
A Calculus for Timed Automata
(Extended Abstract)*

Pedro R. D'Argenio and Ed Brinksma

Dept. of Computer Science. University of Twente.
P.O.Box 217. 7500 AE Enschede. The Netherlands.

{ dargenio, brinksma ~ @cs. utwente.nl

Abst rac t . A language for representing timed automata is introduced.
Its semantics is defined in terms of timed automata. This language is
complete in the sense that any timed automaton can be represented by
a term in the language. We also define a direct operational semantics for
the language in terms of (timed) transition systems. This is proven to
be equivalent (or, more precisely, timed bisimilar) to the interpretation
in terms of timed automata.
In addition, a set of axioms is given that is shown to be sound for timed
bisimulation. Finally, we introduce several features including the parallel
composition and derived time operations like wait, time-out and urgency.
We conclude with an example and show that we can eliminate non-
reachable states using algebraic techniques.

1 I n t r o d u c t i o n

A real-time system is a system whose behaviour is constrained by requirements
on the t ime in which events can occur. Sometimes, systems are implemented
as t imed systems in the sense that they fulfil certain timing conditions to give
them an acceptable performance. Other systems depend on timing conditions
in a more essential way, viz. because their functional correctness depends upon
certain critical tinting conditions being fulfilled. Therefore, it becomes interesting
to s tudy the formal verification of such systems.

In the last years, several formal techniques have been developed to specify and
verify real-time systems. For instance, many well-known process algebras have
been extended with features to manipulate t ime [11, 26, 22, 23, 5, 17, 6, 9, 18].
But the apparently most successful approaches are t imed and hybrid au tomata
[3, 24, 15, 2]. The formal relation between these two models has been studied in
some cases [24, 25, 14, 12]. Languages that fully represent t imed automata have
also been studied [20, 271 .

In this paper, we introduce a process algebra to describe t imed automata.
Since the syntax of t imed automata becomes unwieldy to specify realistic real-
t ime systems, the process algebra introduced here proposes a higher-level lan-
guage that is interpreted in terms of t imed automata. More specifically, we choose

* Supported by the NWO/SION project 612-33-006.

111

a slight variation of the so called timed safety automata [15]. Basically, the lan-
guage extends Milner's CCS [21] restricted to prefixing, inaction and summation,
with some features to manipulate clocks, namely, clock resetting, invariants and
guards. We prove that any timed automaton can be described by a term in the
language together with guarded recursion.

Also, we introduce a direct operational semantics for the language. Thus, a
{timed} transition system is associated to each process. We prove that this way
of giving semantics is equivalent {timed bisimilar} to the interpretation of the
associated timed automaton.

In order to facilitate the construction of complex systems we include parallel
composition, and several common operations on time, such as time-out, waiting
and urgency.

The first goal of our paper is to introduce a powerful language to represent
timed automata. Our second goal is to introduce an equational theory for the
language that allows us to manipulate timed automata in order to eliminate
redundant information. This is an interesting point, since, to our knowledge,
timed automata have not yet been studied from an algebraic point of view. The
axiomatisation is sound for timed bisimulation and allows to find a normal form.
Moreover, the additional operators like parallel composition can be eliminated,
thus obtaining equivalent expressions defined just in terms of the basic language.

As an example we study the railroad crossing controller of [3]. In this exam-
ple, we illustrate that we can eliminate redundant states, clocks, and conditions.
In particular, non-reachable states are eliminated.

The rest of this paper is structured as follows. Section 2 reviews the models
of timed transition systems and timed automata. In Section 3, we introduce
the language and we study its relation with timed automata. The operational
semantics is introduced in Section 4 and the relation with the timed automata
model is stated. Section 5 introduces the axiomatisation for the basic language,
and the extension with new operators is studied in Section 6. The example is
presented in Section 7. Extensionality with respect to CCS, related work, and
conclusions are discussed in Section 8.

This article is an extended abstract of [10] which contains all proofs omitted
here.

Acknowledgement s . This work profited from discussions with Jan F. Groote,
Rom Langerak, Jan Springintveld, Jan Tretmans, Frits Vaandrager and Sergio
Yovine. In particular, Sergio Yovine pointed out the related work [27]. Reference
[4] was pointed out by one of the referees.

2 M o d e l s f o r T i m e d S y s t e m s

Time, clocks and constraints. We adopt the set 1R >-~ of non-negative reals as
time domain. A clock is a variable x ranging over a time domain]R --~ Let
C denote a set of clocks. The set ~(C) of clock constraints over C is defined
inductively by:

4 : : = d(__d' I x (- d I d (~ I x - y (d I d (x - y I (~A~} [(-~)

112

where d, d' E]R --~ and z, y E C with z ~ y. The abbreviations t t , if, x = d,
x > d, x - y < d, ~ V ~', x E [d, dt), etc. are defined as usual. Let v~r(~) denote
the set of clocks occurring in ~. A clock constraint is closed if no clocks occur
in it. We denote the set of closed clock constraints by ~c. We could also adopt
a richer set of constraints (see Section 8).

A (clock) valuation is a function v : C -~ ~__0. Let ~ denote the set of valua-
tions, v is lifted to clocks constraints by the obvious induction over the structure

of ~b. Let C E C. We define v[C~O] as v[C~O](x) d___ef i f x E C t h e n 0 else v(x).

Let d E]R >~ Define v + d as (v+d) (x) d__ef v (x)+d . Notice that for any valuation
v and for any clock constraint ~b, v(~b) is a closed clock constraint.

For the subset of closed clock constraints, we define the satisfaction predicate
~_c ~c as usual:

~ d < d + d ' ~ (~b A ~b') ~ (-~ff)

where d, d ~ E ~_>o. We generaiise ~ to all clock constraints (~ C #(C)). Let

~b E ~(C) then ~ ~b ~ Vv E 1): ~ v(~b).

We define the set ~(C) C_ ~(C) of past-closed constraints as ~b ~ ~(C) ~
(v + d)(~) ==r ~ v(~b), for all v E V and d E]R ->~ Notice that this kind of
constraints are such that if they hold at t ime d, they hold at all d ~ < d.

Timed Transition Systems. A t imed transition system is a labelled transition
system that includes information about the time. We adopt the model of actions
with time stamps.

D e f i n i t i o n 1. Let A be a set of actions. A timed transition system (TTS) is a
s tructure L = (5, A •]R ->~ so,),bi) where

�9 S is a set of states, with the initial state so E S;
�9 A is a set of labels;
�9 ~ C_ S • (A x]R >~ • S is the transition relation; and
�9 bi __./R >~ • S is the until predicate.

We use the following notation: a(d) iff (a, d) E A x ~>o , s ~ s' iff (s, a(d), s') E

~, , ~A~d(8) iff (d,s) ~ ~ , sa(-~ iff 3s ' E S. sa(al s '.
In addition, L should satisfies the following axioms:

U n t i l Vd, d t E]R >~ bid(S) ^ d ~ < d ==r bid, (s);

D e l a y Vd E]R >0. s a(dl ==~ Ud(S). D

The intended meaning of a transition s a!dl s ~ is that a system which is in state
s can change to be in state s ~ by performing an action a at t ime d. Intuitively,
bid(s) together with axiom Unt i l , means that a system can idle in a state s at
least d units of times. Axiom D e l a y state that every t ime that an action may
occur in a state s at t ime d, the system must be idling at that time.

Predicate bi was introduced in [17]. Here, we formalised its behaviour in a
relative t ime setting by adding the axioms Un t i l and De lay .

113

D e f l n l t i o n 2 . Let Li = (S i ,A x]K>~ t i,Ui), i e {1,2}, be two TTS.
A timed bisimulation is a relation R C_ $I • $2 with z 2 soRs o satisfying, for all
a(d) E A • ~t >-~ the following transfer properties:

aCd) ,
1. if slRs2 and sla(-(-~ls~, then 3s~ e S~ : s2 ~2s2 and s i r s 2 , ' '"

2. if siRs2 and 82a(--~28t2, then 3s~ �9 $1: 81a(d~lstl and s~Rs~; and
3. if s irs2 , then H~(Sl) r U~(s2).

If such a relation exists, we say that L1 and L2 are timed bisimilar (notation
L~ ~__ L2). O

Timed Automata. In this paragraph we define a variation of timed automata [3].
We use invariants as in [15, 24, 25] but, instead of considering clock resettings
on the edges, we consider them in the states. The reason for this is tha t we want
to avoid assumptions about the initial setting of clocks, which makes the com-
positionality of the language more complicated. Compare [27] (see Section 8).

D e f i n i t i o n 3 . A timed (safety) automaton is a structure (S,A,C, s0, * ,0 ,~)
where:

�9 S is a set of states, with the initial state So �9 S;
�9 A is a set of actions;
�9 C is a set of clocks;
�9 ~ C S • A x @(C) • S is the set of edges;
�9 0 : S ~ ~(C) is the invariant assignment function;
�9 ~ : S -+ ~nn(C) is the clocks resetting function.

The set of all t imed automata is denoted by 7". []

In this case, (s, a, ~b, s') �9 * (notation s a,~ s') intuitively means that
when the system is in state s it could change to be in state s' by performing an
action a provided that the clock constraint r holds. The clock setting function
states which clocks should be reset as soon as a state is reached. The invariant
assignment function states that the system can idle in a state s as long as O(s)
holds.

Notice that our t imed automata can be translated into t imed automata with
resettings on the edges by just labelling the edge with the set of clocks to be reset

in the target state, that is, an edge s a,~ s' will be translated into s a,r s'.
Conversely, a timed automaton with resettings on the edges could be trans-
formed by "pushing" the clock resetting into the target state, i.e., given an edge

s a,~,~ s' we define s a,~ s' and tc(s') d__ef C. In case that many edges with
different clock resettings go to the same state, this state is "split" into different
states, one for each set of clocks.

Formally speaking, a t imed automaton can be interpreted as a TTS as follows.

D e f i n i t i o n 4 . Let T = (S, A,C, so, ---~, 0, ~) �9 7" be a t imed automaton. Let
Vo �9 V be any valuation. The interpretation of T with initial valuation vo is

given by the TTS ~T])~o ~ f (S • l~, A • ~t >--~ (So, Vo), ----~, U) where) and
U are defined as the least sets satisfying the following rules:

114

, a,~ ,, ~ (v[~(~)~0] + d)(r ^ O(~)) ~ (v[,(~)+~0] + d)(O(~))
(,, v) ~ (~', (v[~(s)~0] + d)) Us(s, ~) []

Since 0(s) E ~(C) for all s E S, it follows that ~T~vo satisfies axiom Until.

Moreover, notice that if (s, v) a(al then ~ (v[~(s)~0] + d)(O(s)) and so l~d(S, v)
which implies that axiom Delay holds. Hence, ~T~vo is indeed a TTS for any
initial valuation Vo.

Isomorphism is a fine enough equivalence. Thus, proving the existence of
an isomorphism is enough to prove that two timed automata are equivalent in
coarser equivalences, for instance, timed bisimulation.

D e f i n i t i o n 5 . Let T = (S ,A ,C, so, *,O,t~) and T' = (S',A,C,S'o, *
', a', ~') be two timed automata. An isomorphism from T to T' is a bijective
function F : S --+ S ~ such that

1. r(s0) = ,~,
2. s ~'~ s' ~=~ r(s)~ ' -~ 'r (~ ') ,
3. O(s) = O'(F(s)), and
4. ~(~) = ~'(r(,)) .

We say that T and T t are isomorphic, notation T - T t, if there is an isomorphism
between T and T'. []

3 A S i m p l e L a n g u a g e f o r T i m e d A u t o m a t a

In this section we introduce a simple language that contains the necessary op-
erators to represent timed automata. We give the semantics of this language in
terms of timed automata. Moreover, we show that any timed automaton could
be represented by a term of this language if we add guarded recursion over
expressions.

D e f i n i t i o n 6. Let A be a set of actions and let C be a set of clocks. The language
s is defined according to the following grammar:

p : := s top I a;P I r I P + P I ~C~ P I Ct~ p

where a e A, r E ~(C), r E ~(C) and C e ~~ We refer to the elements of
s as processes. []

Process s top represents inaction; it is the process that cannot perform any
action. The intended meaning of a;p (named (action-)prefixing) is that action
a can be performed at any time and then it behaves like p. r the guarding
operation, executes any first action that p can do whenever r holds. ~C~ p,
the clock resetting operation, is a process that behaves like p, but resetting the
clocks in C. We will write ~x l , . . . , x ,~ p instead of ~{Xl,... , Xn} ~ p. ~/t~ p, the

115

invariant operation, can idle while r holds or go on with the process p. p + q is
the choice; it executes either p or q. The choice between p and q can be made
only by actions, not by the passage of time.

D e f i n i t i o n 7. Let p E s The set Ev(p) of free variables of p and the set by(p)
of bound variables of p are defined as the least set satisfying

iv (s top) = 0 by(s top) = 0
= [y(p) bv(a;p) = by(p)

fy(r = U = by(p)
fv(p + q) ---- fv(p) U/~(q) by(p + q) -- by(p) U by(q)

p) = v(p)\c by(C) p) = C u by(p)
p) = u fy(p) by(r p) = by(p) []

Notice that the term ~C~ p binds clocks in C that appear in any constraints
in p. Let Kp be the union of all clock resettings in p which do not occur within
the scope of a prefixing, i.e., a subterm a; q. We say that a term does not have
conflict of variables if there is no subterm in it tha t has conflict of variables and,
if it has the form p + q (respectively ~b~ p) then (fv(p) fq Kq) U (fv(q) fq Kp) = @
(respectively vat(C) fq Kp = 0). In this work we will generally assume processes
which do not have conflict of variables. This assumption is harmless since we can
always rename properly bound variables (i.e. to apply a -convers ion) in order
to avoid this problem. In [10] we study a -convers ion and conflict of variables
extensively.

We can associate a t imed automaton to a process according to the following
definition.

D e f i n i t i o n 8. Let p E / : be without conflict of variables. The timed automaton
associated to p is defined by ~v] T = (s A, C, p,) , 0, ~) where) , 0 and
are defined as the least sets satisfying the rules of Table 1. [:3

The notion of associated t imed automaton is well-defined for processes without
conflict of variables. In order to check it, we should see that for all q E /:,
0 and e; are indeed functions and moreover, tha t O(q) E ~(C). But it can be
straightforwardly proven by induction on the depth of the proof tree taking into
account tha t if r r e ~(C) then !b A r r V r e ~(C).

Rules in Table 1 capture the behaviour above described in terms of t imed
automata. In particular, it deserves to notice that a process p + q can idle as
long as one of them can. Thus O(p + q) r O(p) V O(q). Moreover, p + q can
execute any action o fp or q as long as it could be executed in its original process.
Thus, since an action cannot be executed after the idling t ime is finished, we
require tha t for the execution of an action, the corresponding invariant must
also hold.

The condition that processes should not have conflict of variables is necessary.
If it were not considered we would have undesirable bindings. For instance,
consider the term p ~ (x < 2)t~ (~x~ (z = 1)~-~a; s top) . Clearly, x is free in the
invariant (x < 2), however, using rules in Table 1, we derive O(p) = (x < 2) and

116

Table 1. Timed automata for s

~(p) = c
~ (s t o p) = 0 ~ (a ; p) =

~ (r = c

~(p) = c ~(q) = c ' ~(p) = c ' ~(p) = c
~(p + q) = (c u c ,) ~(~Cl} p) = (c u c ,) ~ (r p) = c

O (s t o p) = t t O(a;p) = t t O(p) = r
0 (r = r

/~(p) ---- r 0(q) ---- r 0(p) ---- r 0(p) = r
o (p + q) = (r 1 6 2 0 (~ c ~ p) = r 0 (r = (r r

a;P ~'--'~P P a,~ p, = p ~ p' o(p) r

P a,$ p, p '~'t p' q +p "'r p'
~c~ p ~'-i-p , r p ~ p,

~(p) = {z}. Thus, according to Definition 4 the x in the invariant is captured by
the clock resetting. Similar reasoning shows that, in q -= ((y < 1)tl~ a; stop) +
(~y~ stop), the free occurrence of y in the left operand is captured by the clock
resetting in the right operand since O(q) = (y < 1) and ~(q) = {y}.

We extend the expressiveness of our language by allowing recursive specifi-
cations.

Defini t ion 9. Let V be a set of process variables. We extend the previous lan-
guage with process variables. So, le t / :v the language defined by the following
grammar:

p : := s top I a;P l r [P + P [~C~ P l r P] X

where a e A, r e ~(C), r e ~(C), C C C and X e V. A recursive specification
is a set of recursive equations having the form X = p(V) for each X E V, where
p(V) ~ s Every recursive specification has a distinguished process variable
called root. We extend the notion of free and bound variables by adding the
equations fv(X) = fv(q) and by(X) = by(q) provided X = q e E. []

We recall that s and by(p) are defined as the least set satisfying the equations
in Definitions 6 and 9. Thus, for instance, if X = ~z~ (y < 3 ^ x < 2)~ X then
s = {y} and by(X) = {z}.

Now, we extend the notion of the associated timed automaton to recursive
specifications and we state the correctness of the definition.

Defini t ion 10. Let E be a recursive specification such that none of its equations
has conflict of variables. The ~irned automaton associated to p E s is defined

117

by [p i t = (s - - '~ , 0, ~) where ---~, 0 and ~ are defined as the least set
satisfying rules in Table 1 and rules in Table 2. []

Table 2. Timed automata for recursion (X --- p E E)

I ~(p[p/X]) = C O(p~lX]) = r p ~ l X l "'--$-p'
~(X) = C O(X) = r X ~'i p'

Defini t ion 11. An occurrence of X is guarded in a term p E /:v ff p has a
subterm a; q such that this occurrence of X is in q. A term p is guarded if all
the occurrences of its variables are guarded. A recursive specification is guarded
if the right hand side of every recursive equation in it is a guarded process. D

Notice that a and ~ are not always well-defined in case of (unguarded!)
recursion. For instance, take X -- (z < 1) ~ X, then a and a are the completely
undefined functions because of nonterminating derivation. Nevertheless, we can
state the following theorem.

T h e o r e m 12. Let p E s be a process without conflict of variables, which has
process variables defined in a guarded recursive specification E without conflict
of variables. The associated timed automaton [pi t is indeed a timed automaton.

Proof. It can be proved by structural induction that 0 and a are defined for any
guarded term. In addition, we can see that for all q E s relations 0 and ~ are
functions and moreover, tha t 0(q) E ~(C). This can be proven by induction on
the derivation of 0 and ~. []

The language presented here, together with a guarded recursive specification,
has the property of expressing any t imed automaton in the sense of Theorem 13
below. First, we borrow some definitions from transition system theory into
t imed automaton theory. A t imed automaton is image-finite if the set of outgoing
edges of every state labelled with the same action is finite, i.e., for any a and any

s, the set {s ~ s~l s t E S} is finite. It is finitely sorted if, for each state s, the

set of all actions labelling the outgoing edges, i.e., {a] Bs ~ E S. s a,r s ,} is finite.
A state s is (symbolically) reachable if there is a sequence of edges from the initial
state So to s, i.e., there are a l , . . . , an , ~fit,...,~n and s l , . . . , s n (n >__ 0) such

that So ~ s l . . . ~ sn = s. The reachable part of a t imed automaton T is the
same t imed automaton restricted to the set of states tha t are reachable. Notice
that we are considering a static view but not the usual notion of teachability in
t imed automata theory (compare to [1]).

T h e o r e m 13 R e p r e s e n t a b i l i t y o f t i m e d a u t o m a t a . For every image-finite
and finitely sorted T E T there is a guarded reeursive specification E with root
Xso such that the reachable part of T and the reachable part of [Xso] T are
isomorphic.

118

Proof. The proof consists of associating a process variable to each state s of T
and defining each one of them as the term that resets the clocks of ~(s) and
has an invariant a(s) over the summation of the outgoing edges represented
by prefixings with its respective guard. Thus, the isomorphism is given by the
function that maps every state in its corresponding variable.

Let T = (S, A,C, so, ~ t, a l ~). For each state s E S define a different
variable Xs. Let Vs be the set of such variables. Define the set of recursive
specifications E with root Xso and recursive equations

where ~{p~ I i E {1. . . n}} de~ PI + P2 + " " + Pn. In particular, if s has no
outgoing transition then Xs = ~d(s)~ a~(s)~ stop.

According to Definition 10, [Xs0] r = (/:v, A, C, Xso, - '-~, a, ~). Define

[x.o]rFvs do=f (Vs,A,c,X.o,) rVs,OrVs,, Ws)

where:)" ~VS def =)n(VsxAx (C)xL; v)
a Ws d,f o n (Vs x

Ws do=f n (Vs x

Clearly, F : S -~ Vs defined a s / ' (s) def X, for all a E S, is an isomorphism,
which straightforwardly implies the theorem. []

In the previous proof, the restriction of [Xso] T to the set Vs is merely for-
mal, and it is due to the fact that the associated timed automaton is defined
considering the whole set of terms/~v instead of the reachables ones.

In order to represent data it could be needed to consider more general timed
automata which are not necessarily image finite or finitely sorted. This kind of
automata could be represented in the language by defining an infinite summation
operator in the expected way. Thus, Theorem 13 could be extended to timed
automata with denumerable branching and denumerable sorts.

4 A n O p e r a t i o n a l S e m a n t i c s

In this section we give a semantics for s in terms of TTS. We state that
it coincides (modulo timed bisimulation) with the semantics of the associated
timed automaton.

Definition 14. Let E be a recursive specification with process variables V.

The TTS of a term p E s with initial valuation r0 E]) is defined by ~P~;o de f

(~v • ~, A • A ->~ (p, vo), ---~, L0 where) and ~ are the least set satisfying
rules in Table 3. [3

119

Table 3. Operational semantics for s (a �9 A, d �9 ~q>o, v �9 V, X = p 6 E)

ud(p, ~) Ud(p, ~[C~O])
L/d (stop, v) lgd(a;p, v) Ud(r V) Lld(~C~ p, v)

~= (v + d)(r Ud(p,V) lda(p,v) bld(p[p/X],v)
~'[d(r Ud(p'i-q,v) Ud(q+p,v) Ud(X,v)

(, + d)(r (V,.) aCdl (V',r

(r ~) ~ (V', ~')

(v,v[C~0l)~C~)(v',r ~ (~+d)(r (V,.)'Cdl(p',r

(v, .) ~ (V', .') (v~ IX], ~) ~ (v', r)
(v + q, ~) "c-~ (p,, r (q+p,~)"C--~(V',.,) (X,~)~(~I(V,,.,)

~]);o is well defined, tha t is, ~]);o is indeed a TTS satisfying, thus, axioms
U n t i l and De l a y , which can be proven by straightforward induction on the
length of the proof tree.

The rules in Table 3 express the intended behaviour of each term in terms
of TTS. In this case the execution of a transition or the idling t ime is made
concrete. Thus, for instance, process r can actually perform any action a
tha t p can perform at t ime d in the valuation v whenever the condition ~ holds
in the valuation v after d units of t ime has passed. Or, on the other hand, process
r p can idle d units of times in a valuation v ff p also can idle d units of time,
and moreover, condition r holds in the valuation v after d units of time.

Now, we extend the notion of t imed bisimilarity to the terms in the language.

D e f i n i t i o n 15. Two terms p, q 6 s are timed bisimilar, notat ion p ~__ q, if and
only if for all v0 6 V, ([PD:o ~ ~qD:o" []

We state tha t all the operators of the language preserve t imed bisimulation,
tha t is ~___ is a congruence in s which can be proven as usual.

So far we stated two ways of interpreting a term in s Function ~ ~* associates
a T TS to each term and closed valuation. On the other hand, a T T S could be
associated to every p 6 s in two steps, namely, by associating a t imed automaton
to p (see Definition 8) and then interpreting such a t imed automaton in terms of
a T T S according to Definition 4. Theorem 16 states that both way of interpreting
a process are equivalent according to t imed bisimulation.

T h e o r e m 16. Let E be a guarded recursive specification with process variables
V . For every p �9 s without conflict of variables and for every closed valuation

vo, @D:o ~ Cb,17D~o.

120

_Proof (Sl:etch). Assume ~Pl)*o = (s xV, A• (p, vo), J~,U) and r
= (L; v x V, A x ~_>o, (p, Vo),) ' , H'). We state that R d=ef {((q, v), (q, v))l q E

s A v ~/v(q) = ~rs with v ~C de f V N (C x]~_>o), is a timed bisimulation. As
usual, it is proven by verifying that the transfer properties hold. []

A summary of the studied relations is given in Figure 1, where arrows may
be read as "can be interpreted in".

s T

TTS ++ TTS l

Fig. 1. Summary

5 A x i o m a t i s a t i o n

In this section we give a set of axioms that holds in bisimulation models. It
follows immediately that they also hold in any coarser model as for instance the
several t imed bisimulations with abstraction [26, 17], timed trace preorder and
timed simulations [19, 20]. We consider terms modulo a-conversion without loss
of generality.

Axioms in Table 4 could be explained as follows. The choice is commutative
A1 and associative A2. Axioms A3 and A3' state a kind of idempotency of +
and A4 states that s t op is the neutral element for + in the context of unbounded
idling. S tp states that a prefixed process which does not satisfies its guard
condition cannot proceed with its execution. Axioms G 0 - G 5 state the way in
which guards can be simplifyed. Notice that they cannot be eliminated except in
the case of t t . In particular, axioms G3, G4 and G5 say how to move invariants,
clock resettings and summations out of the scope of a guard. Similarly, axioms
I I - I 5 state how to simplify the invariant operation. I3 says how to take clocks
resettings out of the scope of an invariant, while I4 and I5 move the invariant
out of the scope of a summation. R1 and R2 eliminate redundant clocks. In
particular, R2 implies that it is always possible to reduce the amount of clocks
to be reset to at most one for each clock resetting operation. R3 gathers all the
clocks resettings in only one operation and R4 moves clocks out of the scope of a
summation. The term [x~y](p), which appears in axiom R2, is the renaming of
the free occurrences of x by y in p. It is defined recursively on the structure of p
in the obvious way. Finally, D1 and D2 state that the difference between clocks
is invariant and thus it could be "transported" along the execution. In particular,

121

Table 4. Axioms for s (a,b e A, C c_ d, =,y e d, 4,4,' E ~(C), r162 e ~(C), d e ~_>o)

Stp ff~-~a; p = stop
A1 p 4 - q = q 4 - p
A2 (p 4- q) 4- r = p 4- (q 4- r)

GO 4~+stop ---- stop
G1 t t ~ p -- p
G2 4~-~(4'~p) = (4 A 4 ') ~ p
Ga 4~*(r p) = r (4 ~)
~ 4 4~*(~c~ ~) = ~c~ (4~+~)
G5 4~-e(p 4- q) -- 4 ~ p 4- 4~-~q

I1 t t ~ p = p
I2 r (r = (r 1 6 2

I4 r p + r q = r (p + q)

Aa 4~*p + 4'~p = (4 v 4')~p
Aa' r 1 6 2 = (r v r
A 4 a;p 4- s top = a;p

if vat(4) Iq C = 0

if var(r rl C = $

I5 r (4~-~a;p) + r (r = (r V r ((r A r Jr (r A r

m ~ v ~ p = p if v n f v (p) = r

aa ~c~ ~c'D p = ~c u c '~ p
a 4 {c# p + {c~ q = {c# (p + q)

D1 4~ea; (~y} p) = 4 ~ a ; ({y~ (= - yE3d)~l~ p) if ~ (4 ==~ (zOd)) and z ys y

D2 4~-~a;p = 4 ~ a ; ((z - yOd)~l~ p) if ~ (4 ~ (z - yOd))
where [3 e {_<, <, _, >, =}

D1 explains how this difference is stated. Notice tha t axioms do not necessarily
preserve free variables. For instance, G1 allows us to prove (x > 0)~+p = p.

Some interesting properties tha t can be derived from the axioms (and induc-
tion when necessary) are idempotency of summat ion (p + p = p), invariants act
also as guards (r p = r (r aand ff~l~ s t o p is the neutral element for
4- (i.e. f f~ , s t o p 4- p = p).

Notice tha t f f ~ , a; p = ff~l~ (f f ~ a ; p) = fire, s t o p but fire, s t o p ~ : s t o p .
This is due to the fact tha t t imed bisimulation can model the halt ing of the
progress of time. I t could be understood as a broken machine tha t is not longer
allowed to remain in the same state and, simultaneously, has no way to leave
such a state, i.e., no action can be performed in order to leave such a state.
This phenomenon is known as t ime deadlock. The difference with the ordinary
deadlock phenomenon is tha t a system is in deadlock if it reaches a s tate tha t
cannot perform any action, but such a s tate need not have any restrictions on
idling, which is the case for t ime deadlock.

Axioms in Table 4 are sound for t imed bisimulation as it is s ta ted as follows.

T h e o r e m 17 S o u n d n e s s . For all p, q E s i f p = q is deduced by means of
equational reasoning using axioms in Table ~, then p ~___ q.

122

An interesting property that is derived from these axioms is that every term
can be expressed in a normal form.

Def in i t ion 18. Define the set B _C s of basic terms inductively as follows:

�9 s t o p E B'
�9 p E B , r a n d a E A ==~ r
�9 p, q E B ' ==~ p + q E B '
�9 p e B ' , r a n d z e C ==~ ~ z ~ r

B' is the set of all terms whose clock resettings and invariants are all within the
scope of a prefix construction. Notice that a basic term has the general format
(modulo A1, A2, A3 and A4)

p =

where each Pi is already a basic term. We adopt the convention that

~ieO 4?i~-~ai;pi = s top Q

The following theorem can be proven by structural induction using the ax-
ioms.

T h e o r e m 19. For every term p E f~ there is a term q E B such that p = q can
be proven by means of axioms in Table 4 and a-conversion.

6 O t h e r O p e r a t o r s

In this section, we introduce parallel composition and several well-known time
operations such as wait, time-out and urgency.

Time Operations. In this paragraph we give some axiomatic definitions for com-
mon operations on time. The operation waitd(p) waits d units of time before
starting to execute p. Conversely, befored(p) forces to execute p before d units
of time have passed. They can be defined as follows, provided x ~ ~(p):

waitd(p) clef ~X~ (X >_ d)~-tp befored(p) de__f ~z~ (= < d) ~ p

Analogously, we can define strict versions of the operators. In particular, we will
consider before<(p) d=ef ~x~ (z < d) ~ p.

Urgency is defined by the operation urgentd(P) that obliges to execute p just
after waiting d units of time:

urgentd(p) de f befored(waitd(p))

More generally we can define the operation between[d, d'](p) which forces the
execution of p after waiting d units of time but before d' units of time have
passed:

between[d, d'] (p) def__ befored, (waitd(P))

123

We can easily generalise this operation to open intervals in the obvious way.
Maybe, the most well known operation is the time-out, ptimeoutaq forces to

execute q just after waiting d units of time if process p does not started execution
yet:

ptimeout~tq def before~:(p) + urgent~(q)

Parallel Operator. We define a LOTOS-like parallel operator [8]. Basically, the
process p[IAq executes process p and q in parallel and forces synchronisation on
actions in set A E A. ~_A and IA are the left and communication merge respec-
tively, which are needed to give a finite axiomatisation of the parallel operator. In
order to define associated timed automata we will require the auxiliary operator
ck which is intended to avoid clocks resettings.

Tabl e 5. Timed automata for the parallel operator

~(v) = c ~(q) = c '

'r = (C U C')
tc(P[LAq) = (C U C')
,~LolAq) = (C U C')

P ~"r P' a C A
PIIAq ~ P'IIA~(q)
qIIAP ~ ~(q) IIAP'

pllAq ~'-~ P'IIA~(q)

K(ck(p)) = (~

O(V) = r O(q) = r
D(PIIAq) = (r A r
a(p~.Aq) = (r A ~b')
a(PlAq) = (~b A ~b')

P a,_~p, q c,,~ q, a E A
PIIAq ~'§162 P'IIAq'
PlAq "'~^~ P'llAq'

o(p) = r v ~ p'

0(~(v)) = r c~(p) a,~ p,

Free and bound variables are defined by fv(pOq) = fv(p) Ufv(q) and bv(p[2q)
= bv(p)Ubv(q) for u e {IIA, LLA, IA}, and rv(~(p)) = ~(V)Uf~(V) and b ~ (~ (.))
= by(p). We say that P]IAq, P~_Aq and PlAq do not have conflict of variables if
neither p or q do and (by(p) f3 par(q)) U (by(q) N vat(p)) = 0.

We give the rules for the timed automaton in Table 5. Operators II A and
IA are the left-merge and the communicating versions of the parallel operator,

respectively. Operation c"k is needed since if we admitted an edge like P[IAq ~
P'I]Aq instead ofpNAq ~"~ P'HA-~(q), the clocks of q, which were reset as soon as
Pl [Aq was reached, would be reset again when p'IIA q is reached after performing
action a. This last situation would be incorrect since the time for process q would
then not have progressed.

Axioms for parallel composition are given in Table 6. Operator ck is just
required in order to define associated timed automata. Moreover, it does not
preserve ~__ and a-conversion. Thus, we are not interested in giving any axioma-
tisation of it. However, the information introduced for ck is somehow encoded

1 2 4

in the axiomatisation by the operator B'. Notice that B'(p) holds when p E B'
according to Definition 18, i.e. whenever no clock resetting or invariant appears
out of the scope of a prefixing.

Table 6. Axioms for parallel composition

P C

L M 1
L M 2
L M 3
L M 4
L M 5
L M 6
L M 7
L M 8

C M 0
C M 1
C M 2
C M 3
C M 4
C M 5
C M 6
C M 7
C M 8

PlIAq = pLLAq q- q [LAP q- PlAq

stop~_A(r q) = ~bl:~ s top if Bl(q)
a;p[[A(r q) = ~bt~ s top i f a E A A B'(q)
a;p[LA(r q) = Ct~ a; (pl[A(~bl~ q)) i fa ~ A A B'(q)

(p + q) LEAr = p~_Ar -I- q~_Ar
(~C~ P) L~ Aq = ~C~ (P[[Aq) if C N [v(q) = 0
(r = r (pLLAq)
p~.A~C~ q = ~C~ (P~_Aq) if C f3 fv(p) = 0

Plaq = qIAP
s toplAstop = s top
stoPlAa;p = s top
a;p]aa;q = a; (PIIAq) if a E A
a;plab;q = stop i fa ~ b Y a ~ A
r = r
(P + q)lar = PlAt + qlar
(~CD P)laq = ~C~ (Plaq)
(r P)IAq ----- Ctl~" (PIAq)

if C N Iv(q) = 0

B' (p) B' (p) B' (q)
B'(a;p) a'(r S'O~ + q) B'(stop)

It can be proven that for every term PIIAq, P[[Aq and PIAq there is an a-
convertible term without conflict of variables. Thus, for terms with conflict of
variables we just assume their interpretation is the t imed automata of some
a-conversion without conflict of variables. Moreover, t imed bisimulation is a
congruence for IIA, LEA and IA. We state that axioms are sound for t imed bisim-
ulation and they allow the elimination of these new operators.

T h e o r e m 2 0 S o u n d n e s s . For all p and q obtained by extending s with IIA,
II A and la, if p = q is deduced by means of equational reasoning using axioms
in Table ,l and axioms in Table 6, then p ~ q.

T h e o r e m 21 E l i m i n a t i o n . For every term p in the language s extended with
IIA, ~ a and [a, there is a q in f. such that p = q can be derived from axioms in
Table ~ and Table 6.

125

7 Example

We take the example of the automatic controller of a gate at a railroad crossing
using the definition from [31, except that we have adapted it to include invari-
ants. The components of the system can be described as follows. A TRAIN
communicates to the controller that it approaches at least 2 minutes before it
enters the crossing (in). After leaving the crossing (out), the TRAIN informs the
CONTROLLER that it exited within 5 minutes after sending the signal appr.
The GATE system receives the information when to lower the gate. This should
be put down before 1 minute has passed. Then, the system waits for an order
to raise the gate. After that, it is lifted (up) within 1 to 2 minutes. The CON-
TROLLER waits for a train to approach. After exactly 1 minute, it orders to
lower the gate. Then, it waits until the train exits the crossing and at most 1
minute afterwards it orders to ra/se the gate.

The components of the system can be described as follows.

TRAIN -- appr; ~x~ ((x < 5) ~ (x > 2)~-~in;
(= < 5)~ out;
(= < 5) ~ exit; TRAIN)

GATE = lower; before1 < (down; ra/se; between(i, 2)(up; GATE))

CONTROLLER = appr; urgent 1 (lower; exit; before < (ra/se; CONTROLLER))

SYSTEM = CONTROLLER]I{~ppr,~i,,Iow~,,~,e} (TRAINH~GATE)

By using axioms in Table 6 parallel operations can be eliminated. Assuming
only one clock for each component, the expression obtained at this point will
contain 3 clocks and 19 states. However, many of those states are not reachable
since the system will never meet conditions which allow that. These states can be
eliminated by using axioms in Table 4, using D1 and D2 in particular. Moreover,
the number of clocks can be reduced to 2. In this way, the SYSTEM can be
proven equivalent to the following recursive specification which has 2 clocks and
10 states.

So=appr; S1 S5=(z < 5)t~, exit; $6
SI=~z~ S~ Ss=~y~ (y < 1) ~ ra/se; $7
S~=(x <_ 1)t~ (x = 1)~-~lower; $2 ST=~y) (y < 2) ~ (appr; Ss
S2=~y~ (y < 1)~l~ down; Ss + (y > 1)~up; So)
Ss=(x < 5) ~ (x > 2)~-~in; $4 Ss=~z~ (y < 2 A z < 1) ~ (y > 1)~4up; S~
S4---(~g (5)I:~ out; $5

Clock a: keeps track of the evolution of the time with respect to the TRAIN
and some activities in the CONTROLLER (particularly the action lower), while
y keeps track of the time of the proper activities of the GATE (namely down and
up) and the activity of raising the gate. Notice, however, that the action up in
Ss is also constrained by clock x (viz. the condition x <_ 1). This would seem to
imply that the CONTROLLER also controls the time of lifting the gate (action

126

up). Clearly, this is not a desirable situation. In [10] we consider an alternative
example that avoids this problem.

The timed automaton associated with So is depicted in Figure 2. States are
represented by circles and their numbers are written beside. ~ and a are respec-
tively written in the upper and lower part of the circle. Edges are represented
by the arrows. Empty sets and true conditions are omitted, and singleton sets
are represented by their elements.

appr ~ ~

"[lower
up ~ = 1

y > 1 ~ ~ 1 ,

ra/se

in
x > 2 ~ 4

t

~ 5

Fig. 2. The reduced timed automaton of the railroad crossing system

8 F u r t h e r R e m a r k s

Milner's Synchronisation Trees and our Language. Basically, our calculus is an
extension of Milner's synchronisation trees [21] (i.e., CCS with only prefixing,
inaction and summation) with operations to manipulate clocks (clock resettings,
invariants and guards). Moreover, we can state that our calculus is an operational
conservative extension up to (timed) bisimulation, that is, for every pair of terms
obtained by using only prefixing, stop and summation (the untimed terms), they
are (strong) bisimilar if and only if they are timed bisimilar.

Furthermore, the equational theory given for JC (see Table 4) is an equational
conservative extension of the equational theory for synchronisation trees (i.e.
commutativity, associativity, idempotency and stop as neutral element of +).
Thus, for each equality p = q of untimed terms that can be proven in Milner's
theory, it can also be proven in our theory and vice versa.

Related Works. Nicollin, Sis & Yovine [24, 25] give an interpretation of ATP
[23] in terms of timed automata with invariants, considering a dense time do-
main. Such a translation preserves timed branching bisimulation. ATP is basi-
cally an extension of CCS [21] including a timeout operation, an execution delay
or watchdog operation and the notion of urgent actions. No clocks nor time

127

variables are considered in ATP. Basically the same study was done by Daws,
Olivero & Yov/ne [12] for ET-LOTOS [18]. In this case, also timed branching
bisimulation is shown to be preserved. In neither of these works an inverse study
was carried out, i.e., to express a timed automata in terms of the process algebra.
In particular, it can be shown that ET-LOTOS is less expressive than T, the set
of timed automata.

Fokkink [14] sketches an interpretation of ACP with prefix integration [17, 5]
into timed automata without invariants. Moreover, the class of strongly regular
processes and timed automata turn out to be equivalent when certain restrictions
(namely non-Zenoness and fairness) are not present in the behaviour of the
timed automata. Thus ACP with prefix integration is more expressive than timed
automata. For instance, consider the (finite!) ACP process f~<l a[v]. fw=v b[w].
s top, that records in v the time when a was performed, and after v units of
time executes b. In our language, an unguarded recursive expression would be
needed to defined it if the time domain were denumerable. If instead the set of
real numbers is considered, such a process cannot be expressed. However, if we
allow more expressive constraints by allowing comparison between clocks, we can
define ~x~ (x < 1) ~ a; (~y~ (2y ~ x) ~ (2y - x)~-~b;stop). Such an extension
would, of course, affect the tractability of the language.

Lynch & Vaandrager [20] introduce a language that explicitly manages clocks.
Such a language has the same expressive power as timed automata w.r.t. (weak)
timed trace equivalence.

A1ur & Henzinger [4] study the extension of programming languages with
clock variables. They discuss their semantics in terms of the so called real-time
programs [15] which are easily translated into timed safety automata (see [15]).

Yi, Pe$tersson & Daniels [27] give an algebra that represents timed automata
without invariants. Basically, the algebra is a syntax for the timed automata in-
cluding CCS parallel composition and restriction. In particular, the prefixing
operation has the form (r a, C).p with ~b E ~(C) and C C C, and it is the only
one that can manage clocks. It could be understood as our term r ~C~ p.
Thus, since terms with conditions in their first actions unavoidably become open
terms, it is necessary to consider an initial valuation in its semantics for which
[C*~0] is taken. That is rather annoying since even when terms like, for instance,
ix < 1, a, 0).stop and (y < 1, a,0).stop, show the same behaviour, they be-
come different in the context (tt, b, {x})._. Moreover, notice that this language
is strictly less expressive than ours, since it does not include invariant operations.

Conclusions. The contribution of this paper is a language for timed automata.
This language is basically an extension of Milner's synchronisation trees with
operators to handle clocks, namely clocks resettings, invariants and guards. The
language has the ability to represent any (image-finite) timed automata by means
of guarded recursion, and moreover, any guarded recursive expression can be
interpreted as an (image-finite) timed automata. It is extended with the parallel
composition and, moreover, some common time operations including time-out,
waiting and urgency, are algebraically defined in terms of the basic language.

128

Also, an equational theory has been given. We have reported that it is sound
with respect to timed bisimulation and, moreover, a normal form can be found for
each term by using the axioms. With an example we have shown that redundant
states, clocks and conditions can be eliminated.

It is interesting to notice that our theory is a conservative extension of Mil-
ner's synchronisation trees. We have chosen to use LOTOS-like parallel compo-
sition, however, it would also be possible to define the CCS-like parallel compo-
sition, restriction and renaming. In such a case, a conservative extension of the
CCS calculus could easily be obtained.

In the full version of this paper [10], we introduce a symbolic bisimulation,
which basically is a bisimulation defined on timed automata. It has the property
of implying timed bisimulation, and thus, can simplify proofs of timed bisimi-
laxity. In particular, we use it to prove soundness results. In addition, the full
article includes all the proofs omitted here.

Further study includes teachability analysis by using the equational theory,
completeness of the axiomatisation, particularly whether it is necessary to in-
clude an operator like ACP integration [5], and axiomatisation of other semantic
relations as, for instance, t imed trace preorder [20].

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, D. Dill, and H. Wong-Toi. Minimization
of timed transition systems. In W.R. Cleaveland, editor, Proceedings CONCUR
9~, Stony Brook, NY, USA, volume 630 of Lecture Notes in Computer Science,
pages 340-354. Springer-Verlag, 1992.

2. R. Alur, C. Courcoubetis, N. Halbwachs, T.A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J.Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138:3-34, 1995.

3. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,
126:183-235, 1994.

4. R. Alur and T.A. Henzinger. Real-time system = discrete system + clock variables.
In T. Rus and C. Rattray, editors, Theories and Experiences for Real-Time System
Development -- Papers presented at First AMAST Workshop on Real-Time System
Development, Iowa City, Iowa, November 1993, pages 1-29. World Scientific, 1994.

5. J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal
Aspects of Computing Science, 3(2):142-188, 1991.

6. J.C.M. Baeten and J.A. Bergstra. Real time process algebra with infinitesimals.
In A. Ponse, C. Verhoef, and S.F.M. van Vlijmen, editors, Algebra of Communicat-
ing Processes, Utrecht, 1994, Workshops in Computing, pages 148-187. Springer-
Verlag, 1995.

7. J.C.M. Baeten and J.W. Klop, editors. Proceedings CONCUR 90, Amsterdam,
volume 458 of Lecture Notes in Computer Science. Springer-Verlag, 1990.

8. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. In P.H.L. van Eijk, C.A. Vissers, and M. Diaz, editors, The formal de-
scription technique LOTOS, pages 23-73. Elsevier Science Publishers, 1989.

9. T. Bologuesi and F. Lucidi. Timed process algebras with urgent interactions and
a unique powerful binary operator. In de Bakker et al. [13], pages 124-148.

129

10. P.R. D'Argenio and E. Brinksma. A calculus for timed automata. Technical Re-
port CTIT 96-13, Department of Computer Science, University of Twente, 1996.

11. J. Davies et al. Timed CSP: Theory and practice. In de Bakker et al. [13], pages
640-675.

12. C. Daws, A. Olivero, and S. Yovine. Verifying ET-LOTOS programs with KROo
NOS. In Hogrefe and Leue [16], pages 207-222.

13. J.W. de Bakker, C. Huizing, W.P. de Roever, and G. Rozeuberg, editors. Proceed-
ings REX Workshop on Real-Time: Theory in Practice, Mook, The Netherlands,
June 1991, volume 600 of Lecture Notes in Computer Bcience. Springer-Verlag,
1992.

14. W.J. Fokkink. Clocks, Trees and Stars in Process Theory. Phi) thesis, University
of Amsterdam, December 1994.

15. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking
for real-time systems. Information and Computation, 111:193-244, 1994.

16. D. Hogrefe and S. Leue, editors. Proceedings of the 7 ~h International Conference
on Formal Description Techniques, FORTE'g~. North-Holland, 1994.

17. A.S. Klusener. Models and azioms for a fragment of real time process algebra. PhD
thesis, Department of Mathematics and Computing Science, Eindhoven University
of Technology, December 1993.

18. G. Leduc and L. L~onard. A formal definition of time in LOTOS. In Re-
vised draft on enhancements to LOTOS, 1994. Annex G of document ISO/IEC
JTC1/SC21/WG1/Q48.6.

19. N.A. Lynch and F.W. Vaandrager. Forward and backward simulations - part II:
Timing-based systems. Report CS-R9314, CWI, Amsterdam, March 1993. To
appear in Information and Computation.

20. N.A. Lynch and F.W. Vaandrager. Action transducers and timed automata. Re-
port CS-R9460, CWI, Amsterdam, November 1994. To appear in Formal Aspects
of Computing.

21. R. Milner. Communication and Concurrency. Prentice-Hall International, Eagle-
wood Cliffs, 1989.

22. F. Moller and C. Tofts. A temporal calculus of communicating systems. In Baeten
and Klop [7], pages 401-415.

23. X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and ap-
plication. Information and Computation, 114(1):131-178, 1994.

24. X. Nicollin, J. Sifakis, and S. Yovine. Compiling real-time specifications into ex-
tended automata. IEEE Transactions on Software Engineering, 18(9):794-804,
September 1992.

25. X. Nicollin, J. Sifakis, and S. Yovine. From ATP to timed graphs and hybrid
systems. Aeta Informatiea, 30(2):181-202, 1993.

26. W. Yi. Real-time behaviour of asynchronous agents. In Baeten and Klop [7], pages
502-520.

27. W. Yi, P. Pettersson, and M. Daniels. Automatic verification of real-time commu-
nicating systems by constraint-solving. In Hogrefe and Leue [16], pages 223-238.

