation and the set of possible edges, we

now want to select an edge. From the set of possible edges
(calculated by module (B)), the subset of enabled edges is
selected. This step corresponds to rule (2) in Definition 5.
From this set of enabled edges (if any), an edge is selected
by the adversaryl in a probabilistic fashion. This is done

by module (D).

Definition 9. Let SA = (S,50,C, A, &,k F) The actual traversal of the selected edge is carried out by
be a stochastic automaton with closed interpretation module (E). This involves the calculation of the next step, as
T = C[SA]*. An adversary.A for SA is a par-  defined by rule (2). More precisely, module (E) determines
tial function Run{7) — ((&) — [0,1]) such  the executed action; and its timingd; plus the next state
that for any runp € RungT) for which the (count-  (p;,;,v;,1) withv;,; = v}<d;. Starting from this state the
able) sample spacé)(p) is a non-empty subset of: nextstep in the run is determined by module (B).

This notion can be lifted to stochastic automata as follows:
a run of a stochastic automaton is a run of its underlying
(closed) semantioc§[ SA]*°. Notice that for a given non-
deterministic statés, v], the next transition is fully deter-
mined bywv and the outgoing edges frosn

{843%%%8' | lastp) = [s,v] A enabled(s%s’,v)}_ Finally, the measure of interest (e.g., throughput, utili-
def . . sation and response time) needs to be computed from the

A(p) = P for some dlsc,rete probability measureon  generated simulation run. For that purpose, information is

the (discretey-algebraf? (2 (p)). - gathered from the run and analysed. This is done by module

(F). This component is user-driven, since the calculations to

The simulation algorithm. The simulation algorithm is be performed are determined by the user.

implemented as wariable time-advance proceduf25]. In

this procedure time steps are of varying length and therePrototype implementation. We have implemented a pro-

is an event in every simulated time step. The simulation totype of the simulation algorithm using the functional lan-
is controlled by the occurrence of “next events” and the guage Haskell 1.4 [14]. In this implementation we have
simulation time between the occurrence of two events is confined ourselves to guarded recursive specifications. Un-
“skipped”. guarded recursion could yield an infinite set of outgoing
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Recursive specificatio®
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Figure 1. Schema of the simulation algorithm

edges or an infinite set of clock settings, in which case mod-automata. We investigate this for the open and closed in-
ules (D) and (E) would never finish their computations. In terpretation of stochastic automata and confine ourselves to
the current implementation we only deal with adversaries finite stochastic automata.

that are history-independentin the sense that if adverdary

satisfies the propertiasi(p) = las{p') thenA(p) = A(p"). Foundations. We first define the notions of reachability

Hence, we can probabilistically select an enabled next edgej, 5 pTS and in a stochastic automaton and investigate their
using only the current location and not the locations visited correspondence.

before. We are therefore not required to store a complete

run. This assumption reduces the space complexity of theDefinition 10. Let7 = (%,Q, 00, L, T, <) be a PTS.
simulation algorithm. We discuss some improvements to States’ € € is reachableif and only if there exists a fi-
this treatment of adversaries in the final section of the pa-nite runp € RungT) such thatlasf{p) = o'. The set of
per. Notice that modules (C) and (D) require the use of reachable states Gf is denotedReach(T). O
“randomness” for which we use a random number gener-

ator. This is a multiplicative linear congruential generator Definition 11. Let SA = (S, s0,C, A, & ,k,F) be a
with modulusm = 23! <1 and multipliera = 16807 and stochastic automaton. gymbolic runof SA is a finite se-

is based on Schrage’s algorithm [19]. quencespai C1 81 - - - Sp—1an,Cpsy, n > 0, such that, for all
0<i<n,s; 5 <eliys,. |

5. Reachability analysis Locations is reachable if there exists a symbolic run that
ends ins. The set of reachable locations A is denoted
Reach(SA).

Complementary to the quantitative analysis described
above, we discuss in this section a classical analysis tech{emma 12. Let SA be a stochastic automaton with open
nique for functional correctness — reachability analysis. interpretationO[ SA]*. Then:

Reachability analysis is the key technique in proving safety

properties (often characterised as properties of the type s <&y 5" < Yo e V. (3d € R>o. [s,] G (s',v&d))
“something bad can never happen”). A typical reachability

property is the absence of a deadlock, which is a state fromStated in words: there is a transition from locatioto s’ if
which no further progress can be made. In order to checkand only if in the open semantics there is a transition from
such properties for stochastic automata, and thusrms, ~ non-deterministic statg, v] to probabilistic statés’, v&d),

the underlying semantics in terms of probabilistic transition for any valuatiorv. The “<” part of the lemma follows in
systems needs to be examined. However, even for finitea straightforward way: there can only be a transition in the
terms, these transition systems are infinite due to the factsemantics if there is a corresponding edge in the stochastic
that distributions are continuous. We therefore consider aautomaton. The=" part holds, because i <& ' for
symbolicreachability analysis. Using a symbolic analysis a given valuatiorv, there always exists a sufficiently large
we can avoid having to build and examine the infinite un- d such thaw<«d is at most 0 for all clocks it (e.g. letd
derlying PTS. Instead, we check at the level of stochasticbe the maximum clock value mof all clocks inC). Thus,
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exp,(v, C) holds. Consequently there is a transition in the similar to those for timed automata. The latter are, however,
open semantics, due to rule (3) in Definition 6. As a result, only applicable to highly restricted classes of distribution
every symbolic run o5A has a corresponding finite run in  functions [1].

O[ SA], and vice versa.

Theorem 13. Prototype implementation. The above theorems pro-
vide the formal basis for applying reachability analysis to
s € Reach(SA) < Jv € V.[s,v] € Reach(O[ SA]") stochastic automata. While the discrete-event simulation

We will now consider the closed interpretation. Recall that, algorithm can be appl!ed to any (guqrded) specification in
(>, reachability analysis can, for obvious reasons, only be

as opposed to the open interpretation, in the closed interpreé lied to terms that give rise to finite stochastic automata
tation an edge can only be taken, if there is no earlier point pp -9 . ] '
I . . ; These terms are defined by the following syntax:

in time at which the current location can be left (maximal

progress). As a consequence, certain edges present in the
stochastic automaton need not result in a transition in the
underlying closed PTS, since there exist competitive edges p = g ‘ alf] ‘ pllap
that are “faster” and thus will be taken instead. Technically

speaking, the %" part of Lemma 12 does not hold any- Terms constructed using the first clause are sequential pro-
more. Instead we have the following lemma: cesses; terms constructed using the second clause are par-

allel processes. The current implementation requires that
Lemma 14. Let SAbe a stochastic automaton with closed  the recursive specification that defines the process variables
interpretatiorC[ SA]* for v, € V. Foranyv € V: contains finitely many guarded recursive equations of the
) old form X = q. Thatis, a specification must have only finitely
1. if [s,0] &3 (s',ved) for somed e R>o then  many process variables and each of them must be defined

u= stop | a;q|Cr—)q ‘ q+q ‘ {]C|}q|X

s <355 ¢’ for someC C C by guarded sequential processes.

_ . bC The reachability analysis algorithm is implemented in
2. if [s,0] & foralla c A, d e R0, thens «=56h Haskell 1.4 [14] as part of the discrete-event simulator. The

forallbe A,C CC algorithm has two inputs: a parallel process (the system

specification) and a characterisation of the location(s) to be
checked for reachability. If the given location is reachable,
the algorithm returns the symbolic execution that ends in the
location. The implementation is based on a selective state
space search using a partial-order reduction technique based
on persistent sets [22, 11]. The advantage of this technique

The first part of the lemma follows immediately from rule
(2) in Definition 5. The second part can be proven by con-
tradiction. Suppose that<¥&s s'. Then (as we argued
above) it followsexp,(v, C'). For the smallest for which
exp;(v, C) holds, it followsmpr ;(s,v, C), and by rule (2)

it follows [s, v] ad (s',ved). Contradiction. is that the stochastic automata needs to be constructed only
As a result, every finite run @[ SA] has a correspond-  When it is demanded. In this way, completely constructing
ing symbolic run ofSA (but not the reverse). the stochastic automaton for every sequential process in the
specification can be avoided.
Theorem 15.
s ¢ Reach(SA) = Yv € V. [s,v] & Reach(C[ SA]") 6. A fault-tolerant multiprocessor

This result is e.g., sufficient to check for freedom of dead- i h h ificati d |
lock: if SA does not have a reachable deadlock state, '© 'lustrate our approach to the specification and analy-

C[ SA] is deadlock-free sis of a soft real-time system, we consider a fault-tolerant

These results allow us to carry out reachability analysis muIUprocessqr ;ystem. This example is gdopted from [%6]
at a purely symbolic level, i.e., without the construction of where aII- act|y|t|gs are delayed accordmg to a ne.gat|ve
the underlying infinite probabilistic transition system and expo_ner_ltlal distribution. Instead_, we will use arpnrgry
without using the clock information in the stochastic au- d|str|buF|on§ N and analyse qualitative and' quantitative
tomaton. In this way we can exploit existing tools likeis properties using our prototype tool. The architecture of the

[18] for carrying out the reachability analysis. Furthermore, multiprocessor systgm is presented in Figure 2. )
given the highly expressive powerf(by which we mean The.processors in the system are of the type .descrlbed
the support of arbitrary distributions), this is the best one IN S€ction 2 and are able to process two types of jobs: pro-
can achieve symbolically. If we want more information, 9rammer and user jobs. These jobs are generated by load

"l_(e the probabil_ity of a deadlock, we can e.ither resortt0  spjstribution functions for the example were chosen arbitrarily with the
discrete-event simulation or to model checking techniquesintention of showing the versatility @b and the prototype implementation.
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Maintenance way.

fa”]\ l repair ULd: = nztUJob(zuequ,)); (UJob; ULdy + rj; ULdy)
SN ORI 4t S +og; ULdy
e : ULdy = nztUJob(zue(u,)); (UJob; ULd: + rj; ULdy)
e:('s") P ~+cg; ULds
userjob get user job ”SF”Ob ready ULds = cg; ULdh
e(ui) U(d—e, d+e) v(a,a) , _
: § The Mainframeconsists ofQueuesand processors;. The
prog. job get progr. job ] pr(?)gr. job ready different' processes are synchronised with the actfails
T e(v) ded — andrepair: when a failure occurs the complete system must
; (d-e,d+e) (5,8) stop until it is repaired. Each processor is defined as in
: § Section 2. In addition, th@ueuessommunicate with the
. Mainframe processors each time the processors get either a user or pro-

grammer job from the queue in order to process it.
Figure 2. Architecture of the multiprocessor system
Mainframe= Queues|cur (Pi||r - ||F Pn)
processes, one per type of job, and one load process that
generates failures. The variation of the load in time — thus WhereG = {getUJobBeg, getPJobBeg}. The queues for
distinguishing between peak loads, low loads and no loadstoring user jobs and programmer jobs are simple FIFO
— is determined by a component “Change phase“ that isqueues and are defined in a standard way. The definitions
only incorporated for modelling purposes. User and pro- are omitted here.
grammer jobs are queued. When a failure occurs, the sys-
tem components (except the load generating componentspptaining an adversary. We observe the following:
are immediately halted. They are restarted as soon as the
failure is repaired. (a) In processULd non-determinism may arise between
actionsUJobandrj. We prefer not to reject a user job
if there exists a chance that the mainframe may become
available at the same moment. The same consideration
applies toPLdandFLd.

Compositional specification. The system consists of
three parts: the mainframe itself, the maintenance module,
and the system load. Accordingly:

(b) A failure is an arbitrary event that at any moment may

System= Load||r (Mainframe||r Maintain) ) i
disturb the normal execution of the system. For that

whereL = {usrJob, prgJob, fail} andF = {fail, repair}. reason, failures are handled as soon as possible.
Procesd oad models the user and programmer load, and
the failure occurrences: (c) User jobs are usually short activities, such as saving
a file or processing a small database transaction, that
Load= PLd ||{egy ULdL ||{cgy FLCL ||{egy ChPhase have to be processed as soon as possible. Program-

mer jobs are more complicated tasks that may involve

ProcessChPhasanodels the variation of the load (action compilation, simulation or testing of a system.

cg) in time. Phases change according to a Weibull distribu-
tion function with parameter@, w) (denoted by (v,w)).  Given these observations we define a priority relatioas

the least (strict partial) order satisfying:
ChPhase= cg(xw(v,w)); ChPhase ( P ) fying

] <a S a#rg
a < fail & a # fail
getPJobBeg < getUJobBeg

There are three phases. In the first phase, user jobs arrive
according to an exponential distribution with rate (no-

tatione(u1)); in the second phase, arrivals are distributed
according te(u2), and in the third phase no user job is gen-

o ... These priority relations are used to define an adversary. If
erated. In any case, if a job cannot be queued because eith b y Y

the queue is full or the system has failed, the job is simply on-determinism remains after reducing the possible activ-
rejected (action). Similarly. programme’rjobs arrive ac- ities to be executed according to the defined priorities, then
cording toe(\; ) ande()\2 ) in the first and second phase, and the adversary resolves it according to a (discrete) uniform
failures originate according (6, ) ande(d,), respectively.  Probability distribution. Formally, the sample sp&etp)

We model the occurrence of a system failure regardless hows defined as:

many errors induce that failure. Procédisd is specified as
follows; the processeBLdandFLd are defined in a similar {3 <&y s' | lasi(p) = [s,v] A enabled(s <& s/, U)}
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Table 2. Parameters for the simulation

System Load | Processing |
m =4 p1 = .033 p2 =2 d=.021 e=.001
nu=4 | \1 =.0167 Xy =.16 | a =.167 a =.5
np =10 v = 300 w=26 b=.167 b =2.0

Throughput

User Queue
Length
Programmer Queue Length

(a) Throughput User Jobs

Throughput

10

Programmer Queue Length

20

User Queue
Length

(b) Throughput Programmer Jobs

Figure 3. Studying the length of the queues

Let pri(p) be the set of maximal elements@i(p) accord-
ing to the order<, i.e., pri(p) is:

{se%é»s' € (p) | ~Ts L s" € V(p) Aa < b}

The adversary is then simply defined as follows:

A(p)(e) = if e € pri(p) then

Simulation results. We set the values of the different pa-

def

1
———else0

#pri(p)

=
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Figure 4. Availability
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Figure 5. Throughput User Jobs

are at least 4 and 5, respectively (notice that the planes Fig-
ure 3 become horizontal from that point on). As queues of
larger capacity do not affect the throughput, we tale= 4
andnp = 10 (see Table 2).

Different simulations have been carried out while chang-
ing the parameters related to failure and repairing. In all
cases we tood; = 4, /2. For the repair time we take= 1.
Hence, the average repair time equélsThe simulation re-
sults are depicted in Figures 4 and 5. Figure 4 represents the
availability of the system, that is, the percentage of time the
mainframe is processing jobs. Figure 5 depicts the through-
put of user jobs, i.e. the number of jobs that are processed
successfully per time unit.

To calculate the user job throughput, we simply count
the number of occurrences of actibldobReadyper time
unit. To determine the availability we count the occurrences
of the actionfail per time unit, safjpm and then calculate
100- (1<fpm:¢’). Sincec’ is the average repair timgam: ¢’
is the fraction that the system is unavailable per time unit.

The simulations have been carried out using the method
of batch meanslt consists of running a long simulation run,
discarding the initial transient interval, and dividing the re-
mainder of the run into several batches or subsamples [19].
We took 20 subsamples, each one of approximately 150000
minutes length. The values in the figures are the overall

rameters according to Table 2. As in [16], we studied the averages. In every case, we calculated the respective confi-
behaviour of the system with different queue lengths. We dence interval. The (proportionally) widest confidence in-
ran several simulations changing the length of the queuegerval was obtained fof; = 0.0056 and¢’ = 100 in the

(with §; = 0.0007, 65 = 0.00035, andc’ = 100). We can
see in Figure 3 that both user and programmer job through-of confidence. In the case of counting failures, the widest
put stabilise when the user and programmer queue lengthconfidence interval was fa¥; = 0.00035 and¢’ = 10:

case of the throughpu= 4473999 4 5.468 - 10~* with 99%
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1.63726 - 10~% + 5.44 - 10—° with confidence 99%.

Reachability analysis. Since the multiprocessor system
is finite, we are able to automatically check reachability

properties. We checked using the prototype that the pro—[

cessMainframeis deadlock-free and does not have clock
name clashes.

[9] A.J.Field, P.G. Harrison, and K. Kanani. Automatic genera-

10]

[11]

[12]

7. Concluding remarks

In this paper we presented a high-level description languagg13]
for soft (i.e., stochastic) real-time systems that is based on
process algebra. The compositional nature of the language
facilitates the description of such systems in a modular and[14]

well-structured way. We have presented a discrete-event

simulation algorithm that allows to gather statistics about
the system specification. The simulation algorithm takes as[15]
input a process algebra specification and an adversary to re-
solve non-determinism, and automatically generates simu-
lation runs. This quantitative analysis technique is comple- [16]
mented by an on-the-fly reachability analysis algorithm. As
a result, a unifying algebraic framework for the specifica-
tion and analysis of quantitative and qualitative properties
is obtained. This has been illustrated by treating a fault-
tolerant multiprocessor system. Future work will address [18]

extensions and refinement of our methods, e.g. specifica-
tion of adversaries (along the lines of [8]), model checking, [19

and extending the current tool implementation.

[20]
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