
A COMPOSITIONAL APPROACH TO GENERALISED SEMI-MARKOV PROCESSES

Pedro R. D'Argenio

a

, Joost-Pieter Katoen

b

, Ed Brinksma

a

a

Dept. of Computer Science, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands

b

Informatik VII, University of Erlangen-N�urnberg, Martensstrasse 3, D-91058 Erlangen, Germany

Abstract

This paper proposes a compositional approach to the spec-

i�cation and analysis of stochastic discrete-event systems.

We present a process algebra that allows one to specify

generalised semi-Markov processes (GSMPs) in a compo-

sitional way. The semantics of this process algebra is given

in terms of stochastic automata, an extension of automata

with clocks that are basically random variables of continu-

ous or discrete nature. We show that GSMPs are a proper

subset of stochastic automata and provide some example

laws that are useful for the veri�cation of such models.

Keywords: GSMP, process algebra, discrete-event simu-

lation, compositionality, equational reasoning

1 Introduction

In discrete-event simulation the behaviour of a sys-

tem as it evolves in time is described in terms of a

simulation model. Simulation modelling is usually a

time-consuming task and is mainly based on human

ingenuity and experience. In addition, the di�culty of

the design of a simulation model rapidly grows with

the increasing magnitude and complexity of the sys-

tem itself. To ease the description of simulation mod-

els, dedicated simulation languages have been devel-

oped, such as Demos, GPSS and Simscript, most of

which are process-oriented.

State changes in discrete-event simulation models

take place at discrete points in time, whereas the time

of occurrence of activities is controlled stochastically,

i.e. by means of random variables. A mathematical

framework for the study of these models|known as

stochastic discrete-event systems|is given by Glynn

[8]. He presents a generalised semi-Markov process

(GSMP) theory for such systems.

In this paper we propose a high-level speci�ca-

tion language for stochastic discrete-event systems,

c
 1998 IEE, WODES98 { Cagliari, Italy

Proc. of the Fourth Workshop on Discrete Event Systems

in particular GSMPs. Our speci�cation language is

based on process algebra. In process algebras, like

ACP, CCS, CSP and LOTOS, a concurrent system is

syntactically represented using powerful composition

operators which facilitate the development of well-

structured speci�cations. The algebraic nature of the

language allows to reason about speci�cations in an

equational way, thus allowing transformation and ver-

i�cation. Traditionally, process algebras focussed on

the speci�cation and analysis of qualitative system

properties, but in the last decade the interest in exten-

sions with quantitative information has grown signi�-

cantly. This integration facilitates the analysis of qual-

itative and quantitative properties in a single frame-

work.

We use an extension of process algebra in which

the time of occurrence of actions, the most primitive

notions of activity in process algebra, is determined

by a continuous or discrete probability distribution

of arbitrary nature. To give a formal semantics to

our language spades (Stochastic Process Algebra for

Discrete-Event Simulation, symbolised by) we intro-

duce the concept of stochastic automata, an extension

of labelled automata with clocks, that can be seen as

a stochastic variant of timed automata by Alur & Dill

[1]. We argue that GSMPs are a subclass of stochas-

tic automata and give a stochastic extension of the

expansion law known from (untimed) process algebra.

This law is of central importance for the veri�cation

and correctness-preserving transformation of expres-

sions in and, thus of GSMPs.

2 Motivation

A simple queueing system. Consider a queueing

system in which jobs arrive and wait until they are

executed by a single server. An in�nite population

of jobs is assumed. Jobs arrive with an inter-arrival

time that is determined by a continuous probability

distribution F while the delay between the processing

of two successive jobs is controlled by distribution H.

This system is known as a G=G=1=1-queue, where G

stands for general distribution of the arrival and ser-

vice process, respectively, 1 indicates the number of

servers, and 1 denotes the bu�er capacity.

A GSMP description. A typical GSMP descrip-

tion of such queueing system is de�ned in the following

way. The basic ingredients are states and events. To

each state z a (non-empty) set of active events E(z)

is associated denoting the set of events that can cause

transitions out of z. In our example, we let the state

space be IN � f 0; 1 g, where the �rst component of a

state indicates the number of jobs that are currently

in the system, and the second component indicates the

system status (1 = `a job just arrived', and 0 = `a job

has just been processed'). Initial state is (0; 1). In

each state, possible events are the arrival of a job (de-

noted a) and the completion of a job (denoted c). In

the initial state no job completion is possible. Thus,

E(i; j) = f a

i+1

; c

i+1

g and E(0; 1) = f a

1

g. The ar-

rival of a job causes a transition from state (i; 0) or

from (i; 1) to state (i+1; 1). Completion of a job leads

to a transition from (i+1; 0) or (i+1; 1) to state (i; 0).

To each event e 2 E(z) a clock c

e

is associated

that indicates the amount of time until expiration.

Clocks are initialised by probability distribution func-

tions and run backwards. In each state the active

event e

�

with minimal clock value is selected for ex-

ecution. The values of the events in z

0

, the succes-

sor state of z

0

on executing e

�

, are determined as fol-

lows. Clocks of events in E(z) � f e

�

g are decreased

by the value of c

e

�

. The clock of any newly active

event e in E(z

0

) � (E(z) � f e

�

g) is set according to

the clock-setting distribution F (c

e

). All other clocks

in z

0

equal1. Due to the conditions imposed on clock-

setting distributions, the event e

�

in GSMPs is always

uniquely determined [8].

In our example, clocks are initialised as follows. On

entering state (i; 1) the clock of the next arrival a

i+1

is initialised according to distribution F , the job inter-

arrival time. On entering state (i; 0) with i 6= 0 the

clock of the next possible job completion c

i+1

is ini-

tialised according to distribution H, the service delay.

The clock for c

1

is set in the same way in state (1; 1).

A compositional approach. Although using this

description the dynamics of our example GSMP can

be determined, it is in absence of any further explana-

tion not easy to understand. This is basically due to

the fact that the individual system components, like

arrival and server processes, are hard to recognise from

the overall system structure. This problem becomes

more apparent if we consider GSMPs modelling sys-

tems of more realistic magnitude. We say that the

speci�cation lacks compositionality. The idea that we

shall pursue here is to specify GSMPs in a composi-

tional way.

In process algebra the speci�cation of our queue-

ing system can be obtained in a hierarchical manner,

starting from the speci�cations of the individual com-

ponents. If we let a; p denote a process that immedi-

ately can perform an action a and then behaves like

process p, and p + q denote the process that behaves

either like p or like q, then a bu�er of in�nite capacity

can be speci�ed by the set of processes:

Queue

0

= a;Queue

1

Queue

i+1

= a;Queue

i+2

+ b;Queue

i

for i > 0

where the index indicates the number of jobs in the

bu�er. Similarly to GSMPs, clocks can be used to

model probabilistic delays. Let C be a �nite set of

clocks. Using the primitives C 7! p, the process that

after expiration of all clocks in C behaves like p, and

fjCjgp, the process that behaves like p after any clock

x in C is initialised according to some indicated distri-

bution, we obtain for the arrival and server processes:

Arrival = fjx

F

jgfx

F

g 7! a;Arrival

Server = b; fjy

H

jgfy

H

g 7! c; Server

In the Arrival process clock x is initialised and starts

counting down. Once it has reached the value 0, it

expires and action a is enabled. The overall system is

described by:

System = (Arrival jj

?

Server) jj

fa;bg

Queue

0

Here, jj stands for parallel composition. In process

p jj

A

q, where A is a set of actions, p and q perform

actions autonomously, but actions in A should be per-

formed by both. The resulting speci�cation of the

G=G=1=1 system closely resembles the structure of

the system itself, is easy to understand, and readily

modi�able (for instance, to a queue with �nite capac-

ity, or a system in which the service rate depends on

the number of waiting jobs).

The formal meaning of a process algebra term is

de�ned in a mathematical model. By de�ning an

appropriate equivalence relation on this model one is

able to formally compare and transform (e.g. simplify)

speci�cations. If, in addition, this relation is a con-

gruence, then such transformation can be carried out

component-wise. An equivalence relation is a congru-

ence if for any term a sub-term may be replaced by an

equivalent sub-term and an equivalent term results.

This compositional transformation reduces the com-

plexity signi�cantly. Finally, due to the algebraic na-

ture of the formalism it is possible to de�ne equational

rules on the syntax that allow to perform transforma-

tion and simpli�cation at a purely syntactical level,

without any reasoning in semantical terms.

3 Stochastic automata and GSMPs

Stochastic automata. The semantics of our process

algebra is de�ned in terms of stochastic automata.

(For a formal interpretation of such automata in terms

of measure theory, see [6].) This model is strongly

related to GSMPs and incorporates, apart from the

necessary ingredients to model GSMPs, the possibil-

ity of specifying non-determinism. Non-determinism

appears if two transitions become enabled simultane-

ously. This concept is usually absent in stochastic

discrete-event systems, but has been widely accepted

in the computer science community for the purpose of

under-speci�cation in a step-wise design methodology

[13]. For simulation purposes, the non-determinism

can be resolved using so-called adversaries that sched-

ule the di�erent branches according to some discrete

probability distribution [17]. In this way, a mechanism

is obtained similar to the probabilistic branching in

GSMPs (see also later on).

De�nition 1. A stochastic automaton is a tuple

(S; s

0

; C;A;

-

; �; F) where: S is a non-empty set of

locations with s

0

2 S being the initial location, C is a

set of clocks, A is a set of actions,

-

� S � (A �

}

�n

(C))�S is the set of edges, � : S !

}

�n

(C) is the

clock-setting function, and F : C ! (IR! [0; 1]) is the

clock-distribution function such that F (x)(t) = 0 for

t < 0.

We denote (s; a; C; s

0

) 2

-

by s

a;C

-

s

0

, use x

and y to denote clocks, and abbreviate F (x) by F

x

. To

each location s a �nite set of clocks �(s) is associated.

As soon as location s is entered any clock x in this set

is initialised according to its probability distribution

function F

x

. Once initialised, the clocks start counting

down, all with the same rate. A clock expires if it has

reached the value 0. The occurrence of an action is

controlled by the expiration of clocks. Thus, whenever

s

a;C

-

s

0

and the system is in location s, action a can

happen as soon as all clocks in the set C have expired.

The next location will then be s

0

.

Example 2. The stochastic automaton that corre-

sponds to the G=G=1=1 queue from Section 2 is de-

picted in Figure 1. Here, we represent a location s as

a circle containing the clocks that are to be set in s,

and denote edges by arrows. The initial location is

represented by a circle equipped with a small ingoing

arrow (leftmost circle in second row). Notice that af-

ter an a-action always a location is reached in which

clock x is set (according to distribution F), and after

a c-action always clock y is set (apart from the �rst lo-

cation in the upper row) according to H. Clock x thus

controls the job inter-arrival time while y controls the

service delay. The locations in the upper row repre-

sent the states (i; 0) whereas the lower row represents

the states (i; 1). In state (0; 0) there are no jobs in the

system and a completion can only happen after a job

arrives �rst. Therefore, in this state clock y is not set,

but only after a job arrival (in state (1; 1)). 2

x

x

y

y

x x

y

x

y

a; x

a; x

a; x

a; x

a; x

c; y c; y

c; y

c; y

c; y

c; y

c; y

a; xa; x

a; x

Figure 1: Stoch. automaton of a G=G=1=1-system

Generalised semi-Markov processes. In Section 2

we have seen a avour of GSMPs. Actually we will

consider a (large) subclass of GSMPs. The main re-

striction is that the next state is uniquely determined

by the present state and the triggered event. In gen-

eral GSMPs the next state is chosen probabilistically

from a set of possible next states. In addition, we as-

sign to each clock a �xed distribution function whereas

in general GSMPs such distribution may depend on

the history of the system. This is not a severe re-

striction since one can model each history of a general

GSMP by a sequence of su�ciently many events such

that each such event marks a relevant point in history.

The class of GSMPs with history-independent distri-

bution functions is known as time-homogeneous [8].

Finally, sometimes clocks are allowed to have di�erent

rates whereas in our case all clocks proceed with the

same speed. Di�erent rates are not very usual in sim-

ulation, and moreover, under certain conditions, such

\multi-rated" GSMPs can be represented by GSMPs

where all clock rates equal 1.

The notion of GSMPs that we consider is de�ned as

follows, where it is assumed that initial state z

0

has a

single active event e

0

. C is a set of clocks. The dynam-

ics of a GSMP in the following sense is as described in

Section 2.

De�nition 3. (Z; z

0

;E; e

0

; E;C;N; F) is a GSMP

with Z, a non-empty set of states with z

0

2 Z, E,

a non-empty set of events with e

0

2 E, E : Z !

}

�n

(E), the event-assignment function withE(z) 6= ?

for all z 2 Z and E(z

0

) = f e

0

g, C : E! C, the clock-

assignment function, N : Z � E ! Z, the next-state

function, and F : C ! (IR ! [0; 1]), the distribution

assignment function, such that F (x)(0) = 0.

GSMPs versus stochastic automata. The rela-

tion between stochastic automata and GSMPs (in the

above sense) is shown by de�ning a mapping from

GSMPs onto stochastic automata. The existence of

this mapping indicates that GSMPs are properly in-

cluded in stochastic automata. We have proven the

correctness of the mapping in the sense that the under-

lying probabilistic transition systems (that are based

on Borel spaces) of a GSMP and its associated sto-

chastic automaton are probabilistically bisimilar [6].

The basic idea of the mapping is to introduce a

location as a pair (z; E) where z is a state of the GSMP

and E is the set of events that are already active. The

initial location is (N (z

0

; e

0

);?). For each active event

in state z, there is an outgoing edge from any location

(z; E). This edge is labelled with event e (i.e. the

action) and the set of clocks fC(e)g. So, events are

considered as actions and active events of z are

E(z) =

[

fe j (z; E)

e;fC(e)g

-

g:

De�nition 4. The associated stochastic automaton

of GSMP G = (Z; z

0

;E; e

0

; E;C;N; F) is de�ned by

S = Z �

}

�n

(E) with s

0

= (N (z

0

; e

0

);?), A = E,

C = fC(e) j e 2 E g, �(z; E) = fC(e) j e 2 E(z)�E g,

and F is the same as for G.

-

is de�ned by the rule

e 2 E(z)

(z; E)

e;fC(e)g

-

(N (z; e); E(z)� feg)

Due to the fact that E(z) 6= ? for any z, the condi-

tion e 2 E(z) is always satis�ed. There are many lo-

cations (z; E) 2 S that are unreachable via

-

. All

reachable locations have the form (N (z; e); E(z)�feg)

for every (reachable) z 2 Z and e 2 E(z). Remark

that for z

0

= N (z; e) we have �(z

0

; E(z) � feg) =

fC(e

0

) j e

0

2 E(z

0

) � (E(z) � feg) g, the set of clocks

for all newly active events in z

0

.

As argued before, stochastic automata are more

expressive than GSMPs, since stochastic automata

do allow non-determinism (two outgoing edges that

are enabled at the same time), whereas GSMPs do

not. In addition, in the stochastic automaton model

clocks may be initialised by arbitrary distributions|

including discrete distribution functions|without any

restriction. In GSMPs it is required that in any set

of active events there is at most one clock x such that

F

x

(t) is not continuous as a function of t [8].

4 The stochastic process algebra

Syntax. Let A be a set of actions, V a set of process

variables, and C a set of clocks with (x;G) 2 C for x a

clock name andG an arbitrary probability distribution

function. We abbreviate (x;G) by x

G

.

De�nition 5. The syntax of is de�ned by:

p ::= 0 j a; p j C 7! p j p+p j fjCjgp j p jj

A

p j p[f] jX:

where C � C is �nite, a 2 A, A � A, f : A! A, and

X 2 V. A recursive speci�cation E is a set of recursive

equations of the form X = p for each X 2 V, where

p 2 .

Besides the operations used in Section 2 the lan-

guage incorporates the basic process 0, the process

that cannot perform any action, and the renaming op-

eration p[f], a process that behaves like p except that

actions are renamed by function f . A few words on

p+q are in order. p+q behaves either as p or q, but not

both. At execution the fastest process, i.e. the process

that is enabled �rst, is selected. This is known as the

race condition. If this fastest process is not uniquely

determined, a non-deterministic selection among the

fastest processes is made.

Semantics. To associate a stochastic automaton

SA(p) to a given term p in the language, we de�ne the

di�erent components of SA(p)

1

. In order to de�ne the

automaton associated to a parallel composition, we in-

troduce the additional operation ck. ck(p) is a process

that behaves like p except that no clock is set at the

very beginning. As usual in structured operational se-

mantics, a location corresponds to a term. Thus, the

set of locations equals [fckg. The clock setting

function � is de�ned by induction on the structure

of expression: �(0) = �(a; p) = �(ck(p)) = ?, �(C 7!

p) = �(p[f]) = �(p), �(p+q) = �(p jj

A

q) = �(p)[�(q),

�(fjCjgp) = C [�(p) and �(X) = �(p) for X = p. The

set of edges

-

between locations is de�ned as the

1

Here we assume that p does not contain any name clashes

of clock variables. This not a severe restriction since terms that

su�er from such name clash can always be properly renamed

into a term without such name clash [6].

x x

y y y

x x x

x x x

b b b

a; x

a; x

a; x

c; y

c; y

c; y

a; x a; x a; x a; x

c; y c; y c; y

a; x a; x

b

a; x

a; x

a; x

a; x

b b

Figure 2: Stochastic automaton of the compositional G=G=1=1 speci�cation

Table 1: Stochastic automata for (X = p 2 E)

a; p

a;?

-

p

p

a;C

0

-

p

0

fjCjgp

a;C

0

-

p

0

p

a;C

0

-

p

0

C 7! p

a;C[C

0

-

p

0

p

a;C

-

p

0

X

a;C

-

p

0

p

a;C

-

p

0

p+ q

a;C

-

p

0

q + p

a;C

-

p

0

p

a;C

-

p

0

p[f]

f(a);C

-

p

0

[f]

p

a;C

-

p

0

ck(p)

a;C

-

p

0

p

a;C

-

p

0

p jj

A

q

a;C

-

p

0

jj

A

ck(q)

q jj

A

p

a;C

-

ck(q) jj

A

p

0

(a =2 A)

p

a;C

-

p

0

q

a;C

0

-

q

0

p jj

A

q

a;C[C

0

-

p

0

jj

A

q

0

(a 2 A)

smallest relation satisfying the rules in Table 1. The

function F is de�ned by F (x

G

) = G for each clock

x in p. The other components are de�ned as for the

syntax of .

Example 6. Using this recipe it can be shown that the

semantics of the System speci�cation of Section 2 boils

down to the (at �rst sight somewhat complicated) sto-

chastic automaton depicted in Figure 2. Here, empty

sets are omitted; in particular b stands for b;?. Al-

though the state space of this automaton is somewhat

larger than that of the direct representation in Fig-

ure 1, this does not have a serious impact on the e�-

ciency of stochastic simulation. Since in our semantics

a state corresponds to a term, simulation can be car-

ried out on the basis of expressions rather than using

their semantic representations. This allows on-the-y

simulation, that is, simulation while constructing the

state space. In this approach the unreachable loca-

tions will not be visited. For instance, for locations

in which both an immediate (i.e. an action equipped

with no clocks) and a non-immediate action are en-

abled, the non-immediate transition will never be tra-

versed. The corresponding reduction of the state space

can also be obtained by syntactical transformation as

shown in Example 9. 2

It turns out that stochastic automata and the lan-

guage are equally expressive [6]. This means that for

any (�nitely branching) stochastic automaton a cor-

responding (guarded recursive) term in the language

can be given whose reachable part of its stochastic

automaton is identical to the stochastic automaton at

hand, up to renaming of clocks. A recursive speci�ca-

tion E is guarded if X = p 2 E implies that all vari-

ables in p appear in a context of a pre�x. A stochastic

automaton is �nitely branching if for every location

the set of outgoing edges is �nite.

Structural bisimulation. For process algebras

many equivalences and pre-orders have been de�ned

to compare speci�cations. One of the most interesting

equivalence relations is bisimulation [15]. The follow-

ing notion of bisimulation decides the equivalence of

stochastic automata on the basis of their structure.

Weaker notions of bisimulation are de�ned in [6].

De�nition 7. Let (S; s

0

; C;A;

-

; �; F) be a sto-

chastic automaton. R � S � S is a structural bisimu-

lation if, R is symmetric and whenever s

1

Rs

2

, for all

a 2 A, C � C, we have:

1. s

1

a;C

-

s

0

1

implies 9s

0

2

: s

2

a;C

-

s

0

2

and s

0

1

Rs

0

2

;

2. �(s

1

) = �(s

2

)

If R is a structural bisimulation such that s

1

Rs

2

, we

write s

1

$

�

s

2

and call s

1

and s

2

structurally bisimilar.

Two stochastic automata SA

1

and SA

2

are struc-

turally bisimilar, notation SA

1

$

�

SA

2

, if their re-

spective initial locations are structurally bisimilar on

the disjoint union of SA

1

and SA

2

. If we omit

the clock-related information, we obtain the usual

(strong) bisimulation relation on transition systems

[15]. Terms p and q are structurally bisimilar if and

only if SA(p)

$

�

SA(q). The relation

$

�

is a congru-

ence for [6]. This means that for any term in our

language a sub-term pmay be replaced by its bisimilar

equivalent q such that a bisimilar term results.

Equational reasoning. Rather than proving p

$

�

q

using their semantical interpretation it is often more

convenient to use rules de�ned on the syntax of p and

q that are known to preserve (in our case)

$

�

. This

enables the transformation and comparison of terms

at a purely syntactical level. Some typical axioms are

(p+ q) + r = p+ (q + r)

C 7! (C

0

7! p) = C [C

0

7! p

C 7! fjC

0

jgp = fjC

0

jgC 7! p if C \ C

0

= ?:

In [6] a complete and sound axiomatisation of struc-

tural bisimulation for is presented for �nite terms.

Using these axioms any term p can be converted into

a canonical form which has the shape fjCjg(

P

C

i

7!

a

i

; p

i

) where p

i

are terms in canonical form and

P

is

the usual generalisation of choice:

P

0<i6n

p

i

equals

p

1

+ : : :+ p

n

for n>0, and 0 for n=0.

An essential law in traditional process algebras is

the expansion law. This law allows one to reduce par-

allel composition in terms of pre�x and choice, and

has proven to be of crucial importance for veri�cation

purposes. A stochastic equivalent of this law can be

derived for our language. In fact, the expansion law

is inherent in our model and follows from the way in

which parallel composition is de�ned. It can be de-

rived using the axioms in [6].

Theorem 8. (Expansion Law) Let p; q 2 such

that p = fjCjgp

0

and q = fjC

0

jgq

0

with p

0

=

P

C

i

7!

a

i

; p

i

and q

0

=

P

C

0

j

7! b

j

; q

j

. Suppose p jj

A

q does

not contain name clashes. Then p jj

A

q equals

fjC [C

0

jg

�

P

a

i

=2A

C

i

7! a

i

; (p

i

jj

A

q

0

)

+

P

b

j

=2A

C

0

j

7! b

j

; (p

0

jj

A

q

j

)

+

P

a

i

=b

j

2A

(C

i

[C

0

j

) 7! a

i

; (p

i

jj

A

q

j

)

�

:

Example 9. Using structural and probabilistic bisimu-

lation [6] we are able to formally relate Figure 2 to Fig-

ure 1 in the following way. (The following transforma-

tions could also be carried out using equational laws,

but this is omitted due to space reasons.) If in a loca-

tion both an immediate action and a non-immediate

action are possible, then the latter will never be taken

since it has to be delayed �rst. This allows one to

remove the locations in the lower row of Figure 2,

except for the two leftmost locations. The thus ob-

tained automaton is depicted in Figure 3. The only

xxx

b

a; x

a; x

a; x

bb

a; x

y y

c; y c; y

c; y c; y

x

Figure 3: Reduced automaton

di�erence with Figure 1 are the b-transitions that are

used for the sole purpose of synchronising the Queue

and Server processes. If, as a last step, we would copy

the leftmost location that contains clock y and sub-

sequently aggregate locations appropriately such that

the b-transitions only occur inside aggregates, then we

obtain the automaton of Figure 1. This latter transfor-

mation can be formalised using the common notion of

abstraction in process algebra and weak bisimulation

equivalence [15], a notion of equivalence that allows

one to abstract from internal moves. This approach

is applied to Markovian queues in [10], and is for our

setting an interesting subject for further work. 2

5 Related work

Other stochastic process algebras. Since 1990 ex-

tensions of process algebras have been investigated in

which the time of actions is determined by (contin-

uous) distribution functions. In languages like TIPP

[11], PEPA [12] and EMPA [2] the time of actions

is controlled by exponential distributions. The el-

ementary operator in these languages is a

�

; p with

rate �. This corresponds to fjx

F

jgfx

F

g 7! a; p with

F (t) = 1 � e

��t

. Due to the memoryless property

of exponential distributions the semantics of these

languages can adequately be described using labelled

transition systems that closely resemble continuous-

time Markov chains. Various useful links between

process algebras and Markov chains have thus been es-

tablished, e.g. between bisimulation and lumping [12].

In fact, our presented approach can be considered

as a generalisation of this line of research using GSMPs

rather than Markov chains. To our knowledge the

use of a process algebra to specify GSMPs is novel.

[14] used GSMPs indirectly: they map an extended

process algebra onto event structures, and obtain for

a subclass of event structures a GSMP. For recursive

processes in�nite event structures are obtained which

makes this approach less suited for the use of e�cient

regenerative simulation techniques. The �nite repre-

sentations we obtain do not su�er from this problem.

Process algebra and discrete-event simulation.

Harrison & Strulo [9] developed a stochastic process

algebra to formally describe discrete-event simulation.

Typically their semantic objects are highly in�nite.

Although their work is somehow related to ours, sto-

chastic automata appear to be more intuitive and re-

semble more closely the conceptual ideas of simulation

languages. In particular, measure theory only plays a

role in our case when de�ning the formal interpreta-

tion of stochastic automata.

Pooley [16] investigates the mapping of a high-

level language for describing discrete-event simulation

models, baptised extended activity diagrams, onto the

timed process algebra TCCS and the simulation lan-

guage Demos [3]. Using this framework Pooley is able

to check certain properties of a model a priori to simu-

lation, by analysing the (T)CCS speci�cation. In this

work distribution functions are neglected and the use

of process algebra is quite di�erent from ours.

Birtwistle and Tofts use process algebras, basically

CCS and its synchronous variant SCCS, to provide

a denotational semantics of Demos [4]. They focus

on analysing properties like absence of deadlock and

livelock and do not consider any timing aspects.

6 Concluding remarks

In this paper we presented a novel process algebra

suitable for specifying GSMPs in a compositional way.

The concept of stochastic automata has been intro-

duced and is shown to properly contain a large class

of GSMPs. Since our process algebra and stochastic

automata are equally expressive, this class of GSMPs

is also a subset of . Using equational laws|like the

presented expansion law that allows to reduce parallel

composition|GSMP speci�cations can be simpli�ed

and compared syntactically.

We have currently implemented a prototypical tool

that allows us to simulate speci�cations written in

. The simulation algorithm takes a speci�cation

and an additional process to resolve possible non-

determinism in this process as input, and automati-

cally generates simulation runs. We applied our pro-

totype to model and analyse a multi-processor system

that is vulnerable to failures [7].

Acknowledgement. The �rst author is supported

by the NWO/SION project 612-33-006.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theo-

retical Computer Science, 126:183{235, 1994.

[2] M. Bernardo and R. Gorrieri. ExtendedMarkovian process

algebra. In Proceedings CONCUR'96, LNCS 1119, pp 314{

330. Springer-Verlag, 1996.

[3] G.M. Birtwistle. Discrete Event Modelling on Simula.

MacMillan, 1979.

[4] G.M. Birtwistle and C. Tofts. Process semantics for simu-

lation. Technical report, University of Swansea, 1996.

[5] P.R. D'Argenio and E. Brinksma. A calculus for timed au-

tomata (Extended abstract). In Proceedings FTRTFT'96,

LNCS 1135, pp 110{129. Springer-Verlag, 1996.

[6] P.R. D'Argenio, J.-P. Katoen, and E. Brinksma. An alge-

braic approach to the speci�cation of stochastic systems

(Extended abstract). In Proceedings PROCOMET'98.

Chapman & Hall, 1998.

[7] P.R. D'Argenio, J.-P. Katoen, and E. Brinksma. General

purpose discrete-event simulation using . Submitted for

publication. 1998.

[8] P.W. Glynn. A GSMP formalism for discrete event simu-

lation. Proceedings of the IEEE, 77(1):14{23, 1989.

[9] P.G. Harrison and B. Strulo. Stochastic process algebra

for discrete event simulation. In Quantitative Methods in

Parallel Systems, pp 18{37. Springer, 1995.

[10] H. Hermanns, M. Rettelbach and T. Weiss. For-

mal characterisation of immediate actions in SPA with

non-deterministic branching. The Computer Journal,

38(7):530{542, 1995.

[11] H. Hermanns, U. Herzog and V. Mertsiotakis. Stochastic

process algebras { Between LOTOS and Markov chains.

Computer Networks & ISDN Systems, 1998.

[12] J. Hillston. A Compositional Approach to Performance

Modelling. Cambridge University Press, 1996.

[13] C.A.R. Hoare. Communicating Sequential Processes.

Prentice-Hall, 1985.

[14] J.-P. Katoen, E. Brinksma, D. Latella, and R. Langerak.

Stochastic simulation of event structures. In Proceedings

PAPM'96, pp 21{40. CLUT Press, 1996.

[15] R. Milner. Communication and Concurrency. Prentice-

Hall, 1989.

[16] R.J. Pooley. Integrating behavioural and simulation mod-

elling. In Quantitative Evaluation of Computing and Com-

munication Systems, LNCS 977, pp 102{116. Springer-

Verlag, 1995.

[17] M.Y. Vardi. Automatic veri�cation of probabilistic con-

current �nite state programs. In Proceedings 26

th

FOCS,

pp 327{338. IEEE Comp. Soc. Press, 1985.

