
Delayed choice for process algebra with
abstraction

P. R. D'Argenio 1 and S. Mauw 2

1 Depto. de Informs Fac. de Cs. Exactas, Universidad Nacional de La Plata. CC
11 (1900) La Plata. Buenos Aires. Argentina.

pedro@inf o .unlp. edu. ar
Dept. of Mathematics and Computing Science, Eindhoven University of

Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
s j ouke@win, tue. nl

A b s t r a c t . The delayed choice is an operator which serves to combine
linear time and branching time within one process algebra. We study
this operator in a theory with abstraction, more precisely, in a setting
considering branching bisimulation. We show its use in scenario specifi-
cations and in verification to reduce irrelevant branching structure of a
process.

1 I n t r o d u c t i o n

The delayed choice is an operator tha t allows one to express linear t ime aspects
in a branching t ime process algebra. I t was introduced in [3] for a basic process
algebra without abstraction. The intuition behind this operator for alternative
composit ion is the following. I f two processes start with a common initial ac-
tion, then the delayed choice between these alternatives consists of executing
this common action before making the choice between the resulting processes.
This proper ty is best displayed in the following equation. The delayed choice is
denoted by =]: (for Trace-+) and the normal non-deterministic choice by +.

ab T ac = a(b + c)

I f the two alternatives have no initial action in common, the delayed choice and
the non-deterministic choice coincide (a r e):

ab ~ cd = ab + cd

In [3] soundness and completeness of the definition was proven and an application
in the realm of Message Sequence Char ts was given.

In this paper we study the delayed choice operator in a process algebra theory
extended with abstraction. In this setting, the delayed choice operator should
also remove non-determinism due to internal steps. This property can be ex-
pressed as follows:

r a =}: b = v(a + b)

The behaviour of the delayed choice operator with respect to internal steps
compares well to the behaviour of the deterministic choice operator [] f rom

502

TCSP [8]. This operator was studied in a branching t ime setting in [9], where it
was called v-angelic choice.

The main purpose of this paper is to show that the definition of the delayed
choice operator can be combined with the definition of the v-angelic choice op-
erator in order to obtain a delayed choice operator for process algebra with
abstraction.

We use branching bisimulation [11] as the semantics for the silent step. We
consider divergence free processes only. The case of weak bisimulation is treated
in [10].

Applications of this new operator can be found in the areas of specification
and verification. Using the delayed choice it is possible to make so-called sce-
nario specifications. A scenario specification consists of a collection of possible
behaviours of a system. If two scenarios share an initial action, it is in general
not the intention to specify a non-deterministic choice between these scenarios.
For example, a possible scenario for a vending machine could be the insertion of
a coin followed by choosing coffee and another scenario could be the insertion of
a coin followed by choosing tea. The intention is not to express that the choice
between coffee and tea is made by inserting the coin, which is the interpretation
when combining these scenarios with a non-deterministic choice. Rather it is to
express that the selection is made after paying. This can be expressed with the
delayed choice.

The second application of the delayed choice operator is in verification. A
verification in process algebra in most cases consists of a proof that an abstrac-
tion of some implementation specification is equivalent to a given requirements
specification. Often the structure of such a requirements specification is quite
complex due to the presence of an excess of internal choices, some of which may
not be relevant for the insight that the implementation is correct. These less
interesting choices between internal actions can be filtered out using the delayed
choice, without adopting linear time semantics for the complete system. We give
an example in Sect. 4.

This paper is structured as follows. In Sect. 2 we introduce the basic theory
BPA6~ and extend it with the silent step v. We consider strong bisimulation and
branching bisimulation as semantics. Next, we define the delayed choice operator
and give an operational semantics in Sect. 3. We prove soundness, completeness
and several other properties. Finally, we give some examples in Sect. 4.

We thank :los Baeten and Michel Reniers for their valuable comments on
drafts of this paper and Rob van Glabbeek for answering some technical ques-
tions. Jan :loris Vereijken was very helpful in doing calculations on the examples.

2 B a s i c P r o c e s s A l g e b r a w i t h E m p t y P r o c e s s

The aim of this section is to introduce the algebra of sequential processes [5]. We
deal with the basic process algebra with empty process for concrete processes
(BPA6~) [6, 15] and with abstraction in the framework of branching bisimulation
(BPA~,) [11].

503

2.1 T h e E q u a t i o n a l T h e o r i e s

The signature of the several theories is parameterized by a set of constants
A = {a, b , . . .} called atomic actions. There are three distinguished constants not
belonging to A. They are 5, called deadlock or inaction, that denotes the process
that has stopped executing actions and cannot proceed; ~, the empty process,
tha t denotes the process that does nothing but terminate successfully; and r ,
the silent action, that is a special action having the meaning of internal activity.
Besides, the signature has two binary operators: the alternative composition
(+) which, in x + y, executes process x or y, but not both; and the sequential
composition (.) that , given x �9 y, first executes x and, upon completion, starts
with the execution of y. We generally omit this operator writing z y instead of
x . y . Besides, we assume that �9 binds stronger than all the other operators we will
deal with, and + binds weaker. Notice that the signature of BPA6~ also includes
the silent action r . It is dealt with as any other action in BPA6~. Equations
A1-A9 from Table 1 define BPA~e. Adding axiom BE, we obtain B P A ~ .

T a b l e 1. Axioms for BPA6, and BPA~t.

A1 x + y = y + x
A2 (x + y) + z = x + (y + z)
A3 x + x = x
A4 (x + y)z = x z + yz
A5 (~y)z = ~(vz)

BE a (r (x + y) + x) = a(x + y)

A 6 x + 5 = x
A7 5x = 5

A 8 x r = X

A9 ~x = z

2.2 Structured Operational Semantics and Equivalences

Table 2 defines the operational semantics in a structured way following the style
of [17]. In our system we consider two kinds of predicates, each one having its
own meaning. Predicate ~ expresses that a process may terminate successfully.
For every action a E A U {r}, predicate ~ expresses that the first argument
can perform action a and become the second argument. In addition, we define

as the reflexive transitive closure of r ~.

T a b l e 2. Operational semantics for the basic operators (a E A O {r})

z l ~1 y l
x+yl y+xl z.yl

x ~-'~x ' �9 a , x ' xs y a , y ' a

x + y a*xl y + x a~xl x ' y a~xl 'y x ' y a~y I

504

In this paper we will deal with divergence free processes only. This means
that a process cannot perform an infinite sequence of r-steps.

Let 7" be the set of all closed terms in the signature of BPA6e. Next, we
define two well known equivalences over 7-.

D e f i n i t i o n 1 (Bisimulation). [16] A (strong) bisimnlation is a symmetric re-
lation S C_ 7" • 7- satisfying, for all a E A U {r}:

i f pSqandp a > f , t h e n 3 q ~ET" : q a ,q , a n d f S q , ; a n d
if pSq then p I iff q 1.

Two processes p and q are bisimilar (notation p~___q), if there exists a bisimulation
S with pSq.

D e f i n i t i o n 2 (B r a n c h i n g b i s i m u l a t i o n) . [11] A branching bisimulation is a
symmetric relation S _C T • T satisfying, for all a E A U {r}:

a f a = r and p'Sq, or
i fpSqandp ~p',then ~ Bq,,q, ET. : q ~ q , , a ql and pSq, Ap, Sq,;and

ifpSq and p 1, then 3q' E 7" : q ~ q ' I and pSq'.

Two processes p and q are branching bisimilar (notation P~"*bq), if there exists
a branching bisimulation S with pSq.

Two processes p and q are rooted branching bisimilar, (notation P~-~--rbq) if
for all a E A U {r}:

1. p a ~pl implies 3q I
2. q a ql implies 3p I
3. p l iffq 1.

: q-.-~q~ and pl~_~_bql;
: p-'-~p' and P'~-.~-bq';

The relations above are ordered by set inclusion: ___~ C *'*rb C -~b. We have:

Theorem3 (The term models).

1. T/~-~ is a model for BPA6c �9 BPA6c is a complete axiomatization for T/~-,.
~" ~'/~'-~rb is a model for BPA~e. BPA~e is a complete aziomatization for ~l'l~ rb.

3 T h e D e l a y e d C h o i c e

3.1 E q u a t i o n a l T h e o r y

The delayed choice considered here is an extension of the operator introduced
in [3]. The difference is that we also consider abstraction. The delayed choice
(~:) between processes x and y, is the process obtained by joining the observable
common initial parts of x and y and continuing with a normal choice between
the remaining parts. In case internal activity is performed, the choice is delayed
in the same way the v-angelic choice [9] does. Thus, after executing an internal
step of x the alternatives from y are still enabled, and vice versa. However, the

505

nondeterministic choices which are internal to x or y, are not removed. This is
expressed in the definition of the delayed choice in Table 3.

The definition of the delayed choice has five cases. We use three auxiliary
operators. The first one is the join operator (Ixl). x Ixl y selects exactly those
summands of x and y having a common initial action which is observable (i.e.
different from r) . The unless operator (,~) works exactly in the opposite way. In
x ,~ y, only those summands of x having an initial observable action are selected
for which y does not have any summand with the same initial action or with
an initial silent action. Note that summands of x having an initial silent step
are not selected. The r-selecting operator ([") delays the choice in case of silent
actions, i.e., x E y selects the summands of x having an initial silent action.

Thus, the axioms in Table 3 extend BPA6e and BPA~e with the delayed choice
and the auxiliary operators. We denote these extensions by BPA6t + DC and
BPA~ + DC.

T a b l e 3. Axioms for delayed choice (a, b E A)

DC x T y - - - - x l X l y + z ~ y + y , ~ x + x t - y + y r x

J1 r U1 r162 = r
J2 x M e = & U2 r 1 6 2
J3 6 ~ x = & U3 a x , ~ e = a x
J4 xM&=& U4 &~x=&
J5 a x ~ a y : a (x : : F y) U5 e ~ & : e
J6 a e b :=~ ax l~ by = 5 U6 ax ,~& -- ax
J7 (x . 4 - y) ~ z = x l ~ l z - . b y M z U7 ax,~ay=&
J8 x ~ l (y . 4 - z) - - z M y 4 - x M z U8 a ~ s

U9 (x + y) , ~ z = x , ~ z + y , ~ z
U10 x ,~ (y+ z) = (x , ~ y) , a z

TJ1 r z ~ y = & TS1 e C x = &
TJ2 x t ~ r y = & TS2 6 C X = &

TS3 a x c y = &
TU1 r x , ~ y = & TS4 r x t - y = r (x T y)
TU2 x . ~ r y = & TS5 (x-4-y) t- z = x t " z + y E z

Operators M, ~ and E are needed for a finite axiomatization. The unless
operator ,~ is quite similar to the one used in the axiomatization of the priority
operator [2], but our version filters according to equality instead of an ordering
on observable actions. The r-selecting operator E works in a similar way as the
left box of [9] when dealing with summands starting with r , but instead, our
operator does not select summands having an initially observable action.

506

Example 1. We give some simple examples in order to make clear the behaviour
of the delayed choice. Suppose a, b, c, d, e and f are distinct actions in A, then:

BPA6t + DC
BPA~ + DC
BPA~, + DC
BPA6~ + DC
BPA6, + DC
BPA6~ + DC
BPA~e + DC

I- ab ~: a(c + d) = a(b + c + d)
I- (ab + rac) + de = ab + v(ac + de)
t- (ab + ac) :t: a(b "-I- c) = a(b + c)
l- (ab + vac) ~ a(d + e) = a(b + d + e) + 7"a(c + d + e)
I- (ab + ac) + (ad + v f) = a(b + d) + a(c + d) + v(ab + ac -t- f)
t- (ab + ac) :t: a(v(b + c) + b) = a(v(b + c) + b)
~- (ab + ac) + a(~'(b + c) + b) = a(b + c)

3.2 S t r u c t u r e d O p e r a t i o n a l S e m a n t i c s

The rules in Table 4 define the operational semantics for the delayed choice.
In some rules, we make use of negative premises (see [18]). Expression y a/.,.
means that process y cannot execute action a. Moreover, our system is in pan~h
formal [18], which introduces several good properties that are useful in proving
completeness of equational theories.

Our choice was to formulate the equational theory and afterwards state the
operational rules which we will prove sound and complete. However, as the rule
system can be simply translated into one in GSOS format [7] by changing the

predicate I into the action relation ~/, as done in [12], we could follow the al-
gorithm proposed by [1] in order to help us on finding a complete axiomatization
starting from the rules.

T a b l e 4. Operational semantics for delayed choice (a, b E A)

a X , a a ggt x , u ,u' x , u ? , u ' / ,

a a a a X! a X ! x q: y ~ x' T f f x t~ y ~ x' :q: f f x q: y , x ' y q: x ~ x 4 y

X ----.-4 ~

x : q : y l y q : x l x ' ~ Y l x ~ y ~ ' , x ' q : y y q : x r ~ y ~ x ' x r ' y r , x , q : y

3.3 S o u n d n e s s a n d C o m p l e t e n e s s

In this section we prove soundness and completeness of the term models. In order
to do that, we use term rewrite techniques. Axioms A3-A9 in Table 1 and all
axioms in Table 3 can be observed as rewrite rules, if they are oriented from left
to right, i.e. for each axiom s = t we consider the rule s --~ t . Nevertheless, this

507

term rewriting system is not confluent, that is, a term may have two different
normal forms. This is due to the fact that e.g. axiom A9 is sometimes needed
in the opposite direction. So, we complete the term rewriting system by adding
the rewrite rules in Table 5. Note that each new rewrite rule is derivable from
the axioms for the delayed choice. Let TRS be the new term rewriting system.

Tab le 5. Additional rewrite rules (a r b)

AR1 a M a --* a

AR2 a Max -~ a(e ~= x)
AR3 a x M a ~ a (x =]= e)

AR4 a M b ---* 5

AR5 a M b x --*

AR6 a x M b --*

AR7 r M x -~ ~f

AR8 x M r -*

AR9 a r a --*
AR10 a ~ a x -* ~f
AR11 ax ,~a -*

AR12 a,~ b --* a
AR13 a,~bz --* a

AR15 e,~a --*
AR16 a,~e --~ a
AR17 a , ~ --* a
AR18 r ,~x --*
AR19 x ,~ r --* ~f
AR20 aE x --~ ~i

AR14 a x ~ b --~ ax AR21 v e x --* v (e :Fx)

T h e o r e m 4 . TRS is s trongly normal i z ing .

Proof . This can be proved by applying the method of the lexicographical path
ordering [13, 14]. The details can be found in [10]. []

D e f i n i t i o n 5 (Bas ic T e r m s) . Let B be the class of basic t e r m s over the theory
BPA~t + DC (or BPA~ + DC), defined as the smallest class satisfying:

1. r , e , 6 E B , A C B

2. a E A , t E B ~ a . t E B

3. t 6 B ~ v . t 6 B

4. s, t 6 B = ~ s + t E B

The next theorem states that for every closed BPA6~ + DC term there exists
a basic term (not containing =]:, M, ,~ and E) such that they can be proved equal.
That is why it is called the e l im ina t ion theorem.

T h e o r e m 6 (E l i m i n a t i o n T h e o r e m in BPA6t + DC). Le t t be a closed t e r m

over BPA~r + DC. Then , there is a basic t e r m s such that BPA~ q- DC [- t --- s.

Proof . Because of Theorem 4, t has a normal form s. We prove that such an s
is a basic term. Firstly, take into account that it is well known that rules A3-A9
rewrite a closed BPA6~ -term into a basic one. Now, if s contains a :F then DC
can be applied and so s is not in normal form which contradicts our assumption.
If s contains M, ,~ or E , take a smallest sub-term containing one of them, say
sl M s2, now we can assume that both sub-terms sl and s2 are already basic

508

terms, so one of the rules J1-J8, T J 1 - T J 2 or AR1-AR8 can be applied. If this
sub-term is sl ,~ s2, one of the rules of U1-U10, TU1-TU2 or AR8-AR19 can
be applied. Finally, if this sub-term is sl E s2, then one of the rules TS1-TS5 or
AR20-AR21 can be applied. This concludes the proof. [3

C o r o l l a r y 7 (E l i m i n a t i o n T h e o r e m in BPA~c + DC). Let t be a closed term
over BPA~c + DC. Then, there is a basic term s such that BPA~e + DC ~- t = s.

Let T~ be the set of all closed BPA6c + DC terms. We can immediately
extend the notion of the several bisimulation equivalences to :T ~: . Now, we have
the following results.

Theorem 8 (Congruence) . __.~ and -.~-rb are congruences for the ~:, ~, ,~ and
r operators.

Proof.

(___.~) The set of operational rules for BPA6~ + DC satisfies the panth format of
[18] and it is also well founded. It remains to prove that it is stratifiable. As
in [3], define the function S that, to each step t - - ~ t ' and termination option
t ~, assigns the number of q: symbols plus the number of ~ symbols in t. It
is now easy to prove that S is a strict stratification.

For proving that ---~rb is a congruence, we need the following four properties.
Their proof is straightforward.

1. x =:=~z' A y==~ y~ if and only if z T y===~z' =t: Y'.
2. z r - y ~, for a l l a r
3. z t~ y---~.
4. z ,~ y - ~ .

Now, it is tedious but not difficult to prove the following.

(--~--~rb) Take any rooted branching bisimulation R between z and z ~. Let Id be
the identity relation. Then, the following relations are also rooted branching
bisimulations:
R1 = {(z e R} URUId R5 - {(z ,~y ,x ' ,~y)} UR
R2 = {(ym z,y : e R} U R U I d R6 - U Id
R3 = {(Z [~ y, Z' M y)} U R1 R7 -- {(x C y, x' [- y)} U R1
R 4 = { (y~4z , y t ~ z ') } U R ~ Rs = { (yE z, yE x ') } U R 2 [3

Notice that ~ is also a congruence for q:. However, this is not the case for
the other operators.

Theorem 9 (Soundness) .

1. :T~/__~ ~ BPA6e + DC
2. 7-~:I~__~ b ~ BPA~e + DC

509

Proof. As usual. For every axiom s = t having free variables in X, we define the
relation R = {(a(s), a(t)) la substitutes variables in X to closed terms} U Id. It
is not difficult to prove that R is a bisimulation or rooted branching bisimulation
according to the soundness property we are proving. []

T h e o r e m 10 (Equa t iona l Conservat ive Extens ion) .

1. BPA~c + DC is a conservative extension of BPA6,.
2. BPA~e + DC is a conservative extension of BPA~.

Proof. The operational conservativity follows since our rules are in panth for-
mat, and they are pure and well-founded (see [19]). This implies operational
conservativity up to ~ and up to ~-%b. Because the axiomatizations of BPA~e
and BPA~ are sound and complete (Theorem 3), and the axiomatizations of
BPA6~ + DC and BPA~c + DC are sound (Theorem 9), equational conservativ-
ity follows from [19, 4]. []

T h e o r e m 11 (Comple teness) .

1. BPA~c + DC is a complete axiomatization for T~: /~..~_.
2. BPA~e + DC,is a complete axiomatization for T~:/~-,rb.

Proof. Again, following [19, 4] and considering Theorem 6 and Corollary 7, this
theorem is a corollary of the previous one. []

3.4 P rope r t i e s

In this section, we prove several properties that hold for the new operators.
Mainly, we show that q: satisfies common properties of choice operators (commu-
tativity and associativity) and that ~ is the neutral element for q:. Nevertheless,
idempotency does not hold for ~=.

L e m m a 12. The following properties are derivable from BPA6c + DC

1. ax ~: ay = a(x :F y)
2. a r

Proof.
1. az q= ay = az t~ ay + az 4 ay + ay ,~ ax + az r- ay + ay r" ax

= a z M a y + 6 + 6 + b + ~ = a(z=Fy)
2. Let a r b. Then

ax q: by = ax t~ by+ ax ~ by+ by ,~ ax + ax r- by+ by E ax
= 6 + a x + b y + 6 + 6 = a x + b y

Remark. From now on, we will assume

X = E aizi + E vxj + E ~
i j k

Y = E b m y m + E r Y n + E $
r n n I

O

510

with i E I, j E J , k E K, m E M, n E N and 1 E L; I, J , K, M, N and L are
finite disjoint sets; and ai # r , bm # r. In particular, we consider ~--~th = ~, or,

hE~
by A6, we omit it.

The proof of the following lemma is by straightforward calculations.

L e m m a 13. Let X and Y be as before. Then

1. x ~ Y = ~ a~(=~Vm)
i , ra(a i = b m)

X '~ Y -- ~_, ai=i + ~ c
I I

I

KVm.a#b=^N---O) k(/V=O)

3. x E r = ~ ~(=~ ~: Y)
J

T h e o r e m 14 (N e u t r a l E l e m e n t) . Let = be a closed term. Then

Proof. We prove it by induction on the number of symbols of z, say k. The base
case (k = 1) is left to the reader. Assume X as in the previous remark. For the
inductive case we have:

DC
X ~ 6 =

J4, U4._, TS2

13

IH
i k j

i k i

The second part of the theorem goes analogously. []

D e f i n i t i o n l 5 (In i t i a l A c t i o n s) . Define the set of initiM action of a given
term z as follows:

1(6) = O ' I (az) = {a} I (z + y) = I(x) U I(y)
I(e) = 0 I (r x) = {r}

L e r n m a 16. Let x and y be any closed terms. Then

1. x(= M v) = (z(=) n I(v))\{~}
I (x) \ (I (y) 0 {r}) if r ~ I(y)

2. I(= ,~ y) = 0 otherwise

s I(= c v) = {~} n z(x)
I(=) O I(y) if 1- ~ I(=) 0 I(y)
I(=) if r E I(=) A r ~ I(y)

4. I (= ~ V) = I(y) i f r r A r 6 I (y)
z(=) n z(v) if ~- ~ z(=) n z(v)

511

Proof. It follows from Definition 15 and Lemma 13. El

L e m m a 17. Let x, y and z be any closed terms. Then:

e. ~ (u ~ z) = ~ (u + z) = (~ u) ~ z

Proof. Suppose r E I(y) = I(z) , then both y and z has a summand with r as
initial action. Hence

A1, A2, A3 x ,~y = x , ~ (y + vyj) U9 (x ,~y) ,~ryj TU2

Analogously, x 4 z = 6. Now, suppose r ~ I(y) = I(z) . Hence, we can write

Y = E bmym + E r and z -- E ChZh + E ~" Suppose X as before. Then
m l h]

,3 E E E E X "~ y = aixi + r = aixi + c = X ,~ z
i(Vrn.aiCbn,) k i(Vh.aiCet,) k

Part (2) follows from Lemma 16, part (4) and the definition of initial actions
taking into account whether r is an initial action of y and z or not. rq

T h e o r e m 18 (C o m m u t a t i v i t y) . For all closed terms x and y, we have:

1. x N y = y t ~ x
2. x = F y = y = F x

Proof. By mutual induction on the sum of symbols of x and y, we can prove (1);
(2) follows directly from (1) and DC. 0

T h e o r e m 19 (A s s o c l a t l v i t y) . For all closed terms x, y and z, we have:

1. (~Ny) C~=~N(yC z) = (~ c ~) M ~ = (~ y) c ~ = (~ C V) ~ = ~

s. �9 c (u :F ~) = (~ c u) c z = (~ c z) c u
4. ~N(UMz)=(~MU)N~
5. ~ (U ~ z) = (~ U) ~

Proof, Identities of (1) can be deduced from Lemma 13

For (2) consider Z and Y as before and Z = y]~ ehZh + ~ rz a + ~ r Now,
g ! h

we have:

(X t ~ Y) ' ~ Z 13(=1) (i,m(ai=b,,,)E a i (x lqZYm)) '~Z 13(2) E
i,rn(ai=b~
AVh.aiCeh

^a=~)

i(Vh.ai•ehAG=$) k =)

in(2)
M Y =

ai(xi =t= Ym)

(X ,~ Z) ~ Y

512

The other equation follows similarly.
Properties (3), (4) and (5) are proved by mutual induction on the sum k of

symbols of x, y and z. For details we refer to [10]. []

We have already stated that q: is commutative, associative and has 6 as
neutral element. However, the delayed choice presented here is not idempotent
and it does not satisfy the several laws of distributivity, just as the delayed choice
of [3] and the r-angelic choice [9]. We will not repeat the counter examples for
the following fact given in [3].

Fact 20 The following equations are n o t generally valid in the initial algebra:
X T X - - X

(= + y) z = + (y :v z)

(x ~ y)z = xz ~ yz
z(x =F y) = zz ~ zy

4 E x a m p l e s

In [3] the delayed choice operator was used for the composition of Message Se-
quence Charts. In this section, we will show two more examples of its application.

4.1 Scenar io specification

In communication protocols it is often the case that one can distinguish one
main scenario and several alternative behaviours. If, e.g., the main scenario is a
correct transmission, an alternative scenario could be the occurrence of a channel
error followed by a retransmission. If both scenarios start with the same initial
behaviour, the two alternative scenarios should not be combined with the normal
non-deterministic choice (+). By using the delayed choice instead, the moment
of choice is put at the point where the scenarios start to differ. In this case the
benefit of using the delayed choice is not that it gives a shorter specification, but
that it helps in designing and presenting the specification in a more modular
way.

Next, we will give an example in which the delayed choice allows for a con-
siderably shorter specification than without this operator. Consider an access
control consisting of a digital key pad and a (locked) door. A user can enter
any sequence of digits. The door may only be opened if the sequence ends in a
special four digit code (say, 2908). Let 0-9 denote detection of the indicated key
stroke and let grantaccess stand for offering the user the option to access, then
the following is a specification of the access control.

A C = (O + l + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9) . A C q: 2 . 9 . 0 . 8 . g r a n t a c c e s s . A C

Please notice that this process is executed in parallel with the user behaviour.
After selecting 2908, the user is not forced to take access. He can also enter
another digit and lose access permission for that moment.

513

4.2 Requirements reduction

A verification in process algebra in general consists of proving r1(S) = R, where
S is an implementation specification and R is a requirements specification. The
rl operator ([5]) is the abstraction operator, which renames actions from the set
I into r. It removes all internal actions, but keeps the internal branching struc-
ture. It often happens that one has a very simple requirements specification R
in mind, while after calculating ri(S) an expression with an excess of internal
choices remains. These internal choices probably represent implementation deci-
sions. Then, there are two obvious ways to proceed. The first is to simply forget
about R and consider ~'I(S) as the requirements specification, having to accept
a more implementation directed requirement. The second way is to discard the
branching structure and proceed in a linear time semantics, where rl(S) = R
holds. In this case we lose all information about the branching structure of the
requirements.

We propose to use the delayed choice operator. Let D be the operator which
replaces all occurrences of the non-deterministic choice by the delayed choice, as
defined in Table 6.

Table 6. The operator D for removing non-deterministic choices (a E A U {r})

DE1 D(e) - e
DE2 D(~) =
DE3 D(x + y) = D(x) ~: D(y)
DE4 D(ay) = a . D(y)

Now, a mixed linear time/branching time verification consists of proving

rl, oDor,2(S) = R

The set 12 contains all atomic actions which induce only irrelevant choices, while
the choices between actions from/1 should remain after abstraction.

We will illustrate this with parts of the verification of a leader election proto-
col. We call this protocol the Paint Ball protocol, because it is a formalization of
the popular Paint Ball game, in which people fight each other by shooting paint
balls.

Suppose that entities E~ (i E ID, I D is the set of identifications IIDI > 1)
have to elect a leader amongst themselves non-deterministically. Every entity
can communicate synchronously with every other entity. Initially all entities are
equal. We have the following quite simple requirements specification.

R - r . ~ r . leader(i)
iEID

514

where leader(i) denotes that entity i has become leader. Notice that we prepend
a silent step r to represent some initial internal activity.

The Paint Ball protocol is specified as the parallel composition (ll, [5]) of all
entities. The encapsulation operator OH is applied to enforce successful commu-
nications only. It renames all atoms from the set H into 6.

S = OH ([[iEID E / D - { 0)

Each entity E v is indexed with a set V. This set contains all other entities that
have not yet been defeated by i. If this set is empty, it means that i has defeated
all other participants and that i will become the leader (Li). If the set is not
empty, a choice is made between shooting a paint ball at one of the remaining
participants (slj), or receiving a paint ball (r j i) and entering the failed state (Fi).
If all but one of the entities have yielded, the leader informs all failed entities
that the elections are finished (sreadyij) and finally executes action leader(i).

EO i = Li

Li (llSet/~-{i} sreadyij) . leader(i)
Fi = E j E I D - { i } (rsi " Fi + rreadysi)

We have the obvious communication function (rlj Isis = cij, rreadylj Isreadyis =
creadyij) and encapsulation set H = {ris,rreadyij,sis, sreadyi,jli, j E ID}.
Now let I = {cis, creadyij li, j e ID} and consider vr(S). After several calcula-
tions we obtain a reduced specification such that r . r I (S) = p ip .

pV = r . ~'~iev r . pV-{i} (IV[> 1)
p{ i } = r . leader(i)

The specification of P shows that during the execution of the protocol some
internal choices are made, which denote that some entity i is removed from the
list of candidates. This continues until one candidate remains. According to our
requirements specification we are not interested in these implementation details.
Using our proposed strategy we calculate (for I9. = {cisli, j E ID})

D o 7"I~(S) ~- 7". E ((IIsEID-{i} ereadyis), leader(i))
iEID

And if we set Ix = {ereadyis li, j ~ 1D} then we get the desired equality.

7"zl o D o 7-t~(S)=7". E 7".leader(i)= R
iEID

5 Conc lus ion

We have defined the delayed choice operator in process algebra with abstraction.
Using this operator we can express linear time specifications in a branching
time setting. We have shown two applications of this operator, namely scenario
specification and requirements reduction. A sound and complete axiomatization
with respect to branching bisimulation was obtained.

515

References

1. L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111(1):1-52, 1994.

2. J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for
an interrupt mechanism in process algebra. Fund. Inf., IX(2):127-168, 1986.

3. J.C.M. Baeten and S. Mauw. Delayed choice: an operator for joining Message Se-
quence Charts. In D. Hogrefe and S. Leue, editors, Formal Description Techniques,
VII, pages 340-354. Chapman & Hall, 1995.

4. J.C.M. Baeten and C. Verhoef. Concrete process algebra, pages 149-268. Hand-
book of logic in computer science (Vol 4, Semantic modelling), eds. S. Abramsky,
Dov. M. Gabbay and T.S.E. Maibaum. Clarendon press, Oxford, 1995.

5. J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theo-
retical Computer Science 18. Cambridge University Press, 1990.

6. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information ~ Control, 60:109-137, 1984.

7. B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced: preliminary
report. In Proc. 15th ACM symposium on Principles of Programming Languages,
pages 229-239. San Diego, California, 1988.

8. S.D. Brookes, C.A.R. ttoare, and A.W. Roscoe. A theory of communicating se-
quential processes. Journal of the ACM, 31(3):560-599, 1984.

9. P. D'Argenio. r-angelic choice for process algebra. Technical report, LIFIA, Dpto.
de Inform~.tica, Fac. Cs. Exactas, UNLP, 1994.

10. P. D'Argenio and S. Manw. Delayed choice for process algebra with abstraction.
Report, Department of Computer Science, Eindhoven University of Technology,
1995. To appear.

11. R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimu-
lation semantics (extended abstract). In G.X. Ritter, editor, Information Process-
ing 89, pages 613-618. North-Holland, 1989.

12. J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimu-
lation as a congruence. Information and Computation, 100:202-260, 1992.

13. S. Kamin and J.-J. Lfivy. Two generalizations of the recursive path ordering. Un-
published manuscript, 1980.

14. J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and
T. Maibanm, editors, Handbook of Logic in Computer science, volume II, pages
1-116. Oxford University Press, 1992.

15. C.P.J. Koymans and J.L.M. Vrancken. Extending process algebra with the empty
process. Report LGPS 1, Dept. of Philosophy, University of Utrecht, 1985.

16. D.M.R. Park. Concurrency and automata on infinite sequence. In P. Deussen,
editor, Proc. 5th. GI Conference, pages 167-183. LNCS 104, Springer-Verlag, 1981.

17. G.D. Plotkin. A structural approach to operational semantics. Report DAIMI-
FN-19, Computer Science Department, University of Arhus, 1981.

18. C. Verhoef. A congruence theorem for structured operational semantics with predi-
cates and negative premises. In B. Jonsson and J. Parrow, editors, Proc. CONCUR
'94, pages 433-448. Uppsala, Springer Verlag, 1994. LNCS 836.

19. C. Verhoef. A general conservative extension theorem in process algebra. In E.-R.
Olderog, editor, Proc. PROCOMET'94, IFIP ~ Working Conference, pages 149-
168. San Miniato, North-Holland, 1994.

