
A Stochastic Automata Model and its Algebraic Approach

Pedro R. D’Argenio1∗, Joost-Pieter Katoen2, and Ed Brinksma1

1Dept. of Computer Science. University of Twente.

P.O.Box 217. 7500 AE Enschede. The Netherlands.

{dargenio,brinksma}@cs.utwente.nl

2Lehrstuhl für Informatik VII. University of Erlangen.

Martensstrasse 3. D-91058 Erlangen. Germany.

katoen@informatik.uni-erlangen.de

Abstract

We discuss a new model for the analysis and simulation of stochastic systems which
we call stochastic automata. Basically, they are a combination of the timed automata
model and generalised semi-markovian processes (GSMPs for short). We discuss their
behaviour and we compare them to the GSMPs model. In addition, we define a stochastic
process algebra that supports general distribution (both continuous and discrete). Its
semantics is given in terms of stochastic automata. We show that stochastic automata
can be expressed in terms of the process algebra. We discuss a concrete example and we
finish by discussing our current work on the topic and possible future directions.

1 Introduction

In the world of performance modelling, many models have been defined to analyse and sim-
ulate systems such as queuing networks, stochastic Petri-nets, or generalised semi-markovian
processes. It has been argued many times that, in these kind of models, the difficulty of the
design and modelling of a system whose performance is studied rapidly grows with the size
and complexity of the system itself.

In the last few years, this phenomenon has drawn the attention of many researchers into
extending process algebras with stochastic and real-time features [15, 9, 11, 3, 6, 16]. Stochastic
process algebras, as they are usually called, considerably simplify the tractability of complex
systems because, in this framework, systems do not need to be modelled as a whole, but as a
composition of small subsystems. Another advantage is that stochastic process algebras not
only allow to study the performance of a system, but also its functionality.

In this paper, we introduce a new model to study stochastic systems that we named
stochastic automata. The stochastic automata model is an extension of the traditional au-
tomata model with ideas borrowed from timed automata [2, 12] and GSMPs [8, 25]. Basically,
a stochastic automaton is an automaton with clocks. Clocks are set randomly according to
an associated distribution function and their value decreases as time passes. The occurrence
of a transition at a certain time is controlled by the clocks. Each transition has associated a

∗Supported by the NWO/SION project 612-33-006.

1

set of clocks and it must take place as soon as all these clocks have expired, i.e., they have
decreased further than the value zero.

We use stochastic automata as the underlying semantics of a stochastic process algebra.
Actually, the stochastic automata model and the process algebra turn out to be equally ex-
pressive. In this way, the process algebra can be regarded as a language to describe stochastic
automata. This result closely follows the methodology of [7] where a process calculus for
timed automata was introduced.

Usually, the semantics of stochastic process algebras such as TIPP [9, 13], PEPA [15],
and EMPA [3], is defined in terms of extended transition systems, which, basically, have each
transition labelled not only with the action name, but also with a distribution function that
determines the timing of such a transition. But the inherent interleaving characteristic of
transition systems demands a careful treatment of the definition of parallel composition. In
traditional interleaving process algebras like CCS [18], it holds that

a;P || b;Q = a; (P ||b;Q) + b; (a;P ||Q)

Stochastic process algebras extend the prefixing into aF ;P where F is a distribution function
which determines the probability of the random delay after which the action a must happen.
In this setting, it is not generally true that

aF ;P || bG;Q = aF ; (P ||bG;Q) + bG; (aF ;P ||Q) (1)

since, in the left hand side process, the time of a and b starts to count from the same initial
moment, while in the right hand side process, the delay of one action starts to count after the
other action has already occurred. A possible first solution is to restrict the attention only to
exponential distributions. Their memoryless property restores the expansion law, i.e., in this
context, equation (1) holds [15, 13, 3].

An alternative solution was proposed in [6] by moving to true concurrency semantics,
where the expansion law is not longer generally true. The only restriction of this approach
is that the set of chosen distribution functions should form a monoid. The drawback of
this solution is that, even for very simple recursive processes, the underlying semantic object
(namely, a stochastic variation of an event structure) is infinite.

With our stochastic process algebra, we propose a more elegant solution. We separate
the stochastic information from the action name. (We should remark that a similar approach
has been used in [11].) Instead of writing aF ;P , we write {|xF |} ({xF }7→7→a;P). The operator
{|xF |} . . . sets the clock xF according to the distribution function F , and the operation
{xF }7→7→ . . . prevents the prefixing a;P to happen until clock xF has expired. In this setting
we can have an alternative expansion law:

{|xF |} ({xF }7→7→a;P) || {|yG|} ({yG}7→7→b;Q) =

{|xF , yG|} ({xF }7→7→a; (P || {yG}7→7→b;Q) + {yG}7→7→b; ({xF }7→7→a;P || Q))

In addition, this separation of concerns (setting of time according to a distribution function,
expiration of such a time, and actual activity) introduces more expressive power. We observe
that in principle any kind of (continuous or discrete) distribution function is allowed in this
model, while we maintain a finite the semantic object in a reasonable way (comparable to
regular processes in CCS).

2

The aim of this article is to introduce and discuss the stochastic automata model and
the general stochastic process algebra. Theoretical concerns will be discuss in deep in a
forthcoming report.

The paper is organised as follows. In Section 2, we introduce the stochastic automata
model. We discuss its behavioural properties and we informally discuss the underlying se-
mantics. In Section 3, GSMPs are shown to be properly included in the stochastic automata
model. The stochastic process algebra is introduced in Section 4. We discuss its intuitive
behaviour and define its semantics in terms of stochastic automata. Moreover, we show that
any stochastic automaton can be expressed by the process algebra. In Section 5, a non-trivial
example is introduced. We describe the CSMA/CD protocol in terms of our stochastic process
algebra. Finally, in Section 6, we conclude by discussing work in progress, future directions
of our research, and related work.

2 The Stochastic Automata Model

In this section, we introduce a kind of automaton that allows us to represent processes with
stochastic information. The basic idea is borrowed from timed automata [2, 12] but the idea
of the behaviour and compositionality (see Section 4) is mainly based on the approach of [26]
by combining it with ideas of discrete event systems, in particular GSMPs [8, 25].

First we enumerate all the ingredients of a stochastic automaton.

Definition 2.1 A stochastic automaton is a structure (S, s0, C,A, ✲, κ, F) where:

• S is a set of locations,

• s0 ∈ S is the initial location,

• C is a set of clocks,

• A is a set of actions,

• ✲ ⊆ S × (A ×℘(C)) × S is the set of edges. We usually denote (s, a, C, s′) ∈ ✲

by s
a,C
✲ s′ and we say that C is its trigger set ,

• κ : S → ℘(C) is the clock setting function,

• F : C → (IR → [0, 1]) assigns to each clock a distribution function such that F (x)(t) = 0
for t < 0; we write Fx instead of F (x).

Notice that each clock x ∈ C is a random variable with distribution Fx. ✷

As in [7], the information of which clock should be set is related to the locations instead of
the edges. This will be helpful for compositionality when we use stochastic automata as the
semantic interpretation of a process algebra (see Section 4). In stochastic automata, clocks
are randomly set according to a certain associated distribution function and they count down.
A clock expires if it has reached or decreased below the value 0. The occurrence of an action is

controlled by the expiration of clocks. Thus, whenever s
a,C
✲ s′ and the system is in location

s, a must happen as soon as all the clocks in the trigger set C have expired. Immediately

3

afterwards all clocks in κ(s′) are randomly set according to their respective distributions. The
idea of clocks that decrease in time is borrowed from GSMPs [8, 25] (see also Section 3).

For the reader familiar with timed automata model [2, 12] we may remark that constraints

are implicit in stochastic automata. On the one hand, guards on s
a,C
✲ s′ would be made

explicit by
∧

x∈C x ≤ 0 (we recall that clocks are counting down). That is, all the clocks that

trigger the edge s
a,C
✲ s′ should have expired. In this case, we say that s

a,C
✲ s′ is enabled.

On the other hand, the invariant of s would be ∀s
a,C
✲ .

∨

x∈C x > 0, which says that it
is allowed to idle in location s while no action is enabled. Notice that as soon as an edge
becomes enabled, the invariant becomes false; thus, the system must leave this location by
executing an enabled edge.

We give a simple example to understand the intuition of the model. Figure 1 represents
a switch that controls a light in a corridor or stairway. In the picture, circles represent
locations, variables enumerated in each location are the clocks that should be set according
to the function κ, and edges are represented by the arrows. The initial state is represented by
the small ingoing arrow. The distribution function of each clock is given beside the picture.

Figure 1: The switch

x xx, y
on

on, x

off , y

x : exp(λ)

Fy(t) =

{

0 if t < 60
1 if t ≥ 60

The switch may be turned on at any time according to an exponential distribution with
arrival rate λ, even if the light is still on. It switches automatically off exactly 60 seconds after
the most recent time the light was switched on. Since we considered that exact 60 seconds must
past before the light is turned off, y is a random variable that takes value 60 with probability
1. Notice that we can easily change the system to consider that clock y is not precise and has
a drift of ǫ units of time. We can assume that such a drift is uniformly distributed. Then, y
would become a random variable with uniform distribution in [60− ǫ, 60 + ǫ].

The semantics of a stochastic automata is given in terms of a probabilistic transition
system. We will not formally define the semantics of a stochastic automaton. Instead, we give
a flavour of the underlying semantic model. We define a kind of probabilistic transition system
in which we allow any kind of probability spaces, including thus continuous probabilities. We
consider separately probabilistic transitions and non-deterministic transitions. In this way,
our model is close to those of [10] and [11], although we do not distinguish between timed
transitions and discrete transitions. Instead, we use the approach of time-stamped actions.

Definition 2.2 Let Prob(H) denote the set of probability spaces (Ω,F , P) such that Ω ⊆ H.
A probabilistic transition system is a structure (Σ,Σ′, σ0,A× IR≥0, T,−→) where

1. Σ and Σ′ are two disjoint sets of states, with the initial state σ0 ∈ Σ. States in Σ are
called probabilistic states and states in Σ′ are called non-deterministic states.

4

2. A is a set of actions and IR≥0 is the set of non-negative real numbers. We write a(d)
for (a, d) (∈ A× IR≥0).

3. T : Σ → Prob(Σ′) is the probabilistic transition relation. Since T is defined as a (total)
function, there is exactly one probabilistic transition relation for each probabilistic state.

4. −→ ⊆ Σ′ × (A × IR≥0) × Σ is the labelled (or non-deterministic) transition relation.

We write σ′ a(d)
−→ σ for 〈σ′, a(d), σ〉 ∈ −→ and its intended meaning is that whenever the

system is in the non-deterministic state σ′, it can perform an action a at time d and
move to the probabilistic state σ. ✷

The probabilistic transition system of a given stochastic automaton would be defined
as follows. Suppose that the system arrives at a location s with the clocks having values
according to a valuation v. We identify this situation with a probabilistic state (s, v). As
soon as this location is reached, clocks in κ(s) are randomly set according to a distribution
function defining thus new valuations v′ where the clocks which are not in κ(s) preserve the
same value of v. Hence, this procedure defines a probabilistic transition and the elements of
the probability space defined by T (s, v) are the non-deterministic states (s, v′)′. (We take the
convention that non-deterministic states are primed to distinguish them from probabilistic

states.) Once the clocks are set, we calculate which is the first edge s
a,C
✲ s′ that becomes

enabled. So there will be a non negative real d ∈ IR≥0 such that, for all clock x ∈ C,
v′(x) − d ≤ 0, and at least a clock x ∈ C with v′(x) − d = 0. This will induce a labelled

transition (s, v′)′
a(d)
−→ (s′, v′ − d), where v′ − d is obtained by decreasing all the values in v′ by

d time-units. Notice that more than one edge can become enabled at the same time, in such
a case non-determinism arises.

To understand the formal semantics, we consider a simple example. Figure 2 represents an
alarm bell that rings randomly between 10 and 11 seconds according to a uniform distribution.
We write x : U11

10 to mean that x is a random variable with a uniform distribution function
Fx in the interval [10, 11].

Figure 2: The alarm bell

x x

ring x : U11
10

Its probabilistic transition system would be given by

Σ = {(s0, x := 0)} T (s0, x := 0) = (Σ′,F , P)

Σ′ = {(s0, x := d)′ | d ∈ [10, 11]} (s0, x := d)′
ring(d)
−→ (s0, x := 0)

where (Σ′,F , P) is the probability space in which F is some appropriate transformation of
the Borel space in IR (basically, a simple bijection) and P is the probabilistic measure for a
uniform distribution in the interval [10, 11].

5

3 Stochastic automata and GSMPs

The generalised semi-markovian process model (GSMP for short) [8, 25] is a general method
to analyse and simulate discrete-event systems. It has been shown to be an effective tool to
study complex and non-trivial systems.

Definition 3.1 A generalised semi-Markovian process (GSMP) is defined by the structure
(Z, z0, x0, C, η, ν, F) where

• Z is the set of (output) states, with initial state z0 ∈ Z;

• C is the set of clock events, with the initially triggered clock x0 ∈ C;

• η : Z → ℘(C), with η(z0) = {x0}, assigns a set of active clock events to each output
state;

• ν : Z × C → Z assigns the next state according to the current state and the clock that
is triggered; and

• F : C → (IR → [0, 1]) assigns to each clock a continuous distribution function such that
F (x)(0) = 0; we write Fx instead of F (x). ✷

We have restricted our attention to a subclass of GSMPs which is sufficient for our pur-
poses. In fact, the only significant restriction is that the next state function is deterministic.
That is, the next state is uniquely determined by the present state and the triggered clock
event. In general GSMPs, this function is probabilistic, i.e., the next state is going to be
chosen with certain probability from a set of states. Two other minor restrictions are con-
sidered. First, the assignment of a distribution function to a clock event may depend on the
history of the GSMP. In our framework, it only depends on the clock name. This is not a real
restriction since we can introduce as many clock events as necessary to represent the more
general GSMP. (Actually, each history of the general GSMP may become a clock event in
the reduced GSMP.) Second, sometimes clocks are allowed to have different rates. This is
not a usual choice, and moreover, under certain conditions, such “multirated” GSMPs can be
represented by GSMPs where the clock rates are all 1, just like our case.

We remark also that, usually, the initial state of a GSMP is studied apart. For simplicity,
we consider that the system has an initial state z0 and that it was reached by triggering
some clock x0. We defined η such that, for the initial case, it is consistent with the original
definition of GSMP.

A GSMP behaves as follows. Suppose that the system is in a certain state z. The active
clocks in η(z) will have some non-negative value and all other clock events (the inactive ones)
have value ∞. The active clock with the smallest value is chosen to be triggered. Say x is that
clock, and d its value. Notice that such a clock is unique with probability 1, since in GSMP
all the clocks are continuous random variables. The next state is given by ν(z, x). The set
of new clocks is given by η(ν(z, x))\(η(z)\{x}), i.e., the clocks active in the new state which
were not active before. All these new clocks are set according to their respective distribution
function given by F . The old clocks which are still active take as a new value the previous
value decreased d units of time (the value of x just before being triggered). Clocks which are
not active are set to ∞. In this new state with the new valuation, the process is repeated.

6

As for stochastic automata, we have also defined an operational semantics for GSMPs in
terms of probabilistic transition systems.

We show the relation between stochastic automata and GSMP by given a formal trans-
lation. This translation shows that the GSMP model is properly included in the stochastic
automata model.

Definition 3.2 Let G = (Z, z0, x0, C, η, ν, F) be a GSMP. The translation of G into a stochas-

tic automaton, is defined by M(G)
def
= (Z ×℘(C), (ν(z0, x0), ∅), C, C, ✲, κ, F) where ✲ is

defined by

x ∈ η(z)

(z, C)
x,{x}

✲ (ν(z, x), η(z)\{x})

and κ(z, C)
def
= η(z)\C. ✷

In the pair (z, C), C carries the information of which clocks were already active. No-
tice that there are much too many locations (z, C). In fact, the only “useful” (reachable)
locations have the format (ν(z, x), η(z)\{x}) for some appropriate z ∈ Z and x ∈ η(z).
This can be notice by observing the source of the edge defined in the rule of Definition 3.2
and that the initial state is (ν(z0, x0), ∅) = (ν(z0, x0), η(z0)\{x0}). Moreover, notice that
κ(ν(z, x), η(z)\{x}) = η(ν(z, x))\(η(z)\{x}), which is the set of new clock events in the out-
put state ν(z, x). Besides, for each active clock in the output state z, there is an output edge

from any location (z, C), that is, η(z) =
⋃

{x | (z, C)
x,{x}

✲}.
It is clear that a translation is not possible in general in the other way around since the

stochastic automata model not only allows a more general class of distribution function, but
also non-determinism is inherent to the model. We have proven that the translation given in
Definition 3.2 preserves probabilistic bisimulation equivalence.

4 A stochastic process algebra

In the following we introduce a stochastic process algebra. The methodology that we follow
to define the syntax and the semantics is close to results in [7] where a process algebra for
timed automata was introduced.

Let A be a set of actions. Let CN be a set of clock names and DF a set of distribution
functions. We define C

def
= CN ×DF to be the set of clocks. We denote xG for (x,G) ∈ C. We

define the distribution assignment function F : C → (IR → [0, 1]) by F (xG)
def
= G.

Definition 4.1 Let V a set of process variables. The syntax of the process algebra L is
defined according to the following grammar:

p ::= stop | a; p | C 7→7→p | p+ p | {|C|} p | p||Ap | p[f] | X

where C ⊆ C, a ∈ A, A ⊆ A, f : A → A, and X ∈ V. A recursive specification E is a set
of recursive equations having the form X = p(V) for each X ∈ V, where p(V) ∈ L. Every
recursive specification has a distinguished process variable called root . ✷

7

Process stop represents inaction; it is the process that cannot perform any action. The
intended meaning of a; p (named (action-)prefixing) is that action a must be performed as
soon as possible followed by the execution of p. C 7→7→p is the triggering condition; process
p is executed as soon as all the clocks in C have expired. p + q is the choice; it executes
the fastest of processes p and q, and if both of them become enabled at the same time,
the choice is made non-deterministically. The clock setting operation {|C|} p sets the clocks
in C according to their respective distribution function. We choose a LOTOS-like parallel
composition. Thus, p||Aq executes p and q in parallel, and they are synchronised by actions in
A. We should remark that synchronisation happens as soon as all the processes are ready to
do it. This happens straightforwardly by considering the union of the triggering sets. Finally,
the renaming operation p[f] is a process that behaves like p except that actions are renamed
by f . We will assume the following precedence among the operators: + < ||A < {|C|} =
C 7→7→ = a; < [f].

In the sequel, we need the notion of free and bound clock variables. Let p ∈ L. A clock
x is free in p if it has a subterm C 7→7→q such that x ∈ C which do not appear in a context
{|C ′|} . . . with x ∈ C ′. A clock x is bound in p if it has a subterm {|C|} q such that x ∈ C. We
denote by fv(p) and bv(p) the sets of free and bound clock variables respectively.

To each term in the language we associate a stochastic automaton. In order to define the
automaton associated to a parallel composition, we need to consider the additional operation
ck. ck(p) is a process that behaves like p except that no clock is set at the very beginning. We
only allow occurrences of ck within the scope of static operations, namely, parallel composition
and renaming operation. The sets of free and bounded variables for ck(p) are defined by
fv(ck(p)) = fv(p) ∪ κ(p) and bv(ck(p)) = bv(p), where κ is defined in Table 1.

To associate a stochastic automaton to a given term in the language, we need to define
the different parts of the stochastic automaton. We start by defining predicates κ and ✲

as the least relations satisfying rules in Table 1. However, not all the processes can have a
straightforward stochastic automaton as a semantic interpretation, as we see as follows.

Consider the process

p1 ≡ {|xG|} (a; {xG}7→7→({|xG, yH |} {yH}7→7→b; stop)) (2)

The second occurrence of xG is intended to be bound to the outermost clock setting as shown
by the grey arrow. Using the rules in Table 1, the following stochastic automaton would be
obtained

b, {xG, yH}a, ∅
xG

xG
yH

In this sense, xG would be captured by the innermost clock setting as shown by the black
arrow in formula (2). Therefore, we consider that clocks are different if they are set in different
places, although they may have the same name.

Situations of clock capture also occur in contexts with summations and parallel com-
position. Consider the process p2 ≡ {|xG|} {xG}7→7→a; stop + {|xG|} {xG}7→7→b; stop where G
is some continuous distribution function. p2 should not be considered equivalent to p3 ≡
{|xG|} ({xG}7→7→a; stop + {xG}7→7→b; stop). Intuitively, in p2, a and b are enabled at the same
time with probability 0 (i.e. is improbable to have a non-deterministic choice between a and
b), because the the clocks responds to different settings. Instead, our intuition says that the

8

Table 1: Stochastic automata for L (X = p ∈ E)

κ(stop) = ∅ κ({|C|} p) = C ∪ κ(p) κ(p+ q) = κ(p) ∪ κ(q)

κ(a; p) = ∅ κ(C 7→7→p) = κ(p) κ(p||Aq) = κ(p) ∪ κ(q)

κ(X) = κ(p) κ(p[f]) = κ(p) κ(ck(p)) = ∅

a; p
a,∅
✲ p

p
a,C
✲ p′

p+ q
a,C
✲ p′

q + p
a,C
✲ p′

p
a,C
✲ p′

X
a,C
✲ p′

p
a,C′

✲ p′

{|C|} p
a,C′

✲ p′

p
a,C′

✲ p′

C 7→7→p
a,C∪C′

✲ p′

p
a,C
✲ p′

p[f]
f(a),C

✲ p′[f]

p
a,C
✲ p′

p||Aq
a,C
✲ p′||Ack(q)

q||Ap
a,C
✲ ck(q)||Ap

′

a /∈ A

p
a,C
✲ p′ q

a,C′

✲ q′

p||Aq
a,C∪C′

✲ p′||Aq′
a ∈ A

p
a,C
✲ p′

ck(p)
a,C
✲ p′

process p3 always enables a and b at the same time because they respond to exactly the same
setting of the same clock. In a naive interpretation of p2, its associated automaton would
become isomorphic to that one of p3 which contradicts our intuition.

Similarly, an attempt to define the associated stochastic automaton of process p4 ≡
{|xG|} {xG}7→7→a; stop||∅{|xG|} {xG}7→7→b; stop, would unify the two independent clocks xG going
again against our intuition.

In this sense, we need to characterise the set of processes that do not have conflict of
variables. A process does not have conflict of variables if for every of its subterms p, the
following conditions holds:

1. p ≡ C 7→7→q implies C ∩ κ(q) = ∅

2. p ≡ q + q′ implies κ(q) ∩ κ(q′) = fv(q) ∩ κ(q′) = κ(q) ∩ fv(q′) = ∅

3. p ≡ q||Aq
′ implies bv(q) ∩ var(q′) = var(q) ∩ bv(q′) = ∅

Notice that all processes defined above have conflict of variable.

Definition 4.2 For all process p such that p does not have conflict of variable, the stochastic

automaton associated to p is defined by [[p]]S
def
= (L, p, C,A, ✲, κ, F). ✷

The restriction to processes which do not have conflict of variable is not an actual problem,
since we can always α-convert properly any process into one that does not have conflict of vari-
ables. For instance, p4 can be α-converted into {|xG|} {xG}7→7→a; stop||∅{|yG|} {yG}7→7→b; stop.
In this way, any process in the language has an associated stochastic automaton modulo
α-conversion.

9

The process algebra introduced below has the property of expressing any (finitely branch-
ing) stochastic automaton. The proof of the following theorem follows closely the ideas of a
similar theorem in [7].

Theorem 4.3 For every finitely branching1 stochastic automaton SA there is a guarded re-
cursive specification2 E with root X such that the reachable part of SA and the reachable part
of [[X]]S are isomorphic.

Proof (Sketch). The proof consists of associating a process variable to each location s of SA
and defining each one of them as the term that sets the clocks of κ(s) over the summation of
the outgoing edges represented by prefixings with its respective triggering sets as follows. Let
SA = (S,A, C, s0, ✲, κ, F). For each location s ∈ S define a different variable Xs. Define
the recursive specification E with root Xs0 and recursive equations

Xs = {|κ(s)|}
(

∑

{C 7→7→a;Xs′ | s
a,C
✲ s′}

)

where
∑

{pi | i ∈ {1, . . . , n}}
def
= p1 + p2 + · · ·+ pn. In particular,

∑

∅
def
= stop.

Now, we restrict SA and [[Xs0]]
S to their reachable parts, and the isomorphism is given by

the function that maps every location in SA into its corresponding variable in [[Xs0]]
S . ✷

5 An example: the CSMA/CD protocol

In this section we use the models introduced above to describe the carrier sense multiple access
protocol with collision detection (CSMA/CD). The CSMA/CD is widely used on LANs in the
multiple access control (MAC) sublayer, in particular, in the IEEE 802.3 standard based on
the well known Ethernet system (see [27] for more information). Formal verifications of this
protocol have been studied in [20, 10, 19].

The informal description of the protocol is as follows. When a station has data to send,
it first listens to the channel to check if there is some transmission at that moment. If the
channel is busy, the station waits a random amount of time and retries to transmit. When
the channel is idle, the station may transmit a frame. However, it could be the case that two
stations check at the same that the channel is idle and both of them start to transmit. This
would cause a collision of both transmissions. In this case the stations detect the collision and
abort their transmissions immediately. After waiting a random amount of time, the stations
try to transmit again the same frame.

The propagation delay of messages along the channels plays an important role. Before, we
said that “two stations can check at the same time that the channel is idle”. Of course this
situation is improbable. What actually happens is that one station starts to transmit and the
other checks the channel before the message has reached it. So, the second station “believes”
the channel is idle and transmits, which causes the collision.

We consider the propagation delay to be uniformly distributed between 0 and ∆, that is,
∆ is the maximal propagation delay. When a collision occurs the caused noise burst has to

1A stochastic automaton is finitely branching if for every location s, its set of outgoing arrows {s
a,C✲

s′ | a ∈ A, C ∈ C, s′ ∈ S} is finite.
2A process variable is guarded if all its occurrences appear in a context of a prefix. A recursive specification

E is guarded if X = p ∈ E implies that all process variables in p are guarded.

10

travel back to the original station, thus, in the worst case, 2∆ units of time will be need to
hear a collision. So, we model the waiting time to retry as a random variable distributed with
a uniform distribution between 0 and 2∆.

The station behaves as follows. Messages to be sent arrive in intervals distributed expo-
nentially3 with rate Λ. We denote this distribution function by FΛ. The station listens if
the channel is busy during a time uniformly distributed between 0 and a small δ before it
begins to transmit. If the channel is busy, the station waits randomly according to a uniform
distribution over [0, 2∆] before retry. Messages have a minimal redundancy that takes k units
of time to be transmitted and the duration of the rest is exponentially distributed with rate
λ. We denote F k

λ such a distribution function. If a collision occurs before the transmission is
completed, the station behaves just as if the channel were busy. In the following we model
the station. We abbreviate {|zF |} {zF }7→7→a;P by a(F);P provided xF /∈ fv(P). This is a
usual notation in stochastic process algebras. In addition, we write Ua

b to refer to a uniform
distribution function in the interval [a, b].

STATION = send(FΛ); START

START = busy ;RETRY + begin(U δ
0);TRANS

TRANS = end(F k

λ); STATION + cd;RETRY

RETRY = retry(U2∆
0); START

The channel behaves as follows. When it is idle, any station may begin. Once some
station begins to transmit, the signal will propagate along the channel within ∆ units of time.
Afterwards, all stations are able to listen a busy channel. We consider such a time to be
distributed according to a uniform distribution over [0,∆]. If some other station begins to
transmit before the propagation of the first signal is complete, a collision occurs. All the
stations will be able to listen such a collision within ∆ units of time (distributed uniformly).
Notice that some stations may interpret the collision just as a busy channel, since they may
have not started any transmission. After exactly ∆ units of time, every station has been able
to detect the collision. Notice that this time is not probabilistic (or with probability 1), so
we model it to be distributed according to the function

K∆(t)
def
=

{

0 if t < ∆
1 if t ≥ ∆

If the message is sent successfully, the end of the signal will take some time to be propagated,
which will keep the channel busy for a while. Such a time is distributed according to a uniform
in [0,∆]. The model of the channel is as follows. We assume i range between 1 and n, where
n is the amount of stations.

CHAN =
∑

i begini; INUSEi

INUSEi = safe(U∆
0);BUSY i

+
∑

i begini; {|x
1
U∆
0

, . . . , xn
U∆
0

, yK∆
|} CDETECT∅

BUSY i =
∑

j 6=i busyj ;BUSY i + endi; {|xU∆
0

|} REMANENCE

3Actually, we are not going to model this part neatly as a queue on top of the station, but we sloppily
include this information directly into the station specification.

11

REMANENCE =
∑

i busy i;REMANENCE + {xU∆
0

}7→7→ok;CHAN

CDETECTI =
∑

i begini;CDETECTI

+
∑

i/∈I{x
i
U∆
0

}7→7→
(

cdi;CDETECTI∪{i} + busy i;CDETECTI∪{i}

)

+
∑

i∈I busy i;CDETECTI

+{yK∆
}7→7→ok;CHAN

For all i ∈ {1,n}, we define the renaming function fi by fi(a) = ai for all a ∈ A. The
complete system is modelled by

SYSTEM =
(

STATION [f1] ||∅ · · · ||∅ STATION [fn]
)

||{busyi,cdi,begini,endi} CHAN

In Figures 3 and 4, we depict the station and the channel, respectively. We have omitted
the subindices of distribution functions. Instead we enumerate them beside the automata. In
particular, in the channel we have draw some grey coloured edges. Although they actually
appear in the channel and in the complete system, the reader may check that they cannot
happen, or better, they happen with probability 0.

6 Further discussions

Conclusions and further work. We introduced a new model to represent stochastic systems.
We have compared it to a useful model in performance analysis, namely GSMPs, and we
showed that GSMPs are properly contained in our model. In addition, we defined a stochastic
process algebra whose expressivity is richer than existing ones. We show that the process
algebra and its underlying semantic model, the stochastic automata, are equally expressive.

The direction of our current work is two fold. On the one hand, we address the study of
stochastic systems by using stochastic automata and, on the other, we study the compositional
properties of the stochastic process algebra and its axiomatisation.

Regarding the first direction, as it was already said, we have defined a semantics of stochas-
tic automata in terms of probabilistic transition systems. This semantics leads to an algorithm
for discrete event simulation. We use the notion of adversaries or schedulers [29, 24] to resolve
non-deterministic choices. Since parallel composition of stochastic automata can be easily
defined (actually, it is defined just like for the process algebra, see Table 1), the simulation
algorithm can compose the complete stochastic automaton on the fly, which reduces the state
space explosion problem. Although (probabilistic) adversaries allow to obtain a complete
probabilistic final model, the inclusion of them as a new ingredient is not that appealing since
it would require an additional effort when modelling systems. Because of that, our current
work is to characterise the set of stochastic automata in whose underlying transition system
every choice is resolved probabilistically.

Although simulation is a powerful tool from the performance point of view, analytical
methods are far more effective to study the correctness of a system. Usually errors are events
with low probability, so, the use of simulation may not guarantee that they are not present
or that their probability is low enough to be considered. Model checking has proven to be a
powerful and simple tool to verify timed systems. Some early papers like [1] have shown the
possibility of borrowing ideas from model checking on timed automata and applying them

12

Figure 3: The station in the CSMA/CD protocol

end, y

begin, x
y

cd
z

retry

z

x
send, w

w

z : U2∆
0

y : F k

λ

x : U δ
0

w : FΛ

busy

Figure 4: The channel in the CSMA/CD protocol

x1

x2

x2

begin1 begin2

busy2 begini

busy i

cd1

busy1

busy1

busy1

begini

busy2

cd2

cd2

busy2

begini begini

busy2

x x

x

safe

xcd2

x2

x1

busy1
cd1

cd1 x1

end1 end2
x

busy i

busy i

busy2

ok, x

ok, x

safe

busy1

begini

ok

y

begin2 begin1

x, xi : U
∆
0

ok, y ok, y
y

ok

xi, y

y : K∆

13

to stochastic systems. Our work will also address the use of model checking on stochastic
automata.

Regarding the process algebra, we are studying congruence results. Probabilistic bisim-
ulation turns out not to be a congruence. An easy example is as follows. Processes p1 ≡
a; stop+ {|xG|} {xG}7→7→b; stop and p2 ≡ a; stop+ {|xG|} {xG}7→7→c; stop (b 6= c) are probabilis-
tically bisimilar if G(0) = 0, since in both cases, only the action a at time 0 can be performed.
However, p1||{a}stop and p2||{a}stop are not bisimilar. In this context, the execution of action
a is preempted since there is no possible synchronisation, then b or c may happen (at a certain
time greater than 0). We are now studying a strictly finer relation which takes into account
potential activity of a given process. Besides, our current work also involves the study of
possible axiomatisations. We are not aiming to be complete with respect to some equivalence.
We expect to give a set of axioms that allows to reduce any process into some basic term
using the basic operation, namely, prefixing, summation, triggering, and clock setting. As we
have discussed in the introduction, we know it is possible to have an expansion law. In fact,
to obtain a finite axiomatisation of the parallel composition, we are considering to include the
additional operations, || A (left-merge) and |A (communication merge). The axiomatisation
resembles in many cases the work done in [7].

Related work on stochastic process algebra and discrete event simulation. In this paper
we established a link between stochastic process algebras and discrete-event simulation, in
particular the more formal model of GSMPs. To our knowledge the use of (a variation of)
GSMPs as a semantic model for stochastic process algebras is novel. Katoen et. al. [17]
indirectly used GSMPs as a semantic model: they map a non-Markovian stochastic process
algebra onto event structures, and obtain for a subclass of event structures (the so-called
stochastic deterministic ones) a GSMP. The intermediate model, event structures, has become
obsolete in our approach. In addition, for recursive processes infinite event structures are
obtained which makes the approach of [17] less suited for the use of efficient regenerative
simulation techniques. The finite representations we obtain do not suffer from this problem.

The relation between process algebras and discrete-event simulation models has been stud-
ied from several perspectives. Harrison & Strulo [11] developed a stochastic process algebra
to formally describe discrete-event simulation. They defined an operational semantics us-
ing action, timed, and probabilistic transition relations and developed notions like weak and
strong bisimulation (plus axiomatisations). Although their work is closely related to ours, our
model appears to be more intuitive and resembles more closely the conceptual ideas of realistic
simulation languages. In particular, measure theory comes in in our case when defining the
formal interpretation of stochastic automata, not directly in the semantics of the language.
Pooley [21] investigated the mapping of a high-level language for describing discrete-event sim-
ulation models, baptised extended activity diagrams, onto the timed process algebra TCCS
and the process-based simulation language DEMOS (Discrete-Event Modelling On Simula)
[4]. Using this framework Pooley is able to check certain properties of a model a priori to sim-
ulation, by analysing the (T)CCS specification. In this extensive work distribution functions
were neglected and the role of process algebra with respect to simulation is different from ours.
Tofts and Birtwistle use process algebras, basically CCS and its synchronous variant SCCS,
to provide a denotational semantics of DEMOS [5]. They focus on analysing properties like
absence of deadlock and livelock and do not consider timing aspects.

We conclude by mentioning some other approaches in the field of stochastic process alge-
bras dealing with non-exponential distributions. A partial-order semantics for such process

14

algebras was introduced by Brinksma et. al. [6]; this model was used in [17] to obtain GSMPs
as mentioned above. Priami [22] extended his stochastic extension of the π-calculus with
general distributions. He used operational semantics and basically decorated the transition
relation in such a way that causality information can be easily obtained from that in a post-
processing phase. To our knowledge no mapping onto a performance model has been given
yet. Herzog [14] used stochastic task graphs, a performance model for which efficient numeri-
cal analysis methods exist, as a semantic model of a (deterministic) process algebra. Finally,
we mention the recent work of Tofts [28] who uses a weighted synchronous version of CCS
(WSCCS) to represent general (discrete) distributions and compositions thereof. When fo-
cusing on bounded probabilities he shows how to perform certain performance assessments in
a compositional way.

References

[1] R. Alur, C. Courcoubetis, and D. Dill. Model-checking for probabilistic real-time systems. In
J. Leach Albert, B. Monien, and M. Rodŕıguez, editors, Proceedings 18th ICALP, Madrid, LNCS
510, pages 113–126. Springer-Verlag, 1991.

[2] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:183–235,
1994.

[3] M. Bernardo and R. Gorrieri. Extended markovian process algebra. In U. Montanari and V. Sas-
sone, editors, Proceedings CONCUR 96, Pisa, Italy, LNCS 1119 of pages 314–330. Springer-Verlag,
1996.

[4] G.M. Birtwistle. Discrete Event Modelling on Simula. MacMillan, 1979.

[5] G.M. Birtwistle and C. Tofts. Process semantics for simulation. Technical report, University of
Swansea, 1996.

[6] E. Brinksma, J.-P. Katoen, R. Langerak, and D. Latella. A stochastic causality-based process
algebra. The Computer Journal, 38(7):552–565, 1995.

[7] P.R. D’Argenio and E. Brinksma. A calculus for timed automata (Extended abstract). In B. Jons-
son and J. Parrow, editors, Proceedings of the 4th International School and Symposium on Formal
Techniques in Real Time and Fault Tolerant Systems, Uppsala, Sweden, LNCS 1135, pages 110–
129. Springer-Verlag, 1996.

[8] P.W. Glynn. A GSMP formalism for discrete event simulation. Proceedings of the IEEE, 77(1):14–
23, 1989.

[9] N. Götz, U. Herzog, and M.Rettelbach. TIPP - Introduction and application to protocol per-
formance analysis. In H. König, editor, Formale Beschreibungstechniken für verteilte Systeme,
FOKUS series. Saur Publishers, 1993.

[10] H.A. Hansson. Time and Probability in Formal Design of Distributed Systems, volume 1 of Real–
Time Safety Critical Systems. Elsevier, 1994.

[11] P. Harrison and B. Strulo. Stochastic process algebra for discrete event simulation. In F. Bacelli,
A. Jean-Marie, and I. Mitrani, editors, Quantitative Methods in Parallel Systems, Esprit Basic
Research Series, pages 18–37. Springer-Verlag, 1995.

[12] T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Information and Computation, 111:193–244, 1994.

15

[13] H. Hermanns and M.Rettelbach. Syntax, semantics, equivalences, and axioms for MTIPP. In
U. Herzog and M. Rettelbach, editors, Proc. of the 2nd Workshop on Process Algebras and Per-
formance Modelling, pages 71–87. University of Erlangen, July 1994.

[14] U. Herzog. A concept for graph-based stochastic process algebras, generally distributed activity
times, and hierarchical modelling. In Ribaudo [23], pages 1–20.

[15] J. Hillston. A Compositional Approach to Performance Modelling. Distinguished Dissertation in
Computer Science. Cambridge University Press, 1996.

[16] J.-P. Katoen. Quantitative and Qualitative Extensions of Event Structures. PhD thesis, Depart-
ment of Computer Science, University of Twente, April 1996.

[17] J.-P. Katoen, E. Brinksma, D. Latella, and R. Langerak. Stochastic simulation of event structures.
In Ribaudo [23], pages 21–40.

[18] R. Milner. Communication and Concurrency. Prentice-Hall International, 1989.

[19] X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into extended automata.
IEEE Transactions on Software Engineering, 18(9):794–804, September 1992.

[20] J. Parrow. Verifying a CSMA/CD-protocol with CCS. In S. Aggarwal and K. Sabnani, editors,
Protocol Specification, Testing, and Verification, VIII, Atlantic City, NJ, USA, pages 373–384.
North-Holland, June 1988.

[21] R.J. Pooley. Integrating behavioural and simulation modelling. In H. Beilner and F. Bause, eds,
Quantitative Evaluation of Computing and Communication Systems, LNCS 977, pages 102–116.
Springer-Verlag, 1995.

[22] C. Priami. Stochastic π-calculus with general distributions. In Ribaudo [23], pages 41–57.

[23] M. Ribaudo, editor. Proc. of the 4th Workshop on Process Algebras and Performance Modelling,
Torino, Italy, 1996. Università di Torino.

[24] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal of
Computing, 2(2):250–273, 1995.

[25] G.S. Shedler. Regenerative Stochastic Simulation. Academic Press, 1993.

[26] J. Sifakis and S. Yovine. Compositional specification of timed systems. In Proceedings of the
13th Annual Symp. on Theoretical Aspects of Computer Science, STACS’96, LNCS 1046, pages
347–359, Grenoble, France, 1996. Springer-Verlag.

[27] A.S. Tanenbaum. Computer Networks. Prentice-Hall International, third edition, 1996.

[28] C. Tofts. Compositional performance evaluation. In E. Brinksma, editor, Proceedings of the Third
Workshop on Tools and Algorithms for the Construction and Analysis of Systems, Enschede, The
Netherlands, LNCS 1217, pages 290–305. Springer-Verlag, April 1997.

[29] M.Y. Vardi. Automatic verification of probabilistic concurrent finite state programs. In 26th

Annual Symposium on Foundations of Computer Science, Portland, Oregon, pages 327–338. IEEE
Computer Society Press, 1985.

16

