
The Bounded Retransmission Protocol must be on time!

(Full version)

Pedro R. D'Argenio1�, Joost-Pieter Katoen2, Theo C. Ruys1, and G. Jan Tretmans1

1 Faculty of Computer Science. University of Twente.

P.O.Box 217. 7500 AE Enschede. The Netherlands.

fdargenio,ruys,tretmansg@cs.utwente.nl

2 Lehrstuhl f�ur Informatik VII. University of Erlangen.

Martensstrasse 3. 91058 Erlangen. Germany.

katoen@informatik.uni-erlangen.de

August, 1997

Abstract

This paper concerns the transfer of �les via a lossy communication channel.

It formally speci�es this �le transfer service in a property-oriented way and

investigates|using two di�erent techniques|whether a given bounded retrans-

mission protocol conforms to this service. This protocol is based on the well-

known alternating bit protocol but allows for a bounded number of retransmis-

sions of a chunk, i.e., part of a �le, only. So, eventual delivery is not guaranteed

and the protocol may abort the �le transfer. We investigate to what extent real-

time aspects are important to guarantee the protocol's correctness and use Spin

and Uppaal model checking for our purpose.

1991 Mathematics Subject Classi�cation: 68Q60, 68Q22.

1991 CR Categories: C.2.2, D.2.4, F.3.1.

Keywords: veri�cation, model checking, real-time, bounded retransmission pro-

tocol, Uppaal, Spin.

Note: An extended abstract of this report has been published in the Proceedings

of the third International Workshop on Tools and Algorithms for the Construction

and Analysis of Systems, TACAS'97 , Enschede, The Netherlands, April 1997 [8].

Additional material can be found on http://wwwtios.cs.utwente.nl/~dargenio/brp/

�Supported by the NWO/SION project 612-33-006.

1

Contents

1 Introduction 3

2 The �le transfer service 3

2.1 Informal description . 3
2.2 Formal speci�cation . 4

3 The bounded retransmission protocol 6

3.1 Informal description . 6
3.2 Formal speci�cation . 8

4 Uppaal 11

4.1 Protocol model in Uppaal . 12
4.2 Deducing time constraints . 14
4.3 Protocol veri�cation . 17

5 Spin 20

6 Other veri�cations of the BRP 23

7 Concluding remarks 24

A Properties of the FTS speci�cation 26

B Calculating the tightest values for T and T 0 27

C Promela models 30

C.1 Introduction . 31
C.2 Common data structures . 32
C.3 Environment process . 34

C.3.1 Generating a �le . 35
C.3.2 Checking the requirements . 38

C.4 BRP Service . 41
C.4.1 Service process . 42
C.4.2 init . 44
C.4.3 Validation results . 44

C.5 BRP Protocol . 46
C.5.1 Protocol channels . 46
C.5.2 Protocol processes . 48
C.5.3 Validation results . 54

C.6 Optimized BRP Service . 55
C.6.1 Validation results . 57

C.7 Optimized BRP Protocol . 58
C.7.1 Validation results . 60

2

1 Introduction

An important activity within the �eld of protocol engineering is to validate whether a
protocol functions as intended. Given a service that the system is supposed to o�er to
its users the problem is to check whether a certain protocol \conforms to" this service.
This activity is known as protocol veri�cation or validation [10]. Formal methods can
support this activity to a large extent. By providing formal speci�cations S and P of
the service and protocol, respectively, and formally characterizing the \conforms to"
relation (denoted sat), protocol veri�cation amounts to proving that P sat S.

This paper concerns a �le transfer service (FTS) and a given bounded retransmission
protocol (BRP), a protocol used in one of Philips' products. It addresses the correctness
of the BRP with respect to the FTS. The BRP is based on the well-known alternating
bit protocol but is restricted to a bounded number of retransmissions of a chunk, i.e.,
part of a �le. So, eventual delivery is not guaranteed and the protocol may abort
the �le transfer. Timers are involved in order to detect the loss of chunks and the
abortion of transmission. The protocol veri�cation is carried out by model checking.
This technique facilitates the automatic veri�cation of properties, usually stated in some
dialect of modal logic, with respect to a protocol speci�ed as a �nite-state system. The
tools used in this paper are Spin [19] for untimed and Uppaal [4] for timed systems.

The FTS is speci�ed in a property-oriented way by providing relations between
inputs and outputs of the service. This is done without using modal operators. We
validate the consistency of this logical service speci�cation against the process algebraic
\external behavior" speci�cation of [12]. The BRP is modeled as a network of timed
automata that communicate via handshaking (like in CCS). This results in a compact
and intuitively appealing protocol speci�cation. Using Uppaal we verify the correct-
ness of the protocol by proving that it satis�es a number of properties, speci�ed as
logical formulas. We indicate the importance of real-time aspects for the correctness
of the BRP. This complements the untimed BRP veri�cations of [12, 14, 15, 23] that
focussed on the data aspects of the BRP. To investigate and compare the relevance of
the modeling assumptions made by others we check, using Spin, the correctness of our
protocol description when omitting the timing aspects. Due to the recent improvements
of Uppaal this paper contains substantially more complete veri�cations than reported
earlier by us [7]. In particular, we could obtain tight constraints on the timing aspects
of the BRP under which it conforms to the FTS.

2 The �le transfer service

2.1 Informal description

As for many transmission protocols, the service delivered by the BRP behaves like a
bu�er, i.e., it reads data from one client to be delivered at another one. There are two
features that make the behavior much more complicated than a simple bu�er. Firstly,
the input is a large �le (that can be modeled as a list), which is delivered in small

3

chunks. Secondly, there is a limited amount of time for each chunk to be delivered, so
we cannot guarantee an eventually successful delivery within the given time bound. It
is assumed that either an initial part of the �le or the whole �le is delivered, so the
chunks will not be garbled and their order will not be changed. Both the sender and
the receiver obtain an indication whether the whole �le has been delivered successfully
or not.

The input (the list l = d1; : : : ; dn) is read on the \input" port. Ideally, each di is
delivered on the \output" port. Each chunk is accompanied by an indication. This
indication can be I FST, I INC, I OK, or I NOK. I OK is used if di is the last element of
the �le. I FST is used if di is the �rst element of the �le and more will follow. All other
chunks are accompanied by I INC. However, when something goes wrong, a \not OK"
indication (I NOK) is delivered without datum. Note that the receiving client does not
need a \not OK" indication before delivery of the �rst chunk nor after delivery of the
last one.

The sending client is informed after transmission of the whole �le, or when the
protocol gives up. An indication is sent out on the \input" port. This indication can
be I OK, I NOK, or I DK. After an I OK or an I NOK indication, the sender can be sure,
that the receiver has the corresponding indication. A \don't know" indication I DK

may occur after delivery of the last-but-one chunk dn�1. This situation arises, because
no realistic implementation can ensure whether the last chunk got lost. The reason is
that information about a successful delivery has to be transported back somehow over
the same unreliable medium. In case the last acknowledgement fails to come, there is no
way to know whether the last chunk dn has been delivered or not. After this indication,
the protocol is ready to transmit a subsequent �le.

This completes the informal FTS description which we adopted from [12]. Remark
that it is unclear from this description which indication the sending client receives in
case the receiving client does not receive any chunk. Since something went wrong an
I NOK indication is required, but from this indication the sending client may not deduce
that the receiving client has the corresponding indication. This is because the receiving
client does not receive an I NOK indication before delivery of the �rst chunk. So, if the
sending client receives an I NOK either the receiving client received the same or did not
receive anything at all.

2.2 Formal speci�cation

is

Sin? Rout!Sout!

l : hd1; : : : ; dni
e : h(e1; i1); : : : ; (ek; ik)i

Schematic view of the FTS.

Signatures of the input and output:

Sin : l = hd1; : : : ; dni for n > 0

Sout : is 2 f I OK; I NOK; I DK g

Rout : h(e1; i1); : : : ; (ek; ik)i for 0 6 k 6 n;

ij 2 f I FST; I INC; I OK; I NOK g

for 0 < j 6 k

4

The FTS is considered to have two \service access points": one at the sender side
and the other at the receiver side. The sending client inputs its �le via Sin as a list of
chunks hd1; : : : ; dni. We assume that n > 0, i.e., the transmission of empty �les is not
considered. The sending client receives indications is via Sout, while the receiving client
receives pairs (ej; ij) of chunks and indications via Rout. We assume that all outputs
with respect to previous �les have been completed when a next �le is input via Sin.

In Table 1 we specify the FTS in a logical way, i.e., by stating properties that should
be satis�ed by the service. These properties de�ne relations between input and output.
Note that a distinction is made between the case in which the receiving client receives
at least one chunk (k > 0) and the case that it receives none (k = 0). A protocol
conforms to the FTS if it satis�es all listed properties.

Table 1: Formal speci�cation of the FTS.

k > 0

(1.1) 8 0 < j 6 k : ij 6= I NOK) ej = dj
(1.2) n > 1) i1 = I FST

(1.3) 8 1 < j < k : ij = I INC

(1.4.1) ik = I OK _ ik = I NOK

(1.4.2) ik = I OK) k = n

(1.4.3) ik = I NOK) k > 1
(1.5) is = I OK) ik = I OK

(1.6) is = I NOK) ik = I NOK

(1.7) is = I DK) k = n

k = 0

(2.1) is = I DK , n = 1
(2.2) is = I NOK , n > 1

For k > 0 we have the following requirements. (1.1) states that each correctly
received chunk ej equals dj, the chunk sent via Sin. In case the noti�cation ij indicates
that an error occurred, no restriction is imposed on the accompanying chunk ej. (1.2)
through (1.4) address the constraints concerning the received indications via Rout, i.e.,
ij. If the number n of chunks in the �le exceeds one then (1.2) requires i1 to be I FST,
indicating that e1 is the �rst chunk of the �le and more will follow. (1.3) requires that
the indications of all chunks, apart from the �rst and last chunk, equal I INC. The
requirement concerning the last chunk (ek; ik) consists of three parts. (1.4.1) requires

5

ek to be accompanied with either I OK or I NOK. (1.4.2) states that if ik = I OK then k
should equal n, indicating that all chunks of the �le have been received correctly. (1.4.3)
requires that the receiving client is not noti�ed in case an error occurs before delivery
of the �rst chunk. (1.5) through (1.7) specify the relationship between indications
given to the sending and receiving client. (1.5) and (1.6) state when the sender and
receiver have corresponding indications. (1.7) requires a \don't know" indication to
only appear after delivery of the last-but-one chunk dn�1. This means that the number
of indications received by the receiving client must equal n. (Either this last chunk is
received correctly or not, and in both cases an indication (+ chunk) is present at Rout.)

For k = 0 the sender should receive an indication I DK if and only if the �le to
be sent consists of a single chunk. This corresponds to the fact that a \don't know"
indication may occur after the delivery of the last-but-one chunk only. For k = 0 the
sender is given an indication I NOK if and only if n exceeds one. This gives rise to (2.1)
and (2.2).

Remark that there is no requirement concerning the limited amount of time available
to deliver a chunk to the receiving client as mentioned in the informal service description.
The reason for this is that this is considered as a protocol requirement rather than a
service requirement.

From the service speci�cation some interesting properties can be deduced. They
provide insight in the behavior of the service and increase con�dence in the correctness
of the service speci�cation.

Lemma. The FTS speci�cation satis�es the following properties for k > 0:

1. i1 = I FST) (k > 1 ^ n > 1)

2. for all j such that 0 < j 6 k, (ij = I NOK _ ij = I OK)) j = k

3. i1 6= I NOK

4. 1 < k < n) ik = I NOK

5. k = 1) n = 1

For the proof of this lemma see Appendix A.

3 The bounded retransmission protocol

3.1 Informal description

The protocol consists of a sender S equipped with a timer T1, and a receiver R equipped
with a timer T2 which exchange data via two unreliable (lossy) channels, K and L.

Sender S reads a �le to be transmitted and sets the retry counter to 0. Then it
starts sending the elements of the �le one by one over K to R. Timer T1 is set and a
frame is sent into channel K. This frame consists of three bits and a datum (= chunk).

6

The �rst bit indicates whether the datum is the �rst element of the �le. The second bit
indicates whether the datum is the last item of the �le. The third bit is the so-called
alternating bit, that is used to guarantee that data is not duplicated. After having
sent the frame, the sender waits for an acknowledgement from the receiver, or for a
timeout. In case an acknowledgement arrives, the timer T1 is reset and (depending on
whether this was the last element of the �le) the sending client is informed of correct
transmission, or the next element of the �le is sent. If timer T1 times out, the frame
is resent (after the counter for the number of retries is incremented and the timer is
set again), or the transmission of the �le is broken o�. The latter occurs if the retry
counter exceeds its maximum value MAX.

Receiver R waits for a �rst frame to arrive. This frame is delivered at the receiving
client, timer T2 is started and an acknowledgement is sent over L to S. Then the
receiver simply waits for more frames to arrive. The receiver remembers whether the
previous frame was the last element of the �le and the expected value of the alternating
bit. Each frame is acknowledged, but it is handed over to the receiving client only
if the alternating bit indicates that it is new. In this case timer T2 is reset. Note
that (only) if the previous frame was last of the �le, then a fresh frame will be the
�rst of the subsequent �le and a repeated frame will still be the last of the old �le.
This goes on until T2 times out. This happens if for a long time no new frame is
received, indicating that transmission of the �le has been given up. The receiving client
is informed, provided the last element of the �le has not just been delivered. Note that
if transmission of the next �le starts before timer T2 expires, the alternating bit scheme
is simply continued. This scheme is only interrupted after a failure.

Timer T1 times out if an acknowledgement does not arrive \in time" at the sender.
It is set when a frame is sent and reset after this frame has been acknowledged. (Assume
that premature timeouts are not possible, i.e., a message must not come after the timer
expires.)

Timer T2 is (re)set by the receiver at the arrival of each new frame. It times out
if the transmission of a �le has been interrupted by the sender. So its delay must
exceed MAX times the delay of T1.

1 Assume that the sender does not start reading and
transmitting the next �le before the receiver has properly reacted to the failure. This is
necessary, because the receiver has not yet switched its alternating bit, so a new frame
would be interpreted as a repetition.

This completes the informal description of the BRP (as adopted from [12]). It is
important to note that two signi�cant assumptions are made in the above description,
referred to as (A1) and (A2) below.

(A1) Premature timeouts are not possible

Let us suppose that the maximum delay in the channel K (and L) is TD and that timer
T1 expires if an acknowledgement has not been received within T1 time units since the
�rst transmission of a chunk. Then this assumption requires that T1 > 2 �TD+� where

1Later on we will show that this lower bound is not su�cient.

7

� denotes the processing time in the receiver R. (A1) thus requires knowledge about
the processing speed of the receiver and the delay in the line.

(A2) In case of abortion, S waits before starting a new �le
until R reacted properly to abort

Since there is no mechanism in the BRP that noti�es the expiration of timer T2 (in R)
to the sender S this is a rather strong and unnatural assumption. It is unclear how
S \knows" that R has properly reacted to the failure, especially in case S and R are
geographically distributed processes|which apparently is the case in the protocol at
hand. We, therefore, consider (A2) as an unrealistic assumption. In the next section
we ignore this assumption and adapt the protocol slightly such that this assumption
appears as a property of the protocol (rather than as an assumption!).

3.2 Formal speci�cation

The BRP consists of a sender S and a receiver R communicating through channels K
and L, see the �gure below. S sends chunk di via F to channel K accompanied with
an alternating bit ab, an indication b whether di is the �rst chunk of a �le (i.e., i = 1),
and an indication b0 whether di is the last chunk of a �le (i.e., i = n). K transfers this
information to R via G. Acknowledgements ack are sent via A and B using L.

Sin Sout

Sender S

Rout

F

Channel K

Channel L

G

AB

Receiver R

Schematic view of the BRP.

The signatures of A, B, F , and G are:

F;G : (b; b0; ab; di)

with ab 2 f 0; 1 g;
b; b0 2 f true; false g
and 0 < i 6 n

A;B : ack

Our starting-point for modeling and verifying the BRP is a speci�cation of the BRP
in terms of a network of timed automata. A timed automaton [1] is a classical �nite-
state automaton equipped with clock variables and state invariants. The state of a
timed automaton is determined by the system variables and clock variables. The value
of a system variable is changed explicitly by an assignment that is carried out at a
transition; the value of clock variables increases implicitly as time advances. A state
invariant constrains the amount of time the system may idle in a state. Clock values
may be tested (i.e., compared with naturals) and reset. In the sequel we will use u

through z to denote clock variables.
A network of timed automata consists of a number of processes (modeled as timed

automata) that communicate with each other in a CCS-like manner. Communications

can thus be considered as distributed assignments. That is, for processes P and Q

8

connected via C, variables xi and expressions Ei of corresponding type (0 < i 6 k),
the execution of C?(x1; : : : ; xk) in P and C!(E1; : : : ; Ek) in Q establishes the multiple
assignment x1; : : : ; xk := E1; : : : ; Ek in P .

Transitions consist of an (optional) guard and zero or more actions. Depending on
the validity of the guard a transition is either enabled or disabled. In a state the process
selects non-deterministically between all enabled transitions, it performs the (possibly
empty) set of actions associated with the selected transition and goes to the next state.
When there are no enabled transitions the process remains in the same state (if allowed
by the state invariant) and time passes implicitly. If neither idling is allowed nor an
enabled transition can be taken, the system halts2. Evaluation of a guard, taking a
transition and executing its associated actions constitute a single atomic event. Guards
are boolean expressions and may contain system and clock variables. For convenience,
guards that are equal to true are omitted. Possible actions are assignments to system
variables and resetting of clock variables.

We adopt the following notational conventions. States are represented by labeled
circles and the initial state as double-lined labeled circle. State invariants are denoted in
brackets. Transitions are denoted by directed, labeled arrows. A list of guards denotes
the conjunction of its elements.

Channels K and L are simply modeled as �rst-in �rst-out queues of unbounded
capacity with possible loss of messages. We assume that the maximum latency of both
channels is TD time units.

The sender S (see Figure 1) has three system variables: ab 2 f 0; 1 g indicating the
alternating bit that accompanies the next chunk to be sent, i, 0 6 i 6 n, indicating
the subscript of the chunk currently being processed by S, and rc, 0 6 rc 6 MAX,
indicating the number of attempts undertaken by S to retransmit di. Clock variable x
is used to model timer T1 and to make certain transitions urgent (see below). In the idle
state S waits for a new �le to be received via Sin. On receipt of a new �le it sets i to one,
and resets clock x. Going from state next frame to wait ack, chunk di is transmitted
with the corresponding information and rc is reset. In state wait ack there are several
possibilities: in case the maximum number of retransmissions has been reached (i.e.,
rc = MAX), S moves to an error state while resetting x and emitting an I DK or I NOK
indication to the sending client (via Sout) depending on whether di is the last chunk or
not; if rc < MAX, either an ack is received (via B) within time (i.e., x < T1) and S

moves to the success state while alternating ab, or timer x expires (i.e., x = T1) and
a retransmission is initiated (while incrementing rc, but keeping the same alternating
bit). If the last chunk has been acknowledged, S moves from state success to state
idle indicating the successful transmission of the �le to the sending client by I OK. If
another chunk has been acknowledged, i is incremented and x reset while moving from

2By \halting system" we mean time deadlock (see [24, 11]). Time deadlock is a theoretical phe-
nomenon which originates when one of the system components must synchronize with a second com-
ponent before meeting some deadline, but the second component is not yet ready. As the reader
can see, this is a contradictory situation and it is considered to be catastrophic. The time deadlock
phenomenon should not be present in correct systems.

9

ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0

x==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNC
ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0

i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
Sout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OKSout!I_OK

i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1

Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)Sin?(d1,...,dn)
i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)
rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0

rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
Sout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOKSout!I_NOK
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
Sout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DKSout!I_DK
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1x < T1
B?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ackB?ack
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
ab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-abab:=1-ab

rc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAX
x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)F!(i==1,i==n,ab,di)
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1

initinitinitinitinitinitinitinitinitinitinitinitinitinitinitinitinit

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror
(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)

successsuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccess
(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle

next_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_frame
(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0) wait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ack

(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)

SenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSender

Figure 1: Timed automaton for sender S.

state success to state next frame where the process of transmitting the next chunk is
initiated.

Two remarks are in order. First, notice that transitions leaving state s, say, with
state invariant x 6 0 are executed without any delay with respect to the previous
performed action, since clock x equals 0 if s is entered. Such transitions are called urgent.
Urgent transitions forbid S to stay in state s arbitrarily long and avoid that receiver R
times out without abortion of the transmission by sender S. Urgent transitions will turn
out to be necessary to achieve the correctness of the protocol. They model a maximum
delay on processing speed, cf. assumption (A1). Secondly, we remark that after a
failure (i.e., S is in state error) an additional delay of SYNC time units is incorporated.
This delay is introduced in order to ensure that S does not start transmitting a new �le
before the receiver has properly reacted to the failure. This timer will make it possible
to satisfy assumption (A2). In case of failure the alternating bit scheme is restarted.

The receiver is depicted in Figure 2. System variable exp ab 2 f 0; 1 g in receiver R
models the expected alternating bit. Clock z is used to model timer T2 that determines
transmission abortions of sender S, while clock w is used to make some transitions
urgent. In state new �le, R is waiting for the �rst chunk of a new �le to arrive. Imme-
diately after the receipt of such chunk exp ab is set to the just received alternating bit
and R enters the state frame received. If the expected alternating bit agrees with the
just received alternating bit (which, due to the former assignment to exp ab is always
the case for the �rst chunk) then an appropriate indication is sent to the receiving
client, an ack is sent via A, exp ab is toggled, and clock z is reset. R is now in state idle
and waits for the next frame to arrive. If such frame arrives in time (i.e., z < TR) then
it moves to the state frame received and the above described procedure is repeated; if

10

A!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ack
exp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_abexp_ab:=1-exp_ab
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

rab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_ab
rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0rb1==1, rbN==0
Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)Rout!(I_FST,d)

rab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_ab
rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1
Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)Rout!(I_OK,d)

rab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_abrab==exp_ab
rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0rb1==0, rbN==0
Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)Rout!(I_INC,d)

z==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TR
rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0
Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)Rout!(I_NOK,*)

G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

z<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TR
G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)G?(rb1,rbN,rab,d)
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

z==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TR
rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1

exp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rabexp_ab<>rab
A!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ackA!ack

exp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rabexp_ab:=rab

frame_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reported
(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)

new_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_file

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle
(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)

frame_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_received
(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)

first_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_frame
(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)

ReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiver

Figure 2: Timed automaton for receiver R.

timer z expires (i.e., z = TR) then in case R did not just receive the last chunk of a
�le an indication I NOK (accompanied with an arbitrary chunk \�") is sent via Rout

indicating a failure, and in case R just received the last chunk, no failure is reported.
Most of the transitions in R are made urgent in order to be able to ful�ll assumption

(A1). For example, if we allowed an arbitrary delay in state frame received then the
sender S could generate a timeout (since it takes too long for an acknowledgement to
arrive at S) while an acknowledgement generated by R is possibly still to come.

4 Uppaal

Uppaal [4, 5] is a tool suite for symbolic model checking of real-time systems. Sys-
tems in Uppaal are described as networks of timed automata [1] like described in
Section 3.2. Uppaal reduces the veri�cation problem to solving a (simple) set of con-
straints on clock variables. Experimental results indicate that these techniques have a
good performance (both in space and time) compared to other veri�cation techniques
for timed automata [4]. Uppaal facilitates the graphical description of timed automata
by using Autograph. The output of Autograph is compiled into textual format, which
is checked for syntactical correctness. The textual representation is one of the inputs
to Uppaal's veri�er. This veri�er can be used to determine the satisfaction of a given
property with respect to a network of timed automata. If a property is not satis�ed,
a diagnostic trace can be generated that indicates how the property can be violated.
Uppaal also provides a simulator that allows a graphical visualization of possible dy-
namic behaviors of a system description (i.e., a symbolic trace). This last tool becomes
powerful when combined with the diagnostic information provided by the veri�cation
tool. An overview of Uppaal is depicted in Figure 3.

11

autograph

.atg atg2ta checkta

‘‘yes’’

‘‘no’’

verifyta

UPPAAL

.txt

.prop

simulator trace
Diagnostic

Symbolic
trace

Figure 3: Overview of Uppaal.

In the current version (i.e., �-release 1.99), Uppaal is able to check only reachability
properties. Properties are terms in the language de�ned by the following syntax:

� ::= 82� j 93� � ::= a j � ^ � j :�

where a is either a state of a component, i.e., one of the states of any of the timed
automata, or a simple linear constraint on clocks or integer variables. The use of
data in Uppaal 1.99 is restricted to clocks and integers (rather than system variables
of arbitrary type) and value passing at synchronization is not supported (but can be
mimicked using shared variables).

4.1 Protocol model in Uppaal

TheUppaalmodels of the sender S and the receiver R are a straightforward adaptation
of the speci�cations given in Section 3.2; see Figure 4. (Nomenclature is similar to
Section 3.2 except for minor changes; e.g., Sout I OK? instead of Sout?I OK). Channels
K and L are reduced from unbounded queues to one-place bu�ers. Below we will derive
a constraint under which this simpli�cation is justi�ed. In addition, the following
considerations have been taken into account.

Guards in Uppaal (i.e., constraints labeling the transitions) are conjunctions of
atomic constraints which have the form x � n where x is a variable (a clock or an
integer), n a non-negative integer, and � 2 f<;6;=;>; > g3. Thus, conditions like
rab 6= exp ab are not possible. For this reason some transitions are splitted (compare,
for example, the acknowledgement transitions outgoing from state frame received in
the receiver R of Figure 2 and 4).

3Notice that in Figure 4, values like n, TD or MAX have not yet been instantiated, but they must
get a concrete value for each Uppaal veri�cation run. (See Section 4.3.)

12

x==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNCx==SYNC
ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0ab:=0

i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!Sout_I_OK!

i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1i:=i+1
b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0b1:=0

Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?Sin?
i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1i:=1
b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1b1:=1
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1bN:=1
rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0

i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0bN:=0
rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0rc:=0

x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
i<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<ni<n
Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!Sout_I_NOK!
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
rc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAXrc==MAX
i==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==ni==n
Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!Sout_I_DK!
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0

x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1x<T1
B?B?B?B?B?B?B?B?B?B?B?B?B?B?B?B?B?
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1ab:=-1*ab+1

x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1x==T1
rc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAXrc<MAX
F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!
x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0x:=0
rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1rc:=rc+1F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!F!

errorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerrorerror
(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)(x<=SYNC)

successsuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccesssuccess
(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle
next_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_framenext_frame
(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)(x<=0)

wait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ackwait_ack
(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)(x<=T1)

c:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntestc:ntest

SenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSenderSender

G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

z<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TRz<TR
G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?G?
w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0w:=0

z==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TR
rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1

z==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TRz==TR
rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0
Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!Rout_I_NOK!

rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0
exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0

rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1
exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0exp_ab==0
A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!

rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0
exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1
A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!

rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1
exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1exp_ab==1

rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0rab==0
exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0exp_ab:=0

rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1rab==1
exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1exp_ab:=1

A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!A!
exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1exp_ab:=-1*exp_ab+1
z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0z:=0

rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0rb1==0
rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0
Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!Rout_I_INC!

rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1rbN==1
Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!Rout_I_OK!

rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1rb1==1
rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0rbN==0
Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!Rout_I_FST!

new_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_filenew_file

idleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidleidle
(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR)(z<=TR) frame_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_receivedframe_received

(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)

first_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_framefirst_safe_frame
(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)

frame_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reportedframe_reported
(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)(w<=0)

c:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:reportc:report

ReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiverReceiver

F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?
u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0

u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0
u<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TD

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1

v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0
v<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TD
B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!

v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0
v<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TD

A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?
v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

in_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transit
(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)

in_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transit
(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

KKKKKKKKKKKKKKKKK LLLLLLLLLLLLLLLLL

Figure 4: The protocol in Uppaal.

13

We have said that Uppaal is not a data-oriented tool. If we had included data in
our model, we would have had an explosion of the number of states and transitions.
This induces two main problems. Firstly, the original simple speci�cation would become
too cumbersome and quite di�cult to understand. Secondly, although Uppaal uses
quite e�cient compositional techniques to attack the problem of state space explosion
(or, more accurate, region space explosion), it is anyway sensible to the number of
locations, clocks, and variables. Therefore, we decided to abstract from the chunks to
be transmitted keeping only the control data, i.e., the indication of the �rst and last
chunk, and the alternating bit.

In Uppaal assignments to clock x should be of the form x := 0, while assignments
to integer variable i must have the form i := n1 � i + n2. Notice that for the latter
assignments the variable on the right-hand side of the assignment should be the same
as the variable on the left-hand side. Uppaal does also not include mechanisms for
value passing. We modeled value passing by means of assignments to global variables.
Due to the above mentioned restriction on integer assignments, however, we had to
expand some transitions. For example, for channel K a transition had to be introduced
for each combination of values for b1, bN , and ab that can be received via G; this
resulted in 8 transitions, see Figure 4.

We use the so-called committed locations [3]. Committed locations are states which
introduce the notions of atomicity and urgency. On the one hand, a committed location
forbids interference in the activity that is taking place around such a location, i.e.,
the execution of the ingoing and outgoing actions of a committed location cannot be
interleaved with actions of other timed automata. On the other hand, actions outgoing
from a committed location are executed urgently, that is, no time elapses between
its execution and the execution of the previous action. We made locations R.report
and S.ntest committed (indicated with a c: pre�x) since they originate from splitting
transitions of the original speci�cation (compare with Figures 1 and 2).

4.2 Deducing time constraints

In this section we derive a tight constraint under which the modeling of channels K
and L as one-place bu�ers is justi�ed. In addition, we present tight timing conditions
under which assumptions (A1) and (A2) are ful�lled.

To justify the simpli�ed modeling of K and L we slightly changed the channels by
adding location BAD. This location can be reached when in location in transit a new
message is put in the channel (see Figure 5). Location BAD can thus only be reached
if the channel capacity is insu�cient, that is, when S and R are sending messages to
K and L, respectively, too fast.

We could check that a BAD state is never reached, i.e., properties

82 :K :BAD and 82 :L:BAD

are satis�ed, only under the condition that T1 > 2�TD. Moreover, under this condition,
the following property

82 : (K :in transit ^ L:in transit) (1)

14

A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?
F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?

BAD

A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?
v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v:=0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0

v<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TD
v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0v>0
v<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TDv<=TD
B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1

u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0
u<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TD

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0

F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?
u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

in_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transit
(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)(v<=TD)in_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transitin_transit

(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart
KKKKKKKKKKKKKKKKK LLLLLLLLLLLLLLLLL

Figure 5: Channel with checking state for over
ow

could also be veri�ed. This means that under the condition that T1 > 2 � TD, it is
impossible to have both a frame and an acknowledgement in transit at the same time.
This property is of interest, since it allows one to verify the protocol more e�ciently
by changing the process K jjL, where jj denotes independent parallelism, into process
Lines (see Figure 6) which is a smaller process with one location and one clock less.
In [7] we performed this in order to reduce the memory consumption of a previous
version of Uppaal. This \trick" was not necessary in our latest work using Uppaal
1.99.

F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?F?
u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0b1==0, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0rb1:=0, rbN:=0, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1b1==0, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1rb1:=0, rbN:=0, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0b1==0, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0rb1:=0, rbN:=1, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1b1==0, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1rb1:=0, rbN:=1, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0b1==1, bN==0, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0rb1:=1, rbN:=0, rab:=0

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1b1==1, bN==0, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1rb1:=1, rbN:=0, rab:=1

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0b1==1, bN==1, ab==0
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0rb1:=1, rbN:=1, rab:=0

u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0
u<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TD

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1b1==1, bN==1, ab==1
G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!G!
rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1rb1:=1, rbN:=1, rab:=1A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?A?

u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0u:=0
u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0u>0
u<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TDu<=TD

u>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TDu>0, u<=TD
B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!B!

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

msg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transitmsg_in_transit
(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)ack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transitack_in_transit

(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)(u<=TD)

LinesLinesLinesLinesLinesLinesLinesLinesLinesLinesLinesLinesLinesLinesLinesLinesLines

Figure 6: Alternative channels.

Assumption (A1) states that no premature timeouts should occur. It can easily be
seen that timer T1 (i.e., clock x) of sender S does not violate this if it respects the two-
way transmission delay (i.e., T1 > 2 � TD) plus the processing delay of the receiver R
(which due to the presence of urgency equals 0). It remains to be checked under which

15

conditions timer T2 of receiver R does not generate premature timeouts. This amounts
to checking that R times out whenever the sender has indeed aborted the transmission
of the �le. Observe that a premature timeout appears in R if it moves from state idle
to state new �le although there is still some frame of the previous �le to come. We
therefore check that in state �rst safe frame receiver R can only receive �rst chunks of
a �le (i.e., rb1 = 1) and not remaining ones of previous �les:

82 (R:�rst safe frame) rb1 = 1) (2)

We have checked that this property holds whenever TR > 2 �MAX �T1+3 �TD. In order
to conclude this, the simulator of Uppaal together with the diagnostic traces have
been of big help. We were able to try di�erent values for TD, T1, and MAX, and thus,
to study the behavior of the protocol. Figure 7 depicts the longest trace that makes
the protocol loose the connection when MAX = 2 and n > 2. The � after sending a
frame represents that it is lost in some of the channels K or L. Notice that frames
are received within TD time units but they always take some time to travel through
the channel. In particular, in the transmission of the �rst frame, the di�erence in time
between synchronization on F and synchronization on G cannot be 0.

ReceiverSender

F

I NOK

F

F

F

F

B A

G

G

A

Time

T1

TD

T1

T1

T1

TD

TD

z := 0 TD

= 2 �MAX � T1+ 3 � TD

F

Figure 7: Loosing the connection.

From the �gure, it is clear that the receiver should not timeout (strictly) before
2 � MAX � T1 + 3 � TD units of time since this is the last time a frame can arrive.

16

Premature timeout would induce the receiver to abort the connection when there is still
the possibility of some frame to arrive. As a result, property (2) would be disproved.

We remark that Figure 7 is just our way of depicting this situation (somehow based
on Message Sequence Charts [20]). Uppaal notation is textual. In particular, the
simulator would show the trace as a symbolic trace, i.e. a trace in which the clock
values are identi�ed with regions. Instead, the diagnostic trace would be a concrete
trace, that is, clocks have a real value in this case.

Assumption (A2) states that sender S starts the transmission of a new �le only after
R has properly reacted to the failure. For our model this means that if S is in state
error, eventually, within SYNC time units, R resets and is able to receive a new �le.
This can be expressed in Timed-CTL [2] as

8 (S:error U6SYNC R:new �le) (3)

Unfortunately, the property language of Uppaal does not support this type of formula.
Therefore, we checked the following property:

82 ((S:error ^ x = SYNC)) R:new �le) (4)

The di�erence between properties (3) and (4) is that (3) requires that S.error is true
until R:new �le becomes true, while (4) does not take into account what happens when
time passes, but considers only the instant for which x = SYNC. Provided that S is
in state error while clock x evolves from 0 to SYNC|which is obviously the case|(4)
implies (3). Property (4) is satis�ed under the condition that SYNC > TR. This means
that (A2) is ful�lled if this condition on the values SYNC and TR is respected.

Summarizing, we were able to check withUppaal that assumptions (A1) and (A2)
are ful�lled if the following constraints hold

T1 > 2 � TD and SYNC > TR > 2 �MAX � T1+ 3 � TD (5)

(Remark that SYNC and T1 are constants in the sender S, while TR is a constant used
in receiver R.) These results show the importance of timing aspects for the correctness
of the BRP.

4.3 Protocol veri�cation

In order to verify that the protocol satis�es the FTS speci�cation of Section 2.2, we
consider two additional automata that represent the clients at each side of the protocol:
the sender client (SC) and the receiver client (RC). Besides, we need a simple check
automaton, called File, which indicates whether the receiving client RC and the sending
client SC are dealing with the same �le. The File process checks the condition k >

0. These auxiliary automata allow us to express the requeriments of Section 2.2 as
properties of their states. They are depicted in Figure 8.

When trying to verify the correctness of the BRP using Uppaal we encounter
the following problems. Firstly, the properties constituting the FTS speci�cation of

17

COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!

COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!COMM_STAT!

Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!

START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!

START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!

START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!START!
Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?

Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?

Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?

Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?

Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?

Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?

Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?

Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?

Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?

Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?
COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?

START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?

START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?START?

COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT?COMM_STAT? c:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_recc:unique_rec
c:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_recc:start_rec

send_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_reqsend_req

noknoknoknoknoknoknoknoknoknoknoknoknoknoknoknoknok

dkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdkdk

okokokokokokokokokokokokokokokokok

incincincincincincincincincincincincincincincincinc

okokokokokokokokokokokokokokokokok

noknoknoknoknoknoknoknoknoknoknoknoknoknoknoknoknok
file_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_reqfile_req

samesamesamesamesamesamesamesamesamesamesamesamesamesamesamesamesame

otherotherotherotherotherotherotherotherotherotherotherotherotherotherotherotherother

FileFileFileFileFileFileFileFileFileFileFileFileFileFileFileFileFile RClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClient

Figure 8: Auxiliary automata (general).

Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!Sin!
ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0ys:=0

Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK?Sout_I_OK? Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK?Sout_I_DK? Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?Sout_I_NOK?
Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?Rout_I_FST?
yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0yr:=0

Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK? Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?Rout_I_INC?

Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?Rout_I_NOK?

Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?Rout_I_OK?startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart

transtranstranstranstranstranstranstranstranstranstranstranstranstranstranstranstrans

startstartstartstartstartstartstartstartstartstartstartstartstartstartstartstartstart transtranstranstranstranstranstranstranstranstranstranstranstranstranstranstranstrans

SClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClientSClient RClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClientRClient

Figure 9: Auxiliary automata (bounded retransmission).

Section 2.2 are relations between inputs and outputs related to the transmission of a
single �le. Therefore, these properties are not invariant and can hardly be expressed
using the property language of Uppaal that requires an always (2) or ever (3) modal
operator at \top" level. Secondly, since we have decided to remove the data from our
speci�cation, we are unable to check properties concerning the transmitted data, like
property (1.1).

The properties that we checked are enumerated in Table 2. There, we abbreviate
SC :idle = (SC :ok _ SC :dk _ SC :nok) and RC :idle = (RC :ok _ RC :nok). Properties
1. and 2. are weakened versions of properties (1.5) and (1.6), respectively. Property 3.
is related to (2.1) and (2.2). Properties 4. and 5. relate the sender S and the sending
client, while 6. relates the receiver R and the receiving client. In particular, when we
take n = 1 we proved properties 7. and 8. which are related to (1.4.3) and (2.2).

Properties 9. and 10. address the fact that the sending and receiving client, respec-
tively, are involved in the transfer of a �le for only a bounded amount of time (T and
T 0, respectively). For this purpose, we changed the clients according to Figure 9. The
clients have only two locations: trans indicates that the respective client recognized
that a �le transfer is currently in progress; start is the state in which a �le transfer can
be started.

18

Table 2: Properties in Uppaal.

1: 82 File:same) : (SC :ok ^ RC :nok)

2: 82 File:same) : (SC :nok ^ RC :ok)

3: 82 : (File:other ^ SC :ok)

4: 82 SC :idle) (S:idle _ S:error)

5: 82 (S:idle _ S:error)) : SC :�le req

6: 82 R:new �le) RC :idle

7: 82 : SC :nok (if n = 1)

8: 82 :RC :nok (if n = 1)

9: 82 : (SC :trans ^ ys > T)

10: 82 : (RC :trans ^ yr > T 0)

The properties were proven in the following settings:

TD = 1 MAX 2 f1; 2; 3g TR = 2 �MAX � T1+ 3 � TD

T1 = 3 n 2 f1; 2; 3g SYNC = TR

For properties 9. and 10, and considering n > 3, we obtain that they are satis�ed if and
only if T and T 0 satisfy the following constraints.

T > (n �MAX+ 1) � T1+ (n� 1) � 2 � TD

T 0

> (n� 1) �MAX � T1+ (2n� 3) � TD+ TR

For the case of n < 3, these constraints are not tight. This is not surprising since,
in this case, the sequence of chunks does not cover all the possibilities. In particular,
notice that there is no chunk with b1 = 0 and bN = 0. The reader may check how those
constraints were obtained by referring to Appendix B.

We have also played with some slight modi�cations of the channels, namely using
constraints u = TD or u 6 TD instead of 0 < u 6 TD in order to get more insight in
the protocol. We have not reported results for this case since we consider the constant
delay or possibility of 0 delay in the channel to be unrealistic.

As an example of the performance ofUppaal, we give in Table 3 some results of time
usage for the veri�cation of a set of properties. The set of properties includes properties
1. to 6. in Table 2, and properties (1), (2), and (4). We include the information of
verifying the protocol under three di�erent instantiations: n = 3 and MAX 2 f1; 2; 3g.
The other values are taken as before. We run Uppaal under SunOS Release 5.5 on a
SPARCstation 10, Model 402, with 96 MB and 210 MB of main and virtual memory,
respectively. The left column shows the performance of the veri�cation running in
normal mode. The values in the right column were taken under the optimization mode
of Uppaal4. This mode only makes sense when verifying a set of properties rather than
only one. Column \User" gives the time in seconds of CPU time devoted to the user's
process, i.e., the veri�cation process. Column \Sys" gives the time in seconds of CPU
time consumed by the kernel on behalf of the user's process. Column \Normal" gives, in
minutes and seconds, the elapsed (wall clock) time since the veri�cation process started

4Flag -T of verifyta.

19

Table 3: Time usage by Uppaal veri�cations

Normal mode Optimization mode
MAX User Sys Normal CPU User Sys Normal CPU

1 59.36 0.26 1:01.94 96.2% 8.24 0.25 0:08.67 97.9%
2 151.35 0.49 2:36.81 96.8% 20.68 0.26 0:23.05 90.8%
3 330.39 0.73 5:40.24 97.3% 43.16 0.36 0:44.20 98.4%

to run until it �nished. Column \CPU" gives the percentage of CPU usage, that is,
the \User" time plus the \Sys" as a percentage of \Normal". The time values were
obtained by using the Unix command time.

5 Spin

Spin is a validation tool for classical �nite-state automata, called processes, that com-
municate via channels. It is capable of verifying assertions over data and simple linear-
time temporal logic formulas (so-called never claims). Spin uses the dedicated modeling
language Promela [18, 19]. It is able to perform random or interactive simulations
of the system's execution or to generate a C program that performs an exhaustive
validation of the system's state space. Large validation runs, for which an exhaustive
validation is not feasible, can be validated in Spin with a bit-state hashing technique
[17, 18] at the expense of completeness.

In this section we summarize the validation e�orts with Spin. The annotated
Promela models which we used during our validations are discussed in Appendix C.

To get con�dence in the service speci�cation from Section 2.2, we have written a
Promela speci�cation for the FTS. Each requirement of Section 2.2 is translated into
a sequence of Promela statements involving assertions which are boolean conditions
attached to a state that must be ful�lled when a process reaches that state. For example,
requirement (1.1) is translated into the following Promela assertion:

byte j=0;

do

:: j++ ;

if

:: (j>k) -> break

:: (j<=k) -> if

:: (e[j].ind != Inok) -> assert(e[j].val == d[j])

:: else -> skip

fi

fi

od

20

Figure 10 shows an overview of our validation model used in Spin. Either the FTS or
the BRP description in Promela can be \plugged" into this model. The Environment

process inputs the �le to be transferred at Sin (i.e., the list of chunks) and receives the
indications at Sout and Rout. When all indications of the transmission of a single �le
have been produced, the Environment process checks the validity of the indications.

���
���
���
���

��
��
��
��

���
���
���
���

Sin Sout Rout

Service / Protocol

BRP

Environment

Figure 10: Spin's validation model of the BRP and FTS.

The FTS description in Promela is obtained by a straightforward translation of
the \external behavior" speci�cation of [12] given in the process algebra �CRL [13]. In
page 22 we have included the Promela proctype de�nition of the Service process.

Promela can handle data more easily than Uppaal. In particular, Uppaal only
supports synchronization of processes without value passing. Therefore, to validate
the data part of the BRP, Promela and Spin are much more suitable than Up-

paal. Although Promela (Spin version 2.7.7) is not able to handle timing aspects
of the speci�cation, we may simulate situations which depend on time by adding ex-
tra synchronization, relying on the results already obtained using Uppaal. The BRP
description in Promela is based on the formal protocol description of Section 3.2.
Like for our Uppaal veri�cation we modeled channels K and L as one-place bu�ers.
Figure 11 shows the structure of the BRP Promela description in terms of processes
(represented as boxes) and channels (represented as arrows).

Sender

Line_K

Receiver

Line_L

Environment
��
��
��
��
��
��
��
��

����

SyncWait

Sin RoutSout

F

B A

G

ChunkTimeout

Figure 11: Structure of the BRP in Promela.

We used \tricks", analogous to [12] (and others, see Section 6), to model the impact
of the timers T1 and T2. These \tricks", in fact, are needed to ful�ll the assumptions
(A1) and (A2) which have been already asserted in Section 4.2. Timers T1 and T2 that
are used in the sender S and receiver R, respectively, are modeled as follows: Timer
T1 expires when an acknowledgement does not arrive in time at the sender S. So, if a

21

proctype Service (chan Sin, Sout, Rout)

{

byte j,k ;

do

:: Sin?(d[1],...,d[n]) ;

j=0; k=0;

do

:: j++ ;

if

:: skip -> k++;

if

:: (j==n) -> Rout!(Iok,d[j])

:: (j!=n) && (k==1) -> Rout!(Ifst,d[j])

:: (j!=n) && (k>1) -> Rout!(Iinc,d[j])

fi ;

if

:: (j==n) -> if

:: skip -> Sout!Iok; break

:: skip -> Sout!Idk; break

fi

:: (j!=n) -> if

:: skip

:: skip -> Sout!Inok; k++;

Rout!Inok; break

fi

fi

:: skip -> if

:: (k==0) -> if

:: (j==n) -> Sout!Idk

:: (j!=n) -> Sout!Inok

fi

:: (k>0) -> k++;

if

:: (j==n) -> Sout!Idk; Rout!Inok

:: (j!=n) -> Sout!Inok; Rout!Inok

fi

fi ;

break

fi

od

od

}

22

frame is lost in channel K or its acknowledgement is lost in channel L, the timer T1
in S will timeout, eventually. In the Promela model, channel ChunkTimeout is used
between sender S and channels K and L. A message is either successfully transmitted,
or it is lost, in which case S is noti�ed via ChunkTimeout. To illustrate this, we include
the Promela body for the process that models channel L:

bit b ;

do

:: A?b -> if

:: B!b

:: skip -> ChunkTimeout!1

fi

od

Receiver R uses timer T2 that expires when the transmission of �le has been aborted
by sender S. It is stated in the description of the BRP that \the sender does not start
reading and transmitting the next �le before the receiver has properly reacted to the
failure", cf. assumption (A2). In Uppaal, this assumption is ensured by using two
timers: one at the sender's side and one at the receiver's side. In case of a failure, when
either one of the timers expires, the process at hand will wait su�ciently long (i.e.,
SYNC time units) to be sure that the other process has timed out as well. In Promela
we forced this assumption using a handshake channel SyncWait between processes S
and R. After a failure, the failing process will o�er a handshake synchronization on this
channel. Eventually, the other process will engage in this rendez-vous synchronization.

For the veri�cation of the BRP we used the following parameters: n = 3 (with up
to 3 di�erent data items) and MAX = 2. For the validation of the BRP with Promela
we used Spin version 2.9.7 on a Pentium 120Mhz computer with 64Mb RAM and
64Mb swap space, running Linux 2.0.27. Spin managed to explore the complete state
space and reported no errors with respect to the properties in Table 1. Details on the
validation results can be found in Appendix C.

6 Other veri�cations of the BRP

The modeling and veri�cation of the BRP has been the subject of several other papers.
Groote & v.d. Pol [12] specify the BRP in �CRL, a combination of process algebra and
abstract data types, and prove this speci�cation to be branching bisimulation equivalent
(a strong notion of weak bisimulation) to an external behavior speci�cation, also given
in �CRL, by means of algebraic manipulation. Their proof boils down to �nding an
appropriate set of recursive (guarded) equations which has both the protocol and the
external behavior speci�cation as a solution. Using the recursive speci�cation principle,
which says that each guarded recursive equation has a unique solution, this proves the
equivalence. Part of the proofs were checked using the proof-assistant Coq.

Helmink, Sellink & Vaandrager [15] analyze the BRP in the setting of I/O-automata,
automata that distinguish between input, output, and internal actions and which allow

23

all possible inputs in each state. Re�nement, in particular inclusion of fair traces, is
used as a correctness criterion. In addition, they prove that the BRP is deadlock-free.
The safety part of the proofs were mechanically checked using Coq.

Havelund & Shankar [14] use a combination of model checking and theorem proving
techniques for proving the correctness of the BRP. They �rst analyze a scaled-down
version of the BRP using Mur�, a state exploration tool, `translate' this description
into the theorem prover PVS and generalize the result to the full BRP, and �nally,
abstract from this complete speci�cation (while preserving some essential properties)
so as to facilitate model checking. By means of abstraction the unboundedness of the
message data, retransmission bound, and �le length is eliminated. They used SMV,
Mur�, and an extension of PVS with the modal �-calculus for the �nal model checking.

Mateescu [23] translated the �CRL speci�cations of [12] into the process algebra
LOTOS, and proved that the FTS and BRP speci�cations are branching bisimulation
equivalent using theAld�ebaran tool. This tool can check several forms of bisimulation
equivalence between labeled transition systems. In addition, he checked some protocol
invariants, encoded in ACTL (an action-based variant of CTL), using the prototype
model checker Xtl.

Our Spin validation|though using a new (simple) logical service speci�cation|
can be considered to be similar to all above mentioned approaches, since it focuses
on the data aspects of the BRP (as all others). In order to mimic the timers of the
BRP in an untimed setting strong assumptions, cf. (A1) and (A2), must be made, and
\tricks" must be applied in order to ful�ll these assumptions. This holds for all untimed
veri�cations discussed above. Our analysis with Uppaal shows that these assumptions
only hold if certain relations between time-out values are established. This shows that
timing is crucial for the correct functioning of the BRP. For a time-dependent protocol
like the BRP, timing analysis is necessary to establish complete correctness. Untimed
analysis can only establish partial correctness.

7 Concluding remarks

In this paper we reported on the analysis and veri�cation of a bounded retransmission
protocol (BRP). As a starting point we used natural-language descriptions of the service
and the protocol. The tools used for the veri�cation were the protocol validation tool
Spin [18, 19], and the real-time veri�cation tool Uppaal [4].

We started the modeling activity by making formalizations of both the service and
the protocol. The service is a system in which �les are transported from a sending
entity to a receiving entity. Almost all its properties can be described by simple re-
quirements relating the input at the sending side to the output at the receiving side.
The protocol was formalized in Section 3.2 as a collection of communicating timed au-
tomata. Whereas the service is time-independent, i.e., no reference needs to be made
to timers or time-outs in its description, real-time aspects are of importance in the
protocol description.

The tool Uppaal was used to check the timed automaton model of the protocol

24

against the requirements description of the service. Due to the restrictions of the prop-
erty language of Uppaal (e.g., restricted use of variables) some service requirements
had to be adapted. Apart from some small modi�cations (basically due to the use of
committed locations and restrictions on conditions, variables, and value passing in Up-
paal) the protocol model could be obtained in a straightforward way from our formal
protocol speci�cation of Section 3.2. We were able to �nd tight constraints under which
the unbounded channels between the sending and receiving side can be faithfully mod-
eled as one-place bu�ers. Most importantly, we could show that two assumptions in the
informal protocol description ((A1): premature time-outs are not possible; and (A2):
sender and receiver resynchronize after an abort) are easily invalidated by choosing
wrong time-out values. We provided tight timing constraints for which these assump-
tions are ful�lled (and so, they become valid assumptions). We obtained the constraints
as follows. We started with weak constraints inspired by our intuition, checked these,
and by interpreting the results, we sharpened the constraints a bit and repeated this
procedure. For this purpose the simulator in Uppaal has been of great help by visual-
izing the diagnostic traces obtained when running speci�cations that do not satisfy (5),
see page 17. Diagnostic traces obtained for models that slightly violate (5) have helped
to obtain the �nal constraints.

With Spin, both the service and the protocol were veri�ed. For the service we
checked our requirements speci�cation against a behavioral model in Promela (the
modeling language for Spin), which was straightforwardly derived from the �CRL de-
scription of the service in [12]. The main goal was to check the consistency of our
service requeriments against the �CRL description. The behavioral model as well as
the requirements were easily expressed in Promela. Subsequently, a protocol model
in Promela was built, and veri�ed against the requirements description of the service.
The main problem with Spin was that it cannot deal with the real-time aspects of the
protocol, so tricks and assumptions about timer behavior and resynchronization had to
be made in the same way as in other veri�cations of the BRP in an untimed setting
[12, 14, 15, 23].

When comparing the veri�cations with the two di�erent tools it can be noted that
it was successful in the sense that with both tools we did �nd errors in our �rst mod-
els. Using di�erent tools with di�erent characteristics turned out to be advantageous,
and the tools should not be considered as competing, but as complementary. Describ-
ing the protocol in di�erent formalisms gives extra insight, and it certainly helps in
distinguishing between problems caused by the protocol, and problems which are mod-
eling problems, speci�c to a particular formalism. The use and need for a variety of
veri�cation methodologies has also been recognized by [26, 21].

For building the veri�cation models rather some e�ort was spent on dealing with
speci�c language issues and tool inconveniences, which had nothing to do with the
conceptual problems of the protocol. This aggravates the danger of choosing language-
oriented solutions in protocol modeling instead of concentrating on the bare protocol
problems.

With respect to the BRP itself it can be noted that its strong dependence on time-

25

out values is usually not considered a desirable property for well-designed protocols.
For example, the correctness of the alternating bit protocol, although usually timers
are used in its description, does not depend on any of its time-out values. In the BRP,
on the other hand, the correctness critically depends on the chosen time-out values,
and the correct time-out values depend on the delay in the communication lines and
the execution speed of the processors executing the protocol. So the protocol can
become incorrect by taking a slower communication line, or by increasing the load on
the protocol processors.

Altogether, the BRP turned out to be an interesting exercise in protocol veri�ca-
tion, which is more complex than the (in)famous alternating bit protocol, but which
is still manageable. Although the BRP looks a bit simple at �rst sight (which made
us under-estimate the e�ort necessary to model it), its timing intricacies make it an
interesting example, especially for real-time veri�cation tools such as RT-Spin [27],
Kronos [9], and HyTech [16].

Acknowledgements: We would like to thank Paul Pettersson, Kim Larsen and Wang
Yi for keeping us up to date on the developments of Uppaal and for suggestions.

A Properties of the FTS speci�cation

Lemma. The FTS speci�cation satis�es the following properties for k > 0:

1. i1 = I FST) (k > 1 ^ n > 1)

2. for all j such that 0 < j 6 k, (ij = I NOK _ ij = I OK)) j = k

3. i1 6= I NOK

4. 1 < k < n) ik = I NOK

5. k = 1) n = 1

Proof.

1. i1 = I FST

) fg
i1 6= I OK ^ i1 6= I NOK ^ k 6= 0

) f(1.4.1)g
k 6= 1 ^ k 6= 0

) fcalculus; k 6 ng

k > 1 ^ n > 1

2. ij = I NOK _ ij = I OK

) f(1.3)g

j = 1 _ j = k

26

, fg

(n = 1 ^ j = 1) _ (n > 1 ^ j = 1) _ j = k

) fij 6= I FST; (1.2)g
(n = 1 ^ j = 1) _ j = k

) f(n = 1 ^ j = 1)) j = kg

j = k

3. i1 = I NOK

) f(1.4.3)g

1 > 1
) fg

FALSE !!

4. k 6= n

) f(1.4.2)g

ik 6= I OK

) f(1.4.1)g

ik = I NOK

5. k = 1
) f(1.4.3)g

ik 6= I NOK

) f(1.4.1)g

ik = I OK

) f(1.4.2)g
n = 1 2

B Calculating the tightest values for T and T
0

Figure 12 depicts the longest trace5 in which the Sender is involved in a communication.
This time is measured by clock ys. In this �gure we have the following valuations:
MAX = 2 and n = 3. Notice that each chunk consumes as much time as possible:
MAX�1 failed transmissions ((MAX�1) �T1), and a successful transmission of maximal
transmission delay (2 � TD for the �rst n � 1 chunks and TD > 2 � TD for the last
frame which could be either lost as in the picture, or received but unsuccessfully
acknowledged).

Similarly, Figure 13 depicts the longest trace in which the Receiver is involved in a
communication. This time is measured by clock yr. In this case we used the following
valuations: MAX = 2 and n = 4.

5`Longest trace' in the sense of longest in time.

27

ReceiverSender

F

F

F

B A

GF

F

F

B A

GF

F

F

Time

T1

T1

TD

T1

T1

TD

TD

T1

T1

TD

T1

= (n� 1) � (MAX � T1+ 2 � TD) + (MAX + 1) � T1

= (n �MAX+ 1) � T1+ (n� 1) � 2 � TD

SClient

I DK

Sin

ys := 0

Figure 12: Calculating the upper bound of the sending time.

28

= (n� 2) � (MAX � T1+ 2 � TD) + (MAX � T1+ TD) + TR

= (n� 1) �MAX � T1+ (2n� 3) � TD+ TR

A

GF I INC

I NOK

T1
I NOK

F

F

B A

GF

F

F

B A

GF

ReceiverSender

F

F

RClient

I FSTG

A

TDyr := 0

I INC

TD

TD

T1

T1

TD

TD

T1

T1

TD

Time

T1

T1

TR

Figure 13: Calculating the upper bound of the receiving time.

29

C Promela models

In this appendix we describe the Promela models of the Bounded Retransmission
Protocol (BRP), which we used in our validation e�orts using Spin.

We give a literate description of our Promela versions of the BRP model. We will
focus on the deviations from our \timed automata" model (as de�ned in Section 3.2),
which we adopted in our \untimed" Promela speci�cations.

To make this appendix more readable, some notions, which have already been dis-
cussed earlier in this report, will be repeated in this appendix, though we will not recall
the rationale behind the models, which have already been discussed in depth in Sections
2.1 and 3.1.

Reading the literate models

The models of the BRP are presented as literate programs [22, 25]. Literate program-
ming is the act of writing computer programs primarily as documents to be read by
human beings, and only secondarily as instructions to be executed by computers [25].
A literate program combines source code and documentation in a single �le. Literate
programming tools then parse such a �le to produce either readable documentation or
compilable source code.

For our modelling work we have used noweb, developed by Norman Ramsey. noweb
[25] is a literate programming tool like Knuth's WEB, only simpler. Unlike WEB, noweb
is independent of the programming language to be literated.

This appendix contains Promela code chunks intertwined by document chunks,
like the one you are reading now. What follows is a code chunk.

30.1 hsample code chunk 30.1i�
proctype Silly()

{

hSilly's body 30.2i
}

In this code fragment, hsample code chunki is de�ned. The name of a code chunk always
has a page.n su�x, where n indicates the n-th chunk de�nition on page page. noweb

also places this tag in the left margin of the de�nition of the code chunk. These cross-
reference tags make it easy to locate the de�nitions of code chunks in the document.

When the name of a code chunk appears in the de�nition of another code chunk,
it stands for the corresponding replacement text. In our simple example, hsample code

chunki uses the code chunk hSilly's bodyi, which is de�ned as follows.

30.2 hSilly's body 30.2i� (30.1) 31 .

do

:: skip

od ;

30

�������� ����

Sin Sout Rout

(FTS)
Environment

BRP
service / protocol

Figure 14: Service access points (SAPs) between the BRP and its Environment

In the right margin of the de�nition of a chunk, between (..) brackets, the tag of the
code chunk is listed, which uses the particular code chunk. In this case, this is the tag
of hsample code chunki.

It's possible and common practice to give the same name to several di�erent code
chunks. Continuing our example, we can expand our Silly process as follows.

31 hSilly's body 30.2i+� (30.1) / 30.2

assert(0) ;

The + � here indicates that the code chunk hSilly's bodyi has appeared before. The
Promela code following + � will be appended to the previous replacement text for
the same name.

When such continuations of code chunk de�nitions are used, noweb provides more
information in the right margin; it indicates the previous de�nition (/) and the next
de�nition (.) of the same code chunk.

C.1 Introduction

To get con�dence in the logical service speci�cation of the FTS as de�ned in Section
2.2 we have written an alternative service speci�cation of the BRP in Promela. This
process algebraic service description of the BRP is obtained by a straightforward trans-
lation of the \external behaviour" speci�cation in [12].

Figure 14 shows an overview of the communication between the BRP and its envi-
ronment. Either the service description of the BRP or the protocol description of the
BRP can be \plugged" in. The environment drives both the service and the protocol
and as such it is comparable with the processes SClient, RClient and File of the
Uppaal validation model of the BRP as de�ned in Section 4.3.

The environment feeds the BRP with the �le chunks to be transferred at Sin and
receives the indications at Sout and Rout. After receiving all indications of the trans-
mission of a single �le, the Environment process checks the validity of the indications
against our logical service speci�cation of the FTS.

The environment of the BRP is discussed in Section C.3. The description of the
BRP service is discussed in Section C.4, while the various Promela models of the
BRP protocol are presented in Section C.5. But �rst, in the next Section, we de�ne the
Promela data structures to be used by all processes.

31

C.2 Common data structures

This section describes the Promela data structures and constants which are common
to both the service and protocol description of the BRP.

32.1 hprelude 32.1i� (41.4 46.1 55 58)

hm4 macros 32.2i
hconstants 33.4i
hmacros 42.2i
htypes 33.1i
hchannels 33.3i
hglobals 32.3i

To be more speci�c, hpreludei embodies the Promela constants, macros, types, chan-
nels and shared variables which are used by both the service and the protocol speci�-
cation of the BRP.

The fragment hm4 macrosi needs some explanation. In Section C.3.1 we will see
that the macro facilities of the preprocessor cpp are not su�cient to implement an
e�cient randomizing function. To implement an optimized randomizing scheme, we
had to resort to the more powerful UNIX macro processor, m4.

File chunks and indications The constant MAX_CHUNKS holds the maximum number
of chunks in a �le.

32.2 hm4 macros 32.2i� (32.1) 37 .

define(`MAX_CHUNKS', 4)

The fragment above is the m4 way to say

#define MAX_CHUNKS 4

In Section C.3.1, the m4 constant MAX_CHUNKS will be used to generate a �le of random
length, �lled with random data chunks.

Note that in Promela, array indexing starts at 0, while in our logical description
of the FTS (see Section 2.2) and our model of the FTS (see Section 3.2) array indexing
starts at 1. To be as close as possible to our models of the FTS and the BRP (e.g. to
minimize the changes of \o�-by-one-bugs") we also start counting at 1 in our Promela
speci�cations. This means that the actual maximum number of chunks in a �le is
MAX_CHUNKS-1.

32.3 hglobals 32.3i� (32.1)

byte n ;

byte d[MAX_CHUNKS] ;

Conceptually, the list of �le chunks to be sent by the sending part of the environment
is local to the Environment process and should be communicated as a whole at Sin. In
our model, however, we represent this �le chunk by a global array d[1..n]. This array
d is �lled by the Environment, and its values are used by the underlying layer.

32

33.1 htypes 33.1i� (32.1) 33.2.

mtype {

Ifst, Iinc, Iok, Idk, Inok

} ;

The message type mtype enumerates all possible indications which the environment can
receive at Sout and Rout.

33.2 htypes 33.1i+� (32.1) / 33.1

typedef etype {

byte ind ;

byte val ;

} ;

The etype type encapsulates a tuple (ind,val) which is `received' by the Environment
at Rout. The variable ind is the indication Ifst, Iinc, Iok or Inok, whereas val is
the data value of the chunk.

Service access points The actual communication between the environment and the
BRP at the service access points (see Figure 14) is modelled by the following handshake
channels.

33.3 hchannels 33.3i� (32.1)

chan Sin = [0] of {bit} ;

chan Sout = [0] of {mtype} ;

chan Rout = [0] of {mtype, byte} ;

At Sout, the environment only receives indications of type mtype. At Rout, the envi-
ronment receives tuples (ind,val).

We model the communication at Sin by a single bit. The actual �le of chunks that
should be communicated at Sin is represented by the global array d (see Section C.3).

33.4 hconstants 33.4i� (32.1)

#define REQ 1

The symbolic name REQ is used to represent the request at Sin to send a new �le.

Atomicity In the timed automata model of the BRP, the transitions between two
states are atomic. In our Promela model we can force this atomicity using atomic

clauses around the transitions. For readability reasons, however, we have chosen to
limit the use of atomic constructs to those cases where atomicity is really needed.

After studying the complete model of the BRP in this appendix, it will become clear
that the untimed Promela version of the BRP behaves like a token game. The process
that has the token (i.e. a data chunk or an acknowledgement) is the only process that
can proceed. By passing the token, the process will reactivate another process, whilst
stopping itself.

Because of this token passing nature of the BRP, the state space is not a�ected too
much by the non-atomicity of the transitions in our Promela model.

33

C.3 Environment process

The proctype Environment models the environment of the BRP. See Figure 14 on
page 31 which shows the service access points Sin, Sout and Rout between the BRP
and the Environment.

34 hEnvironment process 34i� (41.4 46.1)

proctype Environment()

{

hEnvironment: locals 35.1i

do

:: Sin!REQ -> atomic {

hCheck previous �le 39.1i
hGenerate new �le 35.3i

}

Sin!REQ

:: Sout?sInd

:: Rout?i(v) -> d_step {

k++ ;

e[k].ind = i ;

e[k].val = v ;

}

od

}

The Environment process works as follows. The body of Environment is an in�nite
do-loop, which has three guards: for each service access point (namely Sin, Sout and
Rout) there is a seperate guard.

Sin: The Environment tries to handshake with the underlying service or protocol on
Sin to start the transmission of a new �le. If the synchronisation with the underlying
layer succeeds, we are certain, that the Environment has received all Sout and Rout

indications of the previous �le.
So before really starting with the next �le, we �rst check whether the transmission of

the previous �le was consistent with the requirements. This is done in hCheck previous
�lei6.

In hGenerate new �lei a new �le of chunks is generated. The variable n gets a value
and the array d[1..n] is �lled with random values.

6This is valid because of assumption (A2) we ensure that the sender does not start to transmit the
�rst chunk of a new �le if the receiver did not abort or �nish successfully.

34

To ensure that the actual transmission of the �le does not start before the results of
the previous �le are checked and the new �le is generated, a second Sin!REQ is o�ered
after generating the new �le. The Sender will have to wait for this second Sin!REQ

before it can start sending the �rst chunk of the new �le.
Instead of using two Sin!REQs it would have been more elegant if we could make

the rendez-vous atomic:

atomic {

Sin!REQ ->

...

}

Unfortunately, this does not work in Spin (version 2.9.x). The reason for this is that
in Promela, the sending entity of a handshake initiates the rendez-vous, whereas the
receiving entity �nishes the handshake. This means that only the `receiving handshake'
can be part of an atomic sequence.

Consequently, a single atomic Sin?REQ in the Environment process would work cor-
rectly. We felt, however, that this was not appropriate in the Environment process; the
receiving intuition behind the ? operator does not re
ect the role of the Environment:
to initiate the sending of a �le.

Sout: At the Sout channel, the Environment receives the indication of the sending
entity of the underlying layer. This indication is stored in the local variable sInd.

35.1 hEnvironment: locals 35.1i� (34 56.1) 35.2.

byte sInd ;

Rout: At the Rout channel, the Environment receives the indication tuples (ind,val)
of the receiving entity of the underlying layer. These tuples are stored in the array
e[1..k].

35.2 hEnvironment: locals 35.1i+� (34 56.1) / 35.1 36.1.

byte k, i, v ;

etype e[MAX_CHUNKS] ;

In hCheck previous �lei the array e[1..k] is checked against the array of chunks
d[1..n], which was transmitted by the underlying layer. The temporary variables
i and v are used to receive the message at Rout.

C.3.1 Generating a �le

In hGenerate new �lei the variable n is set and the array d[1..n] is �lled.

35.3 hGenerate new �le 35.3i� (34)

hRandom n 36.2i
hFill array d 38i
k = 0 ;

35

The variable k is reset, to indicate that we did not receive any indications at Rout.
That is, the invariant \e[1..k] has been received at Rout" is satis�ed.

36.1 hEnvironment: locals 35.1i+� (34 56.1) / 35.2

byte j ;

In Promela, the most straightforward and e�cient way to assign a random value to
a variable is probably the following Promela fragment using an if statement:

if

:: n=1

:: n=2

:: n=3

fi ;

where the variable n gets a random value in the range 1..3. In our model, the maximum
value for n is MAX_CHUNKS-1. Unfortunately, we cannot write a if statement using this
symbolic constant, because we do not know how many guards there have to be.

On the other hand, we can use Promela ordinary looping construct do to set n to
an arbitrary value in the range 1..MAX_CHUNKS-1. So a possible implementation of the
hRandom ni could be:

j = 1 ;

do

:: j < MAX_CHUNKS-1 -> j++

:: j < MAX_CHUNKS-1 -> n = j; break

:: j >= MAX_CHUNKS-1 -> n = MAX_CHUNKS-1; break

od ;

It is however not surprising that compared with the straightforward if construction
this do-construct is very ine�cient with respect to the state space.

For that reason we looked for another way to generate the randomizing if construc-
tion. And that is where the m4 macro processor came in. With m4 it is possible to
de�ne looping constructs which depend on earlier de�ned constants.

36.2 hRandom n 36.2i� (35.3 56.2)

if

forloop(`i', 1, eval(MAX_CHUNKS-1), `:: n = i

')fi ;

In hRandom ni, we use a m4 macro forloop, to create the following if statement, that
assigns n a random value in the range 1..MAX_CHUNKS-1:

if

:: n = 1

:: n = 2

:: ...

:: n = MAX_CHUNKS-1

fi ;

36

Where ... represent the guards between 2 and MAX_CHUNKS-1. It is not necessary to
understand the construction used in hRandom ni; it is just a trick to generate the most
e�cient randomizing Promela construct.

Below the m4 macro forloop is de�ned, which is to be included in hm4 macrosi7.

37 hm4 macros 32.2i+� (32.1) / 32.2

define(`forloop',

`pushdef(`$1', `$2')_forloop(`$1', `$2', `$3', `$4')popdef(`$1')')

define(`_forloop',

`$4`'ifelse($1, `$3', ,

`define(`$1', incr($1))_forloop(`$1', `$2', `$3', `$4')')')

Again, it is not needed to understand these m4 macro de�nitions.
Now that we have a random n, we also want to �ll the array d[1..n] with ran-

dom data chunks. Again, the most e�cient Promela construction makes use of if
statements:

if :: d[1] = 1 :: d[1] = 2 :: ... :: d[1] = n fi ;

if :: d[2] = 1 :: d[2] = 2 :: ... :: d[2] = n fi ;

...

if :: d[n] = 1 :: d[n] = 2 :: ... :: d[n] = n fi ;

where the array d[1..n] is �lled with random values in the range 1..n8. Note, that
even with m4 we cannot construct this Promela construct because n is not a constant
but a variable.

So it seems that this time, we have to implement hFill array di using a very ine�cient
Promela looping construction like:

j = 0 ;

do

:: j++ ;

if

:: (j <= n) -> i = 1 ;

do

:: (i < n) -> i++

:: (i <= n) -> d[j] = i; break

:: else -> d[j] = n; break

od

:: (j > n) -> break

fi

od ;

7The forloop macro itself is shamelessly copied from the info �le that is part of the GNU distri-
bution of m4.

8In Section C.6 we will see that is not necessary to use n di�erent chunks. In this section, however,
we follow our intuitive but naive idea that, to show that the BRP is correct, it is su�cient to show
that every randomly �lled �le chunks is correctly received at the receiver's side.

37

This implementation may be straightforward, but the double do loop makes it, again,
very ine�cient. However, if we don't mind a lengthy if statement, there is a way out.
Earlier, we said that m4 cannot help us here because n is a run-time variable. This is
true, but instead of the actual value n, we know its upperbound (i.e. MAX_CHUNKS-1).
This means, that we can use the Promela construction below, to �ll the array d[1..n].
Note that this construction only depends on MAX_CHUNKS.

if

:: n == 1 -> if :: d[1] = 1 fi

:: n == 2 -> if :: d[1] = 1 :: d[1] = 2 fi ;

if :: d[2] = 1 :: d[2] = 2 fi

...

:: n == MAX_CHUNKS-1 -> if :: d[1] = 1 :: d[1] = 2 ... :: d[1] = n fi ;

if :: d[2] = 1 :: d[2] = 2 ... :: d[2] = n fi ;

if :: d[3] = 1 :: d[3] = 2 ... :: d[3] = n fi ;

... ;

if

:: d[MAX_CHUNKS-1] = 1

:: d[MAX_CHUNKS-1] = 2

...

:: d[MAX_CHUNKS-1] = n

fi

fi

It is not elegant, but it is the most e�cient Promela construction with respect to the
state space. Again we use the m4 macro forloop to generate the if construction as
presented above.

38 hFill array d 38i� (35.3)

if forloop(`i', 1, eval(MAX_CHUNKS-1), `

:: n==i -> forloop(`j', 1, i, `

if forloop(`k', 1, i, `

:: d[j] = k')

fi ifelse(j,i,`',`;')')

')fi ;

Needless to say that it is again not necessary to understand this m4 construction; the
bottom line is that it �lls the array d[1..n] in the most e�cient way.

C.3.2 Checking the requirements

The process algebraic service description and the protocol description of the BRP are
checked against the logical service speci�cation of the FTS as de�ned in Section 2.2.
In hCheck previous �lei we use the fact that the logical service requirements of the FTS
are just constraints on the (list of) chunks o�ered at Sin and the indications received
at Sout and Rout. In our model, each requirement has been translated into a sequence
of 1 or more Promela statements involving assertions. We use the same numbering
of the requirements as in Section 2.2.

38

39.1 hCheck previous �le 39.1i� (34 56.1)

if

:: (n == 0) -> skip

:: (n > 0) -> if

:: (k > 0) -> hRequirements for k > 0 39.2i
:: (k == 0) -> hRequirements for k = 0 41.2i
fi

fi ;

The �rst time when hCheck previous �lei is `called', there is no �le to check, because
there is no previous �le. We take care of that by initially setting n to 0. In all other
cases, n will be greater than 0.
hRequirements for k > 0i consists of all requirements that should hold when k > 0.
The requirement

(1.1) 8 0 < j 6 k : ij 6= I NOK) ej = dj

is represented by the following Promela fragment:

39.2 hRequirements for k > 0 39.2i� (39.1) 39.3.

/* requirement 1.1 */

j = 0 ;

do

:: j++ ;

if

:: (j > k) -> break

:: (j <= k) ->

if

:: (e[j].ind != Inok) -> assert(e[j].val == d[j])

:: else -> skip

fi

fi

od ;

printf("Finished checking requirement 1.1\n") ;

The requirement

(1.2) n > 1) i1 = I FST

is represented by the following Promela fragment:

39.3 hRequirements for k > 0 39.2i+� (39.1) / 39.2 40.1.

/* requirement 1.2 */

if

:: (n > 1) -> assert(e[1].ind == Ifst)

:: else -> skip

fi;

printf("Finished checking requirement 1.2\n") ;

39

The requirement

(1.3) 8 1 < j < k : ij = I INC

is represented by the following Promela fragment:

40.1 hRequirements for k > 0 39.2i+� (39.1) / 39.3 40.2.

/* requirement 1.3 */

j=2;

do

:: (j >= k) -> break

:: (j < k) -> assert(e[j].ind == Iinc) ; j++

od ;

printf("Finished checking requirement 1.3\n") ;

The requirement

(1.4.1) ik = I OK _ ik = I NOK

is represented by the following Promela fragment:

40.2 hRequirements for k > 0 39.2i+� (39.1) / 40.1 40.3.

/* requirement 1.4.1 */

assert((e[k].ind == Iok) || (e[k].ind == Inok)) ;

printf("Finished checking requirement 1.4.1\n") ;

Requirements

(1.4.2) ik = I OK) k = n

(1.4.3) ik = I NOK) k > 1

are represented by the following Promela fragment:

40.3 hRequirements for k > 0 39.2i+� (39.1) / 40.2 41.1.

if

:: (e[k].ind == Iok) -> assert(k == n) /* 1.4.2 */

:: (e[k].ind == Inok) -> assert(k > 1) /* 1.4.3 */

:: else -> skip

fi ;

printf("Finished checking requirement 1.4.2 and 1.4.3\n") ;

Requirements

(1.5) is = I OK) ik = I OK

(1.6) is = I NOK) ik = I NOK

(1.7) is = I DK) k = n

40

are represented by the following Promela constructs:

41.1 hRequirements for k > 0 39.2i+� (39.1) / 40.3

if

:: (sInd == Iok) -> assert(e[k].ind == Iok) /* 1.5 */

:: (sInd == Inok) -> assert(e[k].ind == Inok) /* 1.6 */

:: (sInd == Idk) -> assert(k == n) /* 1.7 */

:: else -> skip

fi ;

printf("Finished checking requirement 1.5, 1.6 and 1.7\n")

hRequirements for k = 0i consists of all requirements that should hold when k = 0.
The requirement

(2.1) is = I DK , n = 1

is represented by the following Promela fragment:

41.2 hRequirements for k = 0 41.2i� (39.1) 41.3.

/* requirement 2.1 */

assert(((sInd == Idk) && (n == 1)) ||

((sInd != Idk) && (n != 1))) ;

printf("Finished checking requirement 2.1\n") ;

And �nally, the requirement

(2.2) is = I NOK , n > 1

is represented by the following Promela statement:

41.3 hRequirements for k = 0 41.2i+� (39.1) / 41.2

/* requirement 2.2 */

assert(((sInd == Inok) && (n > 1)) ||

((sInd != Inok) && (n <= 1))) ;

printf("Finished checking requirement 2.2\n")

C.4 BRP Service

In this section, we discuss a process algebraic service description of the BRP inPromela.

41.4 hbrp-serv.m4 41.4i�
hprelude 32.1i
hEnvironment process 34i
hService process 42.1i
hService init 44.2i

The Promela speci�cation of the model of the service is captured in the �le hbrp-
serv.m4 i9, and consists of the hpreludei, hEnvironment processi as de�ned in Sec-
tion C.3, a Service process and a service speci�c init process.

9Please recall that the Promela speci�cations are �rst processed by m4 before they are fed to Spin

41

C.4.1 Service process

The process Service de�ned below is a process algebraic adaptation of the �CRL
speci�cation of the external behaviour of the BRP as found in [12].

42.1 hService process 42.1i� (41.4 55)

proctype Service()

{

byte j, k, v ;

do

:: Sin?REQ ;

Sin?REQ ;

j = 0 ;

k = 0 ;

do

:: j++ ;

v = d[j] ;

if

:: tau -> hCorrect delivery of chunk at Rout 43.1i
:: tau -> hLoss of a chunk 44.1i
fi

od

od

}

The variable j is used as a chunk counter at the sender 's side, whereas the variable k is
used as a chunk counter at the receiver 's side of the BRP service. The variable v holds
the chunk to be transmitted. At the start of the inner do-loop, the values of j and k

are such that the following invariants hold:

� the values d[1..j] have been sent to the receiver;

� the tuples e[1..k] have been o�ered at Rout.

where the arrays d and e have the same meaning as in section C.3. Note, however, that
only the array d is accessible to Service.
The Service process uses the construct tau, which is just a rede�nition of the statement
skip:

42.2 hmacros 42.2i� (32.1)

#define tau skip

42

Service is a non-terminating process. After receiving the pair of REQs from the
Environment process, the Service process just lists all acceptable behaviour of the
BRP. That is, a chunk v is either correctly delivered at Rout or the chunk v is lost.

43.1 hCorrect delivery of chunk at Rout 43.1i� (42.1)

k++;

hO�er indication at Rout 43.2i
hO�er indication at Sout 43.3i

When we know that a chunk has been delivered correctly at the receiver's side, an
indication has to be issued at Rout and optionally, an indication has to be issued at
Sout.

43.2 hO�er indication at Rout 43.2i� (43.1)

if

:: (j == n) -> Rout!Iok(v)

:: (j != n) && (k == 1) -> Rout!Ifst(v)

:: (j != n) && (k > 1) -> Rout!Iinc(v)

fi ;

A chunk that is correctly received at the receiver's side is o�ered at Rout together with
the suitable indication.

43.3 hO�er indication at Sout 43.3i� (43.1)

if

:: (j == n) -> if

:: tau -> Sout!Iok; break

:: tau -> Sout!Idk; break

fi

:: (j != n) -> if

:: tau -> skip

:: tau -> Sout!Inok; k++; Rout!Inok; break

fi

fi

If j==n and the acknowledgement of the chunk was received at the sender's side, the
sender should issue an Iok indication. If the acknowledgement was lost, the sender
is not sure whether the complete �le was correctly received at the receiver's side, so
an Idk indication is issued at Sout. If j!=n and the acknowledgement is received by
the sender, nothing happens at the service access points and the next chunk should
be sent. If instead, the acknowledgement was lost, both the sender (at Sout) and the
receiver Rout indicate the error to the Environment. Note that only when j!=n and
the acknowledgement is correctly received at the sender's side, the Service process
resumes the sending of the current �le. In all other situations the process breaks out
of the do-loop.

43

44.1 hLoss of a chunk 44.1i� (42.1)

if

:: (k == 0) -> if

:: (j == n) -> Sout!Idk

:: (j != n) -> Sout!Inok

fi

:: (k > 0) -> k++;

if

:: (j == n) -> Sout!Idk; Rout!Inok

:: (j != n) -> Sout!Inok; Rout!Inok

fi

fi ;

break

When a chunk is lost (between the sender and the receiver), this is considered to be
an error. If k==0 and j==n (i.e. n==1), the sender is not sure whether the complete
�le (i.e. a single chunk) was received at the receiver side, and hence a Idk indication
is issued. If j!=n it is clearly an error and Inok is o�ered. Note that nothing is o�ered
at Rout because the receiver does not know that a new �le has been sent. If k>0 both
the sender (at Sout) and the receiver (at Rout) report the error to the Environment.
Again, there is distinction between j==n and j!=n.

After the loss of a chunk, the Service breaks out of the do- loop to get ready for
a new �le.

C.4.2 init

44.2 hService init 44.2i� (41.4 55)

init {

atomic {

run Environment() ;

run Service() ;

}

}

The init process of the service just starts the Service process and the Environment

processes.

C.4.3 Validation results

Directives �le For all veri�cation runs with Spin we use a single data �le (i.e.
brp-directives.dat), which contains for each Promela speci�cation of the BRP:

� the directives for the C compiler to build the pan analyser; and

� the run-time options for the pan analyser

From this directives �le, a simple script generates the necessary commands to build the
pan analyser and the make program runs this analyser to obtain the veri�cation results.

44

Apart from directives and options which are speci�c to a particular speci�cation,
some general directives and options have been used for all veri�cation runs:

45.1 hbrp-directives.dat 45.1i� 45.2.

general

-D_POSIX_SOURCE -DSAFETY -DNOCLAIM -DNOFAIR

-c1

The �rst line identi�es the Promela speci�cation to be checked. The label general
means that the directives that follow are to be used by all validations runs. The second
line contains the directives for the C compiler, which builds the pan analyser. The third
line holds the options which are used to execute the pan analyser.

The _POSIX_SOURCE directive indicates that the source to be compiled by the C

compiler conforms to the Posix standard. The SAFETY directive is used because no
liveness properties are checked in our validations. The NOCLAIM directive speci�es that
even if a Promela never claim is present, it is unabled. The NOFAIR directive disables
the code for weak-fairness. Finally, the -c1 option to the pan analyser speci�es that
the analyser should stop at the �rst error.

Machine All validation results presented in this Appendix are obtained with Spin

version 2.9.7, on a Pentium 120Mhz computer with 64Mb RAM and 64MB swap space,
running Linux 2.0.29.

Directives for the service For the service description of the BRP, the following
directives have been used:

45.2 hbrp-directives.dat 45.1i+� / 45.1 54.3.

brp-serv

-DMEMCNT=25

-w19 -m200000

The MEMCNT directive sets an upperbound to the amount of memory to be used by the
analyser: 2^25 bytes (= 32Mb). The -w19 option reserves a hashtable with 2^19 (=
512K) entries. The -m200000 option limits the search depth to 200000 steps.

Results Running the pan analyser produces the following (stripped) output:

(Spin Version 2.9.7 -- 18 April 1997) [run on 17-June-97 12:29:33]

State-vector 56 byte, depth reached 125892, errors: 0

374898 states, stored

264167 states, matched

639065 transitions (= stored+matched)

676883 atomic steps

hash conflicts: 245207 (resolved)

(max size 2^19 states)

45

Stats on memory usage (in Megabytes):

23.993 equivalent memory usage for states (stored*(State-vector + overhead))

compressed State-vector = 36 byte + 8 byte overhead

16.537 actual memory usage for states (compression: 68.92%)

2.097 +memory used for hash-table (-w19)

4.800 +memory used for DFS stack (-m200000)

0.757 +memory used for other data structures

24.100 =total actual memory usage

Output from `time':

Command being timed: "./brp-serv.pan -c1 -w19 -m200000"

User time (seconds): 17.43

System time (seconds): 0.73

C.5 BRP Protocol

In this section we describe our Promela model of the BRP. The model is a straightfor-
ward translation of the timed automata model, which we have presented in Section 3.2.
This straightforward Promela model turned out to be not very e�cient with respect
to the state space of the model. For example, on our computer, Spin was not able
to perform any exhaustive search of the state space (see Section C.5.3). In C.7 we
discuss an optimized version of the protocol, which was e�cient enough to be analysed
completely by Spin.

Figure 15 shows the relationship between the processes that model the BRP and
the Promela channels which are used for communication between the processes. The
arrows indicate the sending and receiving part of a communication. All channels are
rendez-vous channels, so the distinction between sender and receiver process should
not matter. However, Promela treats the sender and receiver di�erently in case the
communication is part of an atomic clause. Hence, for reasons of clarity we have
indicated the role of the processes.
The Promela speci�cation of the BRP is de�ned as follows.

46.1 hbrp-prot.m4 46.1i�
hprelude 32.1i
hEnvironment process 34i
hProtocol prelude 46.2i
hProtocol processes 48.3i
hProtocol init 54.2i

C.5.1 Protocol channels

The hProtocol preludei consists of the constants and the channels which are speci�c to
the BRP protocol.

46.2 hProtocol prelude 46.2i� (46.1)

hProtocol constants 49.2i
hProtocol channels 47.1i

46

Sender

Line_K

Receiver

Line_L

Environment
���
���
���
���
������ ���

���
���
���

SyncWait

Sin RoutSout

F

B A

G

ChunkTimeout

Figure 15: Relationship between the Promela processes of the BRP and the channels

Communication channels As in our formal speci�cation of the BRP in Section 3.2,
the line K, which is used to transmit the chunks, is connected to the sender and receiver
using the channels F en G, respectively. The acknowledgement line L is connected to
the sender and receiver using the channels B and A, respectively.

47.1 hProtocol channels 47.1i� (46.2) 47.2.

chan F = [0] of {bit, bit, bit, byte} ;

chan G = [0] of {bit, bit, bit, byte} ;

The channels F and G are used to exchange tuples of the form (b1, bN, ab, d), where
b1 is a bit indicating whether this chunk is the �rst one, bN is a bit indicating whether
this chunk is the last one, ab is the alternating bit and d models the data chunk itself.

47.2 hProtocol channels 47.1i+� (46.2) / 47.1 48.1.

chan A = [0] of {bit} ;

chan B = [0] of {bit} ;

The channels A and B may only exchange the acknowledgement bit.
Recall that the lines K and L of the BRP act like one-place bu�ers. In this straigth-

forward translation from our timed automata to Promela, we use the processes Line_K
and Line_L to implement the one-place bu�er schemes (see Section 4.1). In Section C.7
we will replace these line processes and the channels F, G, A and B by Promela channels
of length 1, which are just bu�ers of length 1.

Timing channels As discussed in Section 3.2, the BRP uses several timers to control
the correct functioning of the sender and receiver. For example, a timer T1 at the sender
side is used which expires when an acknowledgement does not arrive in time. Because
the current version of Promela does not have a notion of time, we have used \tricks",
analogous to [12] to model timing and synchronisation of the BRP. These \tricks", in
fact, correspond to the assumptions (A1) and (A2) of Section 3.1.

47

Assumption (A1) states that \premature timeouts are not possible". Thus, if the
timer T1 at the sender's side expires, it is certain that the acknowledgement from the
receiver will not arrive anymore. We model this timer T1 with a channel between the
two lines K and L and the Sender process.

48.1 hProtocol channels 47.1i+� (46.2) / 47.2 48.2.

chan ChunkTimeout = [0] of {bit} ;

When a message is lost in one of the unreliable lines K or L (i.e., a data chunk or an
acknowledgement, respectively), the Sender will be noti�ed via ChunkTimeout that an
acknowledgement will not arrive anymore.

Assumption (A2) states that \in case of abort, sender S waits before starting a
new �le until receiver R reacted properly to abort". In our timed speci�cation of the
BRP, this assumption is ensured using two timers: one at the Sender's side and one
at the Receiver's side. If the timer of one of the protocol entities expires, it will wait
long enough to be sure that its peer entity has timed out as well.

48.2 hProtocol channels 47.1i+� (46.2) / 48.1

chan SyncWait = [0] of {bit} ;

Again, we do not have such a mechanism in Promela, so again we use a handshake
channel to synchronise the Sender and the Receiver after a failure. Note that this
mimics the timer T2 of [12].

C.5.2 Protocol processes

48.3 hProtocol processes 48.3i� (46.1)

hSender process 48.4i
hReceiver process 51.1i
hLine processes 53i

Below, the processes Sender and Receiver are de�ned. Naturally, the Promela def-
initions of both processes has been based on the de�nition of the processes as timed
automata in Section 3.2.

Sender

48.4 hSender process 48.4i� (48.3 58)

proctype Sender()

{

hSender: locals 48.5i
hSender: body 49.1i
}

The Sender process uses some local variables and the process itself is de�ned in hSender:
bodyi.

48.5 hSender: locals 48.5i� (48.4)

bit ab ;

byte rc ;

byte i ;

48

The variable ab holds the current value of the alternating bit. The retry counter rc

counts the number of times the last chunk has been retransmitted. The sequence
number i indicates the i-th chunk of the current �le.

49.1 hSender: body 49.1i� (48.4) 49.3.

start:

ab = 0 ;

goto idle ;

idle:

Sin?REQ ;

Sin?REQ ;

i = 1 ;

goto next_frame ;

next_frame:

F!(i==1),(i==n),ab,d[i] ;

rc = 0 ;

goto wait_ack ;

The Sender starts by setting the alternating bit to 0. Then it moves to the idle state
where it waits for the pair of REQs from the environment (see Section C.3). In state
next_frame the next chunk of a �le is sent. For the �rst chunk, i is equal to 1. The
Sender then goes to the wait_ack state and waits for the acknowledgement from the
Receiver.

49.2 hProtocol constants 49.2i� (46.2 59.1) 50.1.

#define ACK 1

49.3 hSender: body 49.1i+� (48.4) / 49.1 50.2.

wait_ack:

if

:: B?ACK ->

ab = 1-ab ;

goto success

:: ChunkTimeout?SHAKE ->

if

:: (rc < MAX) -> rc++ ;

F!(i==1),(i==n),ab,d[i] ;

goto wait_ack

:: (rc >= MAX) -> goto error

fi

fi ;

49

If the Sender receives an acknowledgement ACK from the Receiver, then the sending of
the last chunk was successful. The alternating bit is inverted, and the process goes to
success. If the last chunk was lost in K or the acknowledgement for the last chunk was
lost in L, the Sender is noti�ed via ChunkTimeout?SHAKE. If the number of retries (rc)
is still lower than MAX, the Sender will try to send the same chunk again, otherwise it
gives up and goes to the error state.

50.1 hProtocol constants 49.2i+� (46.2 59.1) / 49.2

#define MAX 2

#define SHAKE 1

The constant MAX is the maximum number of retransmission attempts of the Sender

to transmit a single chunk. The constant SHAKE is just a symbolic constant to model
rendez-vous synchronisation (i.e., handshaking) of two processes.

50.2 hSender: body 49.1i+� (48.4) / 49.3 50.3.

success:

if

:: (i == n) -> Sout!Iok ;

goto idle

:: (i < n) -> i++ ;

goto next_frame

fi ;

If i==n, the i-th chunk was the last chunk of the �le. In this case the Environment

is noti�ed and the Sender goes back to the idle state. If it was not the last chunk
(i!=n), the Sender sends the next chunk.

50.3 hSender: body 49.1i+� (48.4) / 50.2

error:

if

:: (i == n) -> Sout!Idk

:: (i != n) -> Sout!Inok

fi ;

SyncWait!SHAKE ;

SyncWait?SHAKE ;

ab = 0 ;

goto idle ;

The Sender can only end up in the error state if it did not receive an acknowledgement
for its i-th chunk. After notifying the environment of the error, the Sender waits for
the Receiver to time out as well. The double synchronization on SyncWait is needed
to ful�ll assumption (A2). We must make sure that the Environment will not start
sending a new �le (i.e. by synchronizing on Sin) before both the indications on Sout

and Rout have been issued. While the Sender is waiting to synchronize on its second
SyncWait message, the Receiver has time to o�er its indication at Rout. After this
second synchronization, the Sender will proceed to the idle state, where it may receive
a new �le at Sin.

50

Receiver Next we de�ne the Receiver process of the BRP.

51.1 hReceiver process 51.1i� (48.3 58)

proctype Receiver()

{

hReceiver: locals 51.2i
hReceiver: body 51.4i
}

51.2 hReceiver: locals 51.2i� (51.1) 51.3.

bit b1, bN, ab ;

byte v ;

The variables b1, bN, ab and v are the placeholders for the chunks received from the
Sender at channel G. The bit b1 is true if the chunk is the �rst chunk of the �le, the
bit bN is true if the chunk is the last chunk of the �le, the bit ab is the alternating bit
and the byte v is the data chunk itself.

51.3 hReceiver: locals 51.2i+� (51.1) / 51.2

bit exp_ab ;

The variable exp_ab is the expected alternating bit in the next chunk from the sender.

51.4 hReceiver: body 51.4i� (51.1) 52.1.

new_file:

if

:: G?b1,bN,ab,v -> goto first_safe_frame

:: SyncWait?SHAKE ;

SyncWait!SHAKE -> goto new_file

fi ;

first_safe_frame:

exp_ab = ab ;

goto frame_received ;

The Receiver only ends up in the state new_file if the protocol is started for the �rst
time or when the Receiver's timer has expired. After receiving the �rst chunk of the
Sender, it moves to the state first_safe_frame.

In the state first_state_frame, after receiving the �rst chunk of a new �le, the al-
ternating bit is initialized according to the ab-�eld found in the chunk from the Sender.
Note the two synchronizations on SyncWait in the state new_file. These synchroniza-
tions on the timed channel SyncWait do not appear in our original timed speci�cation
of the BRP. They are needed in our Promela version of the BRP because, in case
of an abort, the Sender always wants to synchronize with the Receiver. Consider
the case when the �rst chunk of a �le never reaches the Receiver. The Sender will
eventually decide that there is an error and wants to synchronize with the Receiver.
The Receiver, however, is still awaiting the �rst chunk in the state new_file. For this
special case, the synchronizations on SyncWait have been introduced.

51

52.1 hReceiver: body 51.4i+� (51.1) / 51.4 52.2.

frame_received:

if

:: (ab != exp_ab) ->

A!ACK ;

goto idle

:: (ab == exp_ab) ->

if

:: (b1 && !bN) -> Rout!Ifst(v)

:: (!b1 && !bN) -> Rout!Iinc(v)

:: (bN) -> Rout!Iok(v)

fi ;

goto frame_reported

fi ;

After receiving a chunk (frame) with a wrong alternating bit, an acknowledgement is
sent, but the Environment is not noti�ed. The process moves to the state idle where
it awaits a chunk with the correct alternating bit. After receiving a chunk with the
expected alternating bit, the chunk is o�ered to the Environment. The process goes to
the state frame_reported where the acknowledgement of the chunk is sent.

52.2 hReceiver: body 51.4i+� (51.1) / 52.1 52.3.

frame_reported:

A!ACK ;

exp_ab = 1-exp_ab ;

goto idle ;

After reporting the reception of the last chunk to the Environment, the Receiver

acknowledges the chunk to the Sender, updates the alternating bit and goes to the
idle state where it awaits a new chunk.

52.3 hReceiver: body 51.4i+� (51.1) / 52.2

idle:

if

:: G?b1,bN,ab,v ->

goto frame_received

:: SyncWait?SHAKE ->

if

:: bN -> skip

:: !bN -> Rout!Inok

fi ;

SyncWait!SHAKE ;

goto new_file

fi ;

52

In the idle state, the Receiver can either receive a chunk from the Sender or, in case
of an abort, synchronize with the Sender on SyncWait. If the Receiver has received a
chunk, the validity of this chunk is checked in the state frame_received. In an abort
situation, the Receiver will o�er an Inok indication to the environment. However, if
bN is true (i.e. the last correctly received chunk was the last of a �le), the Receiver will
already have issued its Iok to the Environment process. In this case the Receiver does
not do anything. This is the situation in which the acknowledgement of the last chunk
has never reached the Sender. The Receiver also moves to state new_file because it
can no longer rely on the value of the alternating bit.

The double synchronization on SyncWait around the (possible) noti�cation on Rout

is very important here; it makes this noti�cation atomic10 with respect to the Sender

process. As mentioned earlier, this atomicity is needed to ful�ll assumption (A2). For
the Receiver this means that when synchronizing with the Sender, it should o�er its
indication (if any) to Rout, before the Sender can proceed to starting a new �le at Sin.

Note that when the timed automata model is well timed, i.e., the conditions of
Section 4.2 are satis�ed, the Receiver's timer may expire while waiting for a new �le
in the idle state. The Receiver then moves to the new_file state, independently of
the Sender: the Sender cannot even time out in its idle state. We cannot model this
behaviour in Promela: when there are no errors, the Receiver will always await the
�rst chunk of the next �le in the idle state. Note that a tau-transition to new_file

does not help us here. It would mean that in the idle state the Receiver could always
move to the new_file state.

Lines The processes Line_K and Line_L model the (unreliable) lines between the
Sender and the Receiver. A message that is sent over one of these lines is either
succesfully delivered at the other side or it is lost. In the latter case, the Sender is
noti�ed using the ChunkTimeout channel.

53 hLine processes 53i� (48.3) 54.1.

proctype Line_K()

{

bit b1, bN, ab ;

byte v ;

do

:: F?b1,bN,ab,v -> if

:: G!b1,bN,ab,v

:: tau -> ChunkTimeout!SHAKE

fi

od

}

10Note that it is not possible to use a single SyncWait? event (instead of two synchronizations)
enclosed in an atomic clause. In Promela, the atomic step may be broken by the noti�cation on
Rout. If the synchronization on Rout is not executable, the atomicity will be lost.

53

54.1 hLine processes 53i+� (48.3) / 53

proctype Line_L()

{

bit b ;

do

:: A?b -> if

:: B!b

:: tau -> ChunkTimeout!SHAKE

fi

od

}

Init The protocol's init just starts the processes that model the BRP and its envi-
ronment.

54.2 hProtocol init 54.2i� (46.1)

init {

atomic {

run Sender() ;

run Receiver() ;

run Line_K() ;

run Line_L() ;

run Environment() ;

}

}

C.5.3 Validation results

Directives �le Part of the directives �le has been presented in Section C.4.3. For
the protocol speci�cation of the BRP, the following directives have been used:

54.3 hbrp-directives.dat 45.1i+� / 45.2 57.3.

brp-prot

-DMEMCNT=26 -DBITSTATE

-w26 -m700000

The MEMCNT directive reserves 2^26 bytes (= 64Mb) of memory for the pan anylyser.
The BITSTATE directive selects Spin's supertrace state space search. The -w26 op-
tion instructs the pan analyser to reserve 2^26 (= 64M) entries in the hashtable. The
-m700000 option limits the search depth to 700000 steps.

54

Results Running the pan analyser produces the following (stripped) output:

(Spin Version 2.9.7 -- 18 April 1997) [run on 17-June-97 12:30:05]

State-vector 104 byte, depth reached 502803, errors: 0

1.65918e+06 states, stored

980115 states, matched

2.63929e+06 transitions (= stored+matched)

1.68096e+06 atomic steps

hash factor: 40.4471 (expected coverage: >= 98% on avg.)

(max size 2^26 states)

Stats on memory usage (in Megabytes):

179.191 equivalent memory usage for states (stored*(State-vector + overhead))

8.389 memory used for hash-array (-w26)

19.600 +memory used for DFS stack (-m700000)

7.551 +memory used for other data structures

43.852 =total actual memory usage

Output from `time':

Command being timed: "./brp-prot.pan -c1 -w26 -m700000"

User time (seconds): 92.18

System time (seconds): 1.09

C.6 Optimized BRP Service

From Section C.4.3 we learned that even the model of the BRP Service results in a
considerable state space. Much of this state space is caused by the way we generate
random �les (see Section C.3).

In this Section we describe a more e�cient way to �ll the �les with random chunks.
Naturally, we will also adopt this scheme in Section C.7, where we discuss an optimized
version of the BRP Protocol.

55 hbrp-serv-opt.m4 55i�
hprelude 32.1i
hOptimized Environment process 56.1i
hService process 42.1i
hService init 44.2i

The only thing changed with respect to our original service description of the BRP, is
the hOptimized Environment processi.

55

56.1 hOptimized Environment process 56.1i� (55 58)

proctype Environment()

{

hEnvironment: locals 35.1i

do

:: Sin!REQ -> atomic {

hCheck previous �le 39.1i
hOptimized Generate new �le 56.2i

}

Sin!REQ

:: Sout?sInd

:: Rout?i(v) -> d_step {

k++ ;

e[k].ind = i ;

e[k].val = v ;

}

od

}

And this hOptimized Environment processi only di�ers in the way a new �le is generated.

56.2 hOptimized Generate new �le 56.2i� (56.1)

hReset array d 57.1i
hRandom n 36.2i
hPlace random 1 57.2i
k = 0 ;

The general correctness property for a data transfer protocol is that if the protocol
receives an in�nite sequence of distinct messages, it outputs the same in�nite sequence.
Pierre Wolper [28] has shown that if the protocol is data-independent, checking an
in�nite sequence of distinct messages can be reduced to checking an in�nite sequence
of only three distinct messages (see also [18]).

To minimize the number of di�erent \�les" to be checked, we have adopted a scheme
similar to [18]. Instead of using three `colors', we use only two: 0 and 1. After randomly
generating the number of chunks of the �le (i.e. n), the array d is �lled with 0s and a
single 1 is randomly placed in d[1..n]. Because this 1 is randomly placed, Spin will
catch the following errors in a full state space search:

� losing a chunk. If the BRP can lose a message, there will be an e[1..n] which
does not contain a 1.

� duplication of a chunk. If the BRP can duplicate a chunk, there will be an e[1..n]
which contains two 1s.

56

� reordering of chunks. If the BRP can change the order of transmitted chunks, the
1 in d[1..n] will end up in a di�erent place in e[1..n].

In all these cases, the array of chunks sent (i.e. d[1..n]) is di�erent from the array of
chunks received (i.e. e[1..n]).

Below, the realization of this scheme in Promela is presented.

57.1 hReset array d 57.1i� (56.2)

forloop(`i', 1, eval(MAX_CHUNKS-1), `d[i]=0 ; ')

This just sets all elements of the array d[1..MAX_CHUNKS-1] to 0.

57.2 hPlace random 1 57.2i� (56.2)

if forloop(`i', 1, eval(MAX_CHUNKS-1), `

:: n==i ->

if forloop(`j', 1, i, `

:: d[j] = 1')

fi

')fi ;

In hPlace random 1 i, a single 1 is randomly placed into the array d[1..n].

Intermezzo It should be noted that we have based our veri�cation on two intuitive
and informal ideas, which should be proved to conclude that our models of the BRP
service and protocol are really correct for all possible �les of chunks. These unproved,
informal ideas are the following:

� It is enough to check �les with a maximum length of 3 to conclude that the
protocol holds for all �les.

� Checking �les that consist of 0s and a randomly placed 1 is su�cient to catch all
errors caused by loss, duplication and reordering.

In other words, the optimized versions cannot verify completely the correctness of the
service or the protocol. However, they are quite helpful in increasing the con�dence of
the veri�cation procedure.

C.6.1 Validation results

Directives �le Part of the directives �le has been presented in Section C.4.3. For
the optimized service speci�cation of the BRP, the following directives have been used:

57.3 hbrp-directives.dat 45.1i+� / 54.3 60 .

brp-serv-opt

-DMEMCNT=22

-w15 -m10000

57

The MEMCNT directive limits the amount of memory to be used by the pan analyser to
only 2^22 bytes (= 4Mb) of memory. The -w15 option reserves 2^15 (= 32K) entries in
the hashtable and the -m10000 option limits the search depth of the pan analyser to
10000 steps.

Results Running the pan analyser produces the following (stripped) output:

(Spin Version 2.9.7 -- 18 April 1997) [run on 17-June-97 12:31:55]

State-vector 56 byte, depth reached 9329, errors: 0

20519 states, stored

4842 states, matched

25361 transitions (= stored+matched)

16330 atomic steps

hash conflicts: 3264 (resolved)

(max size 2^15 states)

Stats on memory usage (in Megabytes):

1.313 equivalent memory usage for states (stored*(State-vector + overhead))

compressed State-vector = 40 byte + 8 byte overhead

0.978 actual memory usage for states (compression: 74.45%)

0.131 +memory used for hash-table (-w15)

0.240 +memory used for DFS stack (-m10000)

0.237 +memory used for other data structures

1.498 =total actual memory usage

Output from `time':

Command being timed: "./brp-serv-opt.pan -c1 -w15 -m10000"

User time (seconds): 0.81

System time (seconds): 0.02

C.7 Optimized BRP Protocol

Naturally, for the optimized BRP protocol we use the same hOptimized Environment

processi as developed in section C.6.

58 hbrp-prot-opt.m4 58i�
hprelude 32.1i
hOptimized Environment process 56.1i
hOptimized Protocol prelude 59.1i
hSender process 48.4i
hReceiver process 51.1i
hDaemon process 59.4i
hOptimized Protocol init 59.5i

In the optimized BRP protocol, we acknowledge the fact that the processes Line_K

and Line_L are just 1-place bu�ers. So these processes will be replaced by Promela
channels of length 1.

58

59.1 hOptimized Protocol prelude 59.1i� (58)

hProtocol constants 49.2i
hOptimized Protocol channels 59.2i

59.2 hOptimized Protocol channels 59.2i� (59.1) 59.3.

chan ChunkTimeout = [0] of {bit} ;

chan SyncWait = [0] of {bit} ;

The channels ChunkTimeout and SyncWait are the same channels as discussed in Sec-
tion C.5.

59.3 hOptimized Protocol channels 59.2i+� (59.1) / 59.2

chan K = [1] of {bit, bit, bit, byte} ;

chan L = [1] of {bit} ;

chan F = K ;

chan G = K ;

chan A = L ;

chan B = L ;

By making the channels F, G, A and B reference the 1-place bu�fers K and L we can
retain the original processes Sender and Receiver.

The original processes Line_L and Line_K also contained behaviour to model the
lose of messages. Now that the channels K and L are used, we need an auxiliary process
which \steals" messages from these lines:

59.4 hDaemon process 59.4i� (58)

proctype Daemon()

{

bit b, b1, bN, ab ;

byte v ;

do

:: atomic { K?b1,bN,ab,v -> ChunkTimeout!SHAKE }

:: atomic { L?b -> ChunkTimeout!SHAKE }

od

}

When the Daemon process steals a message from K or L the Sender process is noti�ed
via channel ChunkTimeout. Finally, the init process of the optimized BRP protocol is
the following:

59.5 hOptimized Protocol init 59.5i� (58)

init {

atomic {

run Environment() ;

run Sender() ;

run Receiver() ;

run Daemon() ;

}

}

59

C.7.1 Validation results

Directives �le Part of the directives �le has been presented in Section C.4.3. For the
optimized protocol speci�cation of the BRP, the following directives have been used:

60 hbrp-directives.dat 45.1i+� / 57.3

brp-prot-opt

-DMEMCNT=25 -DCOLLAPSE

-w20 -m300000

The MEMCNT=25 directive limits the total amount of memory to be used by the pan

analyser to 2^25 bytes (= 32Mb). The COLLAPSE directive instructs the analyser to
compress the state vector size. The -w20 option reserves 2^20 (= 1M) entries in the
hashtable. The -m300000 option instructs the pan analyser to limit the search depth
to 300000 steps.

Results Running the pan analyser produces the following (stripped) output:

(Spin Version 2.9.7 -- 18 April 1997) [run on 17-June-97 12:32:09]

State-vector 92 byte, depth reached 257647, errors: 0

846531 states, stored

295259 states, matched

1.14179e+06 transitions (= stored+matched)

497354 atomic steps

hash conflicts: 245680 (resolved)

(max size 2^20 states)

Stats on memory usage (in Megabytes):

88.039 equivalent memory usage for states (stored*(State-vector + overhead))

compressed State-vector = 8 byte + 12 byte overhead

17.020 actual memory usage for states (compression: 19.33%)

4.194 +memory used for hash-table (-w20)

7.200 +memory used for DFS stack (-m300000)

3.753 +memory used for other data structures

32.079 =total actual memory usage

Output from `time':

Command being timed: "./brp-prot-opt.pan -c1 -w20 -m300000"

User time (seconds): 95.40

System time (seconds): 0.92

60

References

[1] R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183{235, 1994.

[2] R. Alur, C. Courcoubetis, and D.L. Dill. Model checking in dense real time.
Information and Computation, 104:2{34, 1993.

[3] J. Bengtsson, D. Gri�oen, K. Kristo�ersen, K.G. Larsen, F. Larsson, P. Pettersson,
and W. Yi. Veri�cation of an audio protocol with bus collision using Uppaal. In
R. Alur and T.A. Henzinger, editors, Computer Aided Veri�cation, CAV'96, LNCS
1102, pages 244{256. Springer-Verlag, 1996.

[4] J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal { a tool
suite for the automatic veri�cation of real-time systems. In R. Alur, T. Henzinger
and E.D. Sontag, editors, Hybrid Systems III, LNCS 1066, pages 232{243. Springer-
Verlag, 1996.

[5] J. Bengtsson, F. Larsson, P. Pettersson, W. Yi, P. Christensen, J. Jensen, P.
Jensen, K.G. Larsen, and T. Sorensen. Uppaal a tool suite for validation and
veri�cation of real-time systems (Preliminary draft). User guide, 1996. Available
at http://www.docs.uu.se/docs/rtmv/uppaal.

[6] Z. Brezocnik and T. Kapus, editors. Proceedings of COST 247, Int. Workshop

on Applied Formal Methods in System Design. Technical Report, University of
Maribor, Slovenia, 1996.

[7] P.R. D'Argenio, J-P. Katoen, T. Ruys, and J. Tretmans. Modeling and verifying a
Bounded Retransmission Protocol. In [6]. Also available as CTIT Technical Report
96-22.

[8] P.R. D'Argenio, J-P. Katoen, T. Ruys, and J. Tretmans. The Bounded Retrans-
mission Protocol must be on time!. In E. Brinskma, editor, Third Int. Workshop on

Tools and Algorithms for the Construction and Analysis of Systems (TACAS'97),
LNCS 1217, pages 416{431. Springer-Verlag, 1997.

[9] C. Daws, A. Olivero, S. Tripakis and S. Yovine. The tool Kronos. In R. Alur,
T. Henzinger and E.D. Sontag, editors, Hybrid Systems III, LNCS 1066, pages
208{219. Springer-Verlag, 1996.

[10] M.G. Gouda. Protocol veri�cation made simple: a tutorial. Computer Networks

and ISDN Systems, 25:969{980, 1993.

[11] J.F. Groote. Speci�cation and veri�cation of real time systems in ACP In L.
Logrippo, R.L. Probert and H. Ural, editors, Protocol Speci�cation, Testing and

Veri�cation X, Ottawa, Canada, pages 261{274. North-Holland, 1990.

61

[12] J.F. Groote and J. van de Pol. A bounded retransmission protocol for large data
packets. In M. Wirsing and M. Nivat, editors, Algebraic Methodology and Software

Technology, LNCS 1101, pages 536{550. Springer-Verlag, 1996.

[13] J.F. Groote and A. Ponse. The syntax and semantics of �CRL. Report CS-R9076,
CWI, Amsterdam, The Netherlands, 1990.

[14] K. Havelund and N. Shankar. Experiments in theorem proving and model checking
for protocol veri�cation. In M-C. Glaudel and J. Woodcock, FME'96: Industrial

Bene�t and Advances in Formal Methods, LNCS 1051, pages 662{681. Springer-
Verlag, 1996.

[15] L. Helmink, M.P.A. Sellink, and F.W. Vaandrager. Proof checking a data link
protocol. In H. Barendregt and T. Nipkow, editors, Types for Proofs and Programs,
LNCS 806, pages 127{165. Springer-Verlag, 1994.

[16] T.H. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In
E. Brinksma et. al, editors, First Int. Workshop on Tools and Algorithms for

the Construction and Analysis of Systems (TACAS'95), LNCS 1019, pages 41{
71. Springer-Verlag, 1995.

[17] G.J. Holzmann. An improved protocol reachability analysis technique. Software

Practice and Experience, 18(2): 137{161, 1988.

[18] G.J. Holzmann. Design and validation of computer protocols. Prentice Hall, En-
glewood Cli�s, 1991.

[19] G.J. Holzmann. Design and validation of protocols: a tutorial. Computer Networks

and ISDN Systems, 25:981{1017, 1993.

[20] ITU-T. Recommendation Z.120: Message Sequence Chart (MSC). ITU - Telecom-
munication Standardization Sector, Geneva, Switzerland, 1996.

[21] H.E. Jensen, K.G. Larsen, and A. Skou. Modelling and analysis of a collision
avoidance protocol using Spin and Uppaal. BRICS Report Series RS-96-24, 1996.

[22] D.E. Knuth. Literate programming. The Computer Journal, 27(2):97{111, 1994.

[23] R. Mateescu. Formal description and analysis of a bounded retransmission proto-
col. In [6]. Also available as Technical Report no. 2965, INRIA, 1996.

[24] X. Nicollin and J. Sifakis. An overview and synthesis on timed process algebras. In
K.G. Larsen and A. Skou, editors, Computer Aided Veri�cation, CAV'91, LNCS
575, pages 376{398. Springer-Verlag, 1991.

[25] N. Ramsey. Literate programming simpli�ed. IEEE Software, 11(5):97{105, 1994.
Noweb is available at http://www.cs.virginia.edu/~nr/noweb/

62

[26] N. Shankar. Unifying veri�cation paradigms. In B. Jonsson and J. Parrow, editors,
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT'96), LNCS
1135, pages 22{40. Springer-Verlag, 1996.

[27] S. Tripakis and C. Courcoubetis. Extending Promela and Spin for real time. In
T. Margaria and B. Ste�en, editors, Second Int. Workshop on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS'96), LNCS 1055, pages 329{
348. Springer-Verlag, 1996.

[28] P. Wolper. Specifying interesting properties of programs in propositional temporal
logic. In Proceedings of the 13th ACM Symposium on Principles of Programming

Languages (POPL'86), pages 184{193, St. Petersburg Beach, Florida, January
1986. ACM.

63

