
Regular Processes and Timed Automata*

Pedro R. D'Argenio

Dept. of Computer Science. University of Twente.
P.O.Box 217. 7500 AE Enschede. The Netherlands.

dargenio@cs, utwente.nl

A b s t r a c t . In [7], an algebra for timed automata has been introduced. In
this article, we introduce a syntactic characterisation of finite timed au-
tomata in terms of that process algebra. We show that regular processes,
i.e., processes defined using finitely many guarded recursive equations,
are as expressive as finite timed automata. The proof uses only the axiom
system and unfolding of recursive equations. Since the proofs are basi-
cally algorithms, we also provide an effective method to translate from
one model into the other.

1 I n t r o d u c t i o n

In the last years, several formal techniques have been developed to specify and
verify real-time systems. For instance, many well-known process algebras have
been extended with features to manipulate t ime [8, 19, 16, 17, 4, 14, 5]. But the
apparently most successful approaches are timed and hybrid automata [2, 12, 1].
Both models have been related in [18, 11, 20, 9]. In [7] both approaches have
been integrated and an algebra for t imed automata has been introduced. The
syntax extends Milner's CCS [15] with operations to manipulate clocks, namely,
clock resettings, invariants, and guards. There, an equational theory has been
proven to be sound with respect to timed bisimulation. Moreover, the process
algebra happens to be as expressive as t imed automata. However, in [7] timed
automata are not restricted in their amount of locations, edges or clocks.

In this article, we give a syntactic characterisation of finite t imed automata,
that is, t imed automata with finitely many locations, edges, and clocks. We
show that regular processes, i .e , processes defined using finitely many guarded
recursive equations, are as expressive as finite t imed automata. This connection
is evident between CCS and labelled transition systems where regular processes
are defined, either as those processes tha t are equivalent to a finite labelled tran-
sition system, or as those processes tha t can be rewritten into guarded recursive
equations. Anyway, both definitions happen to be equivalent.

Although the relation between our process algebra and the timed automata
model is not unexpected, its proof is rather far from being trivial, and moreover,
we will find some surprising results in between. Basically, the problems appear
because this process algebra has incorporated (clock) variables and the notion

* Supported by the NWO/SION project 612-33-006.

142

of binding. Let us see some examples. In our language we represent the clock
resettings by ~x~ p, the invariants by t b ~ p and the guards by r where !b
and r are some constraints on the clock variables. We notice that the operation
of clock resetting binds clock variables. For some expressions like

Z={x~(x<_2)~(x>_l)~.Ca;g , ~ ~ a , z > _ l

the respective t imed au tomata is straightforwardly obtained. However, some
other expressions do not have an obvious associated t imed automata. For in-
stance, in

(1)

a naive a t tempt to associate a t imed automaton to X will derive in the one
depicted on the right-hand side. However, this is not correct since the z in the
invariant (x < 3) is not bound to the clock resetting that follows. This illegal
binding is shown by the arrow on the equation. Even less obvious is the following
case, where 4p(x,y) and r y) are some constraints containing clock x and y.

Y = (.~x~ r + (.~y~ d/)'(z,y)~--~b;Y)

C2)
In this expression, the x on the right-hand side of + should not be bound to
the resetting on the left-hand side, and symmetrically for y. Compare with the
naive associated t imed automaton depicted beside the equation.

In this article, we show tha t for each finite t imed automata there is a regular
recursive specification and vice versa. Moreover, we prove this by using only
the axiom system and unfolding of recursive equations, which shows the power
of the equational theory. It is also important to remark tha t all the proofs are
basically algorithms, thus we are also providing an effective method to translate
one model into the other. A remarkable corollary of these proofs is that regular
recursive specifications may need one clock less than t imed automata in order
to represent the same process.

We should point out the related work [3] where a Kleene theorem for t imed
automata is presented. The language introduced there is shown to be as expres-
sive as t imed au tomata up to t imed trace equivalence. Instead, our approach
preserves t imed bisimilarity. Although our work is perhaps less ambitious, our
intention has been to emphasise on the connection of the t imed automata theory
with the process algebra and its equational theory.

The rest of the article is organised as follows. Section 2 reviews the model of
t imed automata. In Section 3 we describe the process algebra of [7]. Section 4 is
the core of this article and both relations are discussed and proven.

143

A c k n o w l e d g e m e n t s . I would like to thank Ed Brinksma for his valuable sug-
gestions. I am grateful to Ahmed Bouajjani and Joseph Sifakis who posed the
main question answered in this paper in my visit to VERIMAG, in March 1996.

2 T i m e d A u t o m a t a

We adopt the set]R >~ of non-negative reals as time domain. A clock is a variable
x ranging over a t ime domain ~>0 . Let C denote a set of clocks. The set qi(C)
of clock constraints over C is defined inductively by:

r t t I x[]d [z - y O d I (CAsh) [(-~b)

where d E]R >~ [] E {<, >}, and x, y E C. The abbreviations if, z = d, z - y < d,
r V r etc. are defined as usual. Let var(~b) be the set of clocks occurring in r

A (clock) valuation is a function v : C --~]R >~ Let ~2 denote the set of valua-

tions. Let C C C. We define v[C~0] as v[C~O](x) de f i f ~g E C t h e n 0 else v(x).

Let d E IR >~ Define v + d as (v + d)(x) ~ f v(x) + d.
Given a valuation v, we say that a formula ~b is satisfied in v, notat ion ~ v(~b),

if the propositional formula obtained by replacing each occurrence of every clock
x E C by its valuation v(x) becomes true. We say that r satisfied, notation

r if and only ifVv E)2. ~ v(r We define the set ~(C) C ~(C) of past-closed

constraints as r e ~(C) ~ (Vv E V, d E ~t >~ ~ (v + d)(r > ~ v(qt)).
Notice that this kind of constraints are such that if they hold at t ime d, they
hold at all d t < d.

A t imed transit ion system is a labelled transition system that includes in-
formation about the time. We adopt the model of actions with time stamps
following the style of [14]

D e f i n i t i o n 1. Let A be a set of actions. A timed transition system (TTS) is a
structure L = (,U, A x]R >~ a 0 , >,LI) where

�9 27 is a set of states, with the initial state ao E 27;
�9 > C_ 27 x (A x ~t >~ x 27 is the transition relation; and
�9 /2 _C IR- >~ x 27 is the until predicate.

We write cr a(dl a ' iff (a, (a, d), o ~) E > and Lid(a) iff (d, a) E 12. In addition, L
should satisfy the following axioms:

U n t i l Vd, d' e R >~ Lid(a) Ad' < d ~ Lid,(a);

D e l a y Vd E]R >~ (Ja' E 27. a a(dl a') ~ Lid(a). 0

The intended meaning of a transit ion a a(al a t is tha t a system which is in state
a can change to be in s tate s t by performing an action a at t ime d. Intuitively,
Lid(a) together with axiom Unt i l , means tha t a system can idle in a state a at
least d units of times. Axiom D e l a y states tha t every t ime that an action may
occur in a s tate a at t ime d, the system must be idling at tha t time.

144

D e f i n i t i o n 2 . Let Ld = (27~,A x R>~) ~,/gi), i E {1,2}, be two TTS.
A timed bisimulation is a symmetric relation R with aolRao 2 satisfying, for all
a(d) E A x ~t ->~ the following transfer properties:

~(d) ,
1. if ffl-/~r2 and al a(d~lo'~, then 3 ~ E ,~2. o'2---~2o'2 and a~Ra~; and
2. i f a l R a 2 , then U~ial) r U2(a2).

If such a relation exists, we say that L1 and / , 2 are timed bisimilar (notation
L1/-+ L2). []

We consider a slight variation of t imed safety automata [12] as it was de-
fined in [7]. It is straightforward to check tha t both approaches have the same
expressive power.

De f in i t i on 3. A timed (sa/ety) automaton is a structure (S, A, C, so, ~, 0, ~)
where:

* S is a set of locations, with the initial location So E S;
�9 C is a set of clocks;
�9 D C_ S • A • ~(C) x S is the set of edges with labels in A;
�9 0 : S -~ ~(C) is the invariant assignment function;
�9 ~ : S -~ Pan (C) is the clock resetting function.

Moreover, we say tha t a t imed automata is finite if it has finitely many locations,
clocks and edges. []

In this case, (s, a, r s') E-"'~ (notation s ~ s') intuitively means that when
the system is in location s, it can change to be in location s ~ by performing an
action a provided that the clock constraint ~b holds. The clock resetting function
states which clocks should be reset as soon as a location is reached. The invariant
assignment function states that the system can idle in location s as long as O(s)
holds. Formally speaking, a t imed automaton can be interpreted as a TTS as
follows.

De f in i t i on 4. Let T = (S, A, C, so, - " ~ , a, ~) be a t imed automaton. Let v0 E])
be any valuation. The interpretation of T with initial valuation v0 is given by

the TTS ~ T ~ o def iS X V, flk X ~-->0,($0, V0) , .~ , / /) where ~ and U are
defined as the least sets satisfying the following rules:

s a'r s' ~ (v[~;is)~0] + d)i~b A ais)) ~ (v[~is)~0] + d)ia(s))
, Ud(S,V) (s, i s , + d)) []

It is not difficult to check that ~T]}~ o satisfies both axioms U n t i l and Delay .

3 A P r o c e s s A l g e b r a f o r T i m e d A u t o m a t a

In this section we describe the process algebra introduced in [7, 6]. First, we
introduce the basic syntax of the process algebra with recursion. Afterwards, we

145

describe the semantics in terms of t imed automata . Finally, we introduce the
axiom system.

Syntaz. The language is an extension of the basic CCS with operations to deal
with clocks. In [6], operators like parallel composition or hiding are also studied.
For the purpose of this article, the basic language is sufficient.

D e f i n i t i o n 5. Let A be a set of actions, let C be a set of clocks, and let V be
a set of process variables. The language/~, is defined by the following grammar:

p : : : s t o p I a;p I ~'~P I P + P [{C~p I ~b~p I X

where a E A, ~b E @(C), ~ E @(C), C E Ptla(C), and X E V. We refer to the
elements of L; as processes.

A rccursive specification E is a set of recursive equations having the form
X = p for each X E V, where p E /;. Every recursive specification has a
distinguished process variable called root. 0

Process s t o p represents inaction; it is the process tha t cannot perform any
action. The intended meaning of a;p (named (action-)prefizing) is tha t action
a can be performed at any t ime and then it behaves like p. ~b~p, the guarding
operation, can perform any first action that p can do whenever ~b holds. ~C~ p,
the clock resetting operation, is a process tha t behaves like p, but resetting the
clocks in C. We will often write { x l , . . . , x , ~ p instead of ~ { x l , . . . , xn}~ p. ~ht~p,
the invariant operation, can idle while ~b holds or go on with the process p. p + q
is the choice; it behaves either like p or q. The choice between p and q can be
made only by actions, not by the passage of time. The meaning of a variable X
depends on its definition in E . Thus, ff X = p E E, the behaviour of X is the
same as p.

For the sake of completeness, we remark that a recursive specification defines
only once each process variable (i.e. X = p, X = q E E implies p - q), and every
variable tha t occurs in the right-hand side of a recursive equation of E is defined
in E (i.e. if Y occurs in p and X = p E E, then Y = q E E for some q E ~.)

D e f i n i t i o n 6. Let v : V --~ P(C) be a function tha t assigns a set of clock
variables to each process variable. Define fv v inductively as follows,

 (stop) = r p) :
= p) = vat(C) u rye(p)
= mr(C) ua (p) = v (x)

(p + q) = a (p) u

The function s : V -~ ~o(C), tha t gives the set of free variables of a given
process variable, is defined as the least fixed point of the function F defined by
F(u) = AX.(v(X) U fv~(P)) provided that X = p E E. We extend the notion of

free variables to every process p by defining fv(p) deal l~fv(~). []

Now fv can be calculated using the straightforward algorithm to obtain the least
fixed point of the monotonic function F .

146

As we already remarked in the introduction, the term {C~ p binds clocks
in C which occur free in p. Thus, we have to avoid undesirable bindings and
so, we would like to characterise the conflicting terms like (1) or (2). Let Kp
be the union of all clock resettings in p which do not occur within the scope
of a prefixing, i.e., a subterm a; q. For instance, if p = (~x~ a; ~y~ r X) +
({z[} Ct~ c; Y), then Kp = {x, z}. We say that a term does not have conflict of
variables f f there is no subterm in it tha t has conflict of variables and, f l i t has the
form p + q (respectively CrOp) then (fv(p) AKq) U (aev(q) AKp) = 0 (respectively
vat(C) A Kp = 0). In this work we will generally assume processes which do
not have conflict of variables. This assumption is harmless since we can always
rename properly bound variables (i.e. to apply a-conversion) in order to avoid
this problem. In [6] we s tudy a-conversion and conflict of variables extensively.

D e f i n i t i o n 7. An occurrence of X is guarded in a term p E s f fp has a subterm
a; q such that this occurrence of X is in q. A process variable X is guarded in
p ff every occurrence of it is guarded. A term p is guarded ff all its process
variables are guarded. A recursive specification E is strictly guarded ff the righ-
hand side of every recursive equation in it is a guarded process, i.e., for all
X = p E E, p is guarded. A recursive specification E is guarded ff it can be
rewritten into a strictly guarded recursive specification by properly unfolding
the equations. (By "properly unfolding the equations" we mean that whenever
X = p E E and Y occurs unguarded in p, then we take the new specification
E' = (E \ { X = p}) 0 { X = p[Y/q]} provided that Y = q E E.)

A recursive specification E is regular if it is guarded, and defines finitely
many recursive equations. []

Proposition 8. Let E be a recursive specification with process variables in V.
Define the unguarded variable dependency graph G with nodes in V and edges
X --~ Y iff Y is unguarded in X = p E E. Then E is guarded if and only if there
is no infinite chain in G.

Associated timed automata. We can associate a t imed automaton to a process
according to the following definition.

D e f i n i t i o n 9. Let p E s be a process without conflict of variables. The timed
automaton associated to p is defined by ~v] = (s A, C,p, a , ~, ~) where ~,
0 and ~ are defined inductively by the rules and equations in Table 1. []

Rules in Table 1 capture the bchaviour above described in terms of t imed
automata. In particular, it deserves to notice tha t a process p + q can idle as
long as one of them can. Thus a (p + q) -~ > a(p) V a(q). Moreover, p + q can
execute any action o f p or q as long as it could be executed in its original process.
Thus, since an action cannot be executed after the idling t ime is finished, we
require tha t for the execution of an action, the corresponding invariant must
also hold.

Notice tha t a and a are not always well-defined in case of (unguarded!)
recursion. For instance, take X -- (x < 1) ~ X, then a and a are the completely

147

T a b l e 1. Associated timed automata (X = p e E)

~(stop) = 0
~(a;p) = 0

~(p + q) = ~(p) O ~(q)
~(~Cl} p) = C U ~(p)
~ (r P) = ~(p)
~ (x) = ~(p)

O(s top) = t t
O(a;p) = t t
O(r = O(p)
O(p + q) = O(p) V O(q)
o(~c~ p) = o(p)
0 (r p) = r ^ 0(p)
a (x) = o(p)

a ; p - ~ p p ",~ p' p "-42p,

p + q ~ p' p ~-4. p' p ~-C# p'

q + p a.r p, x a,~ p, Ctl~ p a=2~ IY

undefined functions because of nonterminating derivation. Nonetheless, we have
the following proposition.

P ropos i t i on 10. Let E be a guarded specification without conflict of variables,
then every process variable defined in E has an associated timed automata.

The proof of Proposition I0 follows by induction. In particular, notice that the
definitions of s, 0 and ~ are not recursive for the base cases, namely stop
and prefixing.

We can define the semantics of a process in terms of TTS by first associating
a timed automaton and then obtaining the interpretation of it in terms of TTS
according to Definition 4. Thus, ~[P]])vo is the interpretation of p with initial
valuation vo. Now, we can extend the notion of bisimilarity to processes: two
processes p and q are bisimilar (notation p ~___ q) if for all valuations v0 E 11,

~[P]])-o ++ [~q]])-o"
Alternatively, the language has a direct semantics in terms of TTS that is

equivalent (modulo bisimulation) to the semantics in two steps given above [7].
We do not present here such semantics since it is not relevant for obtaining the
results in this article. Nonetheless, it is essential that the reader understands
that this semantics defines a TTS for every guarded recursive specification, in-
cluding those with conflict of variables. The crucial point of this is that it is not
clear whether expressions like (1) and (2) have an associated timed automaton,
although they have a clear meaning in terms of TTS.

Aziom system. We introduce a set of axioms for the language described above.
The axiom system is sound with respect to bisimulation. Since a-conversion
implies bisimulation, we consider terms modulo a-conversion without loss of
generality.

Axioms in Table 2 could be explained as follows. Axioms A 1 - A 4 are the
extension of the CCS axioms. A4 needs special care. Since in our model we
consider time deadlock, it is not generally the case that s top is the neutral
element for summation. However, it is a neutral element only for processes with

148

Table 2. Axioms for s (a,b E A, C C_ d, x,~ ~ d, 4,$' ~ O(C), ~, ~b' ~ ~(C), d ~ ~t >~

Stp ff~--~a;p = stop
A1 p + q = q + p
A 2

GO
G1
G2
G3
G 4
G5

I1
I2
I3
I4
I5

R 1
R 2
R 3
BA

D 1

D 2

(p+ q) + r = p + (q+r)

4v-~stop = s t o p
t t ~ p = p
4.+(4'~+p) = (4 ^ 4 ') ~ p

4 ~ @ + q) = 4 ~ p + 4 ~ q
t t l ~ p = p
~,~,, (~ ' ~ P) = (~ ^ ~ ')~ ,
~'~" (~Cl} P) = ~Cl (~ , p)
~,m p + -./,~, q = ,/,m (p + q)

.As 4 ~ p + 4 ' ~ p = (4 v 4'),"*p

.As' ,/,~. p + ~,'~. p = (e v ~,')m p
A 4 a ; p + s t o p = a ;p

i f ,,ar(4) n C = 0

~bt~ (4~-~a;p) + qttl~ (4'~-tb; q) = (t# V t#')t~, ((~ A 4)t-ta;p + (~b' A 4')~-r q)

~cD p = p if c n ~ (p) = 0
~]c u {y,=}D p = ~c u {y}l} [~] p
{eli. {C'l]. p = ~c u c'D. p
~]C[} p + {C'~. q = '~C~. (p -'1- q)

4~'~a; ({Yl} P) = 4~"l'a; ('~Y} (= - Yr']d) I~ P) i f ~ (4 ==~ (xl:3d)) and = =/= y
4 ~ a ; p = 4~a ; ((= - ~rTd)m p) i f ~ (4 =~ (= - ynd))

where [] E {_<,<,_>,>,=}

unbound idling. S t p states tha t a prefixed process which does not satisfies its
guard condition cannot proceed with its execution. Axioms GO-G5 state the
way in which guards can be simplified. Notice that they cannot be eliminated
except in the case of t t . In particular, axioms G3 , G 4 and G 5 say how to move
invariants, clock resettings and summations out of the scope of a guard. Similarly,
axioms I I - I 5 state how to simplify the invariant operation. I3 says how to take
clocks resettings out of the scope of an invariant, while I4 and I5 move the
invariant out of the scope of a summation. R1 and R 2 eliminate redundant
clocks. In particular, R2 implies tha t it is always possible to reduce the amount
of clocks to be reset to at most one for each clock resetting operation. R 3 gathers
all the clocks resettings in only one operation and R 4 moves clocks out of the
scope of a summation. Finally, D1 and D2 state tha t the difference between
clocks is invariant and thus it could be "transported" along the execution. In
particular, D1 explains how this difference is stated.

The term [x~y]p, which appears in axiom R2, is the renaming of the free
occurrences of z by y in p. It is defined recursively on the structure of p in the
obvious way, although for process variables it needs an additional explanation.
Given a recursive equation X = p, [z~y]X is a 'new' process variable Y defined
by the equation Y = [z~y]p. Thus, given a recursive specification E, we will
usually need to extend it if axiom R 2 is applied.

T h e o r e m l l . [6] The axiom system of Table ~ is sound modulo bisimilari~y.
That is, for all p, q E s if p = q is deduced by means of equational reasoning
using a-conversion and azioms in Table ~, then p ~___ q.

149

4 R e g u l a r P r o c e s s e s a n d F i n i t e T i m e d A u t o m a t a

In this section we show that there exists a strong connection between finite t imed
au tomata and regular recursive specifications. We show indeed that not only any
finite t imed au tomata can be expressed by a regular specification, but also that
a regular specification always defines a finite t imed automaton up to bisimilarity.
But, what is more interesting in this last case is tha t the axiom system together
with unfolding of equations is enough to prove that fact 2.

Although the case of obtaining a regular recursive specification from a finite
t imed au tomata seems to be intuitively clear, it is not the same in the case in
the other way around due to processes tha t have conflict of variables. Let us
recall the examples of the introduction. Notice that for the equation

x = (= < (= < a ; x (1)

the x in (z < 3) should not be bound to the resetting that follows it. Thus, the
associated t imed au tomaton is not obvious. Neither it is for the case of

Y = (~z~ $(z, y)~a; Y) + (~V~ (b'(~:, v)~b; Y) (2)

We can t ry to calculate tz(Y) = {x, y}, but this is not correct since we may bind
some free occurrences of �9 and y. By the t ime being, we expect to have motivated
the reader and make h im/her wonder about the associated t imed automata of
such equations. We will come back later to these examples.

From finite timed automata to regular recursive e~ressions. In this paragraph
we recall the result already presented in [7]. In particular we study there a larger
class of t imed automata. We will mimic that result for the class of finite t imed
automata. First, we define the notion of symbolically reachable. A state s is
symbolically reachable if there is a sequence of edges from the initial state So to

s, i.e., there are a l , . . . , a n , ~bl,...,~bn and s l , . . . , s n (n > 0) such that s0 at-t~

Sl . . . a.,~. sn = s. The (symbolically) reachable part of a t imed automaton T is
the same t imed automaton restricted to the set of states that are reachable.

T h e o r e m 12. For every finite timed automaton T there is a regular specifica-
tion E with root variable Xso such that the reachable parts o.f T and [Xso] are
isomorphic. As an immediate consequence T and [Xso] are bisimilar.

Proof (Sketch). We associate a process variable to each state s of T and define
each one of them according to ~(s), O(s) and the outgoing edges from s as follows.
Let T = (S, A, C, so, t , 0, n). For each state s E S define a different variable
X~. Define the recursive specification E with root X , o and recursive equations

= (E Is ~ s'})

2 Actually, axioms D1 and D2 are not necessary.

150

where)--~{Pi] i �9 {1 . . . n}} de__f Pl + 1~ + " " + Pn. In particular, ~ r de=f stop.
Now, we restrict T and IX, o] to their reachable parts, and the isomorphism is

given by the function that maps every state in T into its corresponding variable
in D

From regular recursive expressions to finite timed automata. In this paragraph,
we show how to come up with a timed automaton from a given regular recursive
expression. We use the following strategy to construct the timed automata. First,
we rewrite the recursive specification into a new one such that each variable,
according to the new definition, can execute at most one action and move to
another variable. We say tha t this specification is in one-step normal form. The
second step translates this last specification into a reeursive specification that
trivially resembles a t imed automaton. We say that this last specification is in
TA-norraal form (TA stands for "Timed Automata") .

De f in i t i on 13. A guarded recursive specification E is in one-step normal form
if for every X = p �9 E, p is in the language defined by the following grammar,

p : : = s t o p I a;X I 4)~P I P + P I ~C~ p I Ct~ p

where a �9 A, 4) �9 ~(C), r �9 ~(g), C C_ C, and X �9 V. i3

L e m m a 14. Any regular recursive specification can be rewritten into a one-step
normal form.

Proof. The proof follows by adding new process variables, and folding and un-
folding when needed. We do that in two steps. First, we reduce the original
specification E0 into a new specification E0 such that no prefixing occurs in the
scope of another prefixing. That is done by creating new reeursive equations.
In the second step, E0 is taken into one-step normal form by unfolding all the
variables that occur unguarded.

Let Eo be a regular recursive specification. Let size(p) be the number of
symbols in p which are not process variables. Choose, if it exists, X = p E Eo
such that p has an occurrence a; q where q is not a process variable and size(p) >
size(r) for all Z = r E E0, i.e., p is maximal according to size. Choose a fresh
process variable Y and define p' to be p with the occurrence of a; q replaced by
a; Y. Define

E1 def (Eo\{X = p}) U {X = p', r = q}

Clearly E1 represents the same process than Eo. Repeat the process until there
is no occurrence of a; q with q as before. The algorithm terminates since the
function (MAX(Ei), # { X = p E Eil size(p) = MAX(Ei)}) strictly decreases in
each iteration according to the lexieographical order. We have taken MAX(Ei) =
max{size(p)[X = p E E i)

Let E0 be the output of the previous algorithm. Clearly, E0 is also a regular
specification. Notice that for every equation X = q E Eo, by construction, q is
in the language defined by the grammar

p : : = s t o p I a ; S I 4)~P l P + P l {C~ p l r l X

151

that is, q is "almost" in one-step normal form since it still can have unguarded
variables. Construct the unguarded variable dependency graph Go according to
Proposit ion 8, which implies tha t Go does not have infinite path and hence, it
is acyclic. Chose a leaf Y in Go with Y = q �9 Eo. For every X = p E Eo such
that X -4 Y define p' to be p with every unguarded occurrence of Y replaced
by q. Define

E1 de f (E0 \ U { X ~-- P I X --~ Y}) U U { X = p'] x -4 Y}

Notice that the unguarded dependency graph G1 of E1 is the same as Go where
all edges X -4 Y were removed. So we can repeat the process and the algorithm
eventually terminates since the amount of edges is strictly decreasing in each
iteration.

It is easy to check that the output of this last algorithm is a recursive speci-
fication in one-step normal form. []

D e f i n i t i o n 15. A recursive specification E is in TA-normal form if it is regular
and for every X = p E E, p has the form

where I is a finite index set, r �9 ~(g) , x �9 g, and for all i �9 I , a~ �9 A, r �9 ~(r
and X~ E V. []

Notice that a recursive specification in TA-normal form represents a finite
t imed automaton. Notice tha t each variable represents a location and for each
of them we have defined only one resetting and one invariant. Moreover, the
summation defines the outgoing edges labeUed with the respective guard and
action. (See the proof of Theorem 12.)

T h e o r e m 16. Any regular specification can be rewritten into a TA-normal form
by using foldings, unfoldings, renaming of clock variables and axioms in Table ~.

Proof. Let E be a regular specification with root X0. Because of Lemma 14,
we may assume that E is already in one-step normal form. Let E ' be the re-
cursive specification defined as follows. For every process variable X defined in
E with free variables s = { x l , . . . , x•}, define a process variable Xz~ x. .
Obviously, such a relation is an injection. Now, for every X = p E E define
X=I =. = p' E E ' where p' is the same as p but with all process variables
replaced by their respective images. Define the root of E t as the image of Xo.
So, E ' is the same as E with the names of the process variables changed.

We will need to consider renaming of clock variables. We do that in the
expected way, except tha t in the ease of process variables, instead of propagating
the renaming in the definition of the variable, we will just rearrange the subindex.
Thus,

[x i ~ - ~ y] X x l x , x,~ dee - ~ x l y x n (3)

152

In such a case, we need to consider an extended set of process variables. Let C be
the set of clocks occurring in E (or similarly, in E'). Let ~ r C be a new clock.
Let V be the original set of process variables defined in E. We define

V ' d_ef ~X - ~ =, = . I x e v ^ n = # r v (x) ^ vi e {1 , . . . , n}. xi E C U {~}}

From now on, we will denote with X, X i , . . . the variables in V' . The necessity
of the new clock �9 will be clear in the following calculations, since sometimes we
will need to chose a fresh clock variable.

For each Xzl x, : P E E ' we proceed by induction according to Defini-
tion 13. More precisely, we will show that p has the form

(Here ~ - ~ I P~ abbreviates ~-~{p~] i E I}.) We calculate the more representative
cases. They are summation and clock resetting.

Case p + q. By induction hypothesis, assume p = ~ ~ , ~-~i~i ~ b ~ a i ; X i and
q ~ [} r , . - = Eje j r I f I # r and J # r then

I

A1,2,~

The other cases are similar, but we should take into account that ~ r =
{ ~ r ff~-~a; Z for some a E A and Z E V' .

Case ~C~ p. By induction hypothesis assume p = { ~ ~bI~ ~-~e~ ~b~-~a~;X~.
Then

Now, the obtained recursive equations are in TA-normal form, i.e.,

x ~ l ~ . = ~ r ~ r (4)

153

However, we have been a bit sloppy since now we have a lot of process variables
which have not been defined. They come from Case ~C} p when we had to
rename clock variables by applying axiom R2 . We axe going to define those
variables.

Suppose tha t the variable Xu~ ~. is undefined. We define it as the appro-
priate renaming of Xz~ =. already defined in (4). First, notice that for each
equation like (4) we need n + 1 clock variables: n is the amount of free variables
and the other one is the clock resetting of~. Now, suppose tha t some ofyx, �9 �9 yn
axe ~, so there must be a clock ~ not in {Yl , . . . , Yn}- If none of Yx,-. . , yn is ~,
then we take y = 2. Now, X ~ u. is defined as follows

x ~ ~. = f f~ ([x ~ y] r E~c~([X~yl~)~*a~;[x~y]X~ (5)

where [X ~ y] is the simultaneous substitution [a:x~y~, . . . , z , ~ y = , ~ - ~] . This
last recursive specification tha t extends E ' by defining all variables in V ' and
has as a root variable the image of X ~ is equivalent to E and is in TA-normal
form. [3

As an example of the proof of Theorem 16, we will t ranslate the reeursive
equation (2) into TA-normal form. First we define the new equation

Y=,y = (~z~ ~(a~,y)~.4a;Yx,y) q- (~y~ qb'(z,y)~--~b;Y~,u)

according to the first par t of the proof. We consider a new clock z and hence
V ' = {Y~,~ I u, v E {x, y, z}}. Following the inductive deduction, we calculate

Y,,u = (~z} ~b(~, y)~-~(~z} t t t ~ tt~-~a; Y-,u))

+(~y} ~'(z, y)~(~z} ttt~ tt~b; Y.,~))

= {z} ttt~ (r y)~a; Yz,~ + 4J(~, z)~b; Y.,~)

Now, according to (5), we can calculate, for instance

Y~,= = ~y} t t ~ (dp(y,x)~a;Yy,, + dp'(z,y)~b;Y~,u)

Notice that , in this case, variables Y=,=, Yy,u, and Y~,z are redundant, i.e., never
reached from the root. At this point the reader should not find difficulties to check
that the associated t imed automaton is the one depicted in Figure 1. Locations
axe represented by circles. ~ and 0 are respectively written in the upper and
lower part of the circle, and edges are represented by the arrows.

Since any regular specification can be rewritten into TA-normal form accord-
ing to Theorem 16, and any recursive specification in TA-normai form defines
trivially a finite t imed automata, as it was already observed, we obtain the fol-
lowing corollary.

C o r o l l a r y 17. Any regular recursive specification can be proven bisimilar to a
finite timed automaton.

154

Fig. 1. Y = (~x~ ~(z,y)~-+a;Y) + (~y~ ~'(z,y)~-~b;Y)

b, r b, r (y, z)

As a second corollary we have that the same expressive power of the t imed
automata is preserved if we restrict to those automata that reset only one clock
in each location, i.e., #~ (s) _< 1. So, by Theorem 12, Theorem 16 and the ob-
servation after Definition 15, we have:

C o r o l l a r y 18. Every finite timed automaton T is bisimilar to some finite timed
automaton T r such that at most one clock is reset in every location of T ~.

A detail to remark is tha t regular specifications may need fewer clocks than
finite t imed au tomata in order to represent the same process. A clear example
showing that fact is the expression (1) given above. The corresponding t imed
automaton is depicted in Figure 2. Notice that both clocks x and y are necessary.

a, t t

a, t t

However, we have the interesting result that , for going from a regular specifi-
cation to a finite t imed automaton, we need to add at most one new clock. This
follows from the observation that in Lemma 14 we do not modify the set C and
to prove Theorem 16 we only require to consider only one extra clock. Thus, we
have proved the following.

C o r o l l a r y 19. Let E be a regular recursive specification with clocks in C. Then,
there exists a finite timed automaton T with clocks in C I such that T can be
proven bisimilar to E and #C ~ <_ 1 + #C

155

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theorelical Computer Science, 138:3-34, 1995.

2. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

3. E. Asarin, P. Caspi, and O. Maler. A Kleene theorem for timed automata, April
1996. Unpublished Manuscript.

4. J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects of
Computing, 3(2):142-188, 1991.

5. T. Bolognesi and F. Lucidi. Timed process algebras with urgent interactions and
a unique powerful binary operator. In de Bakker et al. [10], pages 124-148.

6. P.R. D'Argenio and E. Brlnksma. A calculus for timed automata. Technical Re-
port CTIT 96-13, Department of Computer Science, University of Twente, 1996.

7. P.R. D'Argenio and E. Brinksma. A calculus for timed automata (Extended ab-
stract). In B. Jonsson and J. Parrow, editors, Proceedings of FTRTFT'96, Upp-
sala, Sweden, LNCS 1135, pages 110-129. Springer-Verlag, 1996.

8. J. Davies et al. Timed CSP: Theory and practice. In de Bakker et al. [10], pages
640-675.

9. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KRONOS.
In Hogrefe and Lene [13], pages 207-222.

10. J.W. de Bakker, C. Huizing, W.P. de Roever, and G. ttozenberg, editors. Proceed-
ings REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands,
June 1991, LNCS 600. Springer-Verlag, 1992.

11. W.J. Fokkink. Clocks, Trees and Stars in Process Theory. Phi) thesis, University
of Amsterdam, 1994.

12. T.A. Henzinger, X. Nicollin, J. Sifalds, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111:193-244, 1994.

13. D. Hogrefe and S. Leue, editors. Proceedings of the 7 th International Conference
on Formal Description Techniques, FORTE'9~. North-Holland, 1994.

14. A.S. Klusener. Models and azioms for a fragment of rml time process algebra. PhD
thesis, Eindhoven University of Technology, 1993.

15. R. Milner. Communication and Concurrency. Prentice-Hall International, Engle-
wood Cliffs, 1989.

16. F. Moiler and C. Torts. A temporal calculus of communicating systems. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458,
pages 401-415. Springer-Verlag, 1990.

17. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and ap-
plication. Information and Computation, 114(1):131-178, 1994.

18. X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid
systems. Acta lnformahea, 30(2):181-202, 1993.

19. W. Yi. CCS + Time = an interleaving model for real time systems. In
J. Leach Albert, B. Monien, and M. Rodr/guez, editors, Proceedings 18 ~h ICALP,
Madrid, LNCS 510, pages 217-228. Springer-Verlag, 1991.

20. W. Yi, P. Pettersson, and M. Daniels. Automatic verification of real-time commu-
nicating systems by constraint-solving. In Hogrefe and Lene [13], pages 223-238.

