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Abstract

A major reason for studying probabilistic processes is to establish a link between a
formal model for describing functional system behaviour and a stochastic process.
Compositionality is an essential ingredient for specifying systems. Parallel compo-
sition in a probabilistic setting is complicated since it gives rise to non-determinism,
for instance due to interleaving of independent autonomous activities. This paper
presents a detailed study of the resolution of non-determinism in an asynchronous
generative setting. Based on the intuition behind the synchronous probabilistic cal-
culus PCCS we formulate two criteria that an asynchronous parallel composition
should fulfill. We provide novel probabilistic variants of parallel composition for
CCS and CSP and show that these operators satisfy these general criteria, opposed
to most existing proposals. Probabilistic bisimulation is shown to be a congruence
for these operators and their expansion is addressed.

Key words: bisimulation; bundle transition systems; CCS; CSP;
probabilistic process algebra; PCCS; semantics

1 Introduction

In the last decade the study of probabilistic processes using formal methods
has received significant attention. A major reason for studying probabilistic
processes is to establish a link between a formal model for describing func-
tional system behaviour and a stochastic process. In the setting of process
algebras relations with several stochastic models have been established, such
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as continuous-time and discrete-time Markov chains and generalised semi-
Markov processes. So-called probabilistic process algebras incorporate a prob-
abilistic choice operator +, such that in P 4, () process P is selected with
probability p and ) with 1—p. The underlying semantic model, a labelled
transition system equipped with discrete probabilities, can be viewed as a
discrete-time Markov chain.

In order to calculate performance measures it is essential that non-determi-
nism is absent or resolved. Although for several reasons non-determinism is
of significant importance for the specification of reactive systems, it under-
specifies the quantities with which certain alternative computations can ap-
pear. A stochastic process therefore does not exhibit non-determinism. Basi-
cally two approaches have been pursued to overcome this different treatment of
non-determinism. In the alternating approach [9] both non-deterministic and
probabilistic transitions are allowed. The outgoing transitions of a state are
either all probabilistic or all non-deterministic. For performance analysis the
present non-determinism is resolved using schedulers [19]. In the generative
approach non-determinism is ruled out by means of a probability distribution
that assigns a probability to each possible action. Since non-determinism is
absent, a generative probabilistic transition system is easily converted into a
discrete-time Markov chain. (Reactive and stratified [8] and simple and fully
probabilistic transition systems [16] are variants or combinations of these two
approaches.) This paper considers the generative setting.

Compositional specification of generative probabilistic transition systems
is, however, to be treated carefully. Parallel composition in a generative set-
ting is complicated since it gives rise to non-determinism, for instance due to
interleaving of independent autonomous activities. To overcome these prob-
lems one typically resorts to some synchronous parallel composition in which
one avoids to make a scheduling decision of independent processes, since all
components must proceed in a ‘lock-step’ fashion. This is the approach of
PCCS, the well-established probabilistic variant of Milner’s synchronous ver-
sion of CCS [5]. Since we do not want to stay in such a strict synchronous
setting we take a different route.

In this paper we consider asynchronous generative processes and discuss
the resolution of non-determinism in this setting. Based on the intuitions be-
hind PCCS we formulate criteria (with respect to a congruence relation) that
an asynchronous parallel composition should fulfill. For most existing genera-
tive parallel composition operators we show that they do not fulfill the criteria,
and thus have a rather weak connection to the PCCS-approach. A notably
exception is parallel composition in probabilistic ACP [2]. We argue that
this calculus cannot be reduced to an appropriate asynchronous probabilistic
CCS- or CSP-algebra, in contrast to the non-probabilistic case. Therefore,
we provide probabilistic variants of parallel composition for CCS [12] and (to
complete the picture) CSP [10,14] and show that these novel operators satisfy
the criteria. The resulting calculi can be considered as asynchronous variants
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of PCCS. Probabilistic bisimulation is shown to be a congruence for these
operators and the expansion law for asynchronous probabilistic CCS and CSP
is addressed. We show that re-normalisation, a phenomenon that appears
when certain alternatives become impossible, has to redistribute the proba-
bility mass that a deadlock can appear. Unlike several other approaches for
asynchronous generative processes [13,6] this is identical to the interpretation
of re-normalisation in PCCS (for restriction).

The organisation of this paper is as follows. Section 2 introduces gener-
ative probabilistic transition systems, PCCS, and discusses intuitively how
the PCCS approach is expected to be transferred to asynchronous CCS and
CSP. The basic ingredients of this discussion, so-called bundle transition sys-
tems, are formalised in Section 3 and two criteria for parallel composition,
respectfulness and stochasticity, are defined. Section 4 makes our ideas for
asynchronous probabilistic CCS and CSP concrete and presents our technical
results. Section 5 discusses several existing generative parallel composition
operators using the criteria introduced in Section 3. Finally, Section 6 con-
cludes the paper. Proofs of the most important results are provided in the
appendix.

2 Motivation

In this section we discuss the conditions that an appropriate definition of
the parallel composition of generative probabilistic transition systems should
satisfy. To do so, we first review the concepts of generative probabilistic
transition systems and the definition of parallel composition in a synchronous
way, i.e. a la SCCS. Based on these concepts, we informally discuss how a
parallel composition a la CCS or CSP should look like in a generative setting.

2.1 A synchronous calculus for generative probabilistic systems

A generative probabilistic model

A discrete probability space is a structure (2, Pr) where Q is a discrete sample
space and Pr a probability measure on 2. Let Prob(H), for some universe H,
be the set of discrete probability spaces with 2 C H. The following definition
is basically adopted from [8] phrased in a style that fits our purpose.

Definition 2.1 G = (X, A, I,T) is a generative probabilistic transition sys-
tem (GPTS for short) with X3, a set of states, A, a set of actions, I, a set of
indices, and T : X + Prob( (A x I x X) U {@}), a probabilistic transition
function, such that the following condition is satisfied: if T(s) = (s, Prs) then
(a,i,t), (byi,u) € Qy = a=bAt=u.

Here -+ denotes a partial function. The constraint requires that each el-
ement in the sample space of T'(s) is uniquely identifiable through the index.
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If T(s) is defined we denote by € its sample space and by Pry its proba-
bility measure, i.e. T(s) = (€, Pry); if T(s) is not defined we say that s
is an endpoint. Let Pry(a,i,s') denote Pry({(a,i,s')}) and s =%; s' denote
Prs(a,i,s") = p. The purpose of the index i in the probabilistic transition
—; is to distinguish occurrences of the same probabilistic transition, and is
standard in a probabilistic setting [8]. A GPTS G is called stochastic if for all
states s we have @ & €); otherwise it is called sub-stochastic. If @ € €2, then
Pri(@) can be considered as the probability to deadlock.

Synchronous probabilistic CCS

The reference language for our discussion is PCCS, the well-accepted proba-
bilistic variant of synchronous CCS introduced by [5]. In PCCS atomic actions
form a commutative semi-group (A, -) generated from the set of basic actions
{a,b,c,...}. Thus all elements of A are of the form a or a- § with o, 3 € A.
The atomic action « - 3 can be considered as the simultaneous (unordered)

occurrence of actions a and 3. Let X be a process variable, A C A, and
f: A— A. The syntax of PCCS is

P:=X | Y [plaP | PxP|P\A|Pf]|fix X.P
iel

such that ) .., pi =1, p; € (0,1] and I is a finite set of indices.

The term ) [p;|a;.P; offers a probabilistic choice among the prefixes a;.P;.
It performs a; with probability p; and then behaves like P;. To be more
precise, we should say at least probability p; since there might be identical
summands with distinct indices. (Action-prefix and probabilistic choice have
been separated originally in PCCS [5].) For I = & let > [pi]a;.P; = 0, the
process that cannot perform any action. P X () represents synchronous parallel
composition, and P\ A a process that behaves like P except that actions in A
are disallowed. (This operator is the dual of restriction in PCCS.) The term
P[f] denotes a process that behaves like P except that actions are renamed
according to f. fix X.P defines a recursive process X by P, that possibly
contains occurrences of X.

The operational semantics of PCCS is given in Table 1. Here,

v(P,A)=41-Y {p|P % P, ac A}.

The inference rules determine a mapping of PCCS terms onto GPTSs. The
rules for most operators are self-explanatory. The rule for P\ A uses the func-
tion v for normalisation of probabilities. In the definition of v, {|[} denotes a
multi-set. The role of v is extensively discussed below. Since \A and x will
become important for the definition of our probabilistic calculi later on, we
discuss these operators more extensively.
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Table 1

Operational semantics of PCCS

Restriction
Consider P = [$]a.0+ [3]0.0 + [5]c.0, a process that can either perform action

a, b or ¢ with probability %, % and %, respectively. The corresponding GPTS

of P is depicted in Figure 1(a). For convenience we omit transition indices.
1

Consider the transition P—250. The value % denotes the probability that

Fig. 1. GPTSs for (a) P = [$]a.0 + [$]6.0 4 [$]c.0 and (b) P\c

P intends to perform action ¢. We deliberately say “intends to perform”
rather than “performs”: when P is considered in a context that is not able to
participate in ¢, action ¢ is prohibited even if P intends to perform it. In such
a case the probability to perform ¢ is 0, and its (local) probability % needs
to be redistributed among the remaining possible actions. This principle is
applied when P is considered in the context of \A where A contains ¢. For
instance, consider P\c. In principle, the behaviour of P\c is determined by
the conditional probabilities of the following three situations:

(i) P performs a, provided that P does not perform c.
(ii) P performs b, provided that P does not perform c.
(iii) P performs ¢, provided that P does not perform c.

Thus, the probabilities in P\c¢ are conditioned to the fact that P does not
perform ¢, and clearly, the third option has probability 0. Accordingly, we
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obtain for the probability of performing a:

Prpvela, 0\) = Prp(a,0 | ~(c,0)) = |
where we have omitted transition indices for convenience. Similarly, we obtain
that the probability of performing b (c) is 2 (resp. 0). The resulting GPTS
for P\c is depicted in Figure 1(b). The probability of not performing c, 1—%,
is the normalisation factor v(P,{c}). In general, the normalisation factor
v(P, A) denotes the probability that P does not perform actions in A?. This
interpretation of normalisation will be adopted for asynchronous probabilistic
CSP later on.

The principle of normalisation can intuitively be explained as follows: a
process probabilistically selects one of its alternatives repeatedly, until the
selected transition can actually be taken. In case of process P\c, it means
that if the outcome of the experiment is (the prohibited) action ¢, then a
subsequent experiment is carried out, until ¢ is not selected. Accordingly, the
resulting probability with which, for instance, action a happens is given by

¢ (choose @ in the first experiment) plus 5 - ¢ (first select ¢ and then a) plus

(%)2 . % (select ¢ twice, and then a), and so on. So,

1 S /1\ 1 1
P c 70 = =" o = -
o, 0\0) = | 2(3) L2

k=0
which indeed equals i, the result obtained above by applying normalisation.

Synchronous parallel composition

Let Q = [5]a.0+[5]0.0 and R = [5]a.0 + [3]c.0, and consider the construction
of @ x R. Since () and R intend to perform two actions each, four possible sce-
narios result: ) performs a and R performs @, () performs a and R performs
action ¢, etcetera. The probabilities of the transitions of ) x R are simply
determined by the product of the probabilities of the constituents. This is
based on the fact that probabilistic choices of () and R are stocastically inde-
pendent. The GPTSs of ), R and @) x R are depicted in Figure 2(a), (b) and
(c), respectively.

(a) (b) (c)
Fig. 2. GPTSs of (a) @ = [3]a.0 + [3]6.0, (b) R = [3]a.0 + [3]c.0 and (c) @ x R

2 Notice that v(P, A) is only used in Table 1 for restriction with the precondition that P
can perform some action a ¢ A. This guarantees that v(P, A) > 0 for all used cases.
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2.2 Asynchronous probabilistic parallel composition

Basically, two different kinds of parallel composition have been defined in
process algebra: one & la CCS [12], in which any action can be performed
independently by each process, and besides, the processes can synchronise if
they are allowed, and the other, a la CSP [10,14], in which actions that are
intended to synchronise are listed in a synchronisation set and can only be
performed synchronously, and the other actions are performed always inde-
pendently. In the following, we investigate how these operators should look
like in generative PTSs following the line of thought of PCCS discussed above.

ccs
For (non-probabilistic) CCS, parallel composition, denoted by |, is defined by

the following inference rules:
PP PP PSP Q5Q (a7)
R E—— R E— a#T
PIQSPIQ PRSP PIQTs P
Here 7 denotes a distinguished action that models internal activity. No-

tice that processes are not forced to synchronise; they can equally well au-
tonomously perform actions that could be synchronised.

In order to motivate our ideas concerning a probabilistic version of |, con-
sider the processes @ = [£]a.0 + [5]0.0 and R = [3]@.0 + [2]c.0 of Figure 2(a)
and (b), respectively. Like for the synchronous case, four different scenarios
for Q| R may arise: () performs a and R performs @, @) performs a and R action
¢, etcetera. The probabilities for these scenarios are simply determined by the
product of the probabilities of the involved actions in () and R, in analogy to
the synchronous case. The difference with the synchronous case, however, is
that actions are executed asynchronously. That is, the occurrence of e.g. a and
c does no longer constitute a single atomic action (but two). As a result there
are different ways in which a given scenario occurs. For instance, the scenario
that @ performs a and R does ¢ can be obtained — through interleaving — by
first performing a followed by ¢, or in the reverse order. The probabilities of
these sub-scenarios are unspecified (i.e., they are non-deterministic); we only
know that together they have a probability % : % = %

Due to the nature of CCS parallel composition the scenario “Q) performs
a and R does @’ can be established in three ways: the two possible ways of
interleaving a and @ and the possibility of synchronising a and @, yielding
7. Once more, the probabilities of the individual sub-scenarios are unknown;
together they have probability %% = %. Figure 3 depicts the transition system
that results if we apply a similar reasoning to all possible scenarios. In the
picture we have grouped with a small connecting line the different transitions
that constitute a single scenario. The attached probabilities are associated to
these “bundles” of transitions.



Fig. 3. The “bundle” probabilistic transition system for Q|R

This example suggests that an appropriate probabilistic version of CCS par-
allel composition should preserve the bundle probabilities. If this is not the
case, then probabilities of the autonomous moves are in some way weighted,
which is not intended. So,

an appropriate probabilistic CCS parallel composition should only quantify
the unresolved non-determinism and nothing else.

The principle that lies behind the bundle construction is analog to the
intuition behind restriction (and normalisation). That is, a process proba-
bilistically selects one of its alternatives. If this alternative is not executed for
some reason, either because the environment is not willing to participate, the
action is prohibited (in case of restriction), or an autonomous move is selected
rather than a potentially possible synchronisation (in case of CCS), then the
process carries out a next experiment, until the process can actually perform
a transition (if any). This scheme has also been applied to Figure 3. Consider,
for instance, the leftmost bundle in this figure. In this case ) has selected «a
and R has selected a for execution. Suppose that a happens. Although process
R intends to perform a, this is prevented since () autonomously performs a
instead of proceeding synchronously together with R. According to the above
principle — which directly has been adopted from the treatment of restriction
in PCCS — R now carries out another experiment after the occurrence of a.
Hence, it again has the choice between @ and c.

CSP
Unlike parallel composition in CCS, actions that can be synchronised are
forced to synchronise in CSP; those actions cannot autonomously be per-
formed. The set A of synchronising actions is a parameter of parallel compo-
sition ||. Its semantics is defined by the following inference rules [14]:
a 1} a ’
T (a¢ ) e (ag )
PllaQ—P'[aQ QlaP—Q|[aP
8




Fig. 4. The “bundle” probabilistic transition system of Q ||, R’

PSP Q-5Q

PllaQ— P4 Q'
Consider our example Q|| R’ with R’ = [$]a.0 4 [2]c.0 and Q as before.
The four scenarios for this CSP-term are analog to those for the synchronous
case (and CCS). However, due to the different synchronisation policy, the
occurrence of some actions may be prohibited. For instance, if ) intends to
perform a and R’ wants to perform ¢, action a cannot occur since its occurrence
requires participation of R'. Instead, action ¢ can be performed autonomously
with (in this case) probability ;- 2 = z. The thus resulting PTS for Q [|{q} R’
is depicted in Figure 4 where we used the bundle notation introduced before.
Like for the probabilistic variant of CCS parallel composition we conclude that

(a € A)

an appropriate probabilistic version of || 4 should only schedule the present
non-determinism and nothing else.

Due to the different synchronisation policy in CSP, the difference with CCS
is twofold. Since synchronisation actions cannot be performed autonomously,
the scenario that () intends to perform a and R’ wants to do a gives rise to a
single case. There is no distinction to be made whether a synchronisation or an
individual move takes place. This simplifies the definition of the probabilistic
variant of || 4. On the other hand, however, CSP parallel composition may give
rise to normalisation of probabilities. (This should not surprise the reader,
since restriction can be described using CSP-style parallel composition [7]:
P\A can, for instance, be encoded as P||40.) This occurs, for instance,
in our example above. Consider the term @ |[(4} O that is reached after R’
performs ¢ (with probability ). Now, @ may, with probability 1, choose in
favour of a, but synchronisation on a is permanently impossible. So, one might
decide that a deadlock occurs with probability % Inspired by the treatment
of restriction in PCCS, we redistribute the probability mass of deadlocking
among the remaining possibilities. This is depicted in Figure 4, where b occurs
(after ¢) with probability 1. As we will show later on, this normalisation
complicates the definition of the probabilistic variant of || .
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3 Bundle probabilistic transition systems

In this section we formalise the kind of probabilistic transition systems dis-
cussed informally just above and we define the notion of appropriate parallel
composition on this model. For set S let §24,(S) denote the set of finite subsets
of S.

Definition 3.1 A bundle probabilistic transition system (BPTS, for short) is
a quadruple B = (X, A, I, T) with ¥, a set of states, A, a set of actions, I, a
set of indices, and T : & + Prob(§25,(A x I x £)), a probabilistic transition
function, such that the following conditions are satisfied: if T'(s) = (Qs, Pry)
then

(i) (a,i,t),(bi,u) € JQs = a=bAt=u, and
(i) VB,B' € Q,. BNB'#2 = B =8

The first constraint requires that indices uniquely determine transitions, in
analogy to the constraint on GPTS (Def. 2.1). The second constraint requires
that elements of () are pairwise disjoint.

Each probabilistic transition in a BPTS is a “bundle” of non-deterministic
transitions as depicted previously. So, a certain set of non-deterministic al-
ternatives is chosen with a certain probability. From this point of view, a
BPTS is the converse of the simple model of [16] where probability distribu-
tions on successor states can be chosen non-deterministically. Both models
are (action-labelled) simplified cases of the probabilistic finite-state programs
of [15].

A BPTS is isomorphic to a GPTS,; if all bundles are singletons (or empty),
i.e. if for all states s the sample space € of T'(s) satisfies: B € (), implies
|B| < 1. Such a BPTS is called generative. Let T'(s) = (€, Prs). For B € Q;
we abbreviate Pr,({B}) by Pr,(B) and let s 2+ B denote that Pr (B) = p.
— is called a bundle. If for all states s the sample space (), does not contain &
we call the BPTS stochastic, otherwise, it is called sub-stochastic. If & € €,
the value Pry (&) can be considered as a deadlock or termination probability.

Parallel composition of BPTSs

Although BPTSs are an interesting model in themselves, it is not our in-
tention to develop a complete theory around BPTSs in this paper but just
to give the necessary tools to understand what is an appropriate definition
of a probabilistic parallel composition. To do so, we first define a general
parallel composition, denoted ®, on BPTSs. It constructs a full product of
the involved BPTSs where transitions may always happen independently or
synchronously (even if they are unequally labelled®). The general parallel
composition cannot resolve the introduced non-determinism, so, the bundles

3 This is similar to parallel composition in probabilistic ACP [2] for which the synchroni-
sation function 7 : A x A — A has to be total.
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executed independently for each process are joined in a new bundle.

Definition 3.2 Let (A,-) be a commutative semi-group, and By = (X1, A, I,
Th), By = (29, A, I, T5) be two BPTSs defined over A. The general parallel
composition of By and By, denoted By @ Bs, is defined by (X1 x Yo, A, I, T)
where
° I:df {(27]]7 [17])7 (27]) | (NS Il U {0}7] € I2 U {O}}; and
o T is defined according to the rule

S L> Bs ti> Bt

s®t- B, ® B,

with s @ t denoting (s,t) € ¥y X 3y and Bs; @ By defined by

{(a, (0, 4], 8" ®@1) | (a,i,8') € B A ((b,5,1') € BV (Br =@ Aj=0))}
U {(,[i,7),s®t) | ((a,i,s') € BV (Bs=2Ni=0))A(b,j,t') € B;}
U {(ab, (i,7),s' ®t) | (a,i,s") € Bs A (b, j,t') € By}

In the index of the transition relation, the parentheses indicate whether
the left or right process moves (performs the action) and the square brackets
indicate if the process remains passive. The fact that indices uniquely deter-
mine the individual transitions ensures that transitions are still uniquely de-
termined in | Q,g¢, and moreover, that elements in Qg are pairwise disjoint.
Moreover, we recall that we are dealing with discrete probability spaces, and
hence our definition of 7" induces a unique probability measure. So, By ® By is
indeed a BPTS. Remark that ® does neither rule out any possible transition
nor resolves any possibly introduced non-determinism.

Normalisation of BPTSs

Sometimes we are only interested in dealing with stochastic BPTSs (or GPTSs).
Some operations may map a stochastic BPTS into a sub-stochastic BPTS. An
example of this situation is, in fact, the restriction operation that we have
discussed before. There, some transitions are pruned and the lost probability

must be redistributed by means of normalisation. The process of normalisa-
tion is defined for BPTSs as follows.

Definition 3.3 Let B = (X, A,I,T) be a BPTS. The normalisation of B is the
stochastic BPTS N (B) =4 (X, A, L, T") where, for all s € &, T'(s) is defined
if and only if T'(s) is defined and Pry(@) < 1. In such a case T'(s) =45 (25 —
{2}, Prl) with, for all B € Q, — {&},
Prs(B)

1—Pry(2)

It is straightforward to check that A'(B) is indeed a BPTS. Since @ is not
contained in any of the sample spaces of 1", it follows that N (B) is stochastic;

11
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i.e. there is no deadlocking possibility. The probability mass of deadlocking,
Prs(2), is redistributed over the remaining bundles if appropriate.

Resolving non-determinism
To resolve non-determinism in a BPTS we introduce a simplified (and re-
stricted) variant of adversary [19,16] that we call determinisation.

Definition 3.4 A determinisation is a function D : Prob(§g,(H)) — Prob(H
U{@}) such that, if D(Q,Pr) = (', Pr') then Q' CJQ U {&} and

(i) > ena Pr'(v) = Pr(B), provided B € Q and BN Q' # &, and
(i) Pr'(@) =>{Pr(B) | BeQ,BNQ = o}.

We call D a determinisation because it resolves non-determinism in bun-
dles. Given a BPTS B = (X, A,I,7T), its determinisation according to D is
the GPTS D(B) = (3, A,I,DoT), where o denotes ordinary function compo-
sition. The first constraint requires that the bundle probability in the BPTS
B is equal to the sum of the probabilities of each element of that bundle in the
determinised GPTS D(B). The second constraint determines that the proba-
bility of a deadlock in D(B) is the cumulated probability of having a bundle
B that is eliminated by D, that is, for which BN Q' = @.

Respectful and stochastic

Using parallel composition (®), normalisation (N') and determinisation (D)
we now formalise two general properties, called respectfulness and stochas-
ticity, for probabilistic parallel composition. Let G; = (X1, A,I;,7}) and
Go = (39, A,15,T5) be two GPTSs defined over A, and let par be a parallel
composition operator on GPTSs. (For the sake of generality, we define these
concepts on the level of GPTSs, although the GPTSs that we consider are
obtained from a probabilistic process algebra.)

Definition 3.5 Operator par is respectful (for ~) if G, par Go ~ D(G; ® Go)
for some determinisation D, semi-group (A,-) and congruence ~.

A respectful parallel composition respects the bundle probabilities that are
determined using ®. That is, the bundle probabilities are obtained by sum-
mation of the probabilities of the individual transitions in the bundle. A
parallel composition operator is called stochastic if the bundle probabilities
are respected after normalisation. Formally,

Definition 3.6 For stochastic G, and Gs, par is stochastic (for ~) if GiparGy ~
N oD (G, ®Gs) for some determinisation D, semi-group (A, -) and congruence

In the probabilistic setting we often instantiate ~ by probabilistic bisimu-
lation [11]. This equivalence notion is defined for GPTSs as follows.

12
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Definition 3.7 For a GPTS G = (X, A, L,T) let the function p : X X A X
£(2) — [0,1] be defined by p(s,a,C) =4 S ;{p | s —2> s',s' € C}. An equiv-
alence relation R on Y is a probabilistic bisimulation if s; R sy tmplies for all
C e X/R and a € A that

N(Sla a, C) = H(S% a, C)
States sy and sy are (probabilistically) bisimilar, denoted s ~, t, if there exists
a probabilistic bisimulation R with s; R s3. GPTSs G and Gy are bisimilar,
notation Gy ~, G, if their respective initial states are bisimilar on the disjoint
union of G, and Gs.

To illustrate the introduced concepts we provide the following (expected)
result for PCCS:

Theorem 3.8 x s respectful and stochastic for ~,.

This result can be explained as follows. Let (A, .) be the same as for x. In or-
der to characterise determinisation D we first observe that for any two GPTSs
composed according to ®, bundles are either: (1) complete, (2) incomplete,
or (3) empty. A complete bundle is of the form

{0, (i, 1,8’ ® 1), (b [ir 1), 5 © 1), (ab, (i, 1), 8’ © 1)}
Bundles {(a, (¢,0],s' ® t)} and {(b,[0,7),s ® t')} are incomplete bundles. Let
D(Q,Pr) = (2, Pr') be defined by
« U ={(ab, (i,j),s®1) | (ab, (i, ), s ®1) € JQ}

U {@ | 3B € . B is not complete},

« Pr'(y) =Pr(B) < v € B, and
e Pr'(@) =Y {Pr(B) | B is not complete}
By conditions imposed on BPTSs (see Definition 3.1) it follows that Pr’ is a

well-defined probability measure. It directly follows that D is a determinisa-
tion and that the equivalence closure of the relation

{(sxt,s®t)|seX,teXy}

is a probabilistic bisimulation between G; x G, and D(G; ® Gs), where every
s ®t is a state in the GPTS D(G; ® G2). If s and ¢ come from stochastic
GPTSs, the same relation is a probabilistic bisimulation where every s ® t is
a state in the GPTS N (D(G; ® Ga)).

4 Asynchronous probabilistic CCS and CSP

In this section we introduce two composition operators that naturally corre-
spond to CCS- respectively CSP-style parallel composition. Since we intend
to avoid the synchrony assumption of PCCS we call them asynchronous com-
position operators.

13
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Asynchronous probabilistic CCS

This language is obtained from PCCS by replacing the synchronous composi-
tion X by an operator ?|” with two parameters o, € (0,1). Both parameters
are conditional probabilities and can be considered as the relevant informa-
tion for an adversary (or determinisation) to resolve the non-determinism that
arises by putting two processes in parallel. The two probabilistic parameters
o and # in the term P°|” (@) are interpreted as follows. ¢ denotes the prob-
ability that P performs an autonomous action, given that both P and () do
not want to synchronise, and 6 denotes the probability that some autonomous
action occurs given that a synchronisation is possible. In other words, if a syn-
chronisation is possible, it will take place with probability 1—f. The formal
semantics of APCCS is defined by the least relation satisfying the inference
rules in Table 1, where the rules in Table 2 replace the rule for synchronous
composition. Here we use P —25, as an abbreviation of 3P'. P 225, P’ and
‘P endpoint’ as an abbreviation of Ya,p,i.~(P —%s, ). Note that o does
not play any role in the inference rule for synchronisation (last rule), while 6
is irrelevant for the case in which a synchronisation cannot take place (first
two rules). It is not difficult to check that GPTSs are closed under °|”. For

P a,p 'Pl b,l] )
010 la,pqo— Q ,90] (b?éEVa:T)
Pl7Q——=uy P'’I"Q
a,p bzq !
— P—, P
@ b;q(l ) ? (b#a V a=r1)
. -0 o
Q" P———=; Q" P
P a,p Pl Q - - a,q /
—; endpoint Q endpoint P—; P
P9|0Qﬂ>(i,o] Pl€|o—Q Q9|0Pﬂ>[0,j) Q9|o' P
Pa,piP, Qayqj ( # ) Qaypi Pa,qul ( # )
—a0 a#T - — a#T
P€|aQ a,pqoo il P19|0—Q Q9|0P a,pqd(l—o) - Q9|0P,
PP, p Qﬂ)j Q' (1)
a T
o 7pq(1_0) o
Pl Q- P Q)

Table 2
Operational semantics of APCCS parallel composition

APCCS we have the following technical results. The proofs of these facts can
be found in the appendix.

Theorem 4.1 ~, is a congruence with respect to °|”.

14
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Theorem 4.2 ‘|7 is respectful and stochastic for ~,.

Respectfulness can be seen intuitively as follows. In a bundle without
synchronisation (e.g. the three bundles of cardinality two in Figure 3) one
branch is assigned probability pgo and the other pg(1—o), together yielding
the bundle probability pq. In case of a bundle with synchronisation these
two probabilities are multiplied with 6, while the synchronisation itself gets
probability pg(1—#). Also in this case the probabilities sum up to the bundle
probability pg. The APCCS parallel composition of stochastic processes is also
a stochastic process, i.e., the composition of processes without deadlocks (or
empty bundles) yields another process without deadlocks. Since normalisation
does not have any effect on stochastic GPTSs, it also follows that °|” is
stochastic. The use of o and @ is reflected in the following expansion law.

Theorem 4.3 Let P = ), [pila;.P; and Q = >_;[q;]b;.Q; such that P,Q
differ from 0. Then P°|" Q) equals

Z{ P 7 (P Q) | @ = by # 7or = pag(1-6) }
+Z{ rai. (P Q) | @ = b; # 7,7 = pig;00 }
+Z{ (P17 Q) | @ = b # 7,7 = pig;f(1-0) }
+Z{ (Bl Q) | @ #b;V a; = 7,1 = pigjo }
+Z{ .(P°7Q)) | @ # bV a; = 7,7 = pig;(1—0) }.

If @ equals O we have P°|” ) equals P. Similarly for P equals 0. Notice
that the probability 6 only is of importance if a synchronisation is possible,
that is if @; = b;. The probability o plays a role only if a process performs an
autonomous action and is irrelevant in case of synchronisation (first summa-
tion).

Asynchronous probabilistic CSP

We introduce an operator denoted |[; with two parameters, probability o €
(0,1) and synchronisation set A. For P [, Q, parameter o denotes the proba-
bility that P performs an autonomous action, given that both P and @) have
decided not to synchronise. (Notice that o has the same interpretation for
APCCS.) One probabilistic parameter suffices in the case of CSP, since the
only non-determinism that has to be resolved is the one occurring if both
processes autonomously decide to perform actions not in A. This is exactly
the purpose of parameter ¢. The semantics of APCSP is given by the least
relation satisfying the rules in Table 1, where the rules in Table 3 replace the
rule for x.

15
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b)p / c,q bzp Cc,q !
P—, P —; — P—. P
L 97 (hega) L P (bhega)
o b’% 1 11° G pq(llsiﬂ)
P ||A Q (4,51 P ||A Q Q “A P QB [4,5) Q “A P,
P4 QL (wed, Q- P, P (a4,
b pq b pq
o 'v(P,Q,A) a feg 'v(Q,P,A) o
PILQ 90, L PILQ PEA QI p T, QP PEA
b,p . . b,q
P—=, s Q endpoint (b¢ A) Q endpoint P—, P (b ¢ A)
bt AL
P ||A Q 4,)(@0] P’ ||A Q Q “A P —,>[0,j) Q ”A P’
P a,p ; ! a,q ) !
; L Q=" 5 (a€d) V(P A)=41-Y {plP ac A}
o ‘v(P,Q,A) o -
P “A Q (4,7) Pl ||A Ql ¢

a, b,
V(PaQaA):dfl_Z{lpq|P—p>iaQ—q>jaa'7b€A7a7éb|}
i,j

Table 3
Operational semantics of APCSP parallel composition

Notice that o appears only in the rules in the first row, where it is used
as a weight for an autonomous move of P (and (1—o) for ). In all inference
rules, each transition probability is normalised by some factor v, or /. (These
factors can never equal 0; e.g. ¢/ is only used if P can perform an action not
in A, which guarantees that v/ # 0 if it appears as a denominator.) These
factors redistribute the probability mass that is due to autonomous decisions
of both processes that would otherwise lead to a deadlock. There may be two
different reasons for such a situation.

* Redistribution of probability mass is required if one component, say P,
autonomously decides in favour of a synchronisation, while () is an endpoint,
i.e. () cannot move at all. In this case v/(P, A) is the probability that P
intends to perform a synchronisation (i.e. a deadlock occurs) provided that
(@ is an endpoint.

e Another source of normalisation is the case that both P and () decide in
favour of a synchronisation, but the labels of these actions do not match.
Function v(P,Q, A) collects the probability mass of all these mismatching
synchronisations.

It is not difficult to check that GPTSs are closed under |[[;. For APCSP we
have the following technical results.

16
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Theorem 4.4 ~, is a congruence with respect to [ .
Theorem 4.5 ||| is stochastic for ~,.

|, is not respectful for the simple reason that no determinisation takes care
of normalisation, whereas the rules for |[; do. Therefore, bundle probabilities
are not respected. As we have discussed in Section 2 the operator ||4, and
consequently also |[,, can express restriction. Since we want — like in PCCS
— that in case of restriction probabilities are redistributed, we perform this
normalisation as part of the definition of [[]. (One may argue that from this
point of view it is not even desired to consider respectfulness.) Hence the
probability of deadlocking is redistributed (using N') after determinisation,
and so the probabilities of the newly obtained bundles are respected. In this
way [, is stochastic.

Theorem 4.6 Let P = ), [pila;.P; and Q = >_;[q;]b;.Q; such that P,Q
differ from 0. Then P |[, Q equals

S { e (P ILQ) | = by,aiby € A,r = s )

3¥)
3 {aP Q) Lo g A by e Ar =24 )
i,J

A {10 (PILQ) Lo Ay ¢ Ar = s |
1Y)

3 {0 PIQ) Lo Ay ¢ A r = e )
%]

{110 (P Q) s g Aby ¢ Ar =205 ).
%]

If one of the processes equals 0 we obtain, for instance

o Di
P“AOZXZ:{[T]C%B |ai Q/A,T:m}
and similarly for O |[, Q. The reader is invited to check that for all P, processes
P|[,0 and P\ A are equivalent (i.e. probabilistic bisimilar).

5 Appropriate parallel compositions

In this section we consider several existing generative probabilistic operators.
These operators have been defined for probabilistic variants of process algebras
CCS, CSP, ACP and LOTOS. We consider respectfulness and stochasticity
of these calculi with respect to probabilistic bisimulation ~, (unless stated
otherwise). The results of this comparative study are summarised in Table
4, where ’y/’ indicates that parallel composition in the respective calculus is
respectful or stochastic, and -’ indicates that this is not the case.
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Language Respectful | Stochastic
APCCS Vv Vv
APCSP - Vv
PCCS [5] Vv Vv
PACP [2] V Vv
PACP? Vi | vi-
PCSP [17] Vv -
PTPA [6] - -
PLOTOS [18] - -
PL [13] - -
Table 4

Appropriateness of existing generative probabilistic calculi

PTPA, PLOTOS and PL

For the latter three calculi that all have a CSP-like synchronisation, we con-
sider our running example @ ||(4} R', see Figure 5 (where only the initial steps
are depicted) and Figure 4 for the bundle view. In PTPA, || is not equipped
with a probabilistic parameter, and the resulting bundle probabilities are not
respected, consider, for instance, the transition labelled a for which one ex-
pects 3. PLOTOS and PL contain a variant of |, which, however, both result

1 1 1 50 _1 4(1-0)
° a,3 ¢35 ° ° % ¢ % Py ° a4 5= ' 5-0_g
3 5(1—0) 30
b, 3 b7 6 b’ b—o
(a) (b) (c)

Fig. 5. Parallel composition of @ and R’ in (a) PTPA, (b) PLOTOS and (c) PL

in the undesired phenomenon that the probability of an autonomous move (b
or ¢) can be made arbitrarily small. A major source of the inappropriateness of
these parallel composition operators is the ‘meaningless’ normalisation factor.

Probabilistic CSP

In the most simple case, parallel composition in PCSP works just like the
PCCS synchronisation where operation - of the semi-group (A, -) is not com-
pletely defined: aa = a and ab is not defined if a # b. In this way, all
mismatching synchronisations introduce some probability of deadlock. For

1
instance, process Q|| R’ has only one available transition Q|| R’ LN 0/|0 and a

18
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deadlock probability of %. Using a similar reasoning to that of Theorem 3.8,
we can state that this parallel composition is respectful (with respect to prob-
abilistic trace equivalence). However, it is not stochastic, since normalisa-
tion would remove the deadlock that the operator introduces, whereas PCSP-
parallel composition does not. Notice that for APCSP we decided to include
normalisation as part of the semantics of |[,. As a result, |[; is stochastic, but
not respectful (for ~,); the reverse of PCSP. Since CSP-parallel composition
can express restriction, we consider normalisation to be a natural part of ||
like it is for restriction in PCCS. We conjecture that it is impossible to obtain
a probabilistic variant of ||4 that is both respectful and stochastic (for ~,).

Probabilistic ACP

Parallel composition in probabilistic ACP (PACP) has two parameters, o and
6, both in (0, 1). For P ||, 9@ a synchronisation between P and () occurs with
probability 1—6 and an autonomous action (of either P or ()) with probability
0. Note that ¢ is unconditioned, as opposed to APCCS. Given that an au-
tonomous move occurs, it comes from P with probability o, and from @) with
probability 1—c. The initial steps of the transition system for @ ||, ¢ R are
depicted in Figure 6. Here we assumed that the communication function 7 is
defined by: 7(a,a) = aa,y(b,a) = ba,y(a,c) = ac and y(b, ¢) = be. (The fact
that # is unconditioned introduces the need to define v as a total function in
PACP, as opposed to original ACP, where v may be partially defined.) The
single transition labelled with a is the superposition of the two a-transitions
in the bundle view, see Figure 3. Similar for the transitions labelled with @, b

¢, 26(1-0)

¢
Fig. 6. Parallel composition of Q and R in probabilistic ACP

and c¢. The probabilities of these transitions can be dispersed in such a way
that the bundle probabilities are respected. Since, in addition, PACP-parallel
composition does not introduce deadlocks, ||, is also stochastic.

Probabilistic ACP with encapsulation

It is known that for the non-probabilistic case, CCS and CSP parallel com-
position can be encoded in terms of ACP parallel composition composed with
encapsulation (what we have called restriction so far). In fact, it is the usual
treatment in ACP to encapsulate processes composed in parallel in order to
obtain an adequate specification of the system that is being modelled. As a
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consequence, given that PACP parallel composition in isolation is stochastic
and respectful, it is interesting to investigate whether a combination of parallel
composition and encapsulation is stochastic and respectful, as well.

Consider encapsulation in PACP denoted PACP? in Table 4 above. By
using the encapsulation operator, we can prohibit the execution of the au-
tonomous actions a, @, b, and ¢ such that only synchronisation actions can be
executed. This yields a normalisation with 1—6, the probability that a syn-
chronisation occurs, and the result is Figure 1(c), the PCCS synchronisation.
Complementary, prohibiting all synchronisation actions yields an APCSP-view
with empty synchronisation set. In both cases the result is respectful and
stochastic.

These are two special cases of encapsulation in which each bundle is equally
treated. If, however, encapsulation affects bundles in an unequal fashion, it is
no longer guaranteed that the bundle probabilities are respected. For instance,
allowing only the actions a, @, b, ¢ and aa (yielding a view similar to APCCS),
does not affect the structure of the bundle containing a, @ and aa, but affects
its probability. Although for some specific choices of ¢ and # this might result
in a respectful probability assignment, in general this is not the case. This
differs from our proposals for APCCS and APCSP where normalisation only
affects the bundles from which a branch is pruned, and not the others.

It is interesting to note that recently a version of probabilistic ACP has
been proposed [1] in which probabilistic and non-deterministic choice co-exist,
where parallel composition is based on our bundle concept.

6 Concluding remarks

In this paper we have extensively discussed parallel composition in an asyn-
chronous probabilistic setting. Based on the line of thought in PCCS we for-
mulated two criteria for such parallel composition operators in the context of
a congruence relation. These were formalised using the novel notion of bundle
probabilistic transition systems, transition systems that contain probabilistic
‘bundles’ of non-deterministic transitions. The basic idea of an appropriate
parallel composition operator is that it should leave the bundle probabilities
unaffected; only the non-determinism within a bundle should be resolved.
This aspect is considered with and without normalisation. We proposed an
asynchronous probabilistic variant of CCS and CSP that satisfy this criterion
with normalisation (and that preserve probabilistic bisimulation ~,). Since
CCS parallel composition does not introduce deadlocks it also satisfies the
criterion (for ~,) without normalisation. In addition we argued that various
existing generative probabilistic calculi do not satisfy these criteria, with the
notably exception of probabilistic ACP. Nonetheless, probabilistic ACP with
restriction (encapsulation) is, in general, not appropriate (for ~,).

We like to point out that we have been slightly restrictive in our notion
of appropriate parallel composition. Determinisation only operates in a static
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way, i.e. it only looks at the structure of a bundle probabilistic transition
system. In this way, appropriate parallel compositions have to be static oper-
ators (with the usual notion of static operator, see [12]). Instead of defining
appropriate parallel compositions in terms of determinisations, we could also
do it in terms of adversaries [19,16]. This would allow a more dynamic view
on the system, since adversaries are typically defined on executions (i.e. runs)
of the system. In this setting, parallel compositions that change probabilities
or priorities along the execution could also be considered as appropriate. We
will report this in the future. In the future we also plan to adopt the notion
of scheduling as proposed in this paper in the context of stochastic automata
and the syntax of the stochastic process algebra @ [4].
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A Proof of Theorem 4.1

This appendix illustrates the proof of congruence for probabilistic bisimulation
with respect to the operators introduced in Section 5. We restrict ourselves
to the case of APCCS parallel composition. The proof strategy for APCSP
(Theorem 4.4) follows similar lines.

Let 0,0 € (0,1). We show that whenever P; ~ P, and @) ~ Q2 we have
that P, °|”Q, ~ P,°|” Q3. Having fixed o and 6, we abbreviate P?|” Q) by
(P, Q). So, we are aiming to deduce (P, Q1) ~ (P, Q)2). By Definition 3.7 it
is sufficient to show (P, Q1) R (P, Q2) for some probabilistic bisimulation R.
To do so, we define R as the reflexive closure of

{(P.Q),(P.Q) | P~P.Q~qQ}

Obviously R is an equivalence relation and it satisfies (P, Q1) R (P, Q)
whenever P, ~ P, and )1 ~ (0. Note that the equivalence classes of R are
of the form C' x C' where C' and C" are arbitrary equivalence classes of ~. It
remains to be shown that R is a probabilistic bisimulation. For this purpose,
we fix an equivalence class C' x C” of R and an action a € A. We have to show

that (P,Q) R (P',Q') implies

p((P,Q),a,C x C") = u((P',Q"),a,C x C").
Notice that P ~ P" and Q ~ @' holds by the definition of R. Thus, if
Q endpoint, this implies ' endpoint and the proof obligation follows from

u(Pya,C) = u(P'ya,C) (a consequence of the fact that ~ is itself a proba-
bilistic bisimulation), together with the third pair of rules in Table 2. Since
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the case of P endpoint is symmetric, only the situation where neither P end-
point nor ) endpoint, remains to be tackled by a detailed analysis of the rules
in Table 2. We distinguish the cases a = 7 and a # 7, and illustrate the
necessary reasoning for a = 7. In this case, the operational rules give us

,u((P,Q)n’,C’XC’) = Z,uPTC (@Q,b,%) o P moves
beA
+> u(Pb,%) p(Q,7,C") (1—0) @ moves
beA
+ Z (P, c,C) u(@Q,e,C") (1-6) synchronize
CHET

Since C' and C" are equivalence classes of ~, we use u(P,a,C") = p(P',a,C")
and p(Q,a,C") = u(Q',a,C") (for arbitrary actions a and classes C”) to
equate the above right hand side with

> (P W@, b,%) o

beA

3w b,%) wl(@.7.C") (1-0)
beA

+ 3 1P, €) p(@,,C") (1-0) = p((P,Q),7,C x ()
CET

completing the proof for this case. The converse case, a # 7 is shown in the
same way. It differs with respect to the summands appearing in the above
equations, but the proof strategy remains unchanged.

B Proof of Theorem 4.2

To illustrate how proofs of respectfulness and stochasticity are conducted we
provide a detailed proof of Theorem 4.2. The proofs of Theorem 4.5 and
the statements for probabilistic CSP and probabilistic ACP in Section 5 are
constructed in a similar way and are omitted here.

Let the commutative semi-group (A, .) be the comm. group (A, .,~, 7). De-
fine the determinisation function D by D(Q, Pr) = (', Pr') where the sample
space

o = df {(a7 i7 ‘9) | (aaia 5) € UQa (i = (27]] Vi= [27]))}
U A(7, (6,9),5) [ {(a, (2, 5], 1), (@, [i,4), 1), (7, (i, §), s)} € 2}
U {g|oeQ}
and probability measure Pr’ is defined as follows

(i) if B =@ € Q then
PFI(Q) =df PF(B),
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(7) it B={(a,i,5)} € Q, and i = (4,0] or i = [0, j) then
Pr'(a,i, s) =4 Pr(B),

(ii3) if B = {(a, (i,7],5), (b, [, 5),1), (ab, (i,7),7)} € Q and a # b then
Pr'(a, (i, j], ) =4y oPr(B), and

P (b, [i, 5),t) =a; (1 — 0)Pr(B), and

Pr'(ab, (i,j), 7“) =df 0
(i) if B ={(a, (4,J],s), (@,li,7),t), (7, (i,7),7)} € Q then
Pr'(a, (i, 4], s) =4 0oPr(B),

P (@, [i, 5),t) =qs 0(1 — 0)Pr(B), and

Pr'(r, (i,7),7) =4 (1 — O)Pr(B).
Notice that there is no other possible form for B than those considered above.
To state that D is indeed a determinisation, we must check that Pr' is a
probability measure and that it satisfies conditions 1 and 2 in Definition 3.4.
First, notice that for all B € Q, B # & implies B N Q' # &. Thus, condition
2 follows immediately from item (i) above. Satisfaction of condition 1 follows
from simple calculations taking into account cases (i), (iit), and (iv) above.
We check now that Pr' is a probability measure. Since
B.1) @ —{g}=UYn -{g}= |J Bn«
BeQ—{o}
we can derive that
> P(y)
ey
= { calculus }
> Pl(y) + P(2)
eV —{a}
= { (B.1) and © is pairwise disjoint }
Z Z Pr'(v) + Pr(9)
BeQ—{@} yeBNY
= { Conditions 1 and 2 }
> Pr(B) + Pr(o)
BeQ—{o}
= { Pr is a probability measure }

> Pr(B) =1

BeQ
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To prove that “|° is respectful, we should check that G; 7|’ Go and D(G; ® G»)
are probabilistically bisimilar. To do so, it is sufficient to prove that the
reflexive and symmetric closure of the relation

{(s°]°t,s®@t) | s € Xq,t € Lo}

where s ® ¢ indicates a state of D(G; ® Gs), is an equivalence relation and
moreover a probabilistic bisimulation. We leave this last proof obligation to
the reader.

Finally, from () above, we can conclude that “|? does not introduce any
deadlock which was not present already in the composed processes. Thus, it
is not difficult to prove that the same relation above is a probabilistic bisimu-
lation when s ® ¢ indicates a state of N (D(G; ® G»)), provided G; and G, are

stochastic. This implies that “|° is also stochastic.
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