
General Purpose Discrete Event Simulation

using

Pedro R. D’Argenio1⋆, Joost-Pieter Katoen2, and Ed Brinksma1

1 Dept. of Computer Science. University of Twente.
P.O.Box 217. 7500 AE Enschede. The Netherlands.

{dargenio,brinksma}@cs.utwente.nl

2 Lehrstuhl für Informatik VII. University of Erlangen-Nürnberg.
Martensstrasse 3. D-91058 Erlangen. Germany.

katoen@informatik.uni-erlangen.de

Abstract. We discuss the use of the stochastic process algebra (spades)
for discrete event simulation, and report on a prototype simulation algo-
rithm that has been implemented. The use of process algebraic techniques
in offers a number of advantages with respect to existing simulation
techniques. The compositional nature of allows an on-the-fly construc-
tion of the simulation model, and hence only the current state need to be
saved. , moreover, allows us to model and simulate on a general purpose
basis, as the simulation algorithm applies to any well founded process
specified in . Finally, specifications in are also amenable to tradi-
tional process algebraic analysis of their functional behaviour, like e.g.
absence of deadlocks. We illustrate our result with a simulation example
of a nontrivial system.

1 Introduction

Simulation is an important technique for analysing the behaviour and perfor-
mance of systems. If the system of interest is not yet available for analysis, as
is often the case during the design stage, a simulation model provides an easy
way to predict the performance or compare several alternatives [15]. Computer
systems, even when they have real-time behaviour, can usually be described by
discrete-event models due to the fact that (the relevant part of) their state does
not change continuously, but in a discrete way.

Discrete-event simulation can be carried out using general purpose languages,
simulation languages, or simulation packages. Relatively little effort has been
made to characterise the formal behaviour of the models described using those
techniques. Exceptions are [18, 3]. The formal aspect, however, is quite important
since it helps to obtain a correct specification of the system to be studied. This
weakness, among others, has recently drawn the attention of many researchers
into extending process algebras with stochastic and real-time features [14, 9, 11,
2, 6, . . .]. Two approaches are mainly followed: one is focussed on the purely

⋆ Supported by the NWO/SION project 612-33-006.

analytical study by restricting to the so-called Markovian-process algebras [14,
9, 2,. . .], the other addresses a more general case by accepting simulation as part
of the analysis process [11, 16, 6, 7].

Recently, in [6], we introduced a simple extension of automata with stochastic
information by borrowing ideas from timed automata [1] and generalised semi-
Markov processes [8]. In addition, we introduced a stochastic process algebra for
discrete event simulation, named spades and denoted by .

In this paper we discuss the formal foundations of a simulation algorithm
for stochastic automata. Since the semantics of is given in terms of stochastic
automata, as an immediate consequence we can simulate any system described
in . In fact, there is a real advantage in implementing the algorithm directly
for . The simulation algorithm can generate the stochastic automaton on-the-
fly from a given term, that is, only those parts of the stochastic automaton
that are actually going to be used are generated, and moreover, in the moment
they are needed and not in advance. So, since systems described in can be
specified compositionally using recursive specifications, simulation of infinite-
state processes is, in principle, possible.

Using as simulation modelling language has two additional advantages.
On the one hand, allows, in principle, the description of any system which
makes the simulation and modelling task general-purpose oriented. By “general-
purpose” we mean that, in contrast to what happens with many simulation
packages, does not restrict to a particular methodology such as queuing net-
works. On the other hand, is a stochastic process algebra and hence provides
a formal verification framework which allows for the formal analysis of the func-
tional correctness of the model to be studied.

To consolidate our results we give a (non-trivial) example of application of the
simulation algorithm. We discuss the modeling of a multiprocessor mainframe
with failures [13] and analyse its performance using the implementation of the
simulation algorithm.

The paper is organised as follows. In Sections 2 and 3 we recall the stochastic
automaton model, its semantics, and the process algebra . Section 4 introduces
the simulation algorithm: its foundations and a description of its (current) im-
plementation. The multiprocessor mainframe example is studied in Section 5. In
Section 6 we discuss related work and conclude the paper.

Acknowledgements. The alternative semantics for stochastic automata (see Sec-

tion 2) resulted from a question posed by Mariëlle Stoelinga. We thank Victor Nicola

for always answering our questions and the referees for their constructive remarks.

2 The Stochastic Automaton Model

In this section we discuss the semantic basis for our simulation algorithm. We
recall the definition of stochastic automata and we give its semantics in terms
of probabilistic transition systems.

Before starting and in order to fix notation we mention that IN denotes the
set of non-negative integers, IR the set of real numbers, and IR≥0 the set of
non-negative reals. For n ∈ IN, we write IRn for the nth Cartesian product of IR.

Stochastic Automata. The stochastic automaton model was introduced in [5] and
its theoretical concerns were discussed in [6]. It is an extension of the traditional
automaton model and allows to describe processes with stochastic information.
The basic idea is borrowed from generalised semi-Markov processes [8] and timed
automata [1].

Definition 1. A stochastic automaton is a tuple (S, s0, C,A, -, κ, F) where:

– S is a set of locations with s0 ∈ S being the initial location.
– C is a (countable) set of clocks.
– A is a set of actions.
– - ⊆ S × (A × ℘

fin(C)) × S is the set of edges. We denote the edge

(s, a, C, s′) ∈ - by s
a,C
- s′ and call C its trigger set .

– κ : S → ℘
fin(C) is the clock-setting function.

– F : C → (IR → [0, 1]) assigns to each clock a distribution function such that
F (x)(t) = 0 for t < 0; we write Fx instead of F (x).

Notice that each clock x ∈ C is a random variable with distribution Fx. ⊓⊔

As soon as a location s is entered, every clock x in κ(s) is initialised according
to its probability distribution function Fx. Once initialised, clocks start counting
down, all with the same rate. A clock expires if it has reached the value 0. The
occurrence of an action is controlled by the expiration of clocks. Thus, whenever

s
a,C
- s′ and the system is in location s, action a can happen as soon as all

clocks in the set C have expired. The next location will then be s′.

Semantics. The semantics of a stochastic automaton is given in terms of a prob-
abilistic transition system (PTS for short). In the following we give the definition
of PTS and define the semantics of stochastic automata.

Definition 2. Let Ω be a sample space and F be a σ-algebra on Ω. A proba-
bilistic transition system is a tuple (Σ,Ω, σ0,L, T,−→) where

1. Σ and Ω are two disjoint sets of states , with the initial state σ0 ∈ Σ. States
in Σ are called probabilistic and states in Ω non-deterministic.

2. L is a set of labels.
3. T : Σ → (F → [0, 1]) is the probabilistic transition relation such that for all

σ ∈ Σ, T (σ) is a probability measure on F .
4. −→ ⊆ Ω × L × Σ is the labelled (or non-deterministic) transition relation.

We denote σ′ ℓ
−→ σ for 〈σ′, ℓ, σ〉 ∈ −→, and σ′ 6

ℓ
−→ for ¬∃σ. σ′ ℓ

−→ σ. ⊓⊔

Notice that T is defined as a (total) function. Hence, each probabilistic state has
exactly one outgoing transition.

Since our interest is to deal with time information using PTSs, the set of
labels we will use is L = A× IR≥0, where A is a set of action names and IR≥0 is

the set of non-negative real numbers, which are intended to denote the (relative)
time at which an action takes place. We usually denote a(d) instead of (a, d)
whenever (a, d) ∈ L and it means “action a occurs right after the system has
been idle for d time units”.

In the following, we define the semantics of stochastic automata. In order to
study the performance of a system, it is regarded as a closed system, that is, a
system which is considered complete by itself for which no external interaction
is needed. In this kind of system one not only models the components of the
intended system but also the environment with which it interacts. In this way,
the activity of the whole system can take place as soon as it becomes ready to
be executed since there is no external agent that may delay its execution. That
is, closed systems respond to the maximal progress property. In [6] we referred
to this interpretation as the actual behaviour .

A valuation is a function v : C → IR. Let V be the set of all valuations. For
d ∈ IR≥0, we define v − d by ∀x ∈ C. (v − d)(x)

def
= v(x) − d.

Let SA = (S, s0, C,A, -, κ, F) be a stochastic automaton. Let n be the
cardinality of C. We take as sample space the set S × IRn, and as σ-algebra the
respective Borel algebra B(S × IRn). Notice that for each s ∈ S and v ∈ V there
is a unique tuple (s, v(x1), v(x2), . . . , v(xn)) ∈ S × IRn. To simplify notation, we
denote such elements of S × IRn by [s, v]. Other elements will be irrelevant.

Definition 3. The interpretation of SA in the initial valuation v0 is given by

the PTS Iv0(SA)
def
= ((S ×V),S × IRn, (s0, v0), (A× IR≥0), T,−→), where T and

−→ are obtained as follows1

The probabilistic transition relation T is defined by

Prob T (s, v)
def
= P s

v

where P s
v is the unique probability measure on B(S × IRnIRn) induced by the

following distribution functions:

F0
def
= Is Fi

def
= if xi ∈ κ(s) then Fxi

else Iv(xi)

with 0 < i ≤ 1 + n and I being the indicator function defined by Id(d
′)

def
= if

d = d′ then 1 else 0.
The non-deterministic transition relation −→ is defined by the rule

Act

s
a,C
- s′ d ∈ IR≥0 ∀x ∈ C. (v − d)(x) ≤ 0

∀d′ ∈ [0, d). ∀s
b,C′

- . ∃y ∈ C′. (v − d′)(y) > 0

[s, v]
a(d)
−→ (s′, (v − d))

An edge s
a,C
- s′ is enabled in valuation v, notation enabled(s

a,C
- s′, v) if it

induces a non-deterministic transition outgoing from [s, v]. In particular, notice

that s
a,∅
- s′ is enabled for any valuation v. ⊓⊔

1 The semantics given in Definition 3 uses a different methodology from the one defined
in [6]. Nonetheless, both semantics can be proven to be probabilistically bisimilar.

Notice that, for each location s and valuation v there is exactly one prob-
abilistic transition. So, for any stochastic automaton SA and any valuation v0,
Iv0(SA) is indeed a PTS.

Rule Prob considers the setting of the clocks. Since the values of the clocks
are assigned randomly, a probabilistic transition corresponds to this step. The
indicator functions take care that the system stays in the same location and that
the value of clocks which are not meant to be set (i.e., those not in κ(s)) remains
unchanged. Instead, clocks in κ(s) may randomly take a value according to their
associated distribution function. Rule Act explains the case of triggering an edge.

So, for the occurrence of an action a at time d according to an edge s
a,C
-s′, we

check that all the clocks in the trigger set C have already expired at time d. This
part is considered by the satisfaction of the predicate ∀x ∈ C. (v − d)(x) ≤ 0.
Moreover, it should be the case that no edge was enabled before. That is, any
edge must have an active (i.e. positive) clock at any valuation “previous” to
v − d. In this way, the edge is forced to occur as soon as it becomes enabled.

The maximal progress is checked by the formula ∀d′ ∈ [0, d). ∀s
b,C′

- . ∃y ∈
C′. (v − d′)(y) > 0.

3 The stochastic process algebra

In this section, we recall the definition and semantics of the stochastic process
algebra (read spades) [5, 6]. The main difference between and the majority
of other stochastic process algebras, is that deals with any kind of probability
distribution instead of restricting only to exponential distributions.

Syntax. Let A be a set of actions, V a set of process variables, and C a set of
clocks with (x,G) ∈ C for x a clock name and G any probability distribution
function satisfying G(t) = 0 for t < 0. We abbreviate (x,G) by xG.

Definition 4. The syntax of is defined by:

p ::= stop | a; p | C 7→7→p | p + p | {|C|}p | p ||A p | p[f] | X

where C ⊆ C is finite, a ∈ A, A ⊆ A, f : A → A, and X ∈ V. A recursive
specification E is a set of recursive equations of the form X = p for each X ∈ V,
where p ∈ . ⊓⊔

Process stop represents inaction; it is the process that cannot perform any
action. The intended meaning of a; p (named (action-)prefixing) is that action a
is immediately enabled and once it is performed the behaviour of p is exhibited.
C 7→7→p is the triggering condition; process p becomes enabled as soon as all the
clocks in C expire. p + q is the choice; it behaves either as p or q, but not
both. At execution the fastest process, i.e. the process that is enabled first,
is selected. This is known as the race condition. If this fastest process is not
uniquely determined, a non-deterministic selection among the fastest processes
is made. The clock-setting operation {|C|}p sets the clocks in C according to their
respective distribution functions. We choose a LOTOS-like parallel composition.

Table 1. Stochastic automata for (X = p ∈ E)

κ(stop) = ∅ κ(C 7→7→p) = κ(p) κ({|C|}p) = C ∪ κ(p)

κ(a; p) = ∅ κ(p[f]) = κ(p) κ(p + q) = κ(p) ∪ κ(q)

κ(ck(p)) = ∅ κ(X) = κ(p) κ(p||Aq) = κ(p) ∪ κ(q)

a; p
a,∅
- p

p
a,C′
- p′

{|C|}p a,C′
- p′

p
a,C′
- p′

C 7→7→p
a,C∪C′

- p′

p
a,C
- p′

X
a,C
- p′

p
a,C
- p′

p + q
a,C
- p′

q + p
a,C
- p′

p
a,C
- p′

p[f]
f(a),C
- p′[f]

p
a,C
- p′

ck(p)
a,C
- p′

p
a,C
- p′

p||Aq
a,C
- p′||Ack(q)

q||Ap
a,C
- ck(q)||Ap′

a /∈ A

p
a,C
- p′ q

a,C′
- q′

p||Aq
a,C∪C′

- p′||Aq′
a ∈ A

Thus, p||Aq executes p and q in parallel, and they are synchronised by actions in
A. We remark that synchronisation may happen if the synchronising actions are
enabled in both processes. Finally, the renaming operation p[f] is a process that
behaves like p except that actions are renamed by f . We assume the following
precedence among the operations, + < ||A < {|C|} = C 7→7→ = a; < [f].

In Section 5 we will use the following shorthand notation. We define the

stochastic prefixing by a(xG);P
def
= {|xG|}{xG}7→7→a;P. In fact, this is the prefix-

ing most widely adopted in stochastic process algebras.

Semantics. To associate a stochastic automaton SA(p) to a given term p in ,
we define the different components of SA(p)2. In order to define the automaton
associated to a parallel composition, we introduce the operation ck. ck(p) is a
process that behaves like p except that no clock is set at the very beginning.
As usual in structured operational semantics, a location corresponds to a term,
in our case, in extended with ck. The clock-setting function κ and the set of
edges - are defined as the smallest relation satisfying the rules in Table 1. The
function F is defined by F (xG) = G for each clock xG ∈ C. Other components
are defined as for the syntax of .

It turns out that stochastic automata and the language are equally ex-
pressive [6]. This means that for any (finitely branching) stochastic automaton
a corresponding (guarded recursive) term in the language can be given whose
reachable part of its stochastic automaton is identical to the stochastic automa-
ton at hand. A recursive specification E is guarded if X = p ∈ E implies that all
variables in p appear in a context of a prefix. A stochastic automaton is finitely
branching if for every location the set of outgoing edges is finite.

2 Here we assume that p does not contain any name clashes of clock variables. This is
not a severe restriction since terms that suffer from such name clash can always be
properly renamed into a term without such name clash [6].

4 Discrete event simulation of processes

Given a process, the simulation algorithm returns a possible execution of it.
The execution is calculated according to the probabilities and the timing of
the different clocks and transitions plus an additional machinery to resolve the
inherent non-determinism of the model.

In the next subsection we define the theoretical foundations of the algorithm
and in the second part we give the simulation algorithm.

Foundations. Basically, an execution of a PTS is a path obtained by traversing
it starting from the initial state.

Definition 5. Let T = (Σ,Ω, σ0,L, T,−→) be a PTS. An execution of T is a
(finite or infinite) sequence σ0σ

′
0ℓ1σ1σ

′
1ℓ2σ2σ

′
2 . . . such that, for all i ≥ 0,

1. σ′
i is in the support of the distribution function F induced by T (σi). That

is, ∂
∂ω

F (σ′
i) > 0 where ∂

∂ω
F can be interpreted as the density function cor-

responding to the distribution function F 3;

2. σ′
i

ℓi+1
−→ σi+1;

3. if the sequence is finite, it ends in a non-deterministic state (i.e., some σ′
i).

We denote by exec(T) the set of all executions of T . If ρ is a finite execution,
last(ρ) denotes the last (non-deterministic) state in the execution ρ. ⊓⊔

The first restriction states that probabilistic steps should be probable ones. In
this way we only consider as execution those probable paths. In a more general
setting it may be interesting to consider executions with probability 0 as well.
In our case, we want the simulator to generate only probable executions. The
second restriction defines the non-deterministic steps in the execution.

Theoretically speaking, the notion of non-determinism is important because
it tells when the choice of executing one or another activity should remain under-
specified. In fact, this choice is not system dependent but architecture dependent,
that is, it depends on the place where the system is running. The performance
of a system does also depend on the architecture where it is executed. In other
words, a PTS T should be understood as the semantics of the specification of the
system. To study the performance of a system we need to consider a particular
implementation, and hence non-determinism should be resolved in some way. To
do so, an additional machinery is put on top of the system. This machinery is
known, in general, as schedulers and in particular as adversaries in the context
of probabilistic transition systems [21, 19]. Thus, a particular implementation
of a system T is the pair (T ,A) where A is a given adversary. The simulation
algorithm that we are going to present allows to study the performance of a
particular implementation of a given specification.

3 Because we allow arbitrary distributions, the definition of the differential operator
∂

∂ω
is quite involved and we prefer to omit it here. We refer to [17] for details.

An adversary is a function that schedules the next non-deterministic transi-
tion based on the past history of the system. We consider probabilistic adver-
saries like in [19], although our definition changes to adapt to PTSs more in the
style of [10].

Definition 6. Let T = (Σ,Ω, σ0,L, T,−→) be a PTS. An adversary or sched-
uler is a partial function A : exec(T) → ((−→) → [0, 1]) such that for all finite
executions ρ ∈ exec(T), whenever the (countable) sample space ρ→ satisfies

∅ 6= ρ→ ⊆
{

σ′ ℓ
−→ σ| last(ρ) = σ′

}

,

then A(ρ)
def
= P for some discrete probability measure P on the (discrete) σ-

algebra ℘(ρ→). ⊓⊔

An execution of a stochastic automaton is an execution of its underlying
semantics Iv0(SA). Notice that, given a state [s, v] in Iv0(SA), the transition is
fully determined for this state and the outgoing edges from s. Hence, we can
adapt the notion of adversaries such that their image ranges over the edges of a
stochastic automaton instead of the transitions of the associated PTS.

Definition 7. Let SA = (S, s0, C,A, -, κ, F) be a stochastic automaton.
An adversary or scheduler for SA is a partial function A : exec(Iv0(SA)) →
((-) → [0, 1]) such that for any finite execution ρ ∈ exec(Iv0(SA)), whenever
the (countable) sample space ρ- satisfies

∅ 6= ρ- ⊆
{

s
a,C
- s′| last(ρ) = [s, v] ∧ enabled(s

a,C
- s′, v)

}

then A(ρ)
def
= P for some discrete probability measure P on the (discrete) σ-

algebra ℘(ρ-). ⊓⊔

The simulation algorithm. The simulation algorithm is a variable time-advance
procedure [20] in which simulated time goes forward to the next time at which a
transition is triggered and the intervening time is skipped. The structure of the
simulation algorithm is depicted in Figure 1. The inputs of the algorithm are:

– a recursive specification E,
– an adversary A,
– an initial process or root p0, and
– an initial valuation v0.

The root and the initial valuation are only relevant at the initial point of the
algorithm since they form the initial state (p0, v0) of the PTS Iv0(SA(p0)), and
hence the first state of any execution. The recursive specification E is relevant
for the modules (1) and (2) which take care of generating the stochastic automa-
ton. In fact, the stochastic automaton is not generated completely but only the
required parts in order to choose the step to be simulated. The algorithm only
saves the current location (or better, the current term) pi which is the only

Adversary A

Select

edge accord-

ing to A

Calculate

performance

results

v0

Calculate

clocks

to be set

Calculate

outgoing

edges

{

pi
a,C
- p

}

(2)

(4) (5)

p0

(6)

ρ0 = (p0, v0)[p0, v0]

Recursive specification E

clocks in κ(pi)

values for

Generate new

κ(pi)

pi
ai,C
- pi+1

ρi+1 =

ρi ai(di) (pi+1, vi+1) [pi+1, v′

i+1
]

vi[
−−−→
κ(pi) :=

−→
D]

v′

i
=

(3)

(1)

pi+1

Calculate

transition and

next valuation

vi+1 = v′
i
− di

pi, vi, v′

i
,

ai, di

Fig. 1. Schema of the simulation algorithm

necessary information to recover the set of clock κ(pi) to be set (done by module
(1)) and the possible outgoing edges (done by module (2)) according to the rules
given in Table 1.

After calculating the structure of the next step, the next valuation should be
calculated. At this point it is only necessary to save the last valuation vi. Module
(3) assigns to each clock xG in κ(pi) a random value according to the distribution
function G, while the rest of the clocks keep their old value. In Figure 1 this new

valuation is denoted by v′i = vi[
−−→
κ(pi) :=

−→
D].

−→
D represents the randomly selected

values. In fact, module (3) corresponds to the rule Prob given in Definition 3.

The adversary A is used in module (4) in order to select the next edge to be
executed. Module (4) takes all possible edges calculated in (2) and selects only
those that are enabled (see Definition 3). In this way, the sample space ρ-i can
be obtained, and the adversary A will take care of selecting only one possible
edge to be “executed” according to Definition 7.

Module (5) calculates the next transition according to rule Act in Defini-
tion 3. Thus, it gives not only the executed action ai and its timing di but also
the next location pi+1 and the next valuation vi+1 = v′i − di which are used to
determine the next step in the execution.

Module (6) is user dependent. It gathers the information from the execution
determined by the simulation in order to calculate the statistics that the user
may require. For examples of what can be done, we refer to the next section.

We have implemented a prototype of the simulation algorithm using the
functional language Haskell 1.4 [12]. We have assumed the initial valuation to be
always the constant function v0(x) = 0 for every clock x. This is not an actual
restriction since a specification typically does not have free clock variables in
its root process p0. Another reasonable restriction is that unguarded recursive
specifications are not allowed. Unguarded recursion could yield an infinite set of

Load

Load

Failure
Load

Programmer

User

e(µi)

progr. job

user job

e(δi)

fail

Queue
Progr.

Queue
User

e(λi)

W(v, w)
change phase

Load

Mainframe

P1

P2

Pm

user job ready

γ(b, b′)

progr. job ready

γ(a, a′)

fail
repair
γ(c, c′)

Maintenance

get user job

U(d − ǫ, d + ǫ)

get progr. job

U(d − ǫ, d + ǫ)

Fig. 2. Architecture of the mainframe system

outgoing edges or an infinite set of clock settings. In this way, modules (4) and
(5) would never finish their computations.

Another restriction of our implementation is that it only deals with adver-
saries that are history independent, that is, our adversaries must satisfy

last(ρ) = last(ρ′) =⇒ A(ρ) = A(ρ′).

This is due to the fact that it is not a nice idea to save a complete execution
which is intended to grow to the infinite. Using history independent adversaries
reduces dramatically the complexity of the algorithm. We discuss improvements
in the last section of the paper.

Notice that modules (3) and (4) require the use of “randomness”. To that
purpose, we use a random number generator which is a multiplicative linear
congruential generator with modulus m = 231 − 1 and multiplier a = 16807
calculated by Schrage’s algorithm (see [15] for more information).

5 Example: A multiprocessor mainframe

In this section we discuss an example that we adopted from [13]. Figure 2 gives
the architecture of a multiprocessor mainframe that serves two purposes. On the
one hand, the system has to maintain a database and therefore has to process
transactions submitted by different users. On the other hand, it is used for
program development and thus it has to serve programmer’s requirements such
as compilation and testing. Besides, the system can be altered by the occurrence
of software failures.

Using we can easily write a modular description of the system. In the next
subsection we give the model description in . Subsequently, we discuss the type
of adversary we use and give our simulation results.

Formal specification using . The system has three parts: the mainframe itself,
the maintenance module that takes care of repairing failures, and the system
load which basically is the environment representing the user and programmer
job arrivals and the occurrence of failures.

System = Load ||L (Mainframe ||F Maintain)

Process Load synchronises with the Mainframe each time a user or a program-
mer sends a job requirement or when a failure occurs. Process Maintain only
synchronises when a failure occurs and when it is repaired. So

L = {usrJob , prgJob, fail} and F = {fail , repair}

Process Load models the user and programmer load, and the failure occurrences

Load = PrgLoad1 ||{chng} UsrLoad1 ||{chng} FailLoad1 ||{chng} ChngPhase

Process ChngPhase is intended to model the variation of the load along the time
(e.g. the load during the night is different from that on peak hours.) Phases
change according to a Weibull distribution function with parameters (v, w) (de-
noted by W(v, w)) 4.

ChngPhase = chng(xW(v,w));ChngPhase

There are three phases. In the first phase, user jobs arrive according to an expo-
nential distribution with rate µ1 (notation e(µ1)); in the second phase, arrivals
are distributed according to e(µ2), and in the third phase no user job is gen-
erated. In any case, if a job cannot be queued because either the queue is full
or the system has failed, the job is simply rejected. Similarly, programmer jobs
arrive according to e(λ1) and e(λ2) in the first and second phase, and failures
originate according to e(δ1) and e(δ2), respectively. We model the occurrence
of a system failure regardless how many errors induce that failure. Processes
UsrLoad, PrgLoad, and FailLoad are as follows.

UsrLoad1 = nextUsrJob(xue(µ1)); (usrJob;UsrLoad1 + reject ;UsrLoad1)

+ chng ;UsrLoad2

UsrLoad2 = nextUsrJob(xue(µ2)); (usrJob;UsrLoad2 + reject ;UsrLoad2)

+ chng ;UsrLoad3

UsrLoad3 = chng ;UsrLoad1

PrgLoad1 = nextPrgJob(xp
e(λ1)); (prgJob;PrgLoad1 + reject ;PrgLoad1)

+ chng ;PrgLoad2

PrgLoad2 = nextPrgJob(xp
e(λ2)); (prgJob;PrgLoad2 + reject ;PrgLoad2)

+ chng ;PrgLoad3

PrgLoad3 = chng ;PrgLoad1

4 Distribution functions along the example were chosen arbitrarily with the intention
of showing the versatility of and the simulator.

FailLoad1 = nextFail (xf
e(δ1)); (fail;FailLoad1 + reject ; FailLoad1)

+ chng ;FailLoad2

FailLoad2 = nextFail (xf
e(δ2)); (fail;FailLoad2 + reject ; FailLoad2)

+ chng ;FailLoad3

FailLoad3 = chng ;FailLoad1

The Mainframe consists of Queues and processors Pi. The different processes
are fully synchronised with the actions fail and repair: when a failure occurs the
complete system must stop until it is repaired. Besides, the Queues communicate
with the processors each time the processors get either a user or programmer
job from the queue in order to process it. Since we consider that transferring a
job from a queue to a processor has a certain duration, we split the action into
a begin part and an end part.

Mainframe = Queues ||G∪F (P1 ||F P2 ||F · · · ||F Pm)

G = {getUsrJobBegin , getPrgJobBegin}

There are two FIFO queues, one for user jobs and one for programmer jobs.
They are symmetric, only varying in their length. So, we use a unique process
scheme for the queue and we take advantage of the renaming operation.

Queues = QUsr ||F QPrg

QUsr = Q
nu
0 [fu] QPrg = Q

np
0 [fp]

fu(job) = usrJob fp(job) = prgJob

fu(getBegin) = getUsrJobBegin fp(getBegin) = getPrgJobBegin

otherwise: fu(a) = a otherwise: fp(a) = a

Each queue is modelled by a set of processes Qn
i where n (n > 0) is the length

of the queue and i the number of queued jobs. A queue is blocking if there is a
failure or if it is full. In such case, jobs are rejected.

Q
n
0 = job;Qn

1 + fail; repair ; Qn
0

Q
n
i = job;Qn

i+1 + getBegin ;Qn
i−1 + fail ; repair ;Qn

i 0 < i ≤ n − 1

Q
n
n = getBegin ;Qn

n−1 + fail; repair ; Qn
n

The processors are symmetric. Nevertheless, we should be careful in order
to avoid clock name clashes [6]. We use indices to distinguish clock names. A
processor gets either a user or a programmer job from the respective queue.
In any case, this process takes d units of time with an error of ±ǫ distributed
uniformly (i.e. according to U(d − ǫ, d + ǫ)). Notice that actions getUsrJobEnd
and getPrgJobEnd are local to the processor. We do so because we consider
that this activity takes part of the service time of the processor, and not of the
queue. After loading a job, the processor executes it. The execution time of a
user job is distributed according to a gamma distribution with parameters (a, a′)
(notation γ(a, a′)). The execution of a programmer job is distributed according

to γ(b, b′). A failure induces the processor to abort any activity. When the system
is repaired, each processor restarts from its initial state.

Pi = getUsrJobBegin ; (getUsrJobEnd (yi
U(d−ǫ,d+ǫ));PWUi + PFi)

+ getPrgJobBegin ; (getPrgJobEnd (yi
U(d−ǫ,d+ǫ));PWPi + PFi)

+ PFi

PWUi = usrJobReady(vi
γ(a,a′));Pi + PFi

PWPi = prgJobReady (wi
γ(b,b′));Pi + PFi

PFi = fail ; repair ;Pi

Process Maintain simply repairs a failure each time it occurs. The reparation
time is distributed according to γ(c, c′).

Maintain = fail; repair(zγ(c,c′));Maintain.

Simulation details. In the previous subsection we presented the model of the
mainframe. We notice some choices we would like to add to the specification.

(a) In the UsrLoad component a situation of non-determinism may arise between
actions reject and usrJob. We would like not to reject a user job if there exists
a chance that the mainframe may become available at the same moment. The
same consideration applies to processes PrgLoad and FailLoad. In fact, we
want that reject has the lowest priority amongst all actions.

(b) A failure is an arbitrary event that at any moment may disturb the normal
execution of the system. For that reason, we would not like to make a failure
wait if it is enabled. So, we consider that action fail has the highest priority.

(c) User jobs are usually short activities that have to be processed as soon as
possible, such as saving a file or processing a small database transaction.
Programmer jobs are more complicated tasks that may involve compilation,
simulation or testing of a system. From this observation, we would like that
user jobs have higher priority than programmer jobs.

Summarising, we consider the priority relation ≺ defined as the least (strict
partial) order satisfying the following conditions

reject ≺ a ⇔ a 6= reject

a ≺ fail ⇔ a 6= fail

getPrgJobBegin ≺ getUsrJobBegin

In fact these criteria are used to define the adversary that we use to simulate the
multiprocessor mainframe. If after reducing the possible activities to be executed
according to the defined priorities there is some nondeterminism remaining, we
let the adversary to resolve it according to a (discrete) uniform probability dis-
tribution. Formally we define the adversary as follows.

The sample space ρ- is defined as the maximally possible, i.e.

ρ-
def
=

{

s
a,C
- s′| last(ρ) = [s, v] ∧ enabled(s

a,C
- s′, v)

}

Table 2. Parameters for the studied mainframe

Architecture Load Processing

m = 4 µ1 = 0.033 µ2 = 2 d = 0.021 e = 0.001
nu = 4 λ1 = 0.01667 λ2 = 0.16 a = 0.16667 a′ = 0.5
np = 10 v = 300 w = 6 b = 0.16667 b′ = 2.0

1 3 5 10 20
8

4

2

1

0.636

0.637

0.638

0.639

0.64

0.641

T
h

ro
u

g
h

p
u

t

Programmer Queue Length

User Queue
 Length

(a) Throughput User Jobs

1 3 5 10 20
8

4

2

1

0.1056

0.1058

0.106

0.1062

0.1064

0.1066

0.1068

T
h

ro
u

g
h

p
u

t

Programmer Queue Length

User Queue
Length

(b) Throughput Programmer Jobs

Fig. 3. Studying the length of the queues

We use the auxiliary operation pri to prune those enabled edges with lower prob-
ability than other enabled edges, that is, pri(ρ) returns the maximal elements in
ρ- according to the ≺ order.

pri(ρ)
def
=

{

s
a,C
- s′ ∈ ρ-|¬∃s

b,C′

- t ∈ ρ- ∧ a ≺ b
}

The adversary is then simply defined as follows

A(ρ)(e)
def
= if e ∈ pri(ρ) then

1

#pri(ρ)
else 0

Simulation results. We set the values of the different parameters according to
Table 2. As in [13], we studied the behaviour of the system with different queue
lengths. We ran several simulations changing the length of the queues (with
δ1 = 0.0007, δ2 = 0.00035, and c′ = 100). We can see in Figure 3 that both
user and programmer job throughputs stabilise when the user and programmer
queue length are at least 4 and 5, respectively, that is, queues larger than those
values do not affect the throughput (notice that the planes in the pictures become
horizontal from that point on). We finally fixed the values to 4 and 10 respectively
(see Table 2).

We ran different simulations changing the parameters related to failure and
repairing. In all the cases we took δ2 = δ1/2. For the reparation time we set
c = 1 and hence the average coincides with parameter c′. The simulation re-
sults are depicted in Figures 4 and 5. Figure 4 represents the availability of the
system, that is, the percentage of time in which the mainframe is processing
jobs. Figure 5 depicts the throughput of user jobs, i.e. the number of jobs that

75

80

85

90

95

100

100 90 80 70 60 50 40 30 20 10

Average Repair Time - c' (minutes)

A
va

ila
b

ili
ty

 (
%

 t
im

e)

0.00035
0.0007
0.0014
0.0028
0.0056

δ1

Fig. 4. Availability

0.4

0.45

0.5

0.55

0.6

0.65

0.7

100 90 80 70 60 50 40 30 20 10

 Average Repair Time - c' (minutes)

T
h

ro
u

g
h

p
u

t
(j

o
b

s
p

er
 m

in
u

te
)

0.00035
0.0007
0.0014
0.0028
0.0056

δ1

Fig. 5. Throughput User Jobs

are successfully processed per time unit. In both cases the lines are exponential
functions that approximate the obtained simulation values. The functions have
the shape f(x) = resx, where r and s are appropriate constants.

To calculate the user job throughput, we simply count the number of oc-
currences of action usrJobReady per time unit. To determine the availability we
count the occurrences of the action fail per time unit instead, say fpm, and then
calculate 100 · (1 − fpm · c′). Since c′ is the average of repair time, then fpm · c′

is the fraction that the system is unavailable per time unit. The simulation al-
gorithm also allows for the direct calculation of the availability, but in our case
the method we followed is more precise.

The simulations have been carried out using the method of batch means . It
consists of running a long simulation run, discarding the initial transient interval,
and dividing the remainder of the run into several batches or subsamples [15].
We took 20 subsamples, each one of approximately 150000 minutes length. The
values in the figures are the overall averages. In every case, we calculated the
respective confidence interval. The (proportionally) widest confidence interval
was obtained for δ1 = 0.0056 and c′ = 100 in the case of the throughput:
0.4473999± 5.468 · 10−4 with 99% of confidence. In the case of counting failures,
the widest confidence interval was for δ1 = 0.00035 and c′ = 10: 1.63726 ·10−4±
5.44 · 10−9 with confidence 99%.

We mention as well that, since the system is finite, we are able to automat-
ically check that it is deadlock free and does not have clock name clashes. The
first checking can be done by simple inspection of the underlying stochastic au-
tomaton (which basically reduces to applying the expansion law) and the second
one, by using the appropriate rules. The theory for these algorithms is described
in [6]. We plan to include this can of checking in the near future.

6 Further discussions

Related work. A first approach to formally validate simulation models was to in-
vestigate the mapping of a high-level language for describing discrete-event sim-
ulation models into (non-stochastic) process algebras. Pooley [18] studied the
translation of the process-based simulation language DEMOS (Discrete-Event
Modelling On Simula) into TCCS, and Tofts and Birtwistle [3] use process alge-
bras, basically CCS and its synchronous variant SCCS, to provide a denotational

semantics of DEMOS. These works do not formalise the probabilistic informa-
tion present in the original language and the role of process algebra with respect
to simulation is different from ours.

Katoen et. al. [16] used generalised semi-Markov processes (GSMPs) indi-
rectly as a semantic model: they map a non-Markovian stochastic process alge-
bra onto event structures, and obtain for a subclass of event structures (the
so-called stochastic deterministic ones) a GSMP. This translation induces a
straightforward simulation algorithm. We can say that in our approach the in-
termediate model (the event structures) is omitted, and moreover we accept
non-determinism as an inherent characteristic of our model, which is resolved
when simulating. We should mention that there is no actual implementation of
the algorithm presented in [16].

Field et. al. [7] use the stochastic process algebra of Harrison & Strulo [11]
to model and simulate a cache coherency protocol. In order to simulate the
protocol they compile the specification into C++ code and make use of some
simulation libraries. Although their approach is somehow similar to ours, we use
a different stochastic process algebra and we use adversaries to resolve possible
non-determinism.

Conclusions and Further Work. In this work we gave an overview of the foun-
dations and showed how to simulate specifications written in . The advantages
of using as modelling language are many-fold. First, the fact that is a pro-
cess algebra allows for formal verification of the functional correctness of the
model to be studied. In our example we are able to (automatically) check that
the system does not have any deadlock. A second advantage is that, in contrast
to many simulation packages, allows, in principle, for the description of any
process without restricting to a particular method, which makes our simulation
and modelling a general-purpose task. Finally, the compositional nature of
together with the inherent ideas of simulation allows for on-the-fly construction
of the simulation model. This implies that simulation of systems with recursive
specifications containing infinite equations (such as Pi = ai;Pi+1) is possible.

We have used our simulation algorithm to analyse different kinds of (single)
queues systems specified in , including infinite queues. We checked the obtained
results against the analytical solutions and the results have been satisfactory.
Besides, we have “self-checked” the results obtained in the mainframe example
by obtaining quite tight confidence intervals.

In its current state, we are using the program as a library to be compiled
together with the specification and the module to calculate the performance
results (number (6) in Figure 1). The adversary can be either selected from a
given library or explicitly defined. The specification is given in terms of a
Haskell data type, which closely resembles the notation.

One of our plans is to incorporate the adversaries as part of the syntax. The
idea is to encode the probabilities of taking a transition from one or the other
operand into the parallel composition and summation. We will base our ideas on
results presented in [4]. This encoding might also be dynamic, in the sense that
a transition may induce different values for the probabilities in the next step.

As we mentioned, the simulator is still in a prototype version. To turn it into
a serious tool, much work has to be done. First, we know that our algorithm
is optimal in state space requirements since only the current symbolic state
and the valuations of the active clocks are saved. However time complexity has
to be addressed by searching for optimal ways of calculating κ, -, and the
selection of the transition to be triggered. In second place, we need to reduce the
“extra work” the user has to do. This has two implications. On the one hand, we
should try to automatise as much as possible the analysis performed by module
(6) and to eliminate the Haskell overhead in the given specification. Thus,
the simulation would become a program by itself that would take two scripts as
inputs: one containing the specification (including the adversaries encoded in
the term), and the other, the instructions for the desired analysis. On the other
hand, we should provide libraries of commonly used process and macros, such
as queues or “work loaders” (see Section 5).

Finally, we should mention our intention of extending with data. This
would definitely facilitate the task of modelling and hence broadening the scope
of to specify and analyse, for instance, mobile systems and protocols which
include significant data transfer.

References

1. R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science,
126:183–235, 1994.

2. M. Bernardo and R. Gorrieri. A tutorial on EMPA: A theory of concurrent pro-
cesses with nondeterminism, priorities, probabilities and time. Theoretical Com-
puter Science, 202:1–54, 1998.

3. G.M. Birtwistle and C. Tofts. Process semantics for simulation. Technical report,
University of Swansea, 1996.

4. P.R. D’Argenio, H. Hermanns, and J.-P. Katoen. On geneartive parallel compo-
sition. In Proc. of PROBMIV’98 (Preliminary), Indianapolis, USA, Tech. Rep.
CSR-98-4, pp. 105–121. School of Comp. Sci., University of Birmingham, 1998.

5. P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. A stochastic automata model
and its algebraic approach. In E. Brinksma and A. Nymeyer, eds., Proc. of
PAPM’97, Enschede, The Netherlands, Tech. Rep. CTIT 97-14, pp. 1–16. Uni-
versity of Twente, 1997.

6. P.R. D’Argenio, J.-P. Katoen, and E. Brinksma. An algebraic approach to the
specification of stochastic systems (extended abstract). In D. Gries and W.-P.
de Roever, editors, Proc. of PROCOMET’98, Shelter Island, USA, IFIP Series,
pp. 126–147. Chapman & Hall, 1998.

7. A.J. Field, P.G. Harrison, and K. Kanani. Automatic generation of verifiable cache
coherence simulation models from high-level specifications. In Proc. of CATS’98.
Australian Comp. Sci. Comm., 20(3):261–275, 1998.

8. P.W. Glynn. A GSMP formalism for discrete event simulation. Proceedings of the
IEEE, 77(1):14–23, 1989.

9. N. Götz, U. Herzog, and M.Rettelbach. TIPP - Introduction and application to
protocol performance analysis. In H. König, ed., Formale Beschreibungstechniken
für verteilte Systeme, FOKUS series. Saur Publishers, 1993.

10. H.A. Hansson. Time and Probability in Formal Design of Distributed Systems,
volume 1 of Real–Time Safety Critical Systems. Elsevier, 1994.

11. P. Harrison and B. Strulo. Stochastic process algebra for discrete event simulation.
In F. Bacelli, A. Jean-Marie, and I. Mitrani, eds., Quantitative Methods in Parallel
Systems, Esprit Basic Research Series, pp. 18–37. Springer-Verlag, 1995.

12. Report on the programming language Haskell: A non-strict, purely functional lan-
guage (Version 1.4), April 1997. URL: http://haskell.org/.

13. U. Herzog and V. Mertsiotakis. Stochastic process algebras applied to failure
modelling. In Proc. of PAPM’94. University of Erlangen, 1994.

14. J. Hillston. A Compositional Approach to Performance Modelling. Distinguished
Dissertation in Computer Science. Cambridge University Press, 1996.

15. R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & Sons,
1991.

16. J.-P. Katoen, E. Brinksma, D. Latella, and R. Langerak. Stochastic simulation of
event structures. In M. Ribaudo, ed., Proc. of PAPM’96, Torino, Italy, pp. 21–40.
Università di Torino, 1996.

17. S. Lang. Real and Functional Analysis, volume 142 of Graduate Texts in Mathe-
matics. Springer-Verlag, 3rd edition, 1993.

18. R.J. Pooley. Integrating behavioural and simulation modelling. In Quantitative
Evaluation of Computing and Communication Systems, LNCS 977, pp. 102–116.
Springer-Verlag, 1995.

19. R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250–273, 1995.

20. G.S. Shedler. Regenerative Stochastic Simulation. Academic Press, 1993.
21. M.Y. Vardi. Automatic verification of probabilistic concurrent finite state pro-

grams. In 26th Annual Symposium on FOCS, Portland, Oregon, pp. 327–338.
IEEE Computer Society Press, 1985.

