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A b s t r a c t .  In [7], an algebra for timed automata has been introduced. In 
this article, we introduce a syntactic characterisation of finite timed au- 
tomata in terms of that process algebra. We show that regular processes, 
i.e., processes defined using finitely many guarded recursive equations, 
are as expressive as finite timed automata. The proof uses only the axiom 
system and unfolding of recursive equations. Since the proofs are basi- 
cally algorithms, we also provide an effective method to translate from 
one model into the other. 

1 I n t r o d u c t i o n  

In the last years, several formal techniques have been developed to specify and 
verify real-time systems. For instance, many well-known process algebras have 
been extended with features to manipulate t ime [8, 19, 16, 17, 4, 14, 5]. But  the 
apparently most successful approaches are timed and hybrid automata [2, 12, 1]. 
Both models have been related in [18, 11, 20, 9]. In [7] both approaches have 
been integrated and an algebra for t imed automata  has been introduced. The 
syntax extends Milner's CCS [15] with operations to manipulate clocks, namely, 
clock resettings, invariants, and guards. There, an equational theory has been 
proven to be sound with respect to timed bisimulation. Moreover, the process 
algebra happens to be as expressive as t imed automata.  However, in [7] timed 
automata  are not restricted in their amount of locations, edges or clocks. 

In this article, we give a syntactic characterisation of finite t imed automata,  
that  is, t imed automata  with finitely many locations, edges, and clocks. We 
show that  regular processes, i .e ,  processes defined using finitely many guarded 
recursive equations, are as expressive as finite t imed automata.  This connection 
is evident between CCS and labelled transition systems where regular processes 
are defined, either as those processes tha t  are equivalent to a finite labelled tran- 
sition system, or as those processes tha t  can be rewritten into guarded recursive 
equations. Anyway, both definitions happen to be equivalent. 

Although the relation between our process algebra and the timed automata  
model is not unexpected, its proof is rather far from being trivial, and moreover, 
we will find some surprising results in between. Basically, the problems appear 
because this process algebra has incorporated (clock) variables and the notion 
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of binding. Let us see some examples. In our language we represent the clock 
resettings by ~x~ p, the invariants by t b ~  p and the guards by r  where !b 
and r are some constraints on the clock variables. We notice that  the operation 
of clock resetting binds clock variables. For some expressions like 

Z={x~(x<_2)~(x>_l)~.Ca;g , ~ ~ a , z > _ l  

the respective t imed au tomata  is straightforwardly obtained. However, some 
other expressions do not have an obvious associated t imed automata.  For in- 
stance, in 

(1) 

a naive a t tempt  to associate a t imed automaton to X will derive in the one 
depicted on the right-hand side. However, this is not correct since the z in the 
invariant (x < 3) is not bound to the clock resetting that  follows. This illegal 
binding is shown by the arrow on the equation. Even less obvious is the following 
case, where 4p(x,y) and r y) are some constraints containing clock x and y. 

Y = (.~x~ r + (.~y~ d/)'(z,y)~--~b;Y) 

C2) 
In this expression, the x on the right-hand side of + should not be bound to 
the resetting on the left-hand side, and symmetrically for y. Compare with the 
naive associated t imed automaton depicted beside the equation. 

In this article, we show tha t  for each finite t imed automata  there is a regular 
recursive specification and vice versa. Moreover, we prove this by using only 
the axiom system and unfolding of recursive equations, which shows the power 
of the equational theory. It is also important  to remark tha t  all the proofs are 
basically algorithms, thus we are also providing an effective method to translate 
one model into the other. A remarkable corollary of these proofs is that  regular 
recursive specifications may need one clock less than t imed automata  in order 
to represent the same process. 

We should point out the related work [3] where a Kleene theorem for t imed 
automata  is presented. The language introduced there is shown to be as expres- 
sive as t imed au tomata  up to t imed trace equivalence. Instead, our approach 
preserves t imed bisimilarity. Although our work is perhaps less ambitious, our 
intention has been to emphasise on the connection of the t imed automata  theory 
with the process algebra and its equational theory. 

The rest of the article is organised as follows. Section 2 reviews the model of 
t imed automata.  In Section 3 we describe the process algebra of [7]. Section 4 is 
the core of this article and both relations are discussed and proven. 



143 
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main question answered in this paper in my visit to VERIMAG, in March 1996. 

2 T i m e d  A u t o m a t a  

We adopt the set ]R >~ of non-negative reals as time domain. A clock is a variable 
x ranging over a t ime domain ~>0 .  Let C denote a set of clocks. The set qi(C) 
of clock constraints over C is defined inductively by: 

r  t t  I x[]d [ z - y O d  I (CAsh) [ (-~b) 

where d E ]R >~ [] E {<,  >}, and x, y E C. The abbreviations if, z = d, z - y  < d, 
r V r etc. are defined as usual. Let var(~b) be the set of clocks occurring in r 

A (clock) valuation is a function v : C --~ ]R >~ Let  ~2 denote the set of valua- 

tions. Let C C C. We define v[C~0] as v[C~O](x) de f i f  ~g E C t h e n  0 else  v(x). 

Let d E IR >~ Define v + d as (v + d)(x) ~ f  v(x) + d. 
Given a valuation v, we say that  a formula ~b is satisfied in v, notat ion ~ v(~b), 

if the propositional formula obtained by replacing each occurrence of every clock 
x E C by its valuation v(x) becomes true. We say that  r  satisfied, notation 

r if and only ifVv E )2. ~ v(r We define the set ~(C) C ~(C) of past-closed 

constraints as r e ~(C) ~ (Vv E V, d E ~t >~ ~ (v + d)(r > ~ v(qt)). 
Notice that  this kind of constraints are such that  if they hold at t ime d, they 
hold at all d t < d. 

A t imed transit ion system is a labelled transition system that  includes in- 
formation about  the time. We adopt  the model of actions with time stamps 
following the style of [14] 

D e f i n i t i o n  1. Let A be a set of actions. A timed transition system (TTS) is a 
structure L = (,U, A x ]R >~ a 0 ,  >,LI) where 

�9 27 is a set of states, with the initial state ao E 27; 
�9 > C_ 27 x (A x ~t >~ x 27 is the transition relation; and 
�9 /2 _C IR- >~ x 27 is the until predicate. 

We write cr a(dl a '  iff (a, (a, d), o ~) E > and Lid(a) iff (d, a) E 12. In addition, L 
should satisfy the following axioms: 

U n t i l  Vd, d' e R >~ Lid(a) Ad'  < d ~ Lid,(a); 

D e l a y  Vd E ]R >~ (Ja' E 27. a a(dl a') ~ Lid(a). 0 

The intended meaning of a transit ion a a(al a t is tha t  a system which is in state 
a can change to be in s tate  s t by performing an action a at t ime d. Intuitively, 
Lid(a) together with axiom Unt i l ,  means tha t  a system can idle in a state a at 
least d units of times. Axiom D e l a y  states tha t  every t ime that  an action may 
occur in a s tate  a at t ime d, the system must be idling at tha t  time. 



144 

D e f i n i t i o n 2 .  Let Ld = (27~,A x R>~ ) ~,/gi), i E {1,2}, be two TTS. 
A timed bisimulation is a symmetric relation R with aolRao 2 satisfying, for all 
a(d) E A x ~t ->~ the following transfer properties: 

~(d) , 
1. if ffl-/~r2 and al  a(d~lo'~, then 3 ~  E ,~2. o'2---~2o'2 and a~Ra~; and 
2. i f a l R a 2 ,  then U~ial) r U2(a2). 

If such a relation exists, we say that  L1 and / , 2  are timed bisimilar (notation 
L1/-+ L2). [] 

We consider a slight variation of t imed safety automata  [12] as it was de- 
fined in [7]. It is straightforward to check tha t  both approaches have the same 
expressive power. 

De f in i t i on  3. A timed (sa/ety) automaton is a structure (S, A, C, so, ~, 0, ~) 
where: 

* S is a set of locations, with the initial location So E S; 
�9 C is a set of clocks; 
�9 D C_ S • A • ~(C) x S is the set of edges with labels in A; 
�9 0 : S -~ ~(C) is the invariant assignment function; 
�9 ~ : S -~ Pan (C) is the clock resetting function. 

Moreover, we say tha t  a t imed automata  is finite if it has finitely many locations, 
clocks and edges. [] 

In this case, (s, a, r s') E-"'~ (notation s ~ s') intuitively means that  when 
the system is in location s, it can change to be in location s ~ by performing an 
action a provided that  the clock constraint ~b holds. The clock resetting function 
states which clocks should be reset as soon as a location is reached. The invariant 
assignment function states that  the system can idle in location s as long as O(s) 
holds. Formally speaking, a t imed automaton can be interpreted as a TTS as 
follows. 

De f in i t i on  4. Let T = (S, A,  C, so, - " ~ ,  a,  ~) be a t imed automaton. Let v0 E ]) 
be any valuation. The interpretation of T with initial valuation v0 is given by 

the TTS ~ T ~  o def iS X V, flk X ~-->0,($0, V0) , .~ , / / )  where ~ and U are 
defined as the least sets satisfying the following rules: 

s a'r s' ~ (v[~;is)~0] + d)i~b A ais)) ~ (v[~is)~0] + d)ia(s)) 
, Ud(S,V) (s, i s ,  + d)) [] 

It is not difficult to check that  ~T]}~ o satisfies both axioms U n t i l  and Delay .  

3 A P r o c e s s  A l g e b r a  f o r  T i m e d  A u t o m a t a  

In this section we describe the process algebra introduced in [7, 6]. First, we 
introduce the basic syntax of the process algebra with recursion. Afterwards, we 
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describe the semantics in terms of t imed automata .  Finally, we introduce the 
axiom system. 

Syntaz. The language is an extension of  the basic CCS with operations to  deal 
with clocks. In [6], operators like parallel composition or hiding are also studied. 
For the purpose of this article, the basic language is sufficient. 

D e f i n i t i o n  5. Let A be a set of actions, let C be a set of clocks, and let V be 
a set of process variables. The language/~, is defined by the following grammar: 

p : : :  s t o p  I a;p I ~'~P I P + P  [ {C~p I ~b~p I X 

where a E A, ~b E @(C), ~ E @(C), C E Ptla(C), and X E V.  We refer to  the 
elements of L; as processes. 

A rccursive specification E is a set of recursive equations having the form 
X = p for each X E V,  where p E /;. Every recursive specification has a 
distinguished process variable called root. 0 

Process s t o p  represents inaction; it is the process tha t  cannot perform any 
action. The intended meaning of a;p (named (action-)prefizing) is tha t  action 
a can be performed at any t ime and then it behaves like p. ~b~p, the guarding 
operation, can perform any first action that  p can do whenever ~b holds. ~C~ p, 
the clock resetting operation, is a process tha t  behaves like p, but  resetting the 
clocks in C. We will often write { x l , . . . ,  x , ~  p instead of ~ { x l , . . . ,  xn}~ p. ~ht~p, 
the invariant operation, can idle while ~b holds or go on with the process p. p + q 
is the choice; it behaves either like p or q. The choice between p and q can be 
made only by actions, not by the passage of time. The meaning of a variable X 
depends on its definition in E .  Thus, ff X = p E E,  the behaviour of X is the 
same as p. 

For the sake of completeness, we remark that  a recursive specification defines 
only once each process variable (i.e. X = p, X = q E E implies p - q), and every 
variable tha t  occurs in the right-hand side of a recursive equation of  E is defined 
in E (i.e. if Y occurs in p and X = p E E,  then Y = q E E for some q E ~.) 

D e f i n i t i o n  6. Let  v : V --~ P(C) be a function tha t  assigns a set of clock 
variables to each process variable. Define fv v inductively as follows, 

  (stop) = r p) : 
= p) = vat(C) u rye(p) 
= mr(C) ua (p) = v ( x )  

(p + q) = a (p) u 

The function s : V -~ ~o(C), tha t  gives the set of free variables of a given 
process variable, is defined as the least fixed point of the function F defined by 
F(u) = AX.(v(X) U fv~(P)) provided that  X = p E E.  We extend the notion of 

free variables to every process p by defining fv(p) deal l~fv(~). [] 

Now fv can be calculated using the straightforward algorithm to obtain the least 
fixed point of the monotonic function F .  
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As we already remarked in the introduction, the term {C~ p binds clocks 
in C which occur free in p. Thus, we have to  avoid undesirable bindings and 
so, we would like to characterise the conflicting terms like (1) or (2). Let Kp 
be the union of all clock resettings in p which do not occur within the scope 
of a prefixing, i.e., a subterm a; q. For instance, if p = (~x~ a; ~y~ r  X) + 
({z[} Ct~ c; Y), then Kp = {x, z}. We say that  a term does not have conflict of 
variables f f there  is no subterm in it tha t  has conflict of variables and, f l i t  has the 
form p + q (respectively CrOp) then (fv(p) AKq) U (aev(q) AKp) = 0 (respectively 
vat(C) A Kp = 0). In this work we will generally assume processes which do 
not have conflict of variables. This assumption is harmless since we can always 
rename properly bound variables (i.e. to apply a-conversion) in order to avoid 
this problem. In [6] we s tudy a-conversion and conflict of variables extensively. 

D e f i n i t i o n  7. An occurrence of X is guarded in a term p E s f fp  has a subterm 
a; q such that  this occurrence of X is in q. A process variable X is guarded in 
p ff every occurrence of it is guarded. A term p is guarded ff all its process 
variables are guarded. A recursive specification E is strictly guarded ff the righ- 
hand side of every recursive equation in it is a guarded process, i.e., for all 
X = p E E,  p is guarded. A recursive specification E is guarded ff it can be 
rewritten into a strictly guarded recursive specification by properly unfolding 
the equations. (By "properly unfolding the equations" we mean that  whenever 
X = p E E and Y occurs unguarded in p, then we take the new specification 
E' = ( E \ { X  = p}) 0 { X  = p[Y/q]} provided that  Y = q E E.) 

A recursive specification E is regular if it is guarded, and defines finitely 
many recursive equations. [] 

Proposition 8. Let E be a recursive specification with process variables in V.  
Define the unguarded variable dependency graph G with nodes in V and edges 
X --~ Y iff Y is unguarded in X = p E E. Then E is guarded if and only if there 
is no infinite chain in G. 

Associated timed automata. We can associate a t imed automaton to a process 
according to the following definition. 

D e f i n i t i o n  9. Let p E s be a process without conflict of variables. The timed 
automaton associated to p is defined by ~v] = (s A, C,p, a , ~, ~) where ~, 
0 and ~ are defined inductively by the rules and equations in Table 1. [] 

Rules in Table 1 capture the bchaviour above described in terms of t imed 
automata.  In particular, it deserves to notice tha t  a process p + q can idle as 
long as one of them can. Thus a (p  + q) -~ > a(p) V a(q). Moreover, p + q can 
execute any action o f p  or q as long as it could be executed in its original process. 
Thus, since an action cannot be executed after the idling t ime is finished, we 
require tha t  for the execution of an action, the corresponding invariant must 
also hold. 

Notice tha t  a and a are not always well-defined in case of (unguarded!) 
recursion. For instance, take X -- (x < 1 ) ~  X,  then a and a are the completely 
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T a b l e  1. Associated timed automata (X = p e E) 

~(stop) = 0 
~(a;p) = 0 

~(p + q) = ~(p) O ~(q) 
~(~Cl} p) = C U ~(p) 
~ ( r  P) = ~(p) 
~ ( x )  = ~(p) 

O(s top)  = t t  
O(a;p) = t t  
O(r = O(p) 
O(p + q) = O(p) V O(q) 
o( ~c~ p) = o(p) 
0 ( r  p) = r ^ 0(p) 
a ( x )  = o(p) 

a ; p - ~ p  p ",~ p' p "-42p, 

p + q ~ p' p ~-4. p' p ~-C# p' 

q + p a.r p, x a,~ p, Ctl~ p a=2~ IY 

undefined functions because of nonterminating derivation. Nonetheless, we have 
the following proposition. 

P ropos i t i on  10. Let E be a guarded specification without conflict of variables, 
then every process variable defined in E has an associated timed automata. 

The proof of Proposition I0 follows by induction. In particular, notice that the 
definitions of s, 0 and ~ are not recursive for the base cases, namely stop 
and prefixing. 

We can define the semantics of a process in terms of TTS by first associating 
a timed automaton and then obtaining the interpretation of it in terms of TTS 
according to Definition 4. Thus, ~[P]])vo is the interpretation of p with initial 
valuation vo. Now, we can extend the notion of bisimilarity to processes: two 
processes p and q are bisimilar (notation p ~___ q) if for all valuations v0 E 11, 

~[P]])-o ++ [~q]])-o" 
Alternatively, the language has a direct semantics in terms of TTS that is 

equivalent (modulo bisimulation) to the semantics in two steps given above [7]. 
We do not present here such semantics since it is not relevant for obtaining the 
results in this article. Nonetheless, it is essential that the reader understands 
that this semantics defines a TTS for every guarded recursive specification, in- 
cluding those with conflict of variables. The crucial point of this is that it is not 
clear whether expressions like (1) and (2) have an associated timed automaton, 
although they have a clear meaning in terms of TTS. 

Aziom system. We introduce a set of axioms for the language described above. 
The axiom system is sound with respect to bisimulation. Since a-conversion 
implies bisimulation, we consider terms modulo a-conversion without loss of 
generality. 

Axioms in Table 2 could be explained as follows. Axioms A 1 - A 4  are the 
extension of the CCS axioms. A4 needs special care. Since in our model we 
consider time deadlock, it is not generally the case that s top is the neutral 
element for summation. However, it is a neutral element only for processes with 
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Table 2. Axioms for s (a,b E A, C C_ d, x,~ ~ d, 4,$' ~ O(C), ~, ~b' ~ ~(C), d ~ ~t >~ 

Stp  ff~--~a;p = stop 
A1 p + q = q + p  
A 2  

GO 
G1 
G2 
G3 
G 4  
G5 

I1 
I2 
I3 
I4 
I5 

R 1  
R 2  
R 3  
BA 

D 1  

D 2  

(p+ q) + r  = p +  (q+r)  

4v-~stop = s t o p  
t t ~ p  = p 
4.+(4'~+p) = (4 ^ 4 ' ) ~ p  

4 ~ @  + q) = 4 ~ p  + 4 ~ q  
t t l ~ p  = p 
~,~,, ( ~ ' ~  P) = (~ ^ ~ ' )~ ,  
~'~" (~Cl} P) = ~Cl  ( ~ , p )  
~,m p + -./,~, q = ,/,m ( p + q )  

.As 4 ~ p  + 4 ' ~ p  = (4 v 4'),"*p 

.As' ,/,~. p + ~,'~. p = (e  v ~,')m p 
A 4  a ; p + s t o p  = a ;p  

i f ,,ar(4) n C = 0 

~bt~ (4~-~a;p) + qttl~ (4'~-tb; q) = (t# V t#')t~, ((~ A 4)t-ta;p + (~b' A 4')~-r q) 

~cD p = p if c n ~ ( p )  = 0 
~]c u {y,=}D p = ~c  u {y}l} [ ~ ] p  
{eli. {C'l]. p = ~c  u c'D. p 
~]C[} p + {C'~. q = '~C~. (p -'1- q) 

4~'~a; ({Yl} P) = 4~"l'a; ('~Y} (= - Yr']d) I~ P) i f  ~ (4 ==~ (xl:3d)) and = =/= y 
4 ~ a ; p  = 4~a ;  ((= - ~rTd)m p) i f  ~ (4 =~ (= - ynd)) 

where [] E {_<,<,_>,>,=} 

unbound idling. S t p  states tha t  a prefixed process which does not satisfies its 
guard condition cannot proceed with its execution. Axioms GO-G5 state the 
way in which guards can be simplified. Notice that  they cannot be eliminated 
except in the case of t t .  In particular,  axioms G3 ,  G 4  and G 5  say how to move 
invariants, clock resettings and summations out of the scope of a guard. Similarly, 
axioms I I - I 5  state how to simplify the invariant operation. I3  says how to take 
clocks resettings out of the scope of an invariant, while I4 and I5 move the 
invariant out of the scope of a summation. R1  and R 2  eliminate redundant 
clocks. In particular, R2  implies tha t  it is always possible to  reduce the amount  
of clocks to be reset to at most one for each clock resetting operation. R 3  gathers 
all the clocks resettings in only one operation and R 4  moves clocks out of the 
scope of a summation. Finally, D1  and D2  state tha t  the difference between 
clocks is invariant and thus it could be "transported" along the execution. In 
particular, D1  explains how this difference is stated. 

The term [x~y]p, which appears in axiom R2,  is the renaming of the free 
occurrences of z by y in p. It is defined recursively on the structure of p in the 
obvious way, although for process variables it needs an additional explanation. 
Given a recursive equation X = p, [z~y]X is a 'new' process variable Y defined 
by the equation Y = [z~y]p.  Thus, given a recursive specification E,  we will 
usually need to extend it if axiom R 2  is applied. 

T h e o r e m  l l .  [6] The axiom system of Table ~ is sound modulo bisimilari~y. 
That is, for all p, q E s if p = q is deduced by means of equational reasoning 
using a-conversion and azioms in Table ~, then p ~___ q. 
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4 R e g u l a r  P r o c e s s e s  a n d  F i n i t e  T i m e d  A u t o m a t a  

In this section we show that  there exists a strong connection between finite t imed 
au tomata  and regular recursive specifications. We show indeed that  not only any 
finite t imed au tomata  can be expressed by a regular specification, but  also that  
a regular specification always defines a finite t imed automaton up to bisimilarity. 
But,  what is more interesting in this last case is tha t  the axiom system together 
with unfolding of equations is enough to prove that  fact 2. 

Although the case of obtaining a regular recursive specification from a finite 
t imed au tomata  seems to be intuitively clear, it is not the same in the case in 
the other way around due to processes tha t  have conflict of variables. Let us 
recall the examples of the introduction. Notice that  for the equation 

x = (= < (= < a ; x  (1) 

the x in (z < 3) should not be bound to the resetting that  follows it. Thus, the 
associated t imed au tomaton  is not obvious. Neither it is for the case of 

Y = (~z~ $(z,  y )~a;  Y)  + (~V~ (b'(~:, v)~b;  Y)  (2) 

We can t ry  to calculate tz(Y) = {x, y}, but  this is not correct since we may bind 
some free occurrences of �9 and y. By the t ime being, we expect to have motivated 
the reader and make h im/her  wonder about  the associated t imed automata  of 
such equations. We will come back later  to these examples. 

From finite timed automata to regular recursive e~ressions. In this paragraph 
we recall the result already presented in [7]. In particular we study there a larger 
class of t imed automata.  We will mimic that  result for the class of finite t imed 
automata.  First, we define the notion of symbolically reachable. A state s is 
symbolically reachable if there is a sequence of edges from the initial state So to 

s, i.e., there are a l , . . . , a n ,  ~bl,...,~bn and s l , . . . , s n  (n > 0) such that  s0 at-t~ 

Sl . . .  a.,~. sn = s. The  (symbolically) reachable part of a t imed automaton T is 
the same t imed automaton restricted to the set of states that  are reachable. 

T h e o r e m  12. For every finite timed automaton T there is a regular specifica- 
tion E with root variable Xso such that the reachable parts o.f T and [Xso] are 
isomorphic. As an immediate consequence T and [Xso] are bisimilar. 

Proof (Sketch). We associate a process variable to  each state s of T and define 
each one of them according to  ~(s), O(s) and the outgoing edges from s as follows. 
Let T = (S, A, C, so, t ,  0, n). For each state s E S define a different variable 
X~. Define the recursive specification E with root X ,  o and recursive equations 

= (E Is ~ s'}) 

2 Actually, axioms D1 and D2 are not necessary. 
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where )--~{Pi ] i �9 {1 . . .  n}} de__f Pl + 1~ + " "  + Pn. In particular, ~ r de=f stop. 
Now, we restrict T and IX, o] to their reachable parts, and the isomorphism is 

given by the function that  maps every state in T into its corresponding variable 
in D 

From regular recursive expressions to finite timed automata. In this paragraph, 
we show how to come up with a timed automaton from a given regular recursive 
expression. We use the following strategy to construct the timed automata.  First, 
we rewrite the recursive specification into a new one such that  each variable, 
according to the new definition, can execute at most one action and move to 
another variable. We say tha t  this specification is in one-step normal form. The 
second step translates this last specification into a reeursive specification that  
trivially resembles a t imed automaton. We say that  this last specification is in 
TA-norraal form (TA stands for "Timed Automata") .  

De f in i t i on  13. A guarded recursive specification E is in one-step normal form 
if for every X = p �9 E,  p is in the language defined by the following grammar, 

p : : =  s t o p  I a;X  I 4)~P I P + P  I ~C~ p I Ct~ p 

where a �9 A, 4) �9 ~(C), r �9 ~(g), C C_ C, and X �9 V. i3 

L e m m a  14. Any regular recursive specification can be rewritten into a one-step 
normal form. 

Proof. The proof follows by adding new process variables, and folding and un- 
folding when needed. We do that  in two steps. First, we reduce the original 
specification E0 into a new specification E0 such that  no prefixing occurs in the 
scope of another prefixing. That  is done by creating new reeursive equations. 
In the second step, E0 is taken into one-step normal form by unfolding all the 
variables that  occur unguarded. 

Let Eo be a regular recursive specification. Let size(p) be the number of 
symbols in p which are not process variables. Choose, if it exists, X = p E Eo 
such that  p has an occurrence a; q where q is not a process variable and size(p) > 
size(r) for all Z = r E E0, i.e., p is maximal according to size. Choose a fresh 
process variable Y and define p' to be p with the occurrence of a; q replaced by 
a; Y. Define 

E1 def (Eo\{X = p}) U {X = p', r = q} 

Clearly E1 represents the same process than Eo. Repeat the process until there 
is no occurrence of a; q with q as before. The algorithm terminates since the 
function (MAX(Ei), # { X  = p E Eil size(p) = MAX(Ei)}) strictly decreases in 
each iteration according to the lexieographical order. We have taken MAX(Ei) = 
max{size(p)[ X = p E E i )  

Let E0 be the output  of the previous algorithm. Clearly, E0 is also a regular 
specification. Notice that  for every equation X = q E Eo, by construction, q is 
in the language defined by the grammar 

p : : =  s t o p  I a ; S  I 4)~P l P + P l {C~ p l r  l X 
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that  is, q is "almost" in one-step normal form since it still can have unguarded 
variables. Construct the unguarded variable dependency graph Go according to 
Proposit ion 8, which implies tha t  Go does not have infinite path and hence, it 
is acyclic. Chose a leaf Y in Go with Y = q �9 Eo. For every X = p E Eo such 
that  X -4 Y define p' to be p with every unguarded occurrence of Y replaced 
by q. Define 

E1 de f (E0 \  U { X  ~-- P I X --~ Y}) U U { X  = p' ] x -4 Y} 

Notice that  the unguarded dependency graph G1 of E1 is the same as Go where 
all edges X -4 Y were removed. So we can repeat the process and the algorithm 
eventually terminates since the amount  of edges is strictly decreasing in each 
iteration. 

It is easy to  check that  the output  of this last algorithm is a recursive speci- 
fication in one-step normal form. [] 

D e f i n i t i o n  15. A recursive specification E is in TA-normal form if it is regular 
and for every X = p E E,  p has the form 

where I is a finite index set, r �9 ~(g) ,  x �9 g, and for all i �9 I ,  a~ �9 A, r �9 ~(r  
and X~ E V. [] 

Notice that  a recursive specification in TA-normal form represents a finite 
t imed automaton.  Notice tha t  each variable represents a location and for each 
of them we have defined only one resetting and one invariant. Moreover, the 
summation defines the outgoing edges labeUed with the respective guard and 
action. (See the proof of Theorem 12.) 

T h e o r e m  16. Any regular specification can be rewritten into a TA-normal form 
by using foldings, unfoldings, renaming of clock variables and axioms in Table ~. 

Proof. Let E be a regular specification with root X0. Because of Lemma 14, 
we may assume that  E is already in one-step normal form. Let E '  be the re- 
cursive specification defined as follows. For every process variable X defined in 
E with free variables s = { x l , . . . ,  x•}, define a process variable Xz~ ..... x. .  
Obviously, such a relation is an injection. Now, for every X = p E E define 
X=I ..... =. = p'  E E '  where p'  is the same as p but  with all process variables 
replaced by their  respective images. Define the root  of E t as the image of Xo. 
So, E '  is the same as E with the names of the process variables changed. 

We will need to consider renaming of clock variables. We do that  in the 
expected way, except tha t  in the ease of process variables, instead of propagating 
the renaming in the definition of the variable, we will just  rearrange the subindex. 
Thus, 

[ x i ~ - ~ y ] X x l  ..... x ,  . . . . .  x,~ dee - ~ x l  . . . . .  y . . . . .  x n  ( 3 )  
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In such a case, we need to consider an extended set of process variables. Let C be 
the set of clocks occurring in E (or similarly, in E'). Let ~ r C be a new clock. 
Let V be the original set of process variables defined in E.  We define 

V '  d_ef ~X - ~ =,  ... . .  = .  I x e v ^ n = # r v ( x )  ^ vi  e {1 , . . . ,  n}. xi E C U {~}} 

From now on, we will denote with X, X i , . . .  the variables in V' .  The necessity 
of the new clock �9 will be clear in the following calculations, since sometimes we 
will need to chose a fresh clock variable. 

For each Xzl ..... x, : P E E '  we proceed by induction according to Defini- 
tion 13. More precisely, we will show that  p has the form 

(Here ~ - ~ I  P~ abbreviates ~-~{p~ ] i E I}.) We calculate the more representative 
cases. They are summation and clock resetting. 

Case p + q. By induction hypothesis, assume p = ~ ~ ,  ~-~i~i ~ b ~ a i ; X i  and 
q ~ [ }  r  , . -  = Eje j r  I f I #  r and J #  r then 

I 

A1,2,~ 

The other cases are similar, but we should take into account that  ~ r  = 
{ ~  r ff~-~a; Z for some a E A and Z E V' .  

Case ~C~ p. By induction hypothesis assume p = { ~  ~bI~ ~-~e~ ~b~-~a~;X~. 
Then 

Now, the obtained recursive equations are in TA-normal form, i.e., 

x ~ l  ..... ~ .  = ~ r  ~ r  (4) 
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However, we have been a bit sloppy since now we have a lot of process variables 
which have not been defined. They  come from Case ~C} p when we had to 
rename clock variables by applying axiom R2 .  We axe going to define those 
variables. 

Suppose tha t  the variable Xu~ ..... ~. is undefined. We define it as the appro- 
priate renaming of Xz~ ..... =. already defined in (4). First, notice that  for each 
equation like (4) we need n + 1 clock variables: n is the amount  of free variables 
and the other one is the clock resetting of~.  Now, suppose tha t  some ofyx, �9 �9 yn 
axe ~, so there must be a clock ~ not in {Yl , . . . ,  Yn}- If none of Yx,-. . ,  yn is ~, 
then we take y = 2. Now, X ~  ..... u. is defined as follows 

x ~  ..... ~. = f f~  ( [ x ~ y ] r  E~c~([X~yl~)~*a~;[x~y]X~ (5) 

where [ X ~ y ]  is the simultaneous substitution [a:x~y~, . . . ,  z , ~ y = , ~ - ~ ] .  This 
last recursive specification tha t  extends E '  by defining all variables in V '  and 
has as a root variable the image of X ~ is equivalent to  E and is in TA-normal 
form. [3 

As an example of the proof of Theorem 16, we will t ranslate the reeursive 
equation (2) into TA-normal form. First  we define the new equation 

Y=,y = (~z~ ~(a~,y)~.4a;Yx,y) q- (~y~ qb'(z,y)~--~b;Y~,u ) 

according to  the first par t  of the proof. We consider a new clock z and hence 
V '  = {Y~,~ I u, v E {x, y, z}}. Following the inductive deduction, we calculate 

Y,,u = (~z} ~b(~, y)~-~(~z} t t t ~  tt~-~a; Y-,u)) 

+(~y} ~'(z, y)~(~z} ttt~ tt~b; Y.,~)) 

= {z} ttt~ (r y)~a; Yz,~ + 4J(~, z)~b; Y.,~) 

Now, according to (5), we can calculate, for instance 

Y~,= = ~y} t t ~  (dp(y,x)~a;Yy,, + dp'(z,y)~b;Y~,u) 

Notice that ,  in this case, variables Y=,=, Yy,u, and Y~,z are redundant,  i.e., never 
reached from the root. At this point the reader should not find difficulties to check 
that  the associated t imed automaton is the one depicted in Figure 1. Locations 
axe represented by circles. ~ and 0 are respectively written in the upper and 
lower part  of the circle, and edges are represented by the arrows. 

Since any regular specification can be rewritten into TA-normal form accord- 
ing to Theorem 16, and any recursive specification in TA-normai form defines 
trivially a finite t imed automata,  as it was already observed, we obtain the fol- 
lowing corollary. 

C o r o l l a r y  17. Any regular recursive specification can be proven bisimilar to a 
finite timed automaton. 
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Fig. 1. Y = (~x~ ~(z,y)~-+a;Y) + (~y~ ~'(z,y)~-~b;Y) 

b, r b, r (y, z) 

As a second corollary we have that  the same expressive power of the t imed 
automata  is preserved if we restrict to those automata  that  reset only one clock 
in each location, i.e., #~ ( s )  _< 1. So, by Theorem 12, Theorem 16 and the ob- 
servation after Definition 15, we have: 

C o r o l l a r y  18. Every finite timed automaton T is bisimilar to some finite timed 
automaton T r such that at most one clock is reset in every location of T ~. 

A detail to remark is tha t  regular specifications may need fewer clocks than 
finite t imed au tomata  in order to represent the same process. A clear example 
showing that  fact is the expression (1) given above. The corresponding t imed 
automaton is depicted in Figure 2. Notice that  both clocks x and y are necessary. 

a, t t  

a, t t  

However, we have the interesting result that ,  for going from a regular specifi- 
cation to a finite t imed automaton,  we need to add at most one new clock. This 
follows from the observation that  in Lemma 14 we do not modify the set C and 
to prove Theorem 16 we only require to consider only one extra clock. Thus, we 
have proved the following. 

C o r o l l a r y  19. Let E be a regular recursive specification with clocks in C. Then, 
there exists a finite timed automaton T with clocks in C I such that T can be 
proven bisimilar to E and #C ~ <_ 1 + #C 
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