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Abstract

A language for representing timed automata is introduced. Its semantics is
defined in terms of timed automata. This language is complete in the sense
that any timed automaton can be represented by a term in the language. We
also define a direct operational semantics for the language in terms of (timed)
transition systems. This is proven to be equivalent (or, more precisely, timed
bisimilar) to the interpretation in terms of timed automata.

In addition, a set of axioms is given that is shown to be sound for timed bisim-
ulation. Finally, we introduce several features like hiding operator, the parallel
composition and derived time operations like wait, time-out and urgency. We
conclude with an example and show that we can eliminate non-reachable states
using algebraic techniques.
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1 Introduction

A real-time system is a system whose behaviour is constrained by requirements on
the time in which events can occur. Sometimes, systems are implemented as timed
systems in the sense that they fulfil certain timing conditions to give them an acceptable
performance. Other systems depend on timing conditions in a more essential way, viz.
because their functional correctness depends upon certain critical timing conditions
being fulfilled. Therefore, it becomes interesting to study the formal verification of
such systems.

In the last years, several formal techniques have been developed to specify and
verify real-time systems. For instance, many well-known process algebras have been
extended with features to manipulate time [Dav92, Yi90, MT90, NS94, BB91, Klu91,
Klu93, BB95, BL92, LL94]. But the apparently most successful approaches are timed
and hybrid automata [AD94, NSY92, HNSY94, ACH+95]. The formal relation between
these two models has been studied in some cases [NSY92, NSY93, Fok94, DOY94].
Languages that fully represent timed automata have also been studied [LV94, YPD94].

In this paper, we introduce a process algebra to describe timed automata. Since
the syntax of timed automata becomes unwieldy to specify realistic real-time systems,
the process algebra introduced here proposes a higher-level language that is interpreted
in terms of timed automata. More specifically, we choose a slight variation of the
so called timed safety automata [HNSY94]. Basically, the language extends Milner’s
CCS [Mil89] restricted to prefixing, inaction and summation, with some features to
manipulate clocks, namely, clock resetting, invariants and guards. We prove that any
timed automaton can be described by a term in the language together with guarded
recursion.

Also, we introduce a direct operational semantics for the language. Thus, a (timed)
transition system is associated to each process. We prove that this way of giving
semantics is equivalent (timed bisimilar) to the interpretation of the associated timed
automaton.

In order to facilitate the construction of complex system we include the usual process
operations, hiding and parallel composition, and several common operations on time,
such as time-out, waiting and urgency.

The first goal of our paper is to introduce a powerful language to represent timed
automata. Our second goal is to introduce an equational theory for the language that
allows us to manipulate timed automata in order to eliminate redundant information.
This is an interesting point, since, to our knowledge, timed automata have not yet
been studied from an algebraic point of view. The axiomatisation is sound for timed
bisimulation and allows to find a normal form. Moreover, the additional operators like
hiding and parallel composition can be eliminated, thus obtaining equivalent expressions
defined just in terms of the basic language.

As an example we study the railroad crossing controller of [AD94]. In this exam-
ple, we illustrate that we can eliminate redundant states, clocks, and conditions. In
particular, non-reachable states are eliminated.

3



The rest of this paper is structured as follows. Section 2 reviews the models of timed
transition systems and timed automata. In Section 3, we introduce the language and
we study its relation with timed automata. The operational semantics is introduced in
Section 4 and the relation with the timed automata model is stated. Section 5 introduces
the axiomatisation for the basic language, and the extension with new operators is
studied in Section 6. The example is presented in Section 7. Extensionality with
respect to CCS, related work, and conclusions are discussed in Section 8.

Acknowledgements. This work profited from discussions with Jan F. Groote, Rom
Langerak, Jan Springintveld, Jan Tretmans, Frits Vaandrager and Sergio Yovine. In
particular, Sergio Yovine pointed out the related work [YPD94] and Jan Springintveld
pointed out the connection with [HKWT95]. Reference [AH94] was pointed out by one
of the referees of FTRTFT’96.

2 Models for Timed Systems

2.1 Time, Clocks and Constraints

We adopt the set IR≥0 of non-negative reals as time domain. A clock is a variable x
ranging over a time domain IR≥0. Let C denote a set of clocks. The set Φ(C) of clock
constraints over C is defined inductively by:

φ ::= d ≤ d′ | x ≤ d | d ≤ x | x− y ≤ d | d ≤ x− y | (φ ∧ φ) | (¬φ)

where d, d′ ∈ IR≥0 and x, y ∈ C with x 6= y. The abbreviations tt, ff , x = d, x > d,
x ∈ [d, d′), x− y < d, φ ∨ φ′, φ ⇒ φ′, etc. are defined as usual. Let var(φ) denote the
set of clocks occurring in φ. A clock constraint is closed if no clocks occur in it. We
denote the set of closed clock constraints by Φc. We could also adopt a richer set of
constraint (see Section 8).

An assignment is a function v : C → C ∪ IR≥0. Let V denote the set of assignments.
v is lifted to clocks constraints by the obvious induction over the structure of φ. We
also lift an assignment v to ℘(C) as usual: v(C) = {v(x)|x ∈ C}. Let f : C → C ′, with
C ⊆ C and C ′ ⊆ C ∪ IR≥0. We define v[f ] as follows:

v[f ](x)
def
=

{
f(x) if x ∈ C
v(x) if x /∈ C

We write [x←⊣w] for f : {x} → {w} with f(x) = w and [C←⊣w] for f : C → {w} with
f(x) = w for all x ∈ C. Let d ∈ IR≥0. Define v + d as follows:

(v + d)(x)
def
= v(x) + d

Let v ◦ v′ be the composition of assignments defined for all x ∈ C, v ◦ v′(x)
def
= v(v′(x)).

Notice that (v ◦ v′)+ d = (v+ d) ◦ v′ Let ι be the identity assignment . An assignment v
is a renaming if for all x ∈ C, v(x) ∈ C. An assignment v is a valuation if for all x ∈ C,
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v(x) ∈ IR≥0. Let Vc ⊆ V be the set of all valuations. Notice that for any valuation
v and for any clock constraint φ, v(φ) is a closed clock constraint. For the subset of
closed clock constraints, we define the satisfaction predicate |=⊆ Φc as usual:

|= d ≤ d+ d′
|= φ |= φ′

|= (φ ∧ φ′)

6|= φ

|= (¬φ)

where d, d′ ∈ IR≥0. We generalise |= to all clock constraints (|=⊆ Φ(C)). Let φ ∈ Φ(C)
then

|= φ
def
⇐⇒ ∀v ∈ Vc : |= v(φ)

We define the set Φ(C) ⊆ Φ(C) of past-closed constraints as follows:

φ ∈ Φ(C)
def
⇐⇒ ∀v ∈ Vc, d ∈ IR≥0. |= (v + d)(φ) =⇒ |= v(φ)

Notice that this kind of constraints are such that if they hold at time d, they hold at
all d′ < d.

2.2 Timed Transition Systems

A timed transition system is a labelled transition system that includes information
about the time. We adopt the model of actions with time stamps .

Definition 2.1 (Timed transition systems)
Let A be a set of actions . A timed transition system (TTS) is a structure L =

(S,A× IR≥0, s0,−→,U) where

• S is a set of states , with the initial state s0 ∈ S;

• A is a set of labels ;

• −→ ⊆ S × (A× IR≥0)× S is the transition relation; and

• U ⊆ IR≥0 × S is the until predicate.

We use the following notation: a(d) iff (a, d) ∈ A× IR≥0, s
a(d)
−→s′ iff 〈s, a(d), s′〉 ∈ −→ ,

Ud(s) iff 〈d, s〉 ∈ U , s
a(d)
−→ iff ∃s′ ∈ S. s

a(d)
−→s′ and s 6

a(d)
−→ iff ¬(s

a(d)
−→).

In addition, L should satisfies the following axioms:

Until ∀d, d′ ∈ IR≥0. Ud(s) ∧ d
′ < d =⇒ Ud′(s);

Delay ∀d ∈ IR≥0. s
a(d)
−→ =⇒ Ud(s). ✷
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The intended meaning of a transition s
a(d)
−→ s′ is that a system which is in state s

can change to be in state s′ by performing an action a at time d. Intuitively, Ud(s)
together with axiom Until, means that a system can idle in a state s at least d units
of times. Axiom Delay state that every time that an action may occur in a state s at
time d, the system must be idling at that time.

Predicate U was introduced in [Klu93]. Here, we formalised its behaviour in a
relative time setting by adding the axioms Until and Delay.

Definition 2.2 (Timed bisimulation)
Let Li = (Si,A × IR≥0, si0, −→ i,U

i), i ∈ {1, 2}, be two TTS. A timed bisimulation
is a relation R ⊆ S1 × S2 with s10Rs

2
0 satisfying, for all a(d) ∈ A × IR≥0, the following

transfer properties:

1. if s1Rs2 and s1
a(d)
−→ 1s

′
1, then ∃s′2 ∈ S2 : s2

a(d)
−→ 2s

′
2 and s′1Rs

′
2;

2. if s1Rs2 and s2
a(d)
−→ 2s

′
2, then ∃s′1 ∈ S1 : s1

a(d)
−→ 1s

′
1 and s′1Rs

′
2; and

3. if s1Rs2, then U1
d (s1) ⇐⇒ U2

d (s2).

If such a relation exists, we say that L1 and L2 are timed bisimilar (notation L1 ↔ L2).
✷

2.3 Timed Automata

In this paragraph we define a variation of timed automata [AD94]. We use invariants as
in [HNSY94, NSY92, NSY93] but, instead of considering clock resettings on the edges,
we consider them in the states. The reason for this is that we want to avoid assumptions
about the initial setting of clocks, which makes the compositionality of the language
more complicated. Compare [YPD94] (see Section 8).

Definition 2.3 (Timed automata)
A timed (safety) automaton is a structure (S,A, C, s0, ✲, ∂, κ) where:

• S is a set of states , with the initial state s0 ∈ S;

• A is a set of actions ;

• C is a set of clocks ;

• ✲ ⊆ S ×A× Φ(C)× S is the set of edges ;

• ∂ : S → Φ(C) is the invariant assignment function;

• κ : S → ℘
fin(C) is the clocks resettings function.

The set of all timed automata is denoted by T . ✷

6



In this case, 〈s, a, φ, s′〉 ∈ ✲ (notation s
a,φ
✲ s′) intuitively means that when the

system is in state s it could change to be in state s′ by performing an action a provided
that the clock constraint φ holds. The clock setting function states which clocks should
be reset as soon as a state is reached. The invariant assignment function states that
the system can idle in a state s as long as ∂(s) holds.

Notice that our timed automata can be translated into timed automata with reset-
tings on the edges by just labelling the edge with the set of clocks to be reset in the

target state, that is, an edge s
a,φ
✲ s′ will be translated into s

a,φ,κ(s′)
✲ s′. Conversely, a

timed automaton with resettings on the edges could be transformed by “pushing” the

clock resetting into the target state, i.e., given an edge s
a,φ,C

✲ s′ we define s
a,φ
✲ s′

and κ(s′)
def
= C. In case that many edges with different clock resettings go to the same

state, this state is “split” into different states, one for each set of clocks.
Formally speaking, a timed automaton can be interpreted as a TTS as follows.

Definition 2.4 (Interpretation of timed automata)
Let T = (S,A, C, s0, ✲, ∂, κ) ∈ T be a timed automaton. Let v0 ∈ Vc be

any valuation. The interpretation of T with initial valuation v0 is given by the TTS

([T ])v0
def
= (S × Vc,A× IR≥0, (s0, v0), −→ ,U) where −→ and U are defined as the least

sets satisfying the following rules:

s
a,φ
✲ s′ |= (v[κ(s)←⊣0] + d)(φ ∧ ∂(s))

(s, v)
a(d)
−→(s′, (v[κ(s)←⊣0] + d))

|= (v[κ(s)←⊣0] + d)(∂(s))

Ud(s, v)
✷

Since ∂(s) ∈ Φ(C) for all s ∈ S, it follows that ([T ])v0 satisfies axiom Until. More-

over, notice that if (s, v)
a(d)
−→ then |= (v[κ(s)←⊣0]+d)(∂(s)) and so Ud(s, v) which implies

that axiom Delay holds. Hence, ([T ])v0 is indeed a TTS for any initial valuation v0.
Isomorphism is a fine enough equivalence. Thus, proving the existence of an iso-

morphism is enough to prove that two timed automata are equivalent in coarser equiv-
alences, for instance, timed bisimulation.

Definition 2.5 (Isomorphism of timed automata)
Let T = (S,A, C, s0, ✲, ∂, κ) and T ′ = (S ′,A, C, s′0,

✲ ′, ∂′, κ′) be two timed
automata. An isomorphism from T to T ′ is a bijective function Γ : S → S ′ such that

1. Γ(s0) = s′0,

2. s
a,φ
✲ s′ ⇐⇒ Γ(s)

a,φ
✲ ′Γ(s′),

3. ∂(s) = ∂′(Γ(s)), and

4. κ(s) = κ′(Γ(s)).

We say that T and T ′ are isomorphic, notation T ∼= T ′, if there is an isomorphism
between T and T ′. ✷
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3 A Simple Language for Timed Automata

In this section we introduce a simple language that contains the necessary operators to
represent timed automata. We give the semantics of this language in terms of timed
automata. Moreover, we show that any timed automaton could be represented by a
term of this language if we add guarded recursion over expressions.

3.1 The Language

Definition 3.1 Let A be a set of actions and let C be a set of clocks. The language L
is defined according to the following grammar:

p ::= stop | a; p | φ 7→7→p | p+ p | {|C|} p | ψ✄✄ p

where a ∈ A, φ ∈ Φ(C), ψ ∈ Φ(C) and C ∈ ℘fin(C). We refer to the elements of L as
processes. ✷

Process stop represents inaction; it is the process that cannot perform any action.
The intended meaning of a; p (named (action-)prefixing) is that action a can be per-
formed at any time and then it behaves like p. φ 7→7→p, the guarding operation, executes
any first action that p can do whenever φ holds. {|C|} p, the clock resetting operation, is
a process that behaves like p, but resetting the clocks in C. We will write {|x1, . . . , xn|} p
instead of {|{x1, . . . , xn}|} p. ψ✄✄p, the invariant operation, can idle while ψ holds or go
on with the process p. p+ q is the choice; it executes either p or q. The choice between
p and q can be made only by actions, not by the passage of time.

Definition 3.2 (Bound and free variables)
Let p ∈ L. The set fv(p) of free variables of p and the set bv(p) of bound variables

of p are defined as the least set satisfying

fv(stop) = ∅ bv(stop) = ∅
fv(a; p) = fv(p) bv(a; p) = bv(p)
fv(φ 7→7→p) = var(φ) ∪ fv(p) bv(φ 7→7→p) = bv(p)
fv(p+ q) = fv(p) ∪ fv(q) bv(p+ q) = bv(p) ∪ bv(q)
fv({|C|} p) = fv(p)\C bv({|C|} p) = C ∪ bv(p)
fv(ψ✄✄ p) = var(ψ) ∪ fv(p) bv(ψ✄✄ p) = bv(p) ✷

Notice that the term {|C|} p binds clocks in C that appear in any constraints in p.

3.2 The Associated Timed Automata

We can associate a timed automaton to a process according to the following definition.

Definition 3.3 (Associated timed automaton)
Let p ∈ L. ncv , the predicate of non-conflict of variables is defined inductively

according to rules in Table 1. For all process p such that ncv(p) the timed automaton
associated to p is defined by [[p]]T = (L,A, C, p, ✲ , ∂, κ) where ✲, ∂ and κ are
defined as the least sets satisfying the rules of Table 1. ✷
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Table 1: Timed automata for L

ncv(stop)
ncv(p) κ(p)C (var(φ) ∩ C = ∅)

ncv(φ 7→7→p)

ncv(p)

ncv(a; p)

ncv(p) κ(p) = C (var(ψ) ∩ C = ∅)

ncv(ψ✄✄ p)

ncv(p)

ncv({|C|} p)

ncv(p) κ(p) = C (C ∩ fv(q) = ∅)
ncv(q) κ(q) = C ′ (C ′ ∩ fv(p) = ∅)

ncv(p+ q)

κ(stop) = ∅ κ(a; p) = ∅
κ(p) = C

κ(φ 7→7→p) = C

κ(p) = C κ(q) = C ′

κ(p+ q) = (C ∪ C ′)

κ(p) = C ′

κ({|C|} p) = (C ∪ C ′)

κ(p) = C

κ(ψ✄✄ p) = C

∂(stop) = tt ∂(a; p) = tt
∂(p) = ψ

∂(φ 7→7→p) = ψ

∂(p) = ψ ∂(q) = ψ′

∂(p+ q) = (ψ ∨ ψ′)

∂(p) = ψ

∂({|C|} p) = ψ

∂(p) = ψ′

∂(ψ✄✄ p) = (ψ ∧ ψ′)

a; p
a,tt
✲ p

p
a,φ′
✲ p′

φ 7→7→p
a,φ∧φ′

✲ p′

p
a,φ
✲ p′ ∂(p) = ψ

p+ q
a,φ∧ψ

✲ p′

q + p
a,φ∧ψ

✲ p′

p
a,φ
✲ p′

{|C|} p
a,φ
✲ p′

p
a,φ
✲ p′

ψ✄✄ p
a,φ
✲ p′
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The next theorem states that the notion of associated timed automaton is well
defined for processes without conflict of variables.

Theorem 3.4 Let p ∈ L be a process such that ncv(p). The associated timed automa-
ton [[p]]T is indeed a timed automaton.

Proof. It is enough to see that for all q ∈ L relations ∂ and κ are functions and
moreover, that ∂(q) ∈ Φ(C). But it can be straightforwardly proven by induction on the
depth of the proof tree taking into account that if ψ, ψ′ ∈ Φ(C) then ψ∧ψ′, ψ∨ψ′ ∈ Φ(C).

✷

Rules in Table 1 capture the behaviour described in Section 3.1 in terms of timed
automata. Notice that stop and a; p have no restriction to idle so ∂(stop) = ∂(a; p) =
tt, moreover they do not reset any clock. As we said above, a; p can perform an action
a at any time and then it proceeds with the execution of p. φ 7→7→p can perform any
action p can perform whenever φ holds. A process p+ q can idle as long as one of them
can. Thus ∂(p + q) ⇐⇒ ∂(p) ∨ ∂(q). Moreover p + q can execute any action of p or
q as long as it could be executed in its original process. Thus, since an action cannot
be executed after the idling time is finished, we require that for the execution of an
action, the corresponding invariant must also hold. In principle, processes {|C|} p, ψ✄✄p
can perform any action process p can since these operators only add information to the
state. Thus, for {|C|} p, clocks in C are reset together with the clocks to be reset by p:
κ({|C|} p) = κ(p) ∪ C. The invariant of ψ✄✄ p is restricted to satisfy ψ in addition to
the invariant of p, i.e., ∂(ψ✄✄ p) ⇐⇒ ∂(p) ∧ ψ.

The condition that processes should not have conflict of variables is necessary. If
it were not considered we would have undesirable bindings. For instance, consider the
term p ≡ (x ≤ 2)✄✄ ({|x|} (x = 1) 7→7→a; stop). Clearly, x is free in the invariant (x ≤ 2),
however, using rules in Table 1, we derive ∂(p) = (x ≤ 2) and κ(p) = {x}. Thus,
according to Definition 2.4 the x in the invariant is captured by the clock resetting.
Similar reasoning shows that, in q ≡ ((y ≤ 1)✄✄a; stop)+({|y|} stop), the free occurrence
of y in the left operand is captured by the clock resetting in the right operand since
∂(q) = (y ≤ 1) and κ(q) = {y}.

One important thing to notice is that the edges preserve the property of non-conflict

of variables, that is, if p has no conflict of variables and p
a,φ
✲ p′ then p′ has no conflict

of variables. It can be proven by straightforward structural induction.

3.3 Recursion

We extend the expressiveness of our language by allowing recursive specifications.

Definition 3.5 (Recursive specifications)
Let V be a set of process variables . We extend the previous language with process

variables. So, let Lv the language defined by the following grammar:

p ::= stop | a; p | φ 7→7→p | p+ p | {|C|} p | ψ✄✄ p | X

10



where a ∈ A, φ ∈ Φ(C), ψ ∈ Φ(C), C ⊆ C and X ∈ V. A recursive specification is a
set of recursive equations having the form

X = p(V)

for each X ∈ V, where p(V) ∈ Lv. Every recursive specification has a distinguished
process variable called root . We extend the notion of free and bound variables by adding
the equations follows

fv(X) = fv(q) bv(X) = bv(q)

provided X = q ∈ E. fv and bv are then defined by the least sets that satisfy the
equations. ✷

We recall that fv(p) and bv(p) are defined as the least set satisfying the equations in
Definitions 3.1 and 3.5. Thus, for instance, if X = {|x|} (y ≤ 3 ∧ x < 2)✄✄ X then
fv(X) = {y} and bv(X) = {x}.

Now, we extend the notion of the associated timed automaton to recursive specifi-
cations and we state the correctness of the definition.

Definition 3.6 (Associated timed automaton)
Let E be a recursive specification such that ncv(E) holds according to rules in

Table 1 and Table 2, i.e., E does not have conflict of variables. The timed automaton
associated to p ∈ Lv is defined by [[p]]T = (L,A, C, p, ✲, ∂, κ) where ✲, ∂ and κ
are defined as the least set satisfying rules in Table 1 and rules in Table 2. ✷

Table 2: Timed automata for recursion

The following rules are defined for all X = p ∈ E

ncv(X)
ncv(p)

ncv(X = p)

∀X = p ∈ E. ncv(X = p)

ncv(E)

κ(p[p/X]) = C

κ(X) = C

∂(p[p/X]) = ψ

∂(X) = ψ

p[p/X]
a,φ
✲ p′

X
a,φ
✲ p′

Definition 3.7 (Guardedness)
An occurrence of X is guarded in a term p ∈ Lv if p has a subterm a; q such that this

occurrence of X is in q. A process variable X is guarded in p if every occurrence of it is
guarded. A term p is guarded if all its variables are guarded. A recursive specification
is guarded if the right hand side of every recursive equation in it is a guarded process.

✷
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Notice that ∂ and κ are not always well-defined in case of (unguarded!) recursion.
For instance, take X = (x < 1)✄✄ X, then ∂ and κ are the completely undefined
functions because of nonterminating derivation. Studies on fixed point can be done
in these cases. Thus, we would have that ∂(X) = ψ ∧ (x < 1) for all ψ ∈ Φ(C) and
κ(X) = C for all C ∈ C. It seems to be clear that the least fixed point according to set
inclusion should be adopted for κ. Therefore, κ(X) = ∅. However, it is not clear which
order should be consider for ∂. Compare to the process X = (x < 1)✄✄ a; stop + X.
Nevertheless, we can state the following theorem.

Theorem 3.8 Let p ∈ Lv be a process satisfying ncv(p), which has process variables
defined in a guarded recursive specification E without conflict of variables. The associ-
ated timed automaton [[p]]T is indeed a timed automaton.

Proof. It can be proved by structural induction that ∂ and κ are defined for any guarded
term. In addition, we can see that for all q ∈ Lv relations ∂ and κ are functions and
moreover, that ∂(q) ∈ Φ(C). This can be proven by induction on the derivation of ∂
and κ. ✷

The language presented here, together with a guarded recursive specification, has the
property of expressing any timed automaton in the sense of Theorem 3.9 below. First,
we borrow some definitions from transition system theory into timed automaton theory.
A timed automaton is image-finite if the set of outgoing edges of every state labelled

with the same action is finite, i.e., for any a and any s, the set {s
a,φ
✲ s′| s′ ∈ S} is

finite. It is finitely sorted if, for each state s, the set of all actions labelling the outgoing

edges, i.e., {a| ∃s′ ∈ S. s
a,φ
✲ s′} is finite. A state s is (symbolically) reachable if there

is a sequence of edges from the initial state s0 to s, i.e., there are a1, . . . , an, φ1, . . . , φn
and s1, . . . , sn (n ≥ 0) such that s0

a1,φ1✲ s1 · · ·
an,φn✲ sn = s. The reachable part of a

timed automaton T is the same timed automaton restricted to the set of states that
are reachable. Notice that we are considering a static view but not the usual notion of
reachability in timed automata theory (compare to [ACH+92]).

Theorem 3.9 (Representability of timed automata) For every image-finite and
finitely sorted T ∈ T there is a guarded recursive specification E with root Xs0 such
that the reachable part of T and the reachable part of [[Xs0 ]]

T are isomorphic.

Proof. The proof consists of associating a process variable to each state s of T
and defining each one of them as the term that resets the clocks of κ(s) and has an
invariant ∂(s) over the summation of the outgoing edges represented by prefixings with
its respective guard. Thus, the isomorphism is given by the function that maps every
state in its corresponding variable.

Let T = (S,A, C, s0, ✲ ′, ∂′, κ′). For each state s ∈ S define a different variable
Xs. Let VS be the set of such variables. Define the set of recursive specifications E
with root Xs0 and recursive equations

Xs = {|κ′(s)|} ∂′(s)✄✄
(∑

{φ 7→7→a;Xs′ | s
a,φ
✲ s′}

)

12



where
∑
{pi | i ∈ {1 . . . n}}

def
= p1 + p2 + · · · + pn. In particular, if s has no outgoing

transition then

Xs = {|κ′(s)|} ∂′(s)✄✄ stop

According to Definition 3.6, [[Xs0 ]]
T = (Lv,A, C, Xs0 ,

✲, ∂, κ). Define

[[Xs0 ]]
T ↾VS

def
= (VS,A, C, Xs0 ,

✲ ↾VS, ∂↾VS, κ↾VS)

where:

✲ ↾VS
def
= ✲ ∩(VS ×A× Φ(C)× Lv)

∂↾VS
def
= ∂ ∩ (VS × Φ(C))

κ↾VS
def
= κ ∩ (VS ×℘(C))

Clearly, Γ : S → VS defined as Γ(s)
def
= Xs for all s ∈ S, is an isomorphism, which

straightforwardly implies the theorem. ✷

In the previous proof, the restriction of [[Xs0 ]]
T to the set VS is merely formal, and it

is due to the fact that the associated timed automaton is defined considering the whole
set of terms Lv instead of the reachables ones.

In order to represent data it could be needed to consider more general timed au-
tomata which are not necessarily image finite or finitely sorted. This kind of automata
could be represented in the language by defining an infinite summation operator in the
expected way. Thus, Theorem 3.9 could be extended to timed automata with denumer-
able branching and denumerable sorts.

4 An Operational Semantics

In this section we give a semantics for Lv in terms of TTS. We state that it coincides
(modulo timed bisimulation) with the semantics of the associated timed automaton.
Moreover, we study α-conversion in order to give semantic to every term.

4.1 The Operational Semantics

Definition 4.1 (Operational semantics of Lv)
Let E be a recursive specification with process variables V. The TTS of a term p ∈

Lv with initial valuation v0 ∈ Vc is defined by ([p])∗v0
def
= (Lv×Vc,A×IR≥0, (p, v0), −→ ,U)

where −→ and U are the least set satisfying rules in Table 3. ✷

([p])∗v0 is well defined, that is, ([p])∗v0 satisfies axioms Until and Delay, which can be
proven by straightforward induction on the length of the proof tree. Thus,

Theorem 4.2 For all p ∈ Lv and for all closed valuation v0, ([p])
∗
v0

is indeed a TTS.

13



Table 3: Operational semantics for Lv (a ∈ A, d ∈ IR≥0, v ∈ Vc)

Ud(stop, v) Ud(a; p, v)
Ud(p, v)

Ud(φ 7→7→p, v)

Ud(p, v[C←⊣0])

Ud({|C|} p, v)

|= (v + d)(ψ) Ud(p, v)

Ud(ψ✄✄ p, v)

Ud(p, v)

Ud(p+ q, v) Ud(q + p, v)

(a; p, v)
a(d)
−→(p, v + d)

|= (v + d)(φ) (p, v)
a(d)
−→(p′, v′)

(φ 7→7→p, v)
a(d)
−→(p′, v′)

(p, v[C←⊣0])
a(d)
−→(p′, v′)

({|C|} p, v)
a(d)
−→(p′, v′)

|= (v + d)(ψ) (p, v)
a(d)
−→(p′, v′)

(ψ✄✄ p, v)
a(d)
−→(p′, v′)

(p, v)
a(d)
−→(p′, v′)

(p+ q, v)
a(d)
−→(p′, v′) (q + p, v)

a(d)
−→(p′, v′)

The following rules are defined for all X = p ∈ E

Ud(p[p/X], v)

Ud(X, v)

(p[p/X], v)
a(d)
−→(p′, v′)

(X, v)
a(d)
−→(p′, v′)

The rules in Table 3 express the intended behaviour of each term in terms of TTS.
In this case the execution of a transition or the idling time is made concrete. Thus, for
instance, process φ 7→7→p can actually perform any action a that p can perform at time
d in the valuation v whenever the condition φ holds in the valuation v after d units of
time has passed. Or, on the other hand, process ψ✄✄ p can idle d units of times in a
valuation v if p also can idle d units of time, and moreover, condition ψ holds in the
valuation v after d units of time.

Now, we extend the notion of timed bisimilarity to the terms in the language.

Definition 4.3 Two terms p, q ∈ L are timed bisimilar , notation p↔ q, if and only if
for all v0 ∈ Vc, ([p])∗v0 ↔ ([q])∗v0 . ✷

Now, we can prove that all the operators of the language preserve timed bisimulation.
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Theorem 4.4 ↔ is a congruence for all operations in L.

Proof. Suppose p↔ q and p′ ↔ q′. Hence, for all v ∈ Vc, there are timed bisimulations
Rv and R

′
v such that (p, v)Rv(q, v) and (p′, v)R′v(q

′, v). Then

• Rp
v

def
= {(a; p, v), (a; q, v)} ∪ (

⋃
d∈IR≥0 Rv+d),

• Rg
v

def
= {(φ 7→7→p, v), (φ 7→7→q, v)} ∪Rv,

• R+
v

def
= {(p+ p′, v), (q + q′, v)} ∪Rv ∪R

′
v,

• Rc
v

def
= {({|C|} p, v), ({|C|} q, v)} ∪Rv[C←⊣0], and

• Rs
v

def
= {(ψ✄✄ p, v), (ψ✄✄ q, v)} ∪Rv

are timed bisimulations. The proof of this fact is straightforward. ✷

4.2 Comparison

So far we stated two ways of interpreting a term in L. Function ([ ])∗ associates a TTS to
each term and closed valuation. On the other hand, a TTS could be associated to every
p ∈ L in two steps, namely, by associating a timed automaton to p (see Definition 3.3)
and then interpreting such a timed automaton in terms of a TTS according to Defi-
nition 2.4. Theorem 4.5 states that both way of interpreting a process are equivalent
according to timed bisimulation.

Theorem 4.5 Let E be a guarded recursive specification with process variables V.
For every p ∈ Lv without conflict of variables and for every closed valuation v0,
([p])∗v0 ↔ ([[[p]]T ])v0.

Proof. Assume ([p])∗v0 = (Lv×Vc,A×IR≥0, (p, v0), −→ ,U) and ([[[p]]T ])v0 = (Lv×Vc,A×

IR≥0, (p, v0), −→
′,U ′). We state that R

def
= {((q, v), (q, v))| q ∈ L ∧ v↾fv(q) = v↾fv(q)},

with v↾C
def
= v ∩ (C × IR≥0), is a timed bisimulation. Clearly (p, v0)R(p, v0). The rest

of the proof follows from the next claim

Claim 4.6 Let v, v ∈ Vc such that v↾fv(p) = v↾fv(p). Then

1. (p, v)
a(d)
−→(p′, v′) implies that ∃v′ ∈ Vc. (p, v)

a(d)
−→ ′(p′, v′) and v′↾fv(p′) = v′↾fv(p′)

2. (p, v)
a(d)
−→ ′(p′, v′) implies that ∃v′ ∈ Vc. (p, v)

a(d)
−→(p′, v′) and v′↾fv(p′) = v′↾fv(p′)

3. Ud(p, v) ⇐⇒ U ′d(p, v)

For the proof of the claim see Appendix A. ✷

A summary of the studied relations is given in Figure 1, where arrows may be read
as “can be interpreted in”.
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Figure 1: Summary

Lv T

TTS TTS′↔

4.3 α-conversion

So far, all the properties were studied for processes without conflict of variables. In this
section we show that the behaviour is preserved by α-conversion, which implies that
our restriction to the subset of processes without conflict of variables is harmless. We
base our studies on [Sto88].

Definition 4.7 (Renaming of clocks in processes)
Let v be a renaming. We extend the notion of renaming to terms in L according to

the following recursive definition:

v(stop)
def
= stop v(p+ q)

def
= v(p) + v(q)

v(a; p)
def
= a; v(p) v({|C|} p)

def
= {|f(C)|} v[f ](p)

v(φ 7→7→p)
def
= v(φ) 7→7→v(p) v(ψ✄✄ p)

def
= v(ψ)✄✄ v(p)

where f : C → V is a bijective function with V ∈ C such that V ∩ v(fv(p)\C) = ∅. ✷

Definition 4.8 (α-conversion)
Let ≡α∈ L × L be the least relation satisfying the following rules

stop ≡α stop
p ≡α q

a; p ≡α a; q φ 7→7→p ≡α φ 7→7→q ψ✄✄ p ≡α ψ✄✄ q

p ≡α q p′ ≡α q
′

p+ p′ ≡α q + q′
f : C → C ′ is bijective C ′ ∩ fv({|C|} p) = ∅ ι[f ](p) ≡α q

{|C|} p ≡α {|C ′|} q

If p ≡α q then p and q are α-convertibles . ✷

It can be proven that ≡α is an equivalence, and hence it is a congruence by definition.
We refer to [Sto88] for further studies in α-conversion.

In the following we sate that for every term there is an α-conversion which does not
have conflict of variables. Together with Theorem 4.10, we can state that for every term,
there is another term which is timed bisimilar and does not have conflict of variables.
The proof of the following theorem is by straightforward structural induction.
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Theorem 4.9 For every p ∈ L, there is a q ∈ L such that ncv(q) and p ≡α q.

Theorem 4.10 For all p, q ∈ L, if p ≡α q then p↔ q.

Proof. We state that

R
def
= {((p, v), (q, v))| ∃ν. ν is a renaming

∧ ν(fv(p)) = fv(q) ∧ ν(p) ≡α q ∧ v↾fv(p) = (v ◦ ν)↾fv(p)}

is a timed bisimulation. Notice that for all v0 ∈ Vc, if p ≡α q then (p, v0)R(q, v0). Thus,
proving that R is a timed bisimulation is enough to prove that p↔ q by Definition 4.3.
But the fact that R is a timed bisimulation follows from the next claim.

Claim 4.11 Assume there exists a renaming ν such that ν(fv(p)) = fv(q), ν(p) ≡α q
and v↾fv(p) = (v ◦ ν)↾fv(p). Then:

1. (p, v)
a(d)
−→ (p′, v′) implies that exists (q′, v′) such that (q, v)

a(d)
−→ (q′, v′) and ∃ν ′. ν ′

is a renaming ∧ ν ′(fv(p′)) = fv(q′) ∧ ν ′(p′) ≡α q
′ ∧ v′↾fv(p′) = (v′ ◦ ν ′)↾fv(p′)

2. (q, v)
a(d)
−→ (q′, v′) implies that exists (p′, v′) such that (p, v)

a(d)
−→ (p′, v′) and ∃ν ′. ν ′

is a renaming ∧ ν ′(fv(p′)) = fv(q′) ∧ ν ′(p′) ≡α q
′ ∧ v′↾fv(p′) = (v′ ◦ ν ′)↾fv(p′)

3. Ud(p, v) iff Ud(q, v)

For the proof of the claim see Appendix B. ✷

Because of Theorems 4.9, 4.5 and 4.10, we can associate a timed automaton to every
process in L. We know how to associate a timed automata to processes without conflict
of variables. Suppose p ∈ L has conflict of variables. Then, we can choose any q ∈ L

without conflict of variables such that p ≡α q, and so we define [[p]]T
def
= [[q]]T .

5 Axiomatisation

In this section we give a set of axioms that holds in bisimulation models. It follows
immediately that they also hold in any coarser model as for instance the several timed
bisimulations with abstraction [Yi90, MT92, Che93, Klu93], timed trace preorder and
timed simulations [LV93, LV94]. By Theorems 4.9 and 4.10 we consider terms modulo
α-conversion without loss of generality.

5.1 Axioms

Axioms in Table 4 could be explained as follows. The choice is commutative A1 and
associative A2. Axioms A3 and A3′ state a kind of idempotency of + and A4 states
that stop is the neutral element for + in the context of unbounded idling. Stp states
that a prefixed process which does not satisfies its guard condition cannot proceed with
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Table 4: Axioms for L (a, b ∈ A, C ⊆ C, x, y ∈ C, φ, φ′ ∈ Φ(C), ψ, ψ′ ∈ Φ(C), d ∈ IR≥0)

A1 p+ q = q + p
A2 (p+ q) + r = p+ (q + r)
A3 φ 7→7→p+ φ′ 7→7→p = (φ ∨ φ′) 7→7→p
A3′ ψ✄✄ p+ ψ′✄✄ p = (ψ ∨ ψ′)✄✄ p
A4 a; p+ stop = a; p

Stp ff 7→7→a; p = stop

G0 φ 7→7→stop = stop
G1 tt 7→7→p = p
G2 φ 7→7→(φ′ 7→7→p) = (φ ∧ φ′) 7→7→p
G3 φ 7→7→(ψ✄✄ p) = ψ✄✄ (φ 7→7→p)
G4 φ 7→7→({|C|} p) = {|C|} (φ 7→7→p) if var(φ) ∩ C = ∅
G5 φ 7→7→(p+ q) = φ 7→7→p+ φ 7→7→q

I1 tt✄✄ p = p
I2 ψ✄✄ (ψ′✄✄ p) = (ψ ∧ ψ′)✄✄ p
I3 ψ✄✄ ({|C|} p) = {|C|} (ψ✄✄ p) if var(ψ) ∩ C = ∅
I4 ψ✄✄ p+ ψ✄✄ q = ψ✄✄ (p+ q)
I5 ψ✄✄ (φ 7→7→a; p) + ψ′✄✄ (φ′ 7→7→b; q) = (ψ ∨ ψ′)✄✄ ((ψ ∧ φ) 7→7→a; p+ (ψ′ ∧ φ′) 7→7→b; q)

R1 {|C|} p = p if C ∩ fv(p) = ∅
R2 {|C ∪ {y, x}|} p = {|C ∪ {y}|} ι[x←⊣y](p)
R3 {|C|} {|C ′|} p = {|C ∪ C ′|} p
R4 {|C|} p+ {|C|} q = {|C|} (p+ q)

D1 φ 7→7→a; ({|y|} p) = φ 7→7→a; ({|y|} (x− y✷d)✄✄ p) if |= (φ⇒ (x✷d)) and x 6= y

D2 φ 7→7→a; p = φ 7→7→a; ((x− y✷d)✄✄ p) if |= (φ⇒ (x− y✷d))

where ✷ ∈ {≤, <,≥, >,=}
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its execution. Axioms G0–G5 state the way in which guards can be simplifyed. Notice
that they cannot be eliminated except in the case of tt. In particular, axioms G3, G4
and G5 say how to move invariants, clock resettings and summations out of the scope
of a guard. Similarly, axioms I1–I5 state how to simplify the invariant operation. I3
says how to take clocks resettings out of the scope of an invariant, while I4 and I5
move the invariant out of the scope of a summation. R1 and R2 eliminate redundant
clocks. In particular, R2 implies that it is always possible to reduce the amount of
clocks to be reset to at most one for each clock resetting operation. R3 gathers all
the clocks resettings in only one operation and R4 moves clocks out of the scope of a
summation. Finally, D1 and D2 state that the difference between clocks is invariant
and thus it could be “transported” along the execution. In particular, D1 explains how
this difference is stated. Notice that axioms do not necessarily preserve free variables.
For instance, G1 allows us to prove (x ≥ 0) 7→7→p = p.

Now, we state without proof two derived axioms that can be useful in the following.

Property 5.1 The following properties can be derived from the axioms.

1 . p+ p = p 2 . ψ✄✄ p = ψ✄✄ (ψ 7→7→p) 3 . ff✄✄ stop+ p = p

For 2. and 3., induction is also necessary.

Notice that ff✄✄ a; p = ff✄✄ (ff 7→7→a; p) = ff✄✄ stop but ff✄✄ stop 6↔ stop. This is
due to the fact that timed bisimulation can model the halting of the progress of time.
It could be understood as a broken machine that is not longer allowed to remain in the
same state and, simultaneously, has no way to leave such a state, i.e., no action can be
performed in order to leave such a state. This phenomenon is known as time deadlock.
The difference with the ordinary deadlock phenomenon is that a system is in deadlock
if it reaches a state that cannot perform any action, but such a state need not have any
restrictions on idling, which is the case for time deadlock.

Axioms in Table 4 are sound for timed bisimulation as it is stated as follows.

Theorem 5.2 (Soundness) For all p, q ∈ Lv, if p = q is deduced by means of
equational reasoning using axioms in Table 4, then p↔ q.

Proof. For every axiom p = q, we define the relation

R
def
= {((p, v), (q, v))| v ∈ Vc} ∪ Id

except for R1 for which we define

R
def
= {(({|C|} p, v), (p, v))| v ∈ Vc ∧ C ∩ fv(p) = ∅}

∪{((p, v), (p, v))| v, v ∈ Vc ∧ v↾fv(p) = v↾fv(p)}

for R2 for which we define

R
def
= {(({|C ∪ {y, x}|} p, v), ({|C ∪ {y}|} ι[x←⊣y](p), v))| v ∈ Vc}

∪{((p, v), (q, v))| v, v ∈ Vc ∧ ∃ν. ν is a renaming
∧ ν(fv(p)) = fv(q) ∧ ν(p) ≡α q ∧ v↾fv(p) = (v ◦ ν)↾fv(p)}
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for D1 for which we define

R
def
= {((φ 7→7→a; ({|y|} p), v), (φ 7→7→a; ({|y|} (x− y✷d)✄✄ p), v))| v ∈ Vc}

∪{(({|y|} p, v), ({|y|} (x− y✷d)✄✄ p, v))| v ∈ Vc∧ |= v(φ)} ∪ Id

and for D2 for which we define

R
def
= {((φ 7→7→a; p, v), (φ 7→7→a; ((x− y✷d)✄✄ p), v))| v ∈ Vc}

∪{((p, v), ((x− y✷d)✄✄ p, v))| v ∈ Vc∧ |= v(φ)} ∪ Id

In every case, R is a timed bisimulation, which proof the theorem. ✷

5.2 Basic Terms

An interesting property that is derived from these axioms is that every term can be
expressed in a normal form.

Definition 5.3 (Basic terms)
Define the set B ⊆ L of basic terms inductively as follows:

• stop ∈ B′

• p ∈ B, φ ∈ Φ(C) and a ∈ A =⇒ φ 7→7→a; p ∈ B′

• p, q ∈ B′ =⇒ p+ q ∈ B′

• p ∈ B′, ψ ∈ Φ(C) and x ∈ C =⇒ {|x|} ψ✄✄ p ∈ B

B′ is the set of all terms whose clock resettings and invariants are all within the scope
of a prefix construction. Notice that a basic term has the general format (modulo A1,
A2, A3 and A4)

p = {|x|} ψ✄✄

(
∑

i∈I

φi 7→7→ai; pi

)

where each pi is already a basic term. We adopt the convention that
∑

i∈∅

φi 7→7→ai; pi = stop.

✷

Theorem 5.4 For every term p ∈ L there is a term q ∈ B such that p = q can be
proven by means of axioms in Table 4 and α-conversion.
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Proof. By structural induction.
Case stop.

stop
R1,I1
= {|x|} tt✄✄ stop

Case a; p. By induction hypothesis assume p is a basic term. Besides, take a fresh
variable x. Then

a; p
G1
= tt 7→7→a; p

R1,I1
= {|x|} tt✄✄ (tt 7→7→a; p)

Case φ 7→7→p. By induction hypothesis assume

p = {|x|} ψ✄✄

(
∑

i∈I

φi 7→7→ai; pi

)
.

where each pi is already a basic term. Moreover, we can assume that x /∈ var(φ). Then

φ 7→7→p
G4,G3
= {|x|} ψ✄✄

(
φ 7→7→

∑

i∈I

φi 7→7→ai; pi

)
G5,G2
= {|x|} ψ✄✄

(
∑

i∈I

(φ ∧ φi) 7→7→ai; pi

)

Case p+ q. By induction hypothesis assume

p = {|x|} ψ✄✄

(
∑

i∈I

φi 7→7→ai; pi

)
and q = {|y|} ψ′✄✄


∑

j∈J

φ′j 7→7→bj; qj


.

where each pi and qj are already basic terms. Moreover, by α-conversion, we can
consider x = y. Then

p+ q

IH
= {|x|} ψ✄✄

(
∑

i∈I

φi 7→7→ai; pi

)
+ {|x|} ψ′✄✄


∑

j∈J

φ′j 7→7→bj; qj




R4,I4
= {|x|}


∑

i∈I

ψ✄✄ (φi 7→7→ai; pi) +
∑

j∈J

ψ′✄✄ (φ′j 7→7→bj; qj)




A1,A2,A3
= {|x|}

(
∑

i∈I

(ψ✄✄ (φi 7→7→ai; pi) + ψ′✄✄ (φ′1 7→7→b1; q1))

+
∑

j∈J

(ψ′✄✄ (φ′j 7→7→bj; qj) + ψ✄✄ (φ1 7→7→a1; p1))



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I5
= {|x|}

(
∑

i∈I

(ψ ∨ ψ′)✄✄ ((ψ ∧ φi) 7→7→ai; pi + (ψ′ ∧ φ′1) 7→7→b1; q1)

+
∑

j∈J

(ψ ∨ ψ′)✄✄ ((ψ′ ∧ φ′j) 7→7→bj; qj + (ψ ∧ φ1) 7→7→a1; p1)




I4
= {|x|} (ψ ∨ ψ′)✄✄

(
∑

i∈I

((ψ ∧ φi) 7→7→ai; pi + (ψ′ ∧ φ′1) 7→7→b1; q1)

+
∑

j∈J

((ψ′ ∧ φ′j) 7→7→bj; qj + (ψ ∧ φ1) 7→7→a1; p1)




A1,A2,A3
= {|x|} (ψ ∨ ψ′)✄✄


∑

i∈I

(ψ ∧ φi) 7→7→ai; pi +
∑

j∈J

(ψ′ ∧ φ′j) 7→7→bj; qj




Case {|C|} p. By induction hypothesis assume

p = {|x|} ψ✄✄

(
∑

i∈I

φi 7→7→ai; pi

)
.

where each pi is already a basic term. Then

{|C|} p
IH
= {|C|} {|x|} ψ✄✄

(
∑

i∈I

φi 7→7→ai; pi

)

R3
= {|C ∪ {x}|} ψ✄✄

(
∑

i∈I

φi 7→7→ai; pi

)

R2
= {|x|} (ι[C←⊣x]ψ)✄✄

(
∑

i∈I

(ι[C←⊣x]φi) 7→7→ai; (ι[C←⊣x]pi)

)

Case ψ✄✄ p. By induction hypothesis assume

p = {|x|} ψ′✄✄

(
∑

i∈I

φi 7→7→ai; pi

)
.

where each pi is already a basic term. Moreover, we can assume that x /∈ var(ψ). Then

ψ✄✄ p
IH
= ψ✄✄ {|x|} ψ′✄✄

(
∑

i∈I

φi 7→7→ai; pi

)

I3,I2
= {|x|} (ψ ∧ ψ′)✄✄

(
∑

i∈I

φi 7→7→ai; pi

)

✷

6 Other Operators

In this section, we study several operators. We introduce the hiding operator, the
parallel composition and several time operations such as wait, time-out and urgency.
In order to simplify the proof of soundness in the following we introduce a strong
equivalence over timed automata which implies timed bisimulation.
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6.1 Symbolic Bisimulation

We introduce the notion of symbolic bisimulation between timed automata. It is a kind
of bisimulation defined directly on timed automata which implies timed bisimulation of
the interpreted TTS. The interest of defining this equivalence is not to introduce a new
semantic concept but to simplify proofs in the following.

Definition 6.1 (Symbolic bisimulation)
Let Ti = (Si,A, C, s

i
0,

✲
i, ∂i, κi), i ∈ {1, 2} be two timed automata. A symbolic

bisimulation is a relation R ⊆ S1×S2 with s
1
0Rs

2
0 satisfying, for all a ∈ A and φ ∈ Φ(C),

the following transfer properties whenever s1Rs2

1. s1
a,φ
✲

1s
′
1, then ∃s′2 ∈ S2 : s2

a,φ′
✲

2s
′
2, |= (φ⇒ φ′) and s′1Rs

′
2;

2. s2
a,φ
✲

2s
′
2, then ∃s′1 ∈ S1 : s1

a,φ′
✲

1s
′
1, |= (φ⇒ φ′) and s′1Rs

′
2;

3. |= (∂1(s1) ⇔ ∂2(s2)); and

4. κ1(s1) = κ2(s2).

We denote T1↔˜
T2, if there exists a symbolic bisimulation R such that s10Rs

2
0. ✷

Theorem 6.2 Let T1, T2 ∈ T such that T1↔˜
T2. Then for all v0 ∈ Vc, ([T1])v0 ↔ ([T2])v0.

Proof. Let R be a symbolic bisimulation between T1 and T2.

R′
def
= {((s1, v), (s2, v))| s1Rs2}

can be straightforwardly proven to be a timed bisimulation. ✷

Moreover, notice that T1 ∼= T2 implies T1↔˜
T2. Let p, q ∈ Lv. In the following we

denote p↔
˜
q whenever [[p]]T↔

˜
[[q]]T .

The notion of symbolic bisimulation up to ↔
˜

will simplify considerably several

proofs.

Definition 6.3 (Symbolic bisimulation up to ↔
˜
)

R ⊆ Lv × Lv is a symbolic bisimulation up to ↔
˜

if and only if pRq implies, for all

a ∈ A and φ ∈ Φ(C),

1. p
a,φ
✲ p′, then ∃q′, p′′, q′′ : q

a,φ′
✲ q′, |= (φ⇒ φ′) and p′↔

˜
p′′Rq′′↔

˜
q′;

2. q
a,φ
✲ q′, then ∃p′, p′′, q′′ : p

a,φ′
✲ p′, |= (φ⇒ φ′) and p′↔

˜
p′′Rq′′↔

˜
q′;

3. |= (∂1(p) ⇔ ∂2(q)); and

4. κ1(p) = κ2(q). ✷

Notice that if there is a symbolic bisimulation R up to ↔
˜

such that pRq, then it

can be proven that p↔
˜
q.
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6.2 Hiding Operator

We introduce the hiding operator following LOTOS notation [BB89]. In order to do that
we introduce a special action τ /∈ A called silent action. The silent action differentiates
from the others in the sense that it cannot be observed from the environment. In this
work, we are not going to pay special attention on the semantic of such kind of action.
hideA in p is a process that behaves like p except that all actions in A are renamed into
τ . Notice that a renaming operator (see [Mil89, BW90]) can be defined in a similar
way. We leave this task for the interested reader.

Define Aτ
def
= A ∪ {τ}. Let A ⊆ A. Free and bounded variables are defined as

follows.

fv(hideA in p)
def
= fv(p) bv(hideA in p)

def
= bv(p)

Rules for the timed automata and TTS are given in Table 5 and Table 6 respectively.
The axiomatic definition is given in Table 7.

Table 5: Timed automata for the hiding operator

ncv(p)

ncv(hideA in p)

κ(p) = C

κ(hideA in p) = C

∂(p) = ψ

∂(hideA in p) = ψ

p
a,φ
✲ p′

hideA in p
a,φ
✲ hideA in p′

a /∈ A
p

a,φ
✲ p′

hideA in p
τ,φ
✲ hideA in p′

a ∈ A

Table 6: Operational semantics for the hiding operator

(p, v)
a(d)
−→(p′, v′)

(hideA in p, v)
a(d)
−→(hideA in p′, v′)

a /∈ A
Ud(p, v)

Ud(hideA in p, v)

(p, v)
a(d)
−→(p′, v′)

(hideA in p, v)
τ(d)
−→(hideA in p′, v′)

a ∈ A

We extend the definition of renaming and α-conversion according with

v(hideA in p)
def
= hideA in v(p)

p ≡α q

hideA in p ≡α hideA in q
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Table 7: Axioms for the hiding operator

hideA in stop = stop hideA in (φ 7→7→p) = φ 7→7→(hideA in p)

hideA in (a; p) = a; (hideA in p) if a /∈ A hideA in ({|C|} p) = {|C|} (hideA in p)

hideA in (a; p) = τ ; (hideA in p) if a ∈ A hideA in (ψ✄✄ p) = ψ✄✄ (hideA in p)

hideA in (p+ q) = hideA in p+ hideA in q

Following the same lines of Theorem 4.5, it can be proven that the behaviours of
hideA in p expressed in the two different ways are equivalent modulo timed bisimulation,
i.e., ([hideA in p])∗v0 ↔ ([[[hideA in p]]T ])v0 .

In addition, for every term hideA in p there is an α-conversion without conflict of
variables (see Theorem 4.9). Moreover, Theorem 4.10 still holds if the hiding operator
is added, that is, ≡α⊆ ↔ in the extended language. Besides, hideA in preserves ↔ .

Theorem 6.4 (Congruence) If p↔ q then hideA in p↔ hideA in q.

Proof. Suppose p↔ q. Then, for every v0 ∈ Vc there is a timed bisimulation Rv0 such
that (p, v0)Rv0(q, v0). Let R = {((hideA in p′, v), (hideA in q′, v))| (p′, v)Rv0(q

′, v)} It is
easy to prove that R is a timed bisimulation. ✷

Theorem 6.5 (Soundness) For all p and q obtained by extending Lv with the hiding
operator, if p = q is deduced by means of equational reasoning using axioms in Table 4
and axioms in Table 7, then p↔ q.

Proof. The case of axioms in Table 4 was proven in Theorem 5.2. Let p = q any axiom
in Table 7. It is easy to prove that

R = {(p, q)} ∪ Id

is a symbolic bisimulation. Now, the theorem follows from Theorem 6.2 and Theo-
rem 4.10. ✷

Theorem 6.6 (Elimination) For all term p in the language L extended with the hid-
ing operator, there is a q in L such that p = q can be derived from axioms in Table 7.

Proof. Consider axioms in Table 7 from left to right as rewrite rules. It is simple to
prove that the normal form is a term q ∈ L. ✷
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6.3 Time Operations

In this paragraph we give some axiomatic definitions for common operations on time.
The operation waitd(p) waits d units of time before starting to execute p. Conversely,
befored(p) forces to execute p before d units of time have passed. They can be defined
as follows, provided x /∈ fv(p):

• waitd(p)
def
= {|x|} (x ≥ d) 7→7→p

• befored(p)
def
= {|x|} (x ≤ d)✄✄ p

We can modify these operators in order to not include d

• wait>d (p)
def
= {|x|} (x > d) 7→7→p

• before<d (p)
def
= {|x|} (x < d)✄✄ p

Urgency is defined by the operation urgentd(p) that obliges to execute p just after
waiting d units of time:

• urgentd(p)
def
= befored(waitd(p))

More generally we can define the operation between[d, d′](p) which forces the execution
of p after waiting d units of time but before d′ units of time have passed:

• between[d, d′](p)
def
= befored′(waitd(p))

We can easily generalise this operation to open intervals in the obvious way.
Maybe, the most well known operation is the time-out. p timeoutdq forces to execute

q just after waiting d units of time if process p does not started execution yet:

• p timeoutdq
def
= before<d (p) + urgentd(q)

This time-out is called strong time-out . the weak version could be defined as:

• pwtimeoutdq
def
= befored(p) + urgentd(q)

Consider, for instance, the process p = wait2( before1(a; stop)). p will never perform
action a. This fact arises since the clock of the before operator is started together with
the clock of the wait operator. Another interpretation for the wait operator is given:

wait′d(p) = {|x|} ((d ≤ x) 7→7→τ ; p) provided x /∈ fv(p).

Here, the silent step is used to force the clocks of p to not start.
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Table 8: Timed automata for the parallel operator

ncv(p) (bv(p) ∩ var(q) = ∅)
ncv(q) (bv(q) ∩ var(p) = ∅)

ncv(p||Aq) ncv(p|Aq) ncv(p|| Aq)

ncv(p)

ncv(ck(p))

κ(p) = C κ(q) = C ′

κ(p||Aq) = (C ∪ C ′)
κ(p|| Aq) = (C ∪ C ′)
κ(p|Aq) = (C ∪ C ′)

∂(p) = ψ ∂(q) = ψ′

∂(p||Aq) = (ψ ∧ ψ′)
∂(p|| Aq) = (ψ ∧ ψ′)
∂(p|Aq) = (ψ ∧ ψ′)

p
a,φ
✲ p′

p||Aq
a,φ
✲ p′||Ack(q)

q||Ap
a,φ
✲ ck(q)||Ap

′

p|| Aq
a,φ
✲ p′||Ack(q)

a /∈ A
p

a,φ
✲ p′ q

a,φ′
✲ q′

p||Aq
a,φ∧φ′

✲ p′||Aq
′

p|Aq
a,φ∧φ′

✲ p′||Aq
′

a ∈ A

κ(ck(p)) = ∅
∂(p) = ψ

∂(ck(p)) = ψ

p
a,φ
✲ p′

ck(p)
a,φ
✲ p′

6.4 Parallel Operator

We define a LOTOS-like parallel operator [BB89]. Basically, the process p||Aq executes
process p and q in parallel and forces synchronisation on actions in set A ∈ A. || A and
|A are the left and communication merge respectively, which are needed to give a finite
axiomatisation of the parallel operator. In order to define associated timed automata
we will require the auxiliary operator ck which is intended to avoid clocks resettings.

Free and bound variables are defined by

fv(p||Aq) = fv(p|| Aq) = fv(p|Aq) = fv(p) ∪ fv(q) fv(ck(p)) = κ(p) ∪ fv(p)

bv(p||Aq) = bv(p|| Aq) = bv(p|Aq) = bv(p) ∪ bv(q) bv(ck(p)) = bv(p)

Notice that bv(ck(p)) = bv(p)\κ(p) is not generally true. A counterexample is
p ≡ {|x|} (x < 1) 7→7→a; {|x|} (x < 1) 7→7→a; stop. So, for the sake of correctness in our
definitions, we choose a wide enough set of bound clocks in ck(p).

We give the rules for the timed automaton in Table 8. Operators || A and |A are
the left-merge and the communicating versions of the parallel operator, respectively.

Operation ck is needed since if we admitted an edge like p||Aq
a,φ
✲ p′||Aq instead of
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p||Aq
a,φ
✲ p′||Ack(q), the clocks of q, which were reset as soon as p||Aq was reached,

would be reset again when p′||Aq is reached after performing action a. This last situation
would be incorrect since the time for process q would then not have progressed.

Axioms for parallel composition are given in Table 9. Operator ck is just required
in order to define associated timed automata. Moreover, it does not preserve ↔ and
α-conversion. Thus, we are not interested in giving any axiomatisation of it. However,
the information introduced for ck is somehow encoded in the axiomatisation by the
operator B′. Notice that B′(p) holds when p ∈ B′ according to Definition 5.3, i.e.
whenever no clock resetting or invariant appears out of the scope of a prefixing.

Table 9: Axioms for parallel composition

PC p||Aq = p|| Aq + q || Ap+ p|Aq

LM1 stop|| A(ψ✄✄ q) = ψ✄✄ stop if B′(q)
LM2 a; p|| A(ψ✄✄ q) = ψ✄✄ stop if a ∈ A ∧ B′(q)
LM3 a; p|| A(ψ✄✄ q) = ψ✄✄ a; (p||A(ψ✄✄ q)) if a /∈ A ∧ B′(q)
LM4 (φ 7→7→p)|| Aq = φ 7→7→(p|| Aq)
LM5 (p+ q)|| Ar = p|| Ar + q || Ar
LM6 ({|C|} p)|| Aq = {|C|} (p|| Aq) if C ∩ fv(q) = ∅
LM7 (ψ✄✄ p)|| Aq = ψ✄✄ (p|| Aq)
LM8 p|| A{|C|} q = {|C|} (p|| Aq) if C ∩ fv(p) = ∅

CM0 p|Aq = q|Ap
CM1 stop|Astop = stop
CM2 stop|Aa; p = stop
CM3 a; p|Aa; q = a; (p||Aq) if a ∈ A
CM4 a; p|Ab; q = stop if a 6= b ∨ a /∈ A
CM5 φ 7→7→p|Aq = φ 7→7→(p|Aq)
CM6 (p+ q)|Ar = p|Ar + q|Ar
CM7 ({|C|} p)|Aq = {|C|} (p|Aq) if C ∩ fv(q) = ∅
CM8 (ψ✄✄ p)|Aq = ψ✄✄ (p|Aq)

UB1 B′(stop) UB2 B′(a; p)

UB3
B′(p)

B′(φ 7→7→p)
UB4

B′(p) B′(q)

B′(p+ q)
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We extend the definition of renaming and α-conversion according with

v(p||Aq)
def
= v(p)||Av(q)

v(p|| Aq)
def
= v(p)|| Av(q)

v(p|Aq)
def
= v(p)|Av(q)

p ≡α p
′ q ≡α q

′

p||Aq ≡α p
′||Aq

′

p|| Aq ≡α p
′ || Aq

′

p|Aq ≡α p
′|Aq

′

It can be proven that for every term p||Aq, p|| Aq and p|Aq there is an α-convertible
term without conflict of variables (see Theorem 4.9.) Thus, for terms with conflict of
variables we just assume their interpretation is the timed automata of some α-conversion
without conflict of variables. Moreover, timed bisimulation is a congruence for ||A, || A
and |A, which is stated in the following.

Theorem 6.7 (Congruence) Let p↔ p′ and q ↔ q′. Then, we have p||Aq ↔ p′||Aq
′,

p || Aq ↔ p′ || Aq
′ and p|Aq ↔ p′|Aq

′.

Proof. First we state the following claim.

Claim 6.8 Let p and p′ be two terms in the extended language. Let v0 ∈ Vc. Let R be
a timed bisimulation between ([[[p]]T ])v0 and ([[[p′]]T ])v0. Let V ⊆ C such that V ∩ bv(p) =
V ∩ bv(p′) = ∅. Define

RV
def
= {((q, v), (q′, v′))| (q, v)R(q′, v′)

∧v|fv(q) = v|fv(q) ∧ v
′|fv(q′) = v′|fv(q′) ∧ v|V = v′|V }

Then RV is a timed bisimulation between ([[[p]]T ])v0 and ([[[p′]]T ])v0.

The proof of the claim follows straightforwardly by taking into account Definition 2.4.

Besides, notice that if V ⊆ V ′ then RV ′ ⊆ RV , and moreover RV ′ = (RV )V ′ .
Now, the theorem follows from this other claim.

Claim 6.9 Let p and p′ be two terms in the extended language such tha p↔ p′. Then,
for all v0 ∈ C, there is a timed bisimulation R between ([[[p]]T ])v0 and ([[[p′]]T ])v0. Define:

S1
def
= {((p||Aq, v), (p

′||Aq, v
′))| (p, v)Rvar(q)(p

′, v′)}

∪{((ck(p)||Aq, v), (ck(p
′)||Aq, v

′))| (p, v)Rvar(q)(p
′, v′)

∧ v↾var(q) = v′↾var(q)

∧ ∃d ∈ IR≥0. (v↾var(p) = (v[κ(p)←⊣0] + d)↾var(p)

∧ v′↾var(p′) = (v′[κ(p′)←⊣0] + d)↾var(p′))}

S ′1
def
= {((q||Ap, v), (q||Ap

′, v′))| (p, v)Rvar(q)(p
′, v′)}

∪{((q||Ack(p), v), (q||Ack(p
′), v′))| (p, v)Rvar(q)(p

′, v′)

∧ v↾var(q) = v′↾var(q)

∧ ∃d ∈ IR≥0. (v↾var(p) = (v[κ(p)←⊣0] + d)↾var(p)

∧ v′↾var(p′) = (v′[κ(p′)←⊣0] + d)↾var(p′))}
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S2
def
= {((p || Aq, v0), (p

′ || Aq, v0))} ∪ S1

S ′2
def
= {((q || Ap, v0), (q || Ap

′, v0))} ∪ S
′
1

S3
def
= {((p|Aq, v0), (p

′|Aq, v0))} ∪ S1

S ′3
def
= {((q|Ap, v0), (q|Ap

′, v0))} ∪ S
′
1

All of those relations are timed bisimulation up to ↔ .

For the definition of timed bisimulation up to ↔ and the proof of the claim see
Appendix C. ✷

We state that axioms are sound for timed bisimulation and they allow the elimination
of these new operators.

Theorem 6.10 (Soundness) For all p and q obtained by extending Lv with ||A, || A
and |A, if p = q is deduced by means of equational reasoning using axioms in Table 4
and axioms in Table 9, then p↔ q.

Proof. The case of axioms in Table 4 was proven in Theorem 5.2.
For axiom PC it is routine to prove that

R
def
= {((p||Aq, v), (p|| Aq + q || Ap+ p|Aq, v)}

∪ Id ∪ {((p′||Aq
′, v), (q′||Ap

′, v))| p′ and q′ are any term }

is a timed bisimulation.
Let p = q any other axiom in Table 9. It is easy to prove that

R
def
= {(p, q)} ∪ Id

is a symbolic bisimulation except for LM3 and LM8 for which it is a symbolic bisim-
ulation up to ↔

˜
, and for CM0 for which

R
def
= {(p|Aq, q|Ap)} ∪ {(p′||Aq

′, q′||Ap
′)| p′ and q′ are any term }

could be proven to be a symbolic bisimulation. Now, the theorem follows from Theo-
rem 6.2. ✷

Theorem 6.11 (Elimination) For every term p in the language L extended with ||A,
|| A and |A, there is a q in L such that p = q can be derived from axioms in Table 4
and Table 9.

Proof. Consider axioms in Table 9 from left to right as rewrite rules modulo axioms
in Table 4 and CM0. It is simple to prove that the normal form is a term q ∈ L. ✷
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7 Examples

7.1 The Railroad Crossing

We take the example of the automatic controller of a gate at a railroad crossing using
the definition from [AD94], except that we have adapted it to include invariants. The
components of the system can be described as follows. A TRAIN communicates to
the controller that it approaches at least 2 minutes before it enters the crossing (in).
After leaving the crossing (out), the TRAIN informs the CONTROLLER that it exited
within 5 minutes after sending the signal appr.

The GATE system receives the information when to lower the gate. This should be
put down before 1 minute has passed. Then, the system waits for an order to raise the
gate. After that, it is lifted (up) within 1 to 2 minutes.

The CONTROLLER waits for a train to approach. After exactly 1 minute, it orders
to lower the gate. Then, it waits until the train exits the crossing and at most 1 minute
afterwards it orders to raise the gate.

The components of the system can be described as follows.

TRAIN = appr; {|x|} ( (x < 5)✄✄ (x > 2) 7→7→in;
(x < 5)✄✄ out;
(x < 5)✄✄ exit;TRAIN )

GATE = lower; before<1 (down; raise; between(1, 2)(up;GATE))

CONTROLLER = appr; urgent1(lower; exit; before
<
1 (raise;CONTROLLER))

SYSTEM = CONTROLLER||{appr,exit,lower,raise}(TRAIN ||∅GATE)

By using axioms in Table 9 parallel operations can be eliminated. Assuming only
one clock for each component, the expression obtained at this point will contain 3
clocks and 19 states. However, many of those states are not reachable since the system
will never meet conditions which allow that. These states can be eliminated by using
axioms in Table 4, using D1 and D2 in particular. Moreover, the number of clocks can
be reduced to 2. In this way, the SYSTEM can be proven equivalent to the following
recursive specification which has 2 clocks and 10 states.

SPEC0 = appr; SPEC1

SPEC1 = {|x|} SPEC ′1

SPEC ′1 = (x ≤ 1)✄✄ (x = 1) 7→7→lower; SPEC2

SPEC2 = {|y|} (y < 1)✄✄ down; SPEC3

SPEC3 = (x < 5)✄✄ (x > 2) 7→7→in; SPEC4

SPEC4 = (x < 5)✄✄ out; SPEC5

SPEC5 = (x < 5)✄✄ exit; SPEC6
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SPEC6 = {|y|} (y < 1)✄✄ raise; SPEC7

SPEC7 = {|y|} (y < 2)✄✄ (appr; SPEC8 + (y > 1) 7→7→up; SPEC0)

SPEC8 = {|x|} (y < 2 ∧ x ≤ 1)✄✄ (y > 1) 7→7→up; SPEC ′1

Clock x keeps track of the evolution of the time with respect to the TRAIN and
some activities in the CONTROLLER (particularly the action lower), while y keeps
track of the time of the proper activities of the GATE (namely down and up) and
the activity of raising the gate. Notice, however, that the action up in SPEC8 is also
constrained by clock x (viz. the condition x ≤ 1). This would seem to imply that the
CONTROLLER also controls the time of lifting the gate (action up). Clearly, this is
not a desirable situation.

The timed automaton associated with SPEC0 is depicted in Figure 2. States are
represented by circles and their numbers are written beside. κ and ∂ are respectively
written in the upper and lower part of the circle. Edges are represented by the arrows.
Empty sets and true conditions are omitted, and singleton sets are represented by their
elements.

Figure 2: The reduced timed automaton of the railroad crossing system
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7.2 An Improved Version of the Railroad Crossing

We shortly describe the three components of the system. A TRAIN communicates to
the controller that it approaches between 3 and 4 minutes before it enters the crossing
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(in). It takes at most 2 minutes to go out. Then it should inform the CONTROLLER

that it exited the crossing within 1 minute.
The GATE system receives the information when to lower the gate. This should be

down at most 1 minute afterwards. Then, the system waits for an order to raise the
gate. After that, it is lifted (up) within 1 to 2 minutes. If instead, before the gate is
up, a new order to lower the gate is received, then the system does not raise the gate
but waits for a new order of raising it.

The CONTROLLER waits for a train to approach. After exactly 1 minute, it orders
to lower the gate. Then, it waits until the train exits the crossing and at most 1 minute
afterwards it orders to raise the gate. However, another TRAIN could approach before
the CONTROLLER gives such an order. In this case the order of raising the gate
should not be sent; instead, the CONTROLLER waits for the train to exit.

Thus, each component of the system can be modeled as follows.

TRAIN = appr; between[3, 4](in; before2(out; before1(exit;TRAIN)))

GATE = lower; before1(down;GATE ′)

GATE’ = raise; ( before2(lower;GATE ′) + between(1, 2](up;GATE))

CONTROLLER = appr; urgent1(lower;CONTROLLER′)

CONTROLLER’ = exit; before1(appr;CONTROLLER′

+ raise;CONTROLLER)

SYSTEM = CONTROLLER||{appr,exit,lower,raise}(TRAIN ||∅GATE)

By using axioms in Table 9 parallel operations can be eliminated. Assuming only
one clock for each component, the expression obtained at this point will contain 3 clocks
and 26 states. However, many of those states are not reachable since the system will
never meet conditions which allow that. As before, this states can be eliminated. Thus,
the SYSTEM can be proven equivalent to the following recursive specification which
has 2 clocks and 11 states.

SPEC0 = appr; SPEC1

SPEC1 = {|x|} SPEC ′1

SPEC ′1 = (x ≤ 1)✄✄ (x = 1) 7→7→lower; SPEC2

SPEC2 = {|y|} (y ≤ 1)✄✄ down; SPEC3

SPEC3 = (x ≤ 4)✄✄ (x ≥ 3) 7→7→in; SPEC4

SPEC4 = {|x|} (x ≤ 2)✄✄ out; SPEC5

SPEC5 = {|x|} (x ≤ 1)✄✄ exit; SPEC6

SPEC6 = {|x|} (x ≤ 1)✄✄ (appr; SPEC7 + raise; SPEC8)
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SPEC7 = {|x|} SPEC3

SPEC8 = {|y|} (y ≤ 2)✄✄ (appr; SPEC9 + (y > 1) 7→7→up; SPEC0)

SPEC9 = {|x|} (y ≤ 2 ∧ x ≤ 1)✄✄ ((x = 1) 7→7→lower; SPEC3 + (y > 1) 7→7→up; SPEC ′1)

The timed automaton associated to SPEC0 is depicted in Figure 3.

Figure 3: The reduced timed automaton of the railroad crossing system
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7.3 Regions

Using the axioms we can calculate regions. Take for instance the state SPEC9. Notice
that it is reached from SPEC8 after performing an appr which can be proven to be
guarded by (0 ≤ y ≤ 2). Thus

(0 ≤ y ≤ 2) 7→7→appr; SPEC9
D1
= (0 ≤ y ≤ 2) 7→7→appr; {|x|} (0 ≤ y − x ≤ 2)✄✄ SPEC9

34



So, we calculate

{|x|} (0 ≤ y − x ≤ 2)✄✄ SPEC9

α-conv.,I3,R2,I2
= {|x|} (y ≤ 2 ∧ x ≤ 1 ∧ 0 ≤ y − x ≤ 2)✄✄

((y ≤ 2 ∧ x = 1) 7→7→lower; SPEC3

+ (1 < y ≤ 2 ∧ x ≤ 1) 7→7→up; SPEC10)

Prop. 5.1.2
= {|x|} (x ≤ y ≤ 2− x ∧ x ≤ 1)✄✄

((1 = x ≤ y ≤ 2) 7→7→lower; SPEC3

+ (1 < y ≤ 2− x ∧ x ≤ 1) 7→7→up; SPEC10)

Henceforth, we obtained that the system can idle in state SPEC9 whenever x ≤ y ≤
2− x∧ x ≤ 1, the action lower is enabled in the state SPEC9 whenever 1 = x ≤ y ≤ 2,
and the action up is enabled in the state SPEC9 whenever 1 < y ≤ 2− x∧ x ≤ 1. This
is depicted in Figure 4.

Figure 4: Regions related to state SPEC9
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8 Further Remarks

Milner’s Synchronisation Trees and our Language

Basically, our calculus is an extension of Milner’s synchronisation trees [Mil89] (i.e.,
CCS with only prefixing, inaction and summation) with operations to manipulate clocks
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(clock resettings, invariants and guards). Moreover, we can state that our calculus is an
operational conservative extension up to (timed) bisimulation, that is, for every pair of
terms obtained by using only prefixing, stop and summation (the untimed terms), they
are (strong) bisimilar if and only if they are timed bisimilar. It can be easily proven
from the following facts.

1. Let p ∈ L be an untimed term, let v, v′ ∈ Vc. Then, if there is a d ∈ IR≥0 such that

(p, v)
a(d)
−→(p′, v′), then for all d′ ∈ IR≥0 there is a v ∈ Vc such that (p, v)

a(d′)
−→(p′, v)

and p′ is an untimed term. Moreover for all d ∈ IR≥0, Ud(p, v).

2. p
a

−→ p′ if and only if, for all v ∈ Vc, (p, v)
a(d)
−→ (p′, v′) for some d ∈ IR≥0 and

v′ ∈ Vc.

Furthermore, the equational theory given for L (see Table 4) is an equational conser-
vative extension of the equational theory for synchronisation trees (i.e. commutativity,
associativity, idempotency and stop as neutral element of +). Thus, for each equality
p = q of untimed terms that can be proven in Milner’s theory, it can also be proven in
our theory and vice versa. These fact can be easily stated. Clearly Milner’s axioms can
be derived from our theory which proves the “only if”. Since our theory is sound and
Milner’s theory is complete, the “if” follows from the operational conservativity result.

Related Works

Nicollin, Sifakis & Yovine [NSY92, NSY93] give an interpretation of ATP [NS94] in
terms of timed automata with invariants, considering a dense time domain. [Yov93]
shows that such a translation preserves timed branching bisimulation. ATP is basi-
cally an extension of CCS [Mil89] including a timeout operation, an execution delay
or watchdog operation and the notion of urgent actions. No clocks nor time vari-
ables are considered in ATP. Basically the same study was done by Daws, Olivero &

Yovine [DOY94] for ET-LOTOS [LL94]. In this case, also timed branching bisimulation
is shown to be preserved. In neither of these works an inverse study was carried out,
i.e., to express a timed automata in terms of the process algebra. In particular, it can
be shown that ET-LOTOS is less expressive than T , the set of timed automata.

Fokkink [Fok93, Fok94] sketches an interpretation of ACP with prefix integra-
tion [Klu91, Klu93, BB91] into timed automata without invariants. Moreover, the
class of strongly regular processes and timed automata turn out to be equivalent when
certain restrictions (namely non-Zenoness and fairness) are not present in the behaviour
of the timed automata. Thus ACP with prefix integration is more expressive than timed
automata. For instance, consider the (finite!) ACP process

∫

v<1
a[v] ·

∫

w=v
b[w] · stop

that records in v the time when a was performed, and after v units of time executes
b. In our language, an unguarded recursive expression would be needed to defined it
if the time domain were denumerable. If instead the set of real numbers is considered,
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such a process cannot be expressed. However, if we allow more expressive constraints
by allowing comparison between clocks, we can define {|x|} (x < 1)✄✄ a; ({|y|} (2y ≤
x)✄✄ (2y = x) 7→7→b; stop). Such an extension would, of course, affect the tractability of
the language.

Lynch & Vaandrager [LV94] introduce a language that explicitly manages clocks.
Such a language has the same expressive power as timed automata w.r.t. (weak) timed
trace equivalence.

Alur & Henzinger [AH94] study the extension of programming languages with
clock variables. They discuss their semantics in terms of the so called real-time pro-
grams [HNSY94] which are easily translated into timed safety automata (see [HNSY94]).

Yi, Pettersson & Daniels [YPD94] give an algebra that represents timed automata
without invariants. Basically, the algebra is a syntax for the timed automata including
CCS parallel composition and restriction. In particular, the prefixing operation has the
form (φ, a, C).p with φ ∈ Φ(C) and C ⊆ C, and it is the only one that can manage clocks.
It could be understood as our term φ 7→7→a; {|C|} p. Thus, since terms with conditions in
their first actions unavoidably become open terms, it is necessary to consider an initial
valuation in its semantics for which [C←⊣0] is taken. That is rather annoying since even
when terms like, for instance, (x < 1, a, ∅).stop and (y < 1, a, ∅).stop, show the same
behaviour, they become different in the context (tt, b, {x}). . Moreover, notice that
this language is strictly less expressive than ours, since it does not include invariant
operations.

Conclusions

The contribution of this paper is a language for timed automata. This language is ba-
sically an extension of Milner’s synchronisation trees with operators to handle clocks,
namely clocks resettings, invariants and guards. The language has the ability to repre-
sent any (image-finite) timed automata by means of guarded recursion, and moreover,
any guarded recursive expression can be interpreted as an (image-finite) timed au-
tomata. It is extended with the usual process operations: parallel composition and
hiding. Moreover, some common time operations including time-out, waiting and ur-
gency, are algebraically defined in terms of the basic language.

As a secondary goal we introduce a symbolic bisimulation which is not meant to
be considered as a proper semantic concept because its discrimination degree, but to
conclude, whenever it is possible, timed bisimilarity without the need of using the
semantic level, i.e., the timed transition systems.

Also, an equational theory has been given. We have stated that it is sound with
respect to timed bisimulation and, moreover, a normal form can be found for each term
by using the axioms. With an example we have shown that redundant states, clocks
and conditions can be eliminated.

It is interesting to notice that our theory is a conservative extension of Milner’s syn-
chronisation trees. We have chosen to use LOTOS-like parallel composition, however,
it would also be possible to define the CCS-like parallel composition, restriction and
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renaming. In such a case, a conservative extension of the CCS calculus could easily be
obtained.

Further study includes reachability analysis by using the equational theory, mini-
mality of clocks according to [HKWT95], completeness of the axiomatisation, particu-
larly whether it is necessary to include an operator like ACP integration [BB91], and
axiomatisation of other semantic relations as, for instance, timed trace preorder [LV94].
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Appendix

In this appendix we include several proofs with the aim of completeness of this work.
We include them appart because of their complexity and length.

A Proof of Claim 4.6

We state the following two proposition without proof

Proposition A.1 For all p, p′ ∈ L and v, v′ ∈ Vc, (p, v)
a(d)
−→ (p′, v′) implies fv(p′) ⊆

fv(p) ∪ κ(p).

Proposition A.2 For all p ∈ Lv and X = q ∈ E, fv(p) = fv(p[q/X])

Claim 4.6. Let v, v ∈ Vc such that v↾fv(p) = v↾fv(p). Then

1. (p, v)
a(d)
−→(p′, v′) implies that ∃v′ ∈ Vc. (p, v)

a(d)
−→ ′(p′, v′) and v′↾fv(p′) = v′↾fv(p′)

2. (p, v)
a(d)
−→ ′(p′, v′) implies that ∃v′ ∈ Vc. (p, v)

a(d)
−→(p′, v′) and v′↾fv(p′) = v′↾fv(p′)

3. Ud(p, v) ⇐⇒ U ′d(p, v)

Proof of the claim.
We prove every case by induction on the depth of the proof tree by considering each
case separatedly. Because of Theorem 3.8, κ and ∂ are always defined, so we are no
going to remark this fact along the proof.

1.

Case stop. This case is trivial since (stop, v) 6
a(d)
−→.

Case a; p. By Definition 4.1

(a; p, v)
a(d)
−→(p, v + d).

Besides, by Definition 3.3,

a; p
a,tt
✲ p, κ(a; p) = ∅ and ∂(a; p) = tt.
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Since |= (v[∅←⊣0] + d)(tt ∧ tt), by Definition 2.4,

(a; p, v)
a(d)
−→ ′(p, v + d).

But v↾fv(p) = v↾fv(a; p) = v↾fv(a; p) = v↾fv(p), so (v + d)↾fv(p) = (v + d)↾fv(p) that
proves this case.

Case φ 7→7→p. Suppose (φ 7→7→p, v)
a(d)
−→(p, v′) By Definition 4.1

(p, v)
a(d)
−→(p, v′) and |= (v + d)(φ).

By assumption v↾fv(φ 7→7→p) = v↾fv(φ 7→7→p) which implies v↾fv(p) = v↾fv(p). Thus, by
induction hypothesis,

(p, v)
a(d)
−→ ′(p, v′) and v′↾fv(p′) = v′↾fv(p′)

Moreover, since v↾var(φ) = v↾var(φ),

|= (v + d)(φ).

Because of Definition 2.4,

p
a,φ′
✲ p′ and |= (v[κ(p)←⊣0] + d)(φ′ ∧ ∂(p)),

moreover v′ = v[κ(p)←⊣0] + d. Thus, by Definition 3.3,

φ 7→7→p
a,φ∧φ′

✲ p′.

Since ncv(φ 7→7→p),

|= (v[κ(p)←⊣0] + d)(φ ∧ φ′ ∧ ∂(p)).

Hence, by Definition 2.4,

(φ 7→7→p, v)
a(d)
−→ ′(p, v[κ(p)←⊣0] + d)

which proves this case.

Case p+ q. Suppose (p+ q, v)
a(d)
−→(p′, v′). By Definition 4.1 suppose

(p, v)
a(d)
−→(p′, v′).

By assumption v↾fv(p+ q) = v↾fv(p+ q) which implies

v↾fv(p) = v↾fv(p).

Hence, by induction hypothesis

∃v′ ∈ Vc. (p, v)
a(d)
−→ ′(p′, v′) and v′↾fv(p′) = v′↾fv(p′).

Because of Definition 2.4,

p
a,φ
✲ p′ and |= (v[κ(p)←⊣0] + d)(φ ∧ ∂(p)),

moreover v′ = v[κ(p)←⊣0] + d. Since ncv(p+ q),

|= (v[κ(p+ q)←⊣0] + d)(φ ∧ ∂(p)).
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Hence, taking into account Definition 3.3,

p+ q
a,φ∧∂(p)

✲ p′ and |= (v[κ(p+ q)←⊣0] + d)(φ ∧ ∂(p) ∧ ∂(p+ q)).

Thus, by Definition 2.4,

(p+ q, v)
a(d)
−→ ′(p′, v[κ(p+ q)←⊣0] + d).

Besides, since fv(p′) ⊆ fv(p)∪κ(p) by Proposition A.1, then fv(p′)∩κ(q) ⊆ κ(p) because
ncv(p+ q). Thus

v′↾fv(p′) = (v[κ(p)←⊣0] + d)↾fv(p′) = (v[κ(p+ q)←⊣0] + d)↾fv(p′)

which prove this case.

The case when (q, v)
a(d)
−→(p′, v′) follows similarly.

Case {|C|} p. Suppose ({|C|} p, v)
a(d)
−→(p′, v′). Then, by Definition 4.1,

(p, v[C←⊣0])
a(d)
−→(p′, v′).

Since v↾fv({|C|} p) = v↾fv({|C|} p) and fv(p) ⊆ C ∪ fv({|C|} p), then

v[C←⊣0]↾fv(p) = v[C←⊣0]↾fv(p).

So, by induction hypothesis

∃v′ ∈ Vc. (p, v[C←⊣0])
a(d)
−→ ′(p′, v′) and v′↾fv(p′) = v′↾fv(p′).

Because of Definition 2.4,

p
a,φ
✲ p′ and |= (v[C←⊣0][κ(p)←⊣0] + d)(φ ∧ ∂(p))

and moreover, v′ = v[C←⊣0][κ(p)←⊣0] + d = v[κ({|C|} p)←⊣0] + d. Now, by Definition 3.3,

{|C|} p
a,φ
✲ p′ and |= (v[κ({|C|} p)←⊣0] + d)(φ ∧ ∂({|C|} p))

which implies, by Definition 2.4,

({|C|} p, v)
a(d)
−→ ′(p′, v[κ({|C|} p←⊣0] + d)

and so, this case is proven.

Case ψ✄✄ p. Suppose (ψ✄✄ p, v)
a(d)
−→(p′, v′). Then, by Definition 4.1,

(p, v)
a(d)
−→(p′, v′) and |= (v + d)(ψ).

Since v↾fv(ψ✄✄ p) = v↾fv(ψ✄✄ p) then v↾fv(p) = v↾fv(p) So, by induction hypothesis

∃v′ ∈ Vc. (p, v)
a(d)
−→ ′(p′, v′) and v′↾fv(p′) = v′↾fv(p′).

Because of Definition 2.4,

p
a,φ
✲ p′ and |= (v[κ(p)←⊣0] + d)(φ ∧ ∂(p)).

Moreover, v′ = v[κ(p)←⊣0] + d. In addition, because ncv(ψ✄✄ p),

(v + d)↾var(ψ) = (v + d)↾var(ψ) = (v[κ(p)←⊣0] + d)↾var(ψ).
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That implies

|= (v[κ(p)←⊣0] + d)(φ ∧ (∂(p) ∧ ψ)).

Thus, by Definition 3.3,

ψ✄✄ p
a,φ
✲ p′ and |= (v[κ(ψ✄✄ p)←⊣0] + d)(φ ∧ ∂(ψ✄✄ p))

which implies, by Definition 2.4,

(ψ✄✄ p, v)
a(d)
−→ ′(p′, v[κ(ψ✄✄ p)←⊣0] + d)

and so, this case is proven.

Case X. Suppose X = p ∈ E and (X, v)
a(d)
−→(p′, v′). Then, by Definition 4.1,

(p[p/X], v)
a(d)
−→(p′, v′)

Taking into account Proposition A.2, v↾fv(p[p/X]) = v↾fv(p) = v↾fv(X) = v↾fv(X) =
v↾fv(p) = v↾fv(p[p/X]). Thus, by induction hypothesis,

(p[p/X], v)
a(d)
−→ ′(p′, v′) and v′↾fv(p′) = v′↾fv(p′).

Because of Definition 2.4,

p[p/X]
a,φ
✲ p′ and |= (v[κ(p[p/X])←⊣0] + d)(φ ∧ ∂(p[p/X])).

Now, by Definition 3.3,

X
a,φ
✲ p′ and |= (v[κ(X)←⊣0] + d)(φ ∧ ∂(X))

and by Definition 2.4,

(X, v)
a(d)
−→ ′(p′, v′)

which proves this case.

2.

Case stop. This case is trivial since (stop, v) 6
a(d)
−→ ′.

Case a; p. Suppose (a; p, v)
a(d)
−→ ′(p, v′). By Definition 2.4

v′ = v[κ(a; p)←⊣0] + d = v + d.

By Definition 4.1

(a; p, v)
a(d)
−→(p, v + d).

Finally, since v↾fv(a; p) = v↾fv(a; p), then (v + d)↾fv(p) = (v + d)↾fv(p) which proves
this case.

Case φ 7→7→p. Suppose (φ 7→7→p, v)
a(d)
−→ ′(p, v′). By Definition 2.4

φ 7→7→p
a,φ∧φ′

✲ p′ and |= (v[κ(φ 7→7→p)←⊣0] + d)(φ ∧ φ′ ∧ ∂(φ 7→7→p)).
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Moreover, v′ = v[κ(φ 7→7→p)←⊣0] + d. By Definition 3.3,

p
a,φ′
✲ p′, κ(φ 7→7→p) = κ(p) and ∂(φ 7→7→p) = ∂(p).

Thus, |= (v[κ(p)←⊣0] + d)(φ′ ∧ ∂(p)) which implies by Definition 2.4

(p, v)
a(d)
−→ ′(p, v′).

Hence, by induction hypothesis,

(p, v)
a(d)
−→(p, v′) and v′↾fv(p′) = v′↾fv(p′).

Since ncv(φ 7→7→p), v↾var(φ) = v↾var(φ), implying thus

|= (v + d)(φ).

So, by Definition 4.1

(φ 7→7→p, v)
a(d)
−→(p, v′).

which proves this case.

Case p+ q. Suppose (p+ q, v)
a(d)
−→ ′(p′, v′). By Definition 2.4,

p+ q
a,φ
✲ p′ and |= (v[κ(p+ q)←⊣0] + d)(φ ∧ ∂(p+ q)).

Moreover, v′ = v[κ(p+ q)←⊣0] + d. By Definition 3.3, suppose

p
a,φ′
✲ p′ with φ = φ′ ∧ ∂(p).

Since ncv(p+ q),

(v[κ(p+ q)←⊣0] + d)↾(fv(p) ∪ κ(p)) = (v[κ(p)←⊣0] + d)↾(fv(p) ∪ κ(p))

which implies

|= (v[κ(p)←⊣0] + d)(φ′ ∧ ∂(p)).

Thus, by Definition 2.4,

(p, v)
a(d)
−→ ′(p′, v[κ(p)←⊣0] + d).

Now, by induction hypothesis,

∃v′ ∈ Vc. (p, v)
a(d)
−→(p′, v′) and v′↾fv(p′) = (v[κ(p)←⊣0] + d)↾fv(p′).

By Definition 4.1,

(p+ q, v)
a(d)
−→(p′, v′)

Besides, fv(p′) ⊆ fv(p) ∪ κ(p) by Proposition A.1, which implies fv(p′) ∩ κ(q) ⊆ κ(p)
since ncv(p+ q). Thus,

v′↾fv(p′) = (v[κ(p)←⊣0] + d)↾fv(p′) = (v[κ(p+ q)←⊣0] + d)↾fv(p′),

which proves this case.

The case when q
a,φ′
✲ p′ is similar.
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Case {|C|} p. Suppose ({|C|} p, v)
a(d)
−→ ′(p′, v′). By Definition 2.4,

{|C|} p
a,φ
✲ p′ and |= (v[κ({|C|} p)←⊣0] + d)(φ ∧ ∂({|C|} p)).

Moreover, v′ = v[κ({|C|} p)←⊣0] + d. By Definition 3.3,

p
a,φ
✲ p′ and |= (v[C ∪ κ(p)←⊣0] + d)(φ ∧ ∂(p)).

Thus, |= (v[C←⊣0][κ(p)←⊣0] + d)(φ ∧ ∂(p)). Now, by Definition 2.4,

(p, v[C←⊣0])
a(d)
−→ ′(p′, v[C←⊣0][κ(p)←⊣0] + d),

Since v↾fv({|C|} p) = v↾fv({|C|} p) and fv(p) ⊆ C ∪ fv({|C|} p), then v[C←⊣0]↾fv(p) =
v[C←⊣0]↾fv(p). Hence, by induction hypothesis,

∃v′ ∈ Vc. (p, v[C←⊣0])
a(d)
−→(p′, v′) and v′↾fv(p′) = v′↾fv(p′)

So, by Definition 4.1,

({|C|} p, v)
a(d)
−→(p′, v′).

which implies this case.

Case ψ✄✄ p. Suppose (ψ✄✄ p, v)
a(d)
−→ ′(p′, v′). By Definition 2.4,

ψ✄✄ p
a,φ
✲ p′ and |= (v[κ(ψ✄✄ p)←⊣0] + d)(φ ∧ ∂(ψ✄✄ p)).

Moreover, v′ = v[κ(ψ✄✄ p)←⊣0] + d. By Definition 3.3,

p
a,φ
✲ p′ and |= (v[κ(p)←⊣0] + d)(φ ∧ (∂(p) ∧ ψ)).

Thus, |= (v[κ(p)←⊣0] + d)(φ ∧ ∂(p)). Now, by Definition 2.4,

(p, v)
a(d)
−→ ′(p′, v[κ(p)←⊣0] + d),

Since v↾fv(ψ✄✄ p) = v↾fv(ψ✄✄ p), then v↾fv(p) = v↾fv(p). Hence, by induction hypoth-
esis,

∃v′ ∈ Vc. (p, v)
a(d)
−→(p′, v′) and v′↾fv(p′) = v′↾fv(p′)

Furthermore, since ncv(ψ✄✄ p), |= (v[κ(p)←⊣0] + d)(ψ) implies

|= (v + d)(ψ).

Now, since v↾var(ψ) = v↾var(ψ), then

|= (v + d)(ψ).

So, by Definition 4.1,

(ψ✄✄ p, v)
a(d)
−→(p′, v′).

which implies this case.

Case X. Suppose X = p ∈ E and (X, v)
a(d)
−→ ′(p′, v′). Then, by Definition 2.4,

X
a,φ
✲ p′ and |= (v[κ(X)←⊣0] + d)(φ ∧ ∂(X)).
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Now, because of Definition 3.3,

p[p/X]
a,φ
✲ p′ and |= (v[κ(p[p/X])←⊣0] + d)(φ ∧ ∂(p[p/X]))

and by Definition 2.4,

(p[p/X], v)
a(d)
−→ ′(p′, v′)

Taking into account Proposition A.2, v↾fv(p[p/X]) = v↾fv(p) = v↾fv(X) = v↾fv(X) =
v↾fv(p) = v↾fv(p[p/X]). Thus, by induction hypothesis,

(p[p/X], v)
a(d)
−→(p′, v′) and v′↾fv(p′) = v′↾fv(p′).

So, by Definition 4.1,

(X, v)
a(d)
−→ ′(p′, v′)

which proves this case.

3.

Case stop. For all v ∈ Vc and d ∈ IR≥0, Ud(stop, v) by Definition 4.1. On the
other hand, since ∂(stop) = tt (see Definition 3.3), and for all v ∈ Vc and d ∈ IR≥0,
|= (v[∅←⊣0]+d)(tt), U ′d(stop, v) by Definition 2.4. So, for all v, v ∈ Vc, Ud(stop, v) ⇐⇒
U ′d(stop, v).

Case φ 7→7→a; p. By Definition 4.1, for all v ∈ Vc and d ∈ D, Ud(a; p, v). Furthermore,
for all v ∈ Vc and d ∈ D, |= (v + d)(tt), which implies, because of Definition 3.3,
|= (v[κ(a; p)←⊣0] + d)(∂(a; p)). So, U ′d(a; p, v) by Definition 2.4. Thus Ud(a; p, v) ⇐⇒
U ′d(a; p, v) for all v, v ∈ Vc.

Case φ 7→7→p. By Definition 4.1, for all d ∈ D,

Ud(φ 7→7→p, v) ⇐⇒ Ud(p, v).

Since v↾fv(φ 7→7→p) = v↾fv(φ 7→7→p), then v↾fv(p) = v↾fv(p). So, by induction hypothesis,

Ud(p, v) ⇐⇒ Ud(p, v).

Thus, by Definition 2.4,

Ud(p, v) ⇐⇒ |= (v[κ(p)←⊣0] + d)(∂(p)).

So, because of Definition 3.3,

|= (v[κ(p)←⊣0] + d)(∂(p) ⇐⇒ |= (v[κ(p)←⊣0] + d)(∂(φ 7→7→p))

and hence, by Definition 2.4,

|= (v[κ(p)←⊣0] + d)(∂(φ 7→7→p)) ⇐⇒ U ′d(φ 7→7→p, v)

Case p+ q. By Definition 4.1,

Ud(p+ q, v) ⇐⇒ Ud(p, v) ∨ Ud(q, v).

Since fv(p) ⊆ fv(p+ q) and fv(q) ⊆ fv(p+ q), by induction hypothesis,
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Ud(p, v) ∨ Ud(q, v) ⇐⇒ U ′d(p, v) ∨ U ′d(q, v).

By Definition 2.4,

U ′d(p, v) ∨ U ′d(q, v) ⇐⇒ |= (v + d)(∂(p))∨ |= (v + d)(∂(q)).

Because of Definition 3.3,

|= (v + d)(∂(p))∨ |= (v + d)(∂(q)) ⇐⇒ |= (v + d)(∂(p+ q)).

Finally, by Definition 2.4,

|= (v + d)(∂(p+ q)) ⇐⇒ U ′d(p+ q, v).

Case {|C|} p. Because of Definition 4.1,

Ud({|C|} p, v) ⇐⇒ Ud(p, v[C←⊣0]).

Since fv(p) ∪ var(ψ) ⊆ fv(✄✄ C,ψp) ∪ C, then by induction hypothesis,

Ud(p, v[C←⊣0]) ⇐⇒ ∧U ′d(p, v[C←⊣0]).

By Definition 2.4,

U ′d(p, v[C←⊣0]) ⇐⇒ |= (v[C←⊣0][κ(p)←⊣0] + d)(∂(p)).

By Definition 3.3,

|= (v[C ∪ κ(p)←⊣0] + d)(∂(p)) ⇐⇒ |= (v[κ({|C|} p)←⊣0] + d)(∂(✄✄ C,ψp)).

Finally, by Definition 2.4,

|= (v[κ({|C|} p)←⊣0] + d)(∂({|C|} p)) ⇐⇒ U ′d({|C|} p, v).

Case ψ✄✄ p. Because of Definition 4.1,

Ud(ψ✄✄ p, v) ⇐⇒ |= (v + d)(ψ) ∧ Ud(p, v).

Since v↾ψ✄✄ fv(p) = ↾fv(ψ✄✄ p), then v↾var(ψ) = v↾var(ψ). So, by induction hypothe-
sis,

|= (v + d)(ψ) ∧ Ud(p, v) ⇐⇒ |= (v + d)(ψ) ∧ U ′d(p, v).

By Definition 2.4,

|= (v + d)(ψ) ∧ U ′d(p, v) ⇐⇒ |= (v + d)(ψ)∧ |= (v[κ(p)←⊣0] + d)(∂(p)).

Since ncv(ψ✄✄ p), v↾var(ψ) = v[κ(p)←⊣0]↾var(ψ). Thus,

|= (v + d)(ψ)∧ |= (v[κ(p)←⊣0] + d)(∂(p)) ⇐⇒ |= (v[κ(p)←⊣0] + d)(∂(p) ∧ ψ).

By Definition 3.3,

|= (v[κ(p)←⊣0] + d)(∂(p) ∧ ψ) ⇐⇒ |= (v[κ(ψ✄✄ p)←⊣0] + d)(∂(ψ✄✄ p)).

Finally, by Definition 2.4,

|= (v[κ(ψ✄✄ p)←⊣0] + d)(∂(ψ✄✄ p)) ⇐⇒ U ′d(ψ✄✄ p, v).
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Case X. Suppose X = p ∈ E. Because of Definition 4.1,

Ud(X, v) ⇐⇒ Ud(p[p/X], v).

Because of Proposition A.2, v↾fv(p[p/X]) = v↾fv(p) = v↾fv(X) = v↾fv(X) = v↾fv(p) =
v↾fv(p[p/X]). So, by induction hypothesis,

Ud(p[p/X], v) ⇐⇒ U ′d(p[p/X], v).

Now, by Definition 2.4,

U ′d(p[p/X], v) ⇐⇒ |= (v[κ(p[p/X])←⊣0] + d)(∂(p[p/X]))

and by Definition 3.3,

|= (v[κ(p[p/X])←⊣0] + d)(∂(p[p/X])) ⇐⇒ |= (v[κ(X)←⊣0] + d)(∂(X)).

Finally, because of Definition 2.4,

|= (v[κ(X)←⊣0] + d)(∂(X)) ⇐⇒ U ′d(X, v). ✷

B Proof of Claim 4.11

Claim 4.11. Assume there exists a renaming ν such that ν(fv(p)) = fv(q), ν(p) ≡α q
and v↾fv(p) = (v ◦ ν)↾fv(p). Then:

1. (p, v)
a(d)
−→ (p′, v′) implies that exists (q′, v′) such that (q, v)

a(d)
−→ (q′, v′) and ∃ν ′. ν ′

is a renaming ∧ ν ′(fv(p′)) = fv(q′) ∧ ν ′(p′) ≡α q
′ ∧ v′↾fv(p′) = (v′ ◦ ν ′)↾fv(p′)

2. (q, v)
a(d)
−→ (q′, v′) implies that exists (p′, v′) such that (p, v)

a(d)
−→ (p′, v′) and ∃ν ′. ν ′

is a renaming ∧ ν ′(fv(p′)) = fv(q′) ∧ ν ′(p′) ≡α q
′ ∧ v′↾fv(p′) = (v′ ◦ ν ′)↾fv(p′)

3. Ud(p, v) iff Ud(q, v)

Proof of the claim.
1. By structural induction on p.

Suppose p ≡ stop. This case is trivial.

Suppose p ≡ a; p′. By the hypothesis and considering Definition 4.7, there exists a
renaming ν such that ν(fv(a; p′)) = fv(q) and

a; ν(p′) ≡α q ∧ v↾fv(a; p
′) = (v ◦ ν)↾fv(a; p′). (1)

So, by Definition 4.8,

q ≡ a; q′ with ν(p′) ≡α q
′. (2)

Thus, by Definition 4.1,

(a; q′, v)
a(d)
−→(q′, v + d).

We know that fv(a; p′) = fv(p′). Now, choose ν ′ = ν. So, from (1) and (2) we have

49



∃ν ′. ν ′ is a renaming ∧ ν ′(fv(p′)) = fv(q′) ∧ ν ′(p′) ≡α q
′ ∧ v′↾fv(p′) = (v′ ◦ ν ′)↾fv(p′)

that proves this case.

Suppose p ≡ φ 7→7→p′. By the hypothesis and considering Definition 4.7, there exists a
renaming ν such that ν(fv(φ 7→7→p′)) = fv(q) and

ν(φ) 7→7→ν(p′) ≡α q ∧ v↾fv(φ 7→7→p′) = (v ◦ ν)↾fv(φ 7→7→p′). (3)

So, by Definition 4.8,

q ≡ φ′ 7→7→q′ with ν(φ) = φ′ ∧ ν(p′) ≡α q
′.

Suppose that

(φ 7→7→p′, v)
a(d)
−→(p′′, v′).

By Definition 4.1,

(p′, v)
a(d)
−→(p′′, v′) and |= (v + d)(φ).

Because fv(p′) ⊆ fv(p), by induction hypothesis, there exists (q′′, v′) such that

(q′, v)
a(d)
−→(q′′, v′) and (4)

∃ν ′. ν ′ is a renaming
∧ ν ′(fv(p′′)) = fv(q′′) ∧ ν ′(p′′) ≡α q

′′ ∧ v′↾fv(p′′) = (v′ ◦ ν ′)↾fv(p′′).

Considering (3), for all d ∈ IR≥0,

(v + d)↾fv(p) = ((v ◦ ν) + d)↾fv(p) = ((v + d) ◦ ν)↾fv(p).

Because of that,

((v + d) ◦ ν)(φ) = (v + d)(ν(φ)) = (v + d)(φ′).

Thus,

|= (v + d)(φ′)

So, together with (4), by Definition 4.1,

(φ′ 7→7→q′, v)
a(d)
−→(q′′, v′)

which proves this case.

Suppose p ≡ p′ + p′′. By the hypothesis and considering Definition 4.7, there exists a
renaming ν such that ν(fv(p′ + p′′)) = fv(q) and

ν(p′) + ν(p′′) ≡α q ∧ v↾fv(p
′ + p′′) = (v ◦ ν)↾fv(p′ + p′′). (5)

So, by Definition 4.8,

q ≡ q′ + q′′ with ν(p′) ≡α q
′ and ν(p′′) ≡α q

′′. (6)

Suppose that

(p′ + p′′, v)
a(d)
−→(p, v′)
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and, by Definition 4.1, assume it is the case that

(p′, v)
a(d)
−→(p, v′)

Since fv(p′) ⊆ fv(p), and considering (5) and (6), we can apply induction hypothesis.
So, there exists (q, v′) such that

(q′, v)
a(d)
−→(q, v′) and ∃ν ′. ν ′ is a renaming

∧ν ′(fv(p)) = fv(q) ∧ ν ′(p) ≡α q ∧ v
′↾fv(p) = (v′ ◦ ν ′)↾fv(p).

Now, by Definition 4.1,

(q′ + q′′, v)
a(d)
−→(q, v′)

which prove this case.

The proof is analogous if we consider the subcase (p′′, v)
a(d)
−→(p, v′).

Suppose p ≡ {|C|} p′. By the hypothesis and considering Definition 4.7, there exists a
renaming ν such that ν(fv({|C|} p′)) = fv(q) and

(∃f : C → V. f is bijective ∧ν(fv(p′)\C) ∩ V = ∅ ∧ {|f(C)|} ν[f ](p′) ≡α q) (7)
∧ v↾fv({|C|} p′) = (v ◦ ν)↾fv({|C|} p′). (8)

So, by Definition 4.8,

q ≡ {|C ′|} q′ with
C ′ ∩ fv({|f(C)|} ν[f ](p′)) = ∅
∧(∃g : f(C) → C ′. g is bijective ∧ ι[g] ◦ ν[f ](p′) ≡α q

′) (9)

If x ∈ C, then

v[C←⊣0](x) = 0 = v[C ′←⊣0](g ◦ f(x)) = (v[C ′←⊣0] ◦ ι[g] ◦ ν[f ])(x)

Suppose now, x ∈ fv(p)\C. Thus, considering (8), we have

v[C←⊣0](x) = v(x) = v(ν(x)).

Because x ∈ fv(p), ν(x) ∈ fv(q) = fv({|C ′|} q′). So ν(x) /∈ C ′. Thus,

v(ν(x)) = v[C ′←⊣0](ν(x)).

Now, since (7) and x /∈ C,

v[C ′←⊣0](ν(x)) = (v[C ′←⊣0](ν[f ](x))) = (v[C ′←⊣0] ◦ (ι[g] ◦ ν[f ]))(x).

So, we have that

v[C←⊣0]↾(C ∪ fv(p)) = (v[C ′←⊣0] ◦ (ι[g] ◦ ν[f ]))↾(C ∪ fv(p)).

In particular, since fv(p′) ⊆ C ∪ fv(p),

v[C←⊣0]↾fv(p′) = (v[C ′←⊣0] ◦ (ι[g] ◦ ν[f ]))↾fv(p′). (10)

Suppose

({|C|} p′, v)
a(d)
−→(p′′, v′).

By Definition 4.1,
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(p′, v[C←⊣0])
a(d)
−→(p′′, v′).

By (9) and (10), we can apply the induction hypothesis. So, there exists (q′′, v′) such
that

(q′, v[C ′←⊣0])
a(d)
−→(q′′, v′) and ∃ν ′. ν ′ is a renaming

∧ ν ′(p′′) ≡α q
′′ ∧ v′↾fv(p′′) = (v′ ◦ ν ′)↾fv(p′′).

which implies, by Definition 4.1,

({|C ′|} q′, v)
a(d)
−→(q′′, v′).

which prove this case.

Suppose p ≡ ψ✄✄ p′. By the hypothesis and considering Definition 4.7, there exists a
renaming ν such that ν(fv(ψ✄✄ p′)) = fv(q) and

ν(ψ)✄✄ ν(p′) ≡α q ∧ v↾fv(ψ✄✄ p′) = (v ◦ ν)↾fv(ψ✄✄ p′). (11)

So, by Definition 4.8,

q ≡ ψ′✄✄ q′ with ν(ψ) = ψ′ ∧ ν(p′) ≡α q
′.

Suppose that

(ψ✄✄ p′, v)
a(d)
−→(p′′, v′).

By Definition 4.1,

(p′, v)
a(d)
−→(p′′, v′) and |= (v + d)(ψ).

Because fv(p′) ⊆ fv(p), by induction hypothesis, there exists (q′′, v′) such that

(q′, v)
a(d)
−→(q′′, v′) and (12)

∃ν ′. ν ′ is a renaming
∧ ν ′(fv(p′′)) = fv(q′′) ∧ ν ′(p′′) ≡α q

′′ ∧ v′↾fv(p′′) = (v′ ◦ ν ′)↾fv(p′′).

Considering (11), for all d ∈ IR≥0,

(v + d)↾fv(ψ✄✄ p′) = ((v ◦ ν) + d)↾fv(ψ✄✄ p′) = ((v + d) ◦ ν)↾fv(ψ✄✄ p′).

Because of that

((v + d) ◦ ν)(ψ) = (v + d)(ν(ψ)) = (v + d)(ψ′).

Thus,

|= (v + d)(ψ′)

So, together with (12), by Definition 4.1,

(ψ′✄✄ q′, v)
a(d)
−→(q′′, v′).

which proves this case. ✷
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C Proof of Claim 6.9

Let Li = (Si,A × IR≥0, si0, −→ i,U
i), i ∈ {1, 2}. So far, we introduce the notation

L1 ↔ L2 to mean that there is a timed bisimulation between the initial states of those
TTS. Ambiguously, we will say that two states s1 ∈ S1 and s2 ∈ S2 are timed bisimilar
(notation s1 ↔ s2) if (S1,A× IR≥0, s1, −→ 1,U

1) ↔ (S2,A× IR≥0, s2, −→ 2,U
2). Now,

we define:

Definition C.1 (Timed bisimulation up to ↔ ) Let Li = (Si,A × IR≥0, si0, −→

i,U
i), i ∈ {1, 2}, be two UTS. A timed bisimulation up to ↔ is a relation R ⊆ S1 ×S2

with s10Rs
2
0 satisfying, for all a(d) ∈ A× IR≥0, the following transfer properties:

1. if s1Rs2 and s1
a(d)
−→ 1s

′
1, then ∃s′2 ∈ S2 : s2

a(d)
−→ 2s

′
2 and s′1 ↔ s10Rs

2
0 ↔ s′2 where si0

is the initial state of some TTS Li (i ∈ {1, 2});

2. if s1Rs2 and s2
a(d)
−→ 2s

′
2, then ∃s′1 ∈ S1 : s1

a(d)
−→ 1s

′
1 and s′1 ↔ s10Rs

2
0 ↔ s′2 where si0

is the initial state of some TTS Li (i ∈ {1, 2}); and

3. if s1Rs2, then U1
d (s1) ⇐⇒ U2

d (s2). ✷

It is not difficult to prove that if there is a timed bisimulation up to ↔ between
two TTS, then they are timed bisimilar.

Claim 6.9. Let p and p′ be two terms in the extended language such that p ↔ p′.
Then, for all v0 ∈ C, there is a timed bisimulation R between ([[[p]]T ])v0 and ([[[p′]]T ])v0.
Define:

S1
def
= {((p||Aq, v), (p

′||Aq, v
′))| (p, v)Rvar(q)(p

′, v′)}

∪{((ck(p)||Aq, v), (ck(p
′)||Aq, v

′))| (p, v)Rvar(q)(p
′, v′)

∧ v↾var(q) = v′↾var(q)

∧ ∃d ∈ IR≥0. (v↾var(p) = (v[κ(p)←⊣0] + d)↾var(p)

∧ v′↾var(p′) = (v′[κ(p′)←⊣0] + d)↾var(p′))}

S ′1
def
= {((q||Ap, v), (q||Ap

′, v′))| (p, v)Rvar(q)(p
′, v′)}

∪{((q||Ack(p), v), (q||Ack(p
′), v′))| (p, v)Rvar(q)(p

′, v′)

∧ v↾var(q) = v′↾var(q)

∧ ∃d ∈ IR≥0. (v↾var(p) = (v[κ(p)←⊣0] + d)↾var(p)

∧ v′↾var(p′) = (v′[κ(p′)←⊣0] + d)↾var(p′))}

S2
def
= {((p || Aq, v0), (p

′ || Aq, v0))} ∪ S1

S ′2
def
= {((q || Ap, v0), (q || Ap

′, v0))} ∪ S
′
1
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S3
def
= {((p|Aq, v0), (p

′|Aq, v0))} ∪ S1

S ′3
def
= {((q|Ap, v0), (q|Ap

′, v0))} ∪ S
′
1

All of those relations are timed bisimulation up to ↔ .

Proof of the claim. First, we notice that it can be straightforwardly proven that, for
any p and q, (ck(p)||Aq, v) ↔ (ck(ck(p))||Aq, v). Moreover, we recall that the identity
relation is a timed bisimulation, but in this case we are not going to make any explicit
mention. We only prove the case of S1, the rest can be proven similarly.

1. We prove the first transfer property.

Suppose (p||Aq, v)
a(d)
−→(r, v̂). Now, three subcases arises.

• (p||Aq, v)
a(d)
−→(p0||Ack(q), v[κ(p||Aq)←⊣0] + d).

By Definition 2.4,

p||Aq
a,φ
✲ p0||Ack(q) and |= (v[κ(p||Aq)←⊣0] + d)(φ) ∧ ∂(p||Aq)).

By rules in Table 8, a /∈ A and

p
a,φ
✲ p0, κ(p||Aq) = κ(p) ∪ κ(q) and ∂(p||Aq) = ∂(p) ∧ ∂(q).

Since ncv(p||Aq),

|= (v[κ(p)←⊣0] + d)(φ) and |= (v[κ(p)←⊣0] + d)(∂(p)).

Now, by Definition 2.4,

(p, v)
a(d)
−→(p0, v[κ(p)←⊣0] + d).

Since (p, v)Rvar(q)(p
′, v′),

(p′, v′)
a(d)
−→(p′0, v

′[κ(p′)←⊣0]+d) and (p0, v[κ(p)←⊣0]+d)Rvar(q)(p
′
0, v
′[κ(p′)←⊣0]+d).

By Definition 2.4,

p′
a,φ′
✲ p′0, and |= (v′[κ(p′)←⊣0] + d)(φ′ ∧ ∂(p′)).

and by rules in Table 8,

p′||Aq
a,φ′
✲ p′0||Ack(q), κ(p′||Aq) = κ(p′) ∪ κ(q) and ∂(p′||Aq) = ∂(p′) ∧ ∂(q).

Moreover, since ncv(p′||Aq),

|= (v′[κ(p′||Aq)←⊣0] + d)(φ′) and |= (v′[κ(p′||Aq)←⊣0] + d)(∂(p′||Aq)).
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So, by Definition 2.4,

(p′||Aq, v
′)
a(d)
−→(p′0||Ack(q), v

′[κ(p′||Aq)←⊣0] + d).

Furthermore, (p0, v[κ(p)←⊣0] + d)Rvar(q)(p
′
0, v
′[κ(p′)←⊣0] + d) implies

(v[κ(p)←⊣0] + d)↾var(q) = (v′[κ(p′)←⊣0] + d)↾var(q)

and so

(v[κ(p||Aq)←⊣0] + d)↾var(q) = (v′[κ(p′||Aq)←⊣0] + d)↾var(q).

Since fv(p0) ∩ bv(q) = fv(p′0) ∩ bv(q) = ∅,

(v[κ(p||Aq)←⊣0] + d)↾fv(p0) = (v[κ(p)←⊣0] + d)↾fv(p0)

and (v[κ(p′||Aq)←⊣0] + d)↾fv(p′0) = (v[κ(p′)←⊣0] + d)↾fv(p′0)

Now, because var(q) = var(ck(q)),

(p0, v[κ(p||Aq)←⊣0] + d)Rvar(ck(q))(p
′
0, v
′[κ(p′||Aq)←⊣0] + d).

Thus,

(p0||Ack(q), v[κ(p||Aq)←⊣0] + d)S1(p
′
0||Ack(q), v

′[κ(p′||Aq)←⊣0] + d).

• (p||Aq, v)
a(d)
−→(ck(p)||Aq0, v[κ(p||Aq)←⊣0] + d).

By Definition 2.4,

p||Aq
a,φ
✲ ck(p)||Aq0 and |= (v[κ(p||Aq)←⊣0] + d)(φ ∧ ∂(p||Aq)).

By rules in Table 8, a /∈ A and

q
a,φ
✲ q0, κ(p||Aq) = κ(p) ∪ κ(q) and ∂(p||Aq) = ∂(p) ∧ ∂(q).

Again, by rules in Table 8,

p′||Aq
a,φ
✲ ck(p′)||Aq0, κ(p′||Aq) = κ(p′) ∪ κ(q) and ∂(p′||Aq) = ∂(p′) ∧ ∂(q).

Since (p, v)Rvar(q)(p
′, v′), Ud(p, v) implies Ud(p

′, v′), thus, by Definition 2.4,

|= (v′[κ(p′)←⊣0] + d)(∂(p′)).

Moreover, v↾var(q) = v′↾var(q), and since ncv(p||Aq) and ncv(p′||Aq),

|= (v′[κ(p′||Aq)←⊣0] + d)(φ ∧ ∂(p′||Aq)).

So, by Definition 2.4,

(p′||Aq, v
′)
a(d)
−→(ck(p′)||Aq0, v

′[κ(p′||Aq)←⊣0] + d).
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Furthermore, because ncv(p||Aq), ncv(p
′||Aq) and var(q0) ⊆ var(q),

(v[κ(p||Aq)←⊣0] + d)↾var(q0) = (v′[κ(p′||Aq)←⊣0] + d)↾var(q0). (13)

Now, suppose x ∈ var(p), then x /∈ κ(q), which implies

(v[κ(p||Aq)←⊣0] + d)↾var(p) = (v[κ(p)←⊣0] + d)↾var(p). (14)

Similarly,

(v′[κ(p′||Aq)←⊣0] + d)↾var(p′) = (v′[κ(p′)←⊣0] + d)↾var(p′). (15)

Now, since var(q0) ⊆ var(q), Rvar(q) ⊆ Rvar(q0) which implies

(p, v)Rvar(q0)(p
′, v′). (16)

Finally, because of (13), (14), (15) and (16),

(ck(p)||Aq0, v[κ(p||Aq)←⊣0] + d)S1(ck(p
′)||Aq0, v

′[κ(p′||Aq)←⊣0] + d).

• (p||Aq, v)
a(d)
−→(p0||Aq0, v[κ(p||Aq)←⊣0] + d).

By Definition 2.4,

p||Aq
a,φ∧φ′′

✲ p0||Aq0 and |= (v[κ(p||Aq)←⊣0] + d)((φ ∧ φ′′) ∧ ∂(p||Aq)).

By rules in Table 8, a ∈ A and

p
a,φ
✲ p0, q

a,φ′′
✲ q0, κ(p||Aq) = κ(p) ∪ κ(q) and ∂(p||Aq) = ∂(p) ∧ ∂(q).

Since ncv(p||Aq),

|= (v[κ(p)←⊣0] + d)(φ ∧ ∂(p)).

Now, by Definition 2.4,

(p, v)
a(d)
−→(p0, v[κ(p)←⊣0] + d).

Since (p, v)Rvar(q)(p
′, v′),

(p′, v′)
a(d)
−→(p′0, v

′[κ(p′)←⊣0]+d) and (p0, v[κ(p)←⊣0]+d)Rvar(q)(p
′
0, v
′[κ(p′)←⊣0]+d).

By Definition 2.4,

p′
a,φ′
✲ p′0, and |= (v′[κ(p′)←⊣0] + d)(φ′ ∧ ∂(p′)).

and by rules in Table 8,

p′||Aq
a,φ′∧φ′′

✲ p′0||Aq0, κ(p′||Aq) = κ(p′) ∪ κ(q) and ∂(p′||Aq) = ∂(p′) ∧ ∂(q).
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Moreover, since ncv(p||Aq) and ncv(p′||Aq),

|= (v′[κ(p′||Aq)←⊣0] + d)((φ′ ∧ φ′′) ∧ ∂(p′||Aq)).

So, by Definition 2.4,

(p′||Aq, v
′)
a(d)
−→(p′0||Aq0, v

′[κ(p′||Aq)←⊣0] + d).

Furthermore, since var(q0) ⊆ var(q), Rvar(q) ⊆ Rvar(q0). Then

(p0, v[κ(p)←⊣0] + d)Rvar(q0)(p
′
0, v
′[κ(p′)←⊣0] + d)

which implies

(v[κ(p)←⊣0] + d)↾var(q0) = (v′[κ(p′)←⊣0] + d)↾var(q0)

and so

(v[κ(p||Aq)←⊣0] + d)↾var(q0) = (v′[κ(p′||Aq)←⊣0] + d)↾var(q0).

Since fv(p0) ∩ bv(q) = fv(p′0) ∩ bv(q) = ∅,

(v[κ(p||Aq)←⊣0] + d)↾fv(p0) = (v[κ(p)←⊣0] + d)↾fv(p0)

and (v[κ(p′||Aq)←⊣0] + d)↾fv(p′0) = (v[κ(p′)←⊣0] + d)↾fv(p′0)

Now,

(p0, v[κ(p||Aq)←⊣0] + d)Rvar(q0)(p
′
0, v
′[κ(p′||Aq)←⊣0] + d).

Thus,

(p0||Aq0, v[κ(p||Aq)←⊣0] + d)S1(p
′
0||Aq0, v

′[κ(p′||Aq)←⊣0] + d).

Suppose (ck(p)||Aq, v)
a(d)
−→(r, v̂). Now, three subcases arises.

• (ck(p)||Aq, v)
a(d)
−→(p0||Ack(q), v[κ(ck(p)||Aq)←⊣0] + d).

By Definition 2.4,

ck(p)||Aq
a,φ
✲ p0||Ack(q) and |= (v[κ(ck(p)||Aq)←⊣0] + d)(φ ∧ ∂(ck(p)||Aq)).

By rules in Table 8, a /∈ A and

p
a,φ
✲ p0, κ(ck(p)||Aq) = κ(q) and ∂(ck(p)||Aq) = ∂(p) ∧ ∂(q).

By definition of S1, there exists v, v′ and d′ such that

v↾var(p) = (v[κ(p)←⊣0] + d′)↾var(p),

v′↾var(p′) = (v′[κ(p′)←⊣0] + d′)↾var(p′) and (p, v)Rvar(q)(p
′, v′). (17)
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Hence, since ncv(ck(p)||Aq),

|= (v[κ(p)←⊣0] + d′ + d)(φ ∧ ∂(p)).

Thus, by Definition 2.4

(p, v)
a(d)
−→(p0, v[κ(p)←⊣0] + d′ + d).

which implies,

(p′, v′)
a(d)
−→(p′0, v

′[κ(p′)←⊣0] + d′ + d)

and (p0, v[κ(p)←⊣0] + d′ + d)Rvar(q)(p
′
0, v
′[κ(p′)←⊣0] + d′ + d). (18)

By Definition 2.4,

p′
a,φ′
✲ p′0 and |= (v′[κ(p′)←⊣0] + d′ + d)(φ′ ∧ ∂(p′)).

and by rules in Table 8,

ck(p′)||Aq
a,φ′
✲ p′0||Ack(q), κ(ck(p

′)||Aq) = κ(q) and ∂(ck(p′)||Aq) = ∂(p′)∧ ∂(q).

Moreover, since ncv(ck(p′)||Aq),

|= (v′[κ(ck(p′)||Aq)←⊣0] + d)(φ′ ∧ ∂(ck(p′)||Aq)).

So, by Definition 2.4,

(ck(p′)||Aq, v
′)
a(d)
−→(p′0||Ack(q), v

′[κ(ck(p′)||Aq)←⊣0] + d).

Furthermore, by definition of S1, v↾var(q) = v′↾var(q), which implies

(v[κ(ck(p)||Aq)←⊣0] + d)↾var(q) = (v′[κ(ck(p′)||Aq)←⊣0] + d)↾var(q).

and because of (17), and since ncv(ck(p′)||Aq), var(p0) ⊆ var(p) and var(p′0) ⊆
var(p′)

(v[κ(ck(p)||Aq)←⊣0] + d)↾var(p0) = (v[κ(p)←⊣0] + d′ + d)↾var(p0)

and (v′[κ(ck(p′)||Aq)←⊣0]+ d)↾var(p
′
0) = (v′[κ(p′)←⊣0]+ d′+ d)↾var(p′0).

Now, since var(q) = var(ck(q)), and considering (18),

(p0, v[κ(ck(p)||Aq)←⊣0] + d)Rvar(ck(q))(p
′
0, v
′[κ(ck(p′)||Aq)←⊣0] + d)

which implies

(p0||Ack(q), v[κ(ck(p)||Aq)←⊣0] + d)S1(p
′
0||Ack(q), v

′[κ(ck(p′)||Aq)←⊣0] + d).
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• (ck(p)||Aq, v)
a(d)
−→(ck(ck(p))||Aq0, v[κ(ck(p)||Aq)←⊣0] + d).

By Definition 2.4,

ck(p)||Aq
a,φ
✲ ck(ck(p))||Aq0, and |= (v[κ(ck(p)||Aq)←⊣0]+ d)(φ∧ ∂(ck(p)||Aq)).

By rules in Table 8, a /∈ A and

q
a,φ
✲ q0, κ(ck(p)||Aq) = κ(q) and ∂(ck(p)||Aq) = ∂(p) ∧ ∂(q).

Again, by rules in Table 8,

ck(p′)||Aq
a,φ
✲ ck(ck(p′))||Aq0,

κ(ck(p′)||Aq) = κ(q) and ∂(ck(p′)||Aq) = ∂(p′) ∧ ∂(q).

Now, (p, v)Rvar(q)(p
′, v′) for some v, v′ and d′ ∈ IR≥0 such that

v↾var(p) = (v[κ(p)←⊣0] + d′)↾var(p)

and v′↾var(p′) = (v[κ(p′)←⊣0] + d′)↾var(p′). (19)

Thus |= (v[κ(p)←⊣0]+d′+d)(∂(p)), which implies Ud′+d(p, v) by Definition 2.4. So
Ud′+d(p

′, v′) and, by Definition 2.4,

|= (v′[κ(p′)←⊣0] + d′ + d)(∂(p′)).

Moreover, since v↾var(q) = v′↾var(q), ncv(ck(p)||Aq) and ncv(ck(p′)||Aq),

|= (v′[κ(ck(p′)||Aq)←⊣0] + d)(φ ∧ ∂(ck(p′)||Aq)).

So, by Definition 2.4,

(ck(p′)||Aq, v
′)
a(d)
−→(ck(ck(p′))||Aq0, v

′[κ(ck(p′)||Aq)←⊣0] + d).

We know that

(ck(ck(p))||Aq0, v[κ(ck(p)||Aq)←⊣0] + d) ↔ (ck(p)||Aq0, v
′[κ(ck(p)||Aq)←⊣0] + d)

(20)

and

(ck(ck(p′))||Aq0, v
′[κ(ck(p′)||Aq)←⊣0] + d) ↔ (ck(p′)||Aq0, v

′[κ(ck(p′)||Aq)←⊣0] + d)
(21)

Besides, since var(q0) ⊆ var(q), (p, v)Rvar(q)(p
′, v′) implies

(p, v)Rvar(q0)(p
′, v′) (22)

and moreover
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(v[κ(ck(p)||Aq)←⊣0] + d)↾var(q0) = (v′[κ(ck(p′)||Aq)←⊣0] + d)↾var(q0). (23)

Furthermore, because of (19) and the fact that ncv(ck(p)||Aq) and ncv(ck(p′)||Aq),

(v[κ(ck(p)||Aq)←⊣0] + d)↾var(p) = (v[κ(p)←⊣0] + d′ + d)↾var(p)

and (v′[κ(ck(p′)||Aq)←⊣0] + d)↾var(p′) = (v[κ(p′)←⊣0] + d′+ d)↾var(p′). (24)

Finally, because of (22), (23) (24), (20) and (21),

(ck(ck(p))||Aq0, v[κ(ck(p)||Aq)←⊣0] + d) ↔ S1 ↔

(ck(ck(p′))||Aq0, v
′[κ(ck(p′)||Aq)←⊣0] + d).

• (ck(p)||Aq, v)
a(d)
−→(p0||Aq0, v[κ(ck(p)||Aq)←⊣0] + d).

By Definition 2.4,

ck(p)||Aq
a,φ∧φ′′

✲ p0||Aq0 and |= (v[κ(ck(p)||Aq)←⊣0]+d)((φ∧φ
′′)∧∂(ck(p)||Aq)).

By rules in Table 8, a ∈ A and

p
a,φ
✲ p0, q

a,φ′′
✲ q0, κ(ck(p)||Aq) = κ(q) and ∂(ck(p)||Aq) = ∂(p) ∧ ∂(q).

By definition of S1, there exists v, v′ and d′ such that

v↾var(p) = (v[κ(p)←⊣0] + d′)↾var(p),

v′↾var(p′) = (v′[κ(p′)←⊣0] + d′)↾var(p′) and (p, v)Rvar(q)(p
′, v′). (25)

Hence, since ncv(ck(p)||Aq),

|= (v[κ(p)←⊣0] + d′ + d)(φ ∧ ∂(p)).

Thus, by Definition 2.4

(p, v)
a(d)
−→(p0, v[κ(p)←⊣0] + d′ + d).

which implies,

(p′, v′)
a(d)
−→(p′0, v

′[κ(p′)←⊣0] + d′ + d)

and (p0, v[κ(p)←⊣0] + d′ + d)Rvar(q)(p
′
0, v
′[κ(p′)←⊣0] + d′ + d).

By Definition 2.4,

p′
a,φ′
✲ p′0 and |= (v′[κ(p′)←⊣0] + d′ + d)(φ′ ∧ ∂(p′)).

and by rules in Table 8,
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ck(p′)||Aq
a,φ′
✲ p′0||Aq0, κ(ck(p′)||Aq) = κ(q) and ∂(ck(p′)||Aq) = ∂(p′) ∧ ∂(q).

Moreover, since ncv(ck(p′)||Aq) and (25),

|= (v′[κ(ck(p′)||Aq)←⊣0] + d)((φ′ ∧ φ′′) ∧ ∂(ck(p′)||Aq)).

So, by Definition 2.4,

(ck(p′)||Aq, v
′)
a(d)
−→(p′0||Aq0, v

′[κ(ck(p′)||Aq)←⊣0] + d).

Moreover, since var(q0) ⊆ var(q), Rvar(q) ⊆ Rvar(q0). Then

(p0, v[κ(p)←⊣0] + d)Rvar(q0)(p
′
0, v
′[κ(p′)←⊣0] + d) (26)

By definition of S1, v↾var(q) = v′↾var(q), and since var(q0) ⊆ var(q),

(v[κ(ck(p)||Aq)←⊣0] + d)↾var(q0) = (v′[κ(ck(p′)||Aq)←⊣0] + d)↾var(q0). (27)

Furthermore, because of (25), and since ncv(ck(p′)||Aq), var(p0) ⊆ var(p) and
var(p′0) ⊆ var(p′)

(v[κ(p||Aq)←⊣0] + d)↾var(p0) = (v[κ(p)←⊣0] + d′ + d)↾var(p0)

and (v[κ(p′||Aq)←⊣0] + d)↾var(p′0) = (v[κ(p′)←⊣0] + d′+ d)↾var(p′0) (28)

Finally, because of (26), (26) and (28)

(p0||Aq0, v[κ(ck(p)||Aq)←⊣0] + d)S1(p
′
0||Aq0, v

′[κ(ck(p′)||Aq)←⊣0] + d).

2. This transfer property is symmetric to the first one.

3. We omit this proof. It follows similar reasoning to the firs one. ✷
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