
A Calculus for Timed Automata 
(Extended Abstract)* 

Pedro R. D'Argenio and Ed Brinksma 

Dept. of Computer Science. University of Twente. 
P.O.Box 217. 7500 AE Enschede. The Netherlands. 

{ dargenio, brinksma ~ @cs. utwente.nl 

Abst rac t .  A language for representing timed automata is introduced. 
Its semantics is defined in terms of timed automata. This language is 
complete in the sense that any timed automaton can be represented by 
a term in the language. We also define a direct operational semantics for 
the language in terms of (timed) transition systems. This is proven to 
be equivalent (or, more precisely, timed bisimilar) to the interpretation 
in terms of timed automata. 
In addition, a set of axioms is given that is shown to be sound for timed 
bisimulation. Finally, we introduce several features including the parallel 
composition and derived time operations like wait, time-out and urgency. 
We conclude with an example and show that we can eliminate non- 
reachable states using algebraic techniques. 

1 I n t r o d u c t i o n  

A real-time system is a system whose behaviour is constrained by requirements 
on the t ime in which events can occur. Sometimes, systems are implemented 
as t imed systems in the sense that  they fulfil certain timing conditions to give 
them an acceptable performance. Other systems depend on timing conditions 
in a more essential way, viz. because their functional correctness depends upon 
certain critical tinting conditions being fulfilled. Therefore, it becomes interesting 
to s tudy the formal verification of such systems. 

In the last years, several formal techniques have been developed to specify and 
verify real-time systems. For instance, many well-known process algebras have 
been extended with features to manipulate t ime [11, 26, 22, 23, 5, 17, 6, 9, 18]. 
But  the apparently most successful approaches are t imed and hybrid au tomata  
[3, 24, 15, 2]. The formal relation between these two models has been studied in 
some cases [24, 25, 14, 12]. Languages that  fully represent t imed automata  have 
also been studied [20, 271 . 

In this paper, we introduce a process algebra to describe t imed automata.  
Since the syntax of t imed automata  becomes unwieldy to specify realistic real- 
t ime systems, the process algebra introduced here proposes a higher-level lan- 
guage that  is interpreted in terms of t imed automata.  More specifically, we choose 
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a slight variation of the so called timed safety automata [15]. Basically, the lan- 
guage extends Milner's CCS [21] restricted to prefixing, inaction and summation, 
with some features to manipulate clocks, namely, clock resetting, invariants and 
guards. We prove that any timed automaton can be described by a term in the 
language together with guarded recursion. 

Also, we introduce a direct operational semantics for the language. Thus, a 
{timed} transition system is associated to each process. We prove that this way 
of giving semantics is equivalent {timed bisimilar} to the interpretation of the 
associated timed automaton. 

In order to facilitate the construction of complex systems we include parallel 
composition, and several common operations on time, such as time-out, waiting 
and urgency. 

The first goal of our paper is to introduce a powerful language to represent 
timed automata. Our second goal is to introduce an equational theory for the 
language that allows us to manipulate timed automata in order to eliminate 
redundant information. This is an interesting point, since, to our knowledge, 
timed automata have not yet been studied from an algebraic point of view. The 
axiomatisation is sound for timed bisimulation and allows to find a normal form. 
Moreover, the additional operators like parallel composition can be eliminated, 
thus obtaining equivalent expressions defined just in terms of the basic language. 

As an example we study the railroad crossing controller of [3]. In this exam- 
ple, we illustrate that we can eliminate redundant states, clocks, and conditions. 
In particular, non-reachable states are eliminated. 

The rest of this paper is structured as follows. Section 2 reviews the models 
of timed transition systems and timed automata. In Section 3, we introduce 
the language and we study its relation with timed automata. The operational 
semantics is introduced in Section 4 and the relation with the timed automata 
model is stated. Section 5 introduces the axiomatisation for the basic language, 
and the extension with new operators is studied in Section 6. The example is 
presented in Section 7. Extensionality with respect to CCS, related work, and 
conclusions are discussed in Section 8. 

This article is an extended abstract of [10] which contains all proofs omitted 
here. 

Acknowledgement s .  This work profited from discussions with Jan F. Groote, 
Rom Langerak, Jan Springintveld, Jan Tretmans, Frits Vaandrager and Sergio 
Yovine. In particular, Sergio Yovine pointed out the related work [27]. Reference 
[4] was pointed out by one of the referees. 

2 M o d e l s  f o r  T i m e d  S y s t e m s  

Time, clocks and constraints. We adopt the set 1R >-~ of non-negative reals as 
time domain. A clock is a variable x ranging over a time domain ]R --~ Let 
C denote a set of clocks. The set ~(C) of clock constraints over C is defined 
inductively by: 

4 : : =  d(__d' I x ( - d  I d ( ~  I x - y ( d  I d ( x - y  I (~A~} [ (-~) 
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where d, d' E ]R --~ and z, y E C with z ~ y. The abbreviations t t ,  if,  x = d, 
x > d, x - y  < d, ~ V ~', x E [d, dt), etc. are defined as usual. Let v~r(~) denote 
the set of clocks occurring in ~. A clock constraint is closed if no clocks occur 
in it. We denote the set of closed clock constraints by ~c. We could also adopt 
a richer set of constraints (see Section 8). 

A (clock) valuation is a function v : C -~ ~__0. Let ~ denote the set of valua- 
tions, v is lifted to clocks constraints by the obvious induction over the structure 

of ~b. Let C E C. We define v[C~O] as v[C~O](x) d___ef i f  x E C t h e n  0 else  v(x).  

Let d E ]R >~ Define v + d  as (v+d) (x)  d__ef v (x )+d .  Notice that  for any valuation 
v and for any clock constraint ~b, v(~b) is a closed clock constraint. 

For the subset of closed clock constraints, we define the satisfaction predicate 
~_c ~c as usual: 

~ d < d + d '  ~ (~b A ~b') ~ (-~ff) 

where d, d ~ E ~_>o. We generaiise ~ to all clock constraints ( ~ C  #(C)). Let 

~b E ~(C) then ~ ~b ~ Vv E 1): ~ v(~b). 

We define the set ~(C) C_ ~(C) of past-closed constraints as ~b ~ ~(C) ~ 
(v + d)(~) ==r ~ v(~b), for all v E V and d E ]R ->~ Notice that  this kind of 
constraints are such that  if they hold at t ime d, they hold at all d ~ < d. 

Timed Transition Systems. A t imed transition system is a labelled transition 
system that  includes information about the time. We adopt the model of actions 
with time stamps. 

D e f i n i t i o n  1. Let A be a set of actions. A timed transition system (TTS) is a 
s tructure L = (5, A • ]R ->~ so, ),bi) where 

�9 S is a set of states, with the initial state so E S; 
�9 A is a set of labels; 
�9 ~ C_ S • (A x ]R >~ • S is the transition relation; and 
�9 bi __./R >~ • S is the until predicate. 

We use the following notation: a(d) iff (a, d) E A x ~>o ,  s ~ s' iff (s, a(d), s') E 

~, , ~A~d(8 ) iff (d,s) ~ ~ ,  sa(-~ iff 3s ' E S. sa(al s '. 
In addition, L should satisfies the following axioms: 

U n t i l  Vd, d t E ]R >~ bid(S) ^ d ~ < d ==r bid, (s); 

D e l a y  Vd E ]R >0. s a(dl ==~ Ud(S). D 

The intended meaning of a transition s a!dl s ~ is that  a system which is in state 
s can change to be in state s ~ by performing an action a at t ime d. Intuitively, 
bid(s) together with axiom Unt i l ,  means that  a system can idle in a state s at 
least d units of times. Axiom D e l a y  state that  every t ime that  an action may 
occur in a state s at t ime d, the system must be idling at that  time. 

Predicate bi was introduced in [17]. Here, we formalised its behaviour in a 
relative t ime setting by adding the axioms Un t i l  and De lay .  
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D e f l n l t i o n 2 .  Let Li = (S i ,A x ]K>~ t i,Ui), i e {1,2}, be two TTS. 
A timed bisimulation is a relation R C_ $I • $2 with z 2 soRs o satisfying, for all 
a(d) E A • ~t >-~ the following transfer properties: 

aCd) , 
1. if slRs2 and sla(-(-~ls~, then 3s~ e S~ : s2 ~2s2 and s i r s  2 , '  '" 

2. if siRs2 and 82a(--~28t2, then 3s~ �9 $1: 81a(d~lstl and s~Rs~; and 
3. if s irs2 ,  then H~(Sl) r U~(s2). 

If such a relation exists, we say that  L1 and L2 are timed bisimilar (notation 
L~ ~__ L2). O 

Timed Automata. In this paragraph we define a variation of timed automata  [3]. 
We use invariants as in [15, 24, 25] but, instead of considering clock resettings 
on the edges, we consider them in the states. The reason for this is tha t  we want 
to avoid assumptions about the initial setting of clocks, which makes the com- 
positionality of the language more complicated. Compare [27] (see Section 8). 

D e f i n i t i o n 3 .  A timed (safety) automaton is a structure (S,A,C,  s0, * ,0 ,~ )  
where: 

�9 S is a set of states, with the initial state So �9 S; 
�9 A is a set of actions; 
�9 C is a set of clocks; 
�9 ~ C S • A x @(C) • S is the set of edges; 
�9 0 : S ~ ~(C) is the invariant assignment function; 
�9 ~ : S -+ ~nn(C) is the clocks resetting function. 

The set of all t imed automata  is denoted by 7". [] 

In this case, (s, a, ~b, s') �9 * (notation s a,~ s') intuitively means that  
when the system is in state s it could change to be in state s' by performing an 
action a provided that  the clock constraint r holds. The clock setting function 
states which clocks should be reset as soon as a state is reached. The invariant 
assignment function states that  the system can idle in a state s as long as O(s) 
holds. 

Notice that  our t imed automata can be translated into t imed automata  with 
resettings on the edges by just labelling the edge with the set of clocks to be reset 

in the target state, that  is, an edge s a,~ s' will be translated into s a,r s'. 
Conversely, a timed automaton with resettings on the edges could be trans- 
formed by "pushing" the clock resetting into the target state, i.e., given an edge 

s a,~,~ s' we define s a,~ s' and tc(s') d__ef C. In case that  many edges with 
different clock resettings go to the same state, this state is "split" into different 
states, one for each set of clocks. 

Formally speaking, a t imed automaton can be interpreted as a TTS as follows. 

D e f i n i t i o n 4 .  Let T = (S, A,C, so, ---~, 0, ~) �9 7" be a t imed automaton. Let 
Vo �9 V be any valuation. The interpretation of T with initial valuation vo is 

given by the TTS ~T])~o ~ f  (S • l~, A • ~t >--~ (So, Vo), ----~, U) where ) and 
U are defined as the least sets satisfying the following rules: 
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, a,~ ,, ~ (v[~(~)~0] + d)(r ^ O(~)) ~ (v[,(~)+~0] + d)(O(~)) 
(,, v) ~ (~', (v[~(s)~0] + d)) Us(s, ~) [] 

Since 0(s) E ~(C) for all s E S, it follows that ~T~vo satisfies axiom Until.  

Moreover, notice that if (s, v) a(al then ~ (v[~(s)~0] + d)(O(s)) and so l~d(S, v) 
which implies that axiom Delay holds. Hence, ~T~vo is indeed a TTS for any 
initial valuation Vo. 

Isomorphism is a fine enough equivalence. Thus, proving the existence of 
an isomorphism is enough to prove that two timed automata are equivalent in 
coarser equivalences, for instance, timed bisimulation. 

D e f i n i t i o n 5 .  Let T = (S ,A ,C,  so, *,O,t~) and T'  = (S',A,C,S'o, * 
', a', ~') be two timed automata. An isomorphism from T to T' is a bijective 
function F : S --+ S ~ such that 

1. r(s0) = ,~, 
2. s ~'~ s' ~=~ r(s )~ ' -~ 'r (~ ' ) ,  
3. O(s) = O'(F(s)), and 
4. ~(~) = ~'(r( ,)) .  

We say that T and T t are isomorphic, notation T - T t, if there is an isomorphism 
between T and T'. [] 

3 A S i m p l e  L a n g u a g e  f o r  T i m e d  A u t o m a t a  

In this section we introduce a simple language that contains the necessary op- 
erators to represent timed automata. We give the semantics of this language in 
terms of timed automata. Moreover, we show that any timed automaton could 
be represented by a term of this language if we add guarded recursion over 
expressions. 

D e f i n i t i o n  6. Let A be a set of actions and let C be a set of clocks. The language 
s is defined according to the following grammar: 

p : :=  s top I a;P I r I P + P I ~C~ P I Ct~ p 

where a e A, r E ~(C), r E ~(C) and C e ~~ We refer to the elements of 
s as processes. [] 

Process s top represents inaction; it is the process that cannot perform any 
action. The intended meaning of a;p (named (action-)prefixing) is that action 
a can be performed at any time and then it behaves like p. r  the guarding 
operation, executes any first action that p can do whenever r holds. ~C~ p, 
the clock resetting operation, is a process that behaves like p, but resetting the 
clocks in C. We will write ~x l , . . . ,  x ,~ p instead of ~{Xl,...  , Xn} ~ p. ~/t~ p, the 
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invariant operation, can idle while r holds or go on with the process p. p + q is 
the choice; it executes either p or q. The choice between p and q can be made 
only by actions, not by the passage of time. 

D e f i n i t i o n  7. Let p E s The set Ev(p) of free variables of p and the set by(p) 
of bound variables of p are defined as the least set satisfying 

iv ( s top )  = 0 by(s top)  = 0 
= [y(p) bv(a;p)  = by(p) 

fy(r = U = by(p) 
fv(p + q) ---- fv(p) U/~(q) by(p + q) -- by(p) U by(q) 

p) =  v(p)\c by( C) p) = C u by(p) 
p) = u fy(p) by(r p) = by(p) [] 

Notice that  the term ~C~ p binds clocks in C that  appear in any constraints 
in p. Let Kp be the union of all clock resettings in p which do not occur within 
the scope of a prefixing, i.e., a subterm a; q. We say that  a term does not have 
conflict of variables if there is no subterm in it tha t  has conflict of variables and, 
if it has the form p + q (respectively ~b~ p) then (fv(p) fq Kq) U (fv(q) fq Kp) = @ 
(respectively vat(C) fq Kp = 0). In this work we will generally assume processes 
which do not have conflict of variables. This assumption is harmless since we can 
always rename properly bound variables (i.e. to apply a -convers ion)  in order 
to avoid this problem. In [10] we study a -convers ion  and conflict of variables 
extensively. 

We can associate a t imed automaton to a process according to the following 
definition. 

D e f i n i t i o n  8. Let p E / :  be without conflict of variables. The timed automaton 
associated to p is defined by ~v] T = (s A, C, p, ) , 0, ~) where ) ,  0 and 
are defined as the least sets satisfying the rules of Table 1. [:3 

The notion of associated t imed automaton is well-defined for processes without 
conflict of variables. In order to check it, we should see that  for all q E /:, 
0 and e; are indeed functions and moreover, tha t  O(q) E ~(C). But  it can be 
straightforwardly proven by induction on the depth of the proof tree taking into 
account tha t  if r  r  e ~(C) then !b A r  r V r  e ~(C). 

Rules in Table 1 capture the behaviour above described in terms of t imed 
automata.  In particular, it deserves to notice that  a process p + q can idle as 
long as one of them can. Thus O(p + q) r O(p) V O(q). Moreover, p + q can 
execute any action o fp  or q as long as it could be executed in its original process. 
Thus, since an action cannot be executed after the idling t ime is finished, we 
require tha t  for the execution of an action, the corresponding invariant must 
also hold. 

The condition that  processes should not have conflict of variables is necessary. 
If it were not considered we would have undesirable bindings. For instance, 
consider the term p ~ (x < 2)t~ (~x~ (z = 1)~-~a; s top) .  Clearly, x is free in the 
invariant (x < 2), however, using rules in Table 1, we derive O(p) = (x < 2) and 
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Table 1. Timed automata for s 

~(p) = c 
~ ( s t o p )  = 0 ~ ( a ; p )  = 

~ ( r  = c 

~(p) = c ~(q) = c '  ~(p) = c '  ~(p) = c 
~(p + q) = ( c  u c , )  ~(~Cl} p) = ( c  u c , )  ~ ( r  p) = c 

O ( s t o p )  = t t  O(a;p) = t t  O(p)  = r 
0 ( r  = r 

/~(p) ---- r 0(q) ---- r 0(p) ---- r 0(p) = r 
o ( p + q ) = ( r 1 6 2  0 ( ~ c ~ p )  = r  0 ( r  = ( r  r  

a;P ~'--'~P P a,~ p, = p ~ p' o(p) r 

P a,$ p, p '~'t p' q +p  "'r p' 
~c~ p ~'-i-p , r p ~ p, 

~(p) = {z}. Thus, according to Definition 4 the x in the invariant is captured by 
the clock resetting. Similar reasoning shows that, in q -= ((y < 1)tl~ a; stop) + 
(~y~ stop), the free occurrence of y in the left operand is captured by the clock 
resetting in the right operand since O(q) = (y < 1) and ~(q) = {y}. 

We extend the expressiveness of our language by allowing recursive specifi- 
cations. 

Defini t ion 9. Let V be a set of process variables. We extend the previous lan- 
guage with process variables. So, le t / :v  the language defined by the following 
grammar: 

p : :=  s top I a;P l r  [ P +  P [ ~C~ P l r  P ] X 

where a e A, r e ~(C), r e ~(C), C C C and X e V. A recursive specification 
is a set of recursive equations having the form X = p(V) for each X E V, where 
p(V) ~ s Every recursive specification has a distinguished process variable 
called root. We extend the notion of free and bound variables by adding the 
equations fv(X) = fv(q) and by(X)  = by(q) provided X = q e E. [] 

We recall that s and by(p) are defined as the least set satisfying the equations 
in Definitions 6 and 9. Thus, for instance, if X = ~z~ (y < 3 ^ x < 2 )~  X then 
s = {y} and by(X)  = {z}. 

Now, we extend the notion of the associated timed automaton to recursive 
specifications and we state the correctness of the definition. 

Defini t ion 10. Let E be a recursive specification such that none of its equations 
has conflict of variables. The ~irned automaton associated to p E s is defined 
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by [ p i t  = ( s  - - '~ ,  0, ~) where ---~, 0 and ~ are defined as the least set 
satisfying rules in Table 1 and rules in Table 2. [] 

Table  2. Timed automata for recursion (X --- p E E) 

I ~(p[p/X]) = C O(p~lX]) = r p ~ l X  l "'--$-p' 
~(X) = C O(X) = r X ~'i p' 

Defini t ion 11. An occurrence of X is guarded in a term p E /:v ff p has a 
subterm a; q such that  this occurrence of X is in q. A term p is guarded if all 
the occurrences of its variables are guarded. A recursive specification is guarded 
if the right hand side of every recursive equation in it is a guarded process. D 

Notice that  a and ~ are not always well-defined in case of (unguarded!) 
recursion. For instance, take X -- (z < 1 ) ~  X,  then a and a are the completely 
undefined functions because of nonterminating derivation. Nevertheless, we can 
state the following theorem. 

T h e o r e m  12. Let p E s be a process without conflict of variables, which has 
process variables defined in a guarded recursive specification E without conflict 
of variables. The associated timed automaton [pi t  is indeed a timed automaton. 

Proof. It  can be proved by structural induction that  0 and a are defined for any 
guarded term. In addition, we can see that  for all q E s  relations 0 and ~ are 
functions and moreover, tha t  0(q) E ~(C). This can be proven by induction on 
the derivation of 0 and ~. [] 

The language presented here, together with a guarded recursive specification, 
has the property of expressing any t imed automaton in the sense of Theorem 13 
below. First, we borrow some definitions from transition system theory into 
t imed automaton theory. A t imed automaton is image-finite if the set of outgoing 
edges of every state labelled with the same action is finite, i.e., for any a and any 

s, the set {s ~ s~l s t E S} is finite. It is finitely sorted if, for each state s, the 

set of all actions labelling the outgoing edges, i.e., {a] Bs ~ E S. s a,r s ,} is finite. 
A state s is (symbolically) reachable if there is a sequence of edges from the initial 
state So to s, i.e., there are a l , . . . , an ,  ~fit,...,~n and s l , . . . , s n  (n >__ 0) such 

that  So ~ s l . . .  ~ sn = s. The reachable part of a t imed automaton T is the 
same t imed automaton restricted to the set of states tha t  are reachable. Notice 
that  we are considering a static view but not the usual notion of teachability in 
t imed automata  theory (compare to [1]). 

T h e o r e m  13 R e p r e s e n t a b i l i t y  o f  t i m e d  a u t o m a t a .  For every image-finite 
and finitely sorted T E T there is a guarded reeursive specification E with root 
Xso such that the reachable part of T and the reachable part of [Xso] T are 
isomorphic. 
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Proof. The proof consists of associating a process variable to each state s of T 
and defining each one of them as the term that resets the clocks of ~(s) and 
has an invariant a(s) over the summation of the outgoing edges represented 
by prefixings with its respective guard. Thus, the isomorphism is given by the 
function that maps every state in its corresponding variable. 

Let T = (S, A,C, so, ~ t, a l  ~).  For each state s E S define a different 
variable Xs. Let Vs be the set of such variables. Define the set of recursive 
specifications E with root Xso and recursive equations 

where ~{p~ I i E {1. . .  n}} de~ PI + P2 + " "  + Pn. In particular, if s has no 
outgoing transition then Xs = ~d(s)~ a~(s)~ stop. 

According to Definition 10, [Xs0] r = (/:v, A, C, Xso, - '-~, a, ~). Define 

[x.o]rFvs do=f (Vs,A,c,X.o, ) rVs,OrVs,, Ws) 

where: )" ~VS def = )n(VsxAx (C)xL; v) 
a Ws d,f o n (Vs x 

Ws do=f n (Vs x 

Clearly, F : S -~ Vs defined a s / ' ( s )  def X, for all a E S, is an isomorphism, 
which straightforwardly implies the theorem. [] 

In the previous proof, the restriction of [Xso] T to the set Vs is merely for- 
mal, and it is due to the fact that the associated timed automaton is defined 
considering the whole set of terms/~v instead of the reachables ones. 

In order to represent data it could be needed to consider more general timed 
automata which are not necessarily image finite or finitely sorted. This kind of 
automata could be represented in the language by defining an infinite summation 
operator in the expected way. Thus, Theorem 13 could be extended to timed 
automata with denumerable branching and denumerable sorts. 

4 A n  O p e r a t i o n a l  S e m a n t i c s  

In this section we give a semantics for s in terms of TTS. We state that 
it coincides (modulo timed bisimulation) with the semantics of the associated 
timed automaton. 

Definition 14. Let E be a recursive specification with process variables V. 

The TTS of a term p E s with initial valuation r0 E ]) is defined by ~P~;o de f 

(~v • ~, A • A ->~ (p, vo), ---~, L0 where ) and ~ are the least set satisfying 
rules in Table 3. [3 
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Table 3. Operational semantics for s (a �9 A, d �9 ~q>o, v �9 V, X = p 6 E) 

ud(p, ~) Ud(p, ~[C~O]) 
L/d (stop, v) lgd(a;p, v) Ud(r V) Lld(~C~ p, v) 

~= (v + d)(r Ud(p,V) lda(p,v)  bld(p[p/X],v) 
~'[d(r Ud(p'i-q,v) Ud(q+p,v) Ud(X,v) 

(,  + d)(r (V,.) aCdl (V',r 

(r ~) ~ (V', ~') 

(v,v[C~0l)~C~)(v',r ~ (~+d)(r (V,.)'Cdl(p',r 

(v, .) ~ (V', .') (v~ IX], ~) ~ (v', r ) 
(v + q, ~) "c-~ (p,, r (q+p,~)"C--~(V',.,) (X,~)~(~I(V,,.,) 

~]);o is well defined, tha t  is, ~]);o is indeed a TTS  satisfying, thus, axioms 
U n t i l  and De l a y ,  which can be proven by straightforward induction on the 
length of the proof tree. 

The rules in Table 3 express the intended behaviour of each term in terms 
of TTS.  In this case the execution of a transition or the idling t ime is made 
concrete. Thus, for instance, process r can actually perform any action a 
tha t  p can perform at t ime d in the valuation v whenever the condition ~ holds 
in the valuation v after d units of t ime has passed. Or, on the other hand, process 
r  p can idle d units of times in a valuation v ff p also can idle d units of time, 
and moreover, condition r holds in the valuation v after d units of time. 

Now, we extend the notion of t imed bisimilarity to the terms in the language. 

D e f i n i t i o n  15. Two terms p, q 6 s are timed bisimilar, notat ion p ~__ q, if and 
only if for all v0 6 V, ([PD:o ~ ~qD:o" [] 

We state tha t  all the operators of the language preserve t imed bisimulation, 
tha t  is ~___ is a congruence in s  which can be proven as usual. 

So far we stated two ways of interpreting a term in s Function ~ ~* associates 
a T TS  to each term and closed valuation. On the other hand, a T T S  could be 
associated to every p 6 s in two steps, namely, by associating a t imed automaton 
to p (see Definition 8) and then interpreting such a t imed automaton in terms of 
a T T S  according to Definition 4. Theorem 16 states that  both way of interpreting 
a process are equivalent according to t imed bisimulation. 

T h e o r e m  16. Let E be a guarded recursive specification with process variables 
V .  For every p �9 s  without conflict of variables and for every closed valuation 

vo, @D:o ~ Cb,17D~o. 
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_Proof (Sl:etch). Assume ~Pl)*o = (s xV, A• (p, vo), J~,U) and r 
= (L; v x V, A x ~_>o, (p, Vo), ) ' ,  H'). We state that  R d=ef {((q, v), (q, v))l q E 

s A v ~/v(q) = ~rs with v ~C de f V N (C x ]~_>o), is a timed bisimulation. As 
usual, it is proven by verifying that  the transfer properties hold. [] 

A summary of the studied relations is given in Figure 1, where arrows may 
be read as "can be interpreted in". 

s T 

TTS ++ TTS l 

Fig. 1. Summary 

5 A x i o m a t i s a t i o n  

In this section we give a set of axioms that  holds in bisimulation models. It 
follows immediately that  they also hold in any coarser model as for instance the 
several t imed bisimulations with abstraction [26, 17], timed trace preorder and 
timed simulations [19, 20]. We consider terms modulo a-conversion without loss 
of generality. 

Axioms in Table 4 could be explained as follows. The choice is commutative 
A1 and associative A2. Axioms A3 and A3'  state a kind of idempotency of + 
and A4 states that  s t op  is the neutral element for + in the context of unbounded 
idling. S tp  states that  a prefixed process which does not satisfies its guard 
condition cannot proceed with its execution. Axioms G 0 - G 5  state the way in 
which guards can be simplifyed. Notice that  they cannot be eliminated except in 
the case of t t .  In particular, axioms G3, G4 and G5 say how to move invariants, 
clock resettings and summations out of the scope of a guard. Similarly, axioms 
I I - I 5  state how to simplify the invariant operation. I3 says how to take clocks 
resettings out of the scope of an invariant, while I4 and I5 move the invariant 
out of the scope of a summation. R1 and R2  eliminate redundant clocks. In 
particular, R2  implies that  it is always possible to reduce the amount of clocks 
to be reset to at most one for each clock resetting operation. R3  gathers all the 
clocks resettings in only one operation and R4  moves clocks out of the scope of a 
summation. The term [x~y](p), which appears in axiom R2,  is the renaming of 
the free occurrences of x by y in p. It is defined recursively on the structure of p 
in the obvious way. Finally, D1 and D2 state that  the difference between clocks 
is invariant and thus it could be "transported" along the execution. In particular, 
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Table 4. Axioms for s (a,b e A, C c_ d, =,y e d, 4,4,' E ~(C), r162 e ~(C), d e ~_>o) 

Stp ff~-~a; p = stop 
A1 p 4 - q = q 4 - p  
A2 (p 4- q) 4- r = p 4- (q 4- r) 

GO 4~+stop ---- stop 
G1 t t ~ p  -- p 
G2 4~-~(4'~p) = (4 A 4 ' ) ~ p  
Ga 4~*(r  p) = r ( 4 ~ )  
~ 4  4~*(~c~ ~) = ~c~ (4~+~) 
G5 4~-e(p 4- q) -- 4 ~ p  4- 4~-~q 

I1 t t ~ p = p  
I2 r  ( r  = ( r 1 6 2  

I4 r  p + r q = r (p + q) 

Aa 4~*p + 4'~p = (4 v 4')~p 
Aa' r 1 6 2  = (r v r  
A 4  a;p 4- s top  = a;p 

if vat(4 ) Iq C = 0 

if var(r rl C = $ 

I5 r  (4~-~a;p) + r (r = (r V r ((r A r Jr (r A r 

m ~ v ~ p = p  if v n f v ( p ) = r  

aa  ~c~ ~c'D p = ~c u c '~ p 
a 4  {c#  p + {c~ q = {c#  (p + q) 

D1 4~ea; (~y} p) = 4 ~ a ;  ({y~ (= - yE3d)~l~ p) if ~ (4 ==~ (zOd)) and z ys y 

D2 4~-~a;p = 4 ~ a ;  ((z - yOd)~l~ p) if ~ (4 ~ (z - yOd)) 
where [3 e {_<, <, _,  >, =} 

D1  explains how this difference is stated. Notice tha t  axioms do not necessarily 
preserve free variables. For instance, G1  allows us to prove (x > 0)~+p = p. 

Some interesting properties tha t  can be derived from the axioms (and induc- 
tion when necessary) are idempotency of summat ion  (p + p = p), invariants act  
also as guards ( r  p = r  ( r  aand ff~l~ s t o p  is the neutral  element for 
4- (i.e. f f~ ,  s t o p  4- p = p). 

Notice tha t  f f ~ ,  a; p = ff~l~ ( f f ~ a ;  p) = fire, s t o p  but  fire, s t o p  ~ :  s t o p .  
This is due to the fact tha t  t imed bisimulation can model the halt ing of the 
progress of time. I t  could be understood as a broken machine tha t  is not longer 
allowed to remain in the same state  and, simultaneously, has no way to leave 
such a state, i.e., no action can be performed in order to leave such a state. 
This  phenomenon is known as t ime deadlock. The difference with the ordinary 
deadlock phenomenon is tha t  a system is in deadlock if it reaches a s tate  tha t  
cannot  perform any action, but  such a s tate  need not have any restrictions on 
idling, which is the case for t ime deadlock. 

Axioms in Table 4 are sound for t imed bisimulation as it is s ta ted as follows. 

T h e o r e m  17 S o u n d n e s s .  For all p, q E s  i f  p = q is deduced by means  of  
equational reasoning using axioms in Table ~, then p ~___ q. 
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An interesting property that is derived from these axioms is that every term 
can be expressed in a normal form. 

Def in i t ion  18. Define the set B _C s of basic terms inductively as follows: 

�9 s t o p  E B' 
�9 p E B , r  a n d a E A  ==~ r 
�9 p, q E B '  ==~ p + q E B '  
�9 p e B ' , r  a n d z e C  ==~ ~ z ~ r  

B' is the set of all terms whose clock resettings and invariants are all within the 
scope of a prefix construction. Notice that a basic term has the general format 
(modulo A1, A2, A3 and A4) 

p = 

where each Pi is already a basic term. We adopt the convention that 

~ieO 4?i~-~ai;pi = s top  Q 

The following theorem can be proven by structural induction using the ax- 
ioms. 

T h e o r e m  19. For every term p E f~ there is a term q E B such that p = q can 
be proven by means of axioms in Table 4 and a-conversion. 

6 O t h e r  O p e r a t o r s  

In this section, we introduce parallel composition and several well-known time 
operations such as wait, time-out and urgency. 

Time Operations. In this paragraph we give some axiomatic definitions for com- 
mon operations on time. The operation waitd(p) waits d units of time before 
starting to execute p. Conversely, befored(p) forces to execute p before d units 
of time have passed. They can be defined as follows, provided x ~ ~(p): 

waitd(p) clef ~X~ (X >_ d)~-tp befored(p) de__f ~z~ (= < d ) ~  p 

Analogously, we can define strict versions of the operators. In particular, we will 
consider before<(p) d=ef ~x~ (z < d ) ~  p. 

Urgency is defined by the operation urgentd(P) that obliges to execute p just 
after waiting d units of time: 

urgentd(p  ) de f befored(waitd(p)) 

More generally we can define the operation between[d, d'](p) which forces the 
execution of p after waiting d units of time but before d' units of time have 
passed: 

between[d, d'] (p) def__ befored, (waitd(P)) 
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We can easily generalise this operation to open intervals in the obvious way. 
Maybe, the most well known operation is the time-out, ptimeoutaq forces to 

execute q just after waiting d units of time if process p does not started execution 
yet: 

ptimeout~tq def before~:(p) + urgent~(q) 

Parallel Operator. We define a LOTOS-like parallel operator [8]. Basically, the 
process p[IAq executes process p and q in parallel and forces synchronisation on 
actions in set A E A. ~_A and IA are the left and communication merge respec- 
tively, which are needed to give a finite axiomatisation of the parallel operator. In 
order to define associated timed automata  we will require the auxiliary operator 
ck which is intended to avoid clocks resettings. 

Tabl e  5. Timed automata for the parallel operator 

~(v) = c ~(q) = c '  

'r = (C U C') 
tc(P[LAq) = (C U C')  
,~LolAq ) = (C U C') 

P ~"r P' a C A  
PIIAq ~ P'IIA~(q) 
qIIAP ~ ~(q) IIAP' 

pllAq ~'-~ P'IIA~(q) 

K(ck(p)) = (~ 

O(V) = r O(q) = r 
D(PIIAq) = (r A r 
a(p~.Aq) = (r A ~b') 
a(PlAq) = (~b A ~b') 

P a,_~p, q c,,~ q, a E A  
PIIAq ~'§162 P'IIAq' 
PlAq "'~^~ P'llAq' 

o(p) = r v ~ p' 

0(~(v))  = r c~(p) a,~ p, 

Free and bound variables are defined by fv(pOq) = fv(p) Ufv(q) and bv(p[2q) 
= bv(p)Ubv(q) for u e {IIA, LLA, IA}, and rv(~(p))  = ~(V)Uf~(V) and b ~ ( ~ ( . ) )  
= by(p). We say that  P]IAq, P~_Aq and PlAq do not have conflict of variables if 
neither p or q do and (by(p) f3 par(q)) U (by(q) N vat(p)) = 0. 

We give the rules for the timed automaton in Table 5. Operators II A and 
IA are the left-merge and the communicating versions of the parallel operator, 

respectively. Operation c"k is needed since if we admitted an edge like P[IAq ~ 
P'I]Aq instead ofpNAq ~"~ P'HA-~(q), the clocks of q, which were reset as soon as 
Pl [Aq was reached, would be reset again when p'IIA q is reached after performing 
action a. This last situation would be incorrect since the time for process q would 
then not have progressed. 

Axioms for parallel composition are given in Table 6. Operator ck is just 
required in order to define associated timed automata.  Moreover, it does not 
preserve ~__ and a-conversion. Thus, we are not interested in giving any axioma- 
tisation of it. However, the information introduced for ck is somehow encoded 
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in the axiomatisation by the operator B'. Notice that  B'(p) holds when p E B'  
according to Definition 18, i.e. whenever no clock resetting or invariant appears 
out of the scope of a prefixing. 

Table  6. Axioms for parallel composition 

P C  

L M 1  
L M 2  
L M 3  
L M 4  
L M 5  
L M 6  
L M 7  
L M 8  

C M 0  
C M 1  
C M 2  
C M 3  
C M 4  
C M 5  
C M 6  
C M 7  
C M 8  

PlIAq = pLLAq q- q [LAP q- PlAq 

stop~_A(r q) = ~bl:~ s top  if Bl(q) 
a;p[[A(r q) = ~bt~ s top  i f a  E A A  B'(q) 
a;p[LA(r q) = Ct~ a; (pl[A(~bl~ q)) i fa  ~ A A B'(q) 

(p + q) LEAr = p~_Ar -I- q~_Ar 
( ~C~ P) L~ Aq = ~C~ (P[[ Aq) if C N [v(q) = 0 
( r  = r  (pLLAq) 
p~.A~C~ q = ~C~ (P~_Aq) if C f3 fv(p) = 0 

Plaq = qIAP 
s toplAstop = s top  
stoPlAa;p = s top  
a;p]aa;q = a; (PIIAq) if a E A 
a;plab;q = stop i fa  ~ b Y a ~ A 
r = r 
(P + q)lar = PlAt + qlar 
(~CD P)laq = ~C~ (Plaq) 
(r P)IAq ----- Ctl~" (PIAq) 

if C N Iv(q) = 0 

B' (p) B' (p) B' (q) 
B'(a;p) a'(r  S'O~ + q) B'(stop) 

It can be proven that  for every term PIIAq, P[[Aq and PIAq there is an a-  
convertible term without conflict of variables. Thus, for terms with conflict of 
variables we just  assume their interpretation is the t imed automata  of some 
a-conversion without conflict of variables. Moreover, t imed bisimulation is a 
congruence for IIA, LEA and IA. We state that  axioms are sound for t imed bisim- 
ulation and they allow the elimination of these new operators. 

T h e o r e m 2 0  S o u n d n e s s .  For all p and q obtained by extending s  with IIA, 
II A and la, if p = q is deduced by means of equational reasoning using axioms 
in Table ,l and axioms in Table 6, then p ~ q. 

T h e o r e m  21 E l i m i n a t i o n .  For every term p in the language s extended with 
IIA, ~ a and [a, there is a q in f. such that p = q can be derived from axioms in 
Table ~ and Table 6. 
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7 Example  

We take the example of the automatic controller of a gate at a railroad crossing 
using the definition from [31, except that we have adapted it to include invari- 
ants. The components of the system can be described as follows. A TRAIN 
communicates to the controller that it approaches at least 2 minutes before it 
enters the crossing (in). After leaving the crossing (out), the TRAIN informs the 
CONTROLLER that it exited within 5 minutes after sending the signal appr. 
The GATE system receives the information when to lower the gate. This should 
be put down before 1 minute has passed. Then, the system waits for an order 
to raise the gate. After that, it is lifted (up) within 1 to 2 minutes. The CON- 
TROLLER waits for a train to approach. After exactly 1 minute, it orders to 
lower the gate. Then, it waits until the train exits the crossing and at most 1 
minute afterwards it orders to ra/se the gate. 

The components of the system can be described as follows. 

TRAIN -- appr; ~x~ ( (x < 5 ) ~  (x > 2)~-~in; 
(= < 5)~ out; 
(= < 5 ) ~  exit; TRAIN ) 

GATE = lower; before1 < (down; ra/se; between(i, 2)(up; GATE)) 

CONTROLLER = appr; urgent 1 (lower; exit; before < (ra/se; CONTROLLER)) 

SYSTEM = CONTROLLER]I{~ppr,~i,,Iow~,,~,e} ( TRAINH~GATE ) 

By using axioms in Table 6 parallel operations can be eliminated. Assuming 
only one clock for each component, the expression obtained at this point will 
contain 3 clocks and 19 states. However, many of those states are not reachable 
since the system will never meet conditions which allow that. These states can be 
eliminated by using axioms in Table 4, using D1 and D2 in particular. Moreover, 
the number of clocks can be reduced to 2. In this way, the SYSTEM can be 
proven equivalent to the following recursive specification which has 2 clocks and 
10 states. 

So=appr; S1 S5=(z < 5)t~, exit; $6 
SI=~z~ S~ Ss=~y~ (y < 1 ) ~  ra/se; $7 
S~=(x <_ 1)t~ (x = 1)~-~lower; $2 ST=~y) (y < 2 ) ~  (appr; Ss 
S2=~y~ (y < 1)~l~ down; Ss + (y > 1)~up;  So) 
Ss=(x < 5 ) ~  (x > 2)~-~in; $4 Ss=~z~ (y < 2 A z < 1 ) ~  (y > 1)~4up; S~ 
S4---(~g ( 5)I:~ out; $5 

Clock a: keeps track of the evolution of the time with respect to the TRAIN 
and some activities in the CONTROLLER (particularly the action lower), while 
y keeps track of the time of the proper activities of the GATE (namely down and 
up) and the activity of raising the gate. Notice, however, that the action up in 
Ss is also constrained by clock x (viz. the condition x <_ 1). This would seem to 
imply that the CONTROLLER also controls the time of lifting the gate (action 
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up). Clearly, this is not a desirable situation. In [10] we consider an alternative 
example that avoids this problem. 

The timed automaton associated with So is depicted in Figure 2. States are 
represented by circles and their numbers are written beside. ~ and a are respec- 
tively written in the upper and lower part of the circle. Edges are represented 
by the arrows. Empty sets and true conditions are omitted, and singleton sets 
are represented by their elements. 

appr ~ ~ 

"[ lower 
up ~ =  1 

y > 1 ~ ~ 1 ,  

ra/se 

in 
x > 2  ~ 4 

t 

~ 5 

Fig. 2. The reduced timed automaton of the railroad crossing system 

8 F u r t h e r  R e m a r k s  

Milner's Synchronisation Trees and our Language. Basically, our calculus is an 
extension of Milner's synchronisation trees [21] (i.e., CCS with only prefixing, 
inaction and summation) with operations to manipulate clocks (clock resettings, 
invariants and guards). Moreover, we can state that our calculus is an operational 
conservative extension up to (timed) bisimulation, that is, for every pair of terms 
obtained by using only prefixing, stop and summation (the untimed terms), they 
are (strong) bisimilar if and only if they are timed bisimilar. 

Furthermore, the equational theory given for JC (see Table 4) is an equational 
conservative extension of the equational theory for synchronisation trees (i.e. 
commutativity, associativity, idempotency and stop as neutral element of +). 
Thus, for each equality p = q of untimed terms that can be proven in Milner's 
theory, it can also be proven in our theory and vice versa. 

Related Works. Nicollin, Sis & Yovine [24, 25] give an interpretation of ATP 
[23] in terms of timed automata with invariants, considering a dense time do- 
main. Such a translation preserves timed branching bisimulation. ATP is basi- 
cally an extension of CCS [21] including a timeout operation, an execution delay 
or watchdog operation and the notion of urgent actions. No clocks nor time 
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variables are considered in ATP. Basically the same study was done by Daws, 
Olivero & Yov/ne [12] for ET-LOTOS [18]. In this case, also timed branching 
bisimulation is shown to be preserved. In neither of these works an inverse study 
was carried out, i.e., to express a timed automata in terms of the process algebra. 
In particular, it can be shown that ET-LOTOS is less expressive than T, the set 
of timed automata. 

Fokkink [14] sketches an interpretation of ACP with prefix integration [17, 5] 
into timed automata without invariants. Moreover, the class of strongly regular 
processes and timed automata turn out to be equivalent when certain restrictions 
(namely non-Zenoness and fairness) are not present in the behaviour of the 
timed automata. Thus ACP with prefix integration is more expressive than timed 
automata. For instance, consider the (finite!) ACP process f~<l a[v]. fw=v b[w]. 
s top,  that records in v the time when a was performed, and after v units of 
time executes b. In our language, an unguarded recursive expression would be 
needed to defined it if the time domain were denumerable. If instead the set of 
real numbers is considered, such a process cannot be expressed. However, if we 
allow more expressive constraints by allowing comparison between clocks, we can 
define ~x~ (x < 1 ) ~  a; (~y~ (2y ~ x ) ~  (2y - x)~-~b;stop). Such an extension 
would, of course, affect the tractability of the language. 

Lynch & Vaandrager [20] introduce a language that explicitly manages clocks. 
Such a language has the same expressive power as timed automata w.r.t. (weak) 
timed trace equivalence. 

A1ur & Henzinger [4] study the extension of programming languages with 
clock variables. They discuss their semantics in terms of the so called real-time 
programs [15] which are easily translated into timed safety automata (see [15]). 

Yi, Pe$tersson & Daniels [27] give an algebra that represents timed automata 
without invariants. Basically, the algebra is a syntax for the timed automata in- 
cluding CCS parallel composition and restriction. In particular, the prefixing 
operation has the form (r a, C).p with ~b E ~(C) and C C C, and it is the only 
one that can manage clocks. It could be understood as our term r ~C~ p. 
Thus, since terms with conditions in their first actions unavoidably become open 
terms, it is necessary to consider an initial valuation in its semantics for which 
[C*~0] is taken. That is rather annoying since even when terms like, for instance, 
ix < 1, a, 0).stop and (y < 1, a,0).stop, show the same behaviour, they be- 
come different in the context (tt, b, {x})._. Moreover, notice that this language 
is strictly less expressive than ours, since it does not include invariant operations. 

Conclusions. The contribution of this paper is a language for timed automata. 
This language is basically an extension of Milner's synchronisation trees with 
operators to handle clocks, namely clocks resettings, invariants and guards. The 
language has the ability to represent any (image-finite) timed automata by means 
of guarded recursion, and moreover, any guarded recursive expression can be 
interpreted as an (image-finite) timed automata. It is extended with the parallel 
composition and, moreover, some common time operations including time-out, 
waiting and urgency, are algebraically defined in terms of the basic language. 
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Also, an equational theory has been given. We have reported that  it is sound 
with respect to timed bisimulation and, moreover, a normal form can be found for 
each term by using the axioms. With an example we have shown that  redundant 
states, clocks and conditions can be eliminated. 

It is interesting to notice that  our theory is a conservative extension of Mil- 
ner's synchronisation trees. We have chosen to use LOTOS-like parallel compo- 
sition, however, it would also be possible to define the CCS-like parallel compo- 
sition, restriction and renaming. In such a case, a conservative extension of the 
CCS calculus could easily be obtained. 

In the full version of this paper [10], we introduce a symbolic bisimulation, 
which basically is a bisimulation defined on timed automata. It has the property 
of implying timed bisimulation, and thus, can simplify proofs of timed bisimi- 
laxity. In particular, we use it to prove soundness results. In addition, the full 
article includes all the proofs omitted here. 

Further study includes teachability analysis by using the equational theory, 
completeness of the axiomatisation, particularly whether it is necessary to in- 
clude an operator like ACP integration [5], and axiomatisation of other semantic 
relations as, for instance, t imed trace preorder [20]. 
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