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A b s t r a c t .  The delayed choice is an operator which serves to combine 
linear time and branching time within one process algebra. We study 
this operator in a theory with abstraction, more precisely, in a setting 
considering branching bisimulation. We show its use in scenario specifi- 
cations and in verification to reduce irrelevant branching structure of a 
process. 

1 I n t r o d u c t i o n  

The delayed choice is an operator  tha t  allows one to express linear t ime aspects 
in a branching t ime process algebra. I t  was introduced in [3] for a basic process 
algebra without  abstraction. The intuition behind this operator  for alternative 
composit ion is the following. I f  two processes start  with a common initial ac- 
tion, then the delayed choice between these alternatives consists of executing 
this common action before making the choice between the resulting processes. 
This proper ty  is best displayed in the following equation. The delayed choice is 
denoted by =]: (for Trace-+)  and the normal  non-deterministic choice by +.  

ab T ac = a(b + c) 

I f  the two alternatives have no initial action in common,  the delayed choice and 
the non-deterministic choice coincide (a r e): 

ab ~ cd = ab + cd 

In [3] soundness and completeness of the definition was proven and an application 
in the realm of Message Sequence Char ts  was given. 

In this paper  we study the delayed choice operator in a process algebra theory 
extended with abstraction. In this setting, the delayed choice operator  should 
also remove non-determinism due to internal steps. This property can be ex- 
pressed as follows: 

r a  =}: b = v(a + b) 

The  behaviour of the delayed choice operator  with respect to internal steps 
compares well to the behaviour of the deterministic choice operator  [] f rom 
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TCSP [8]. This operator was studied in a branching t ime setting in [9], where it 
was called v-angelic choice. 

The main purpose of this paper is to show that  the definition of the delayed 
choice operator can be combined with the definition of the v-angelic choice op- 
erator in order to obtain a delayed choice operator for process algebra with 
abstraction. 

We use branching bisimulation [11] as the semantics for the silent step. We 
consider divergence free processes only. The case of weak bisimulation is treated 
in [10]. 

Applications of this new operator can be found in the areas of specification 
and verification. Using the delayed choice it is possible to make so-called sce- 
nario specifications. A scenario specification consists of a collection of possible 
behaviours of a system. If two scenarios share an initial action, it is in general 
not the intention to specify a non-deterministic choice between these scenarios. 
For example, a possible scenario for a vending machine could be the insertion of 
a coin followed by choosing coffee and another scenario could be the insertion of 
a coin followed by choosing tea. The intention is not to express that  the choice 
between coffee and tea is made by inserting the coin, which is the interpretation 
when combining these scenarios with a non-deterministic choice. Rather it is to 
express that the selection is made after paying. This can be expressed with the 
delayed choice. 

The second application of the delayed choice operator is in verification. A 
verification in process algebra in most cases consists of a proof that  an abstrac- 
tion of some implementation specification is equivalent to a given requirements 
specification. Often the structure of such a requirements specification is quite 
complex due to the presence of an excess of internal choices, some of which may 
not be relevant for the insight that  the implementation is correct. These less 
interesting choices between internal actions can be filtered out using the delayed 
choice, without adopting linear time semantics for the complete system. We give 
an example in Sect. 4. 

This paper is structured as follows. In Sect. 2 we introduce the basic theory 
BPA6~ and extend it with the silent step v. We consider strong bisimulation and 
branching bisimulation as semantics. Next, we define the delayed choice operator 
and give an operational semantics in Sect. 3. We prove soundness, completeness 
and several other properties. Finally, we give some examples in Sect. 4. 

We thank :los Baeten and Michel Reniers for their valuable comments on 
drafts of this paper and Rob van Glabbeek for answering some technical ques- 
tions. Jan :loris Vereijken was very helpful in doing calculations on the examples. 

2 B a s i c  P r o c e s s  A l g e b r a  w i t h  E m p t y  P r o c e s s  

The aim of this section is to introduce the algebra of sequential processes [5]. We 
deal with the basic process algebra with empty process for concrete processes 
(BPA6~) [6, 15] and with abstraction in the framework of branching bisimulation 
(BPA~,)  [11]. 
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2.1 T h e  E q u a t i o n a l  T h e o r i e s  

The signature of the several theories is parameterized by a set of constants 
A = {a, b , . . .}  called atomic actions. There are three distinguished constants not 
belonging to A. They are 5, called deadlock or inaction, that  denotes the process 
that  has stopped executing actions and cannot proceed; ~, the empty process, 
tha t  denotes the process that  does nothing but  terminate successfully; and r ,  
the silent action, that  is a special action having the meaning of internal activity. 
Besides, the signature has two binary operators: the alternative composition 
(+) which, in x + y, executes process x or y, but  not both; and the sequential 
composition (.) that ,  given x �9 y, first executes x and, upon completion, starts 
with the execution of y. We generally omit this operator writing z y  instead of 
x . y .  Besides, we assume that  �9 binds stronger than all the other operators we will 
deal with, and + binds weaker. Notice that  the signature of BPA6~ also includes 
the silent action r .  It  is dealt with as any other action in BPA6~. Equations 
A1-A9 from Table 1 define BPA~e. Adding axiom BE, we obtain B P A ~ .  

T a b l e  1. Axioms for BPA6, and BPA~t. 

A1 x + y = y + x  
A2 ( x + y ) + z = x + ( y + z )  
A3 x + x = x  
A4 (x + y)z  = x z  + yz 
A5 (~y)z = ~(vz) 

BE a ( r (x  + y) + x) = a(x + y) 

A 6 x + 5 = x  
A7 5x = 5 

A 8  x r  = X 

A9 ~x = z 

2.2 Structured Operational Semantics and Equivalences 

Table 2 defines the operational semantics in a structured way following the style 
of [17]. In our system we consider two kinds of predicates, each one having its 
own meaning. Predicate ~ expresses that  a process may terminate successfully. 
For every action a E A U {r}, predicate ~ expresses that  the first argument 
can perform action a and become the second argument. In addition, we define 

as the reflexive transitive closure of r ~. 

T a b l e  2. Operational semantics for the basic operators (a E A O {r}) 

z l  ~1 y l  
x+yl y+xl z.yl 

x ~-'~x ' �9 a , x '  xs y a , y '  a 

x + y  a*xl y + x  a~xl x ' y  a~xl 'y  x ' y  a~y I 
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In this paper we will deal with divergence free processes only. This means 
that  a process cannot perform an infinite sequence of r-steps. 

Let 7" be the set of all closed terms in the signature of BPA6e. Next, we 
define two well known equivalences over 7-. 

D e f i n i t i o n  1 (Bisimulation).  [16] A (strong) bisimnlation is a symmetric re- 
lation S C_ 7" • 7- satisfying, for all a E A U {r}: 

i f pSqandp  a > f ,  t h e n 3 q  ~ET" :  q a ,q ,  a n d f S q , ; a n d  
if pSq then p I iff q 1. 

Two processes p and q are bisimilar (notation p~___q), if there exists a bisimulation 
S with pSq. 

D e f i n i t i o n 2  ( B r a n c h i n g  b i s i m u l a t i o n ) .  [11] A branching bisimulation is a 
symmetric relation S _C T • T satisfying, for all a E A U {r}: 

a f a = r and p'Sq, or 
i fpSqandp ~p',then ~ Bq,,q, ET. : q ~ q , ,  a ql and pSq, Ap, Sq,;and 

ifpSq and p 1, then 3q' E 7" : q ~ q '  I and pSq'. 

Two processes p and q are branching bisimilar (notation P~"*bq), if there exists 
a branching bisimulation S with pSq. 

Two processes p and q are rooted branching bisimilar, (notation P~-~--rbq) if 
for all a E A U {r}: 

1. p a ~pl implies 3q I 
2. q a ql implies 3p I 
3. p l  iffq 1. 

: q-.-~q~ and pl~_~_bql; 
: p-'-~p' and P'~-.~-bq'; 

The relations above are ordered by set inclusion: ___~ C *'*rb C -~b. We have: 

Theorem3 (The term models). 

1. T/~-~ is a model for BPA6c �9 BPA6c is a complete axiomatization for T/~-,. 
~" ~'/~'-~rb is a model for BPA~e. BPA~e is a complete aziomatization for ~l'l~ rb. 

3 T h e  D e l a y e d  C h o i c e  

3.1 E q u a t i o n a l  T h e o r y  

The delayed choice considered here is an extension of the operator introduced 
in [3]. The difference is that  we also consider abstraction. The delayed choice 
(~:) between processes x and y, is the process obtained by joining the observable 
common initial parts of x and y and continuing with a normal choice between 
the remaining parts. In case internal activity is performed, the choice is delayed 
in the same way the v-angelic choice [9] does. Thus, after executing an internal 
step of x the alternatives from y are still enabled, and vice versa. However, the 
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nondeterministic choices which are internal to x or y, are not removed. This is 
expressed in the definition of the delayed choice in Table 3. 

The definition of the delayed choice has five cases. We use three auxiliary 
operators. The first one is the join operator (Ixl). x Ixl y selects exactly those 
summands of x and y having a common initial action which is observable (i.e. 
different from r) .  The unless operator (,~) works exactly in the opposite way. In 
x ,~ y, only those summands of x having an initial observable action are selected 
for which y does not have any summand with the same initial action or with 
an initial silent action. Note that  summands of x having an initial silent step 
are not selected. The r-selecting operator ( [" ) delays the choice in case of silent 
actions, i.e., x E y selects the summands of x having an initial silent action. 

Thus, the axioms in Table 3 extend BPA6e and BPA~e with the delayed choice 
and the auxiliary operators. We denote these extensions by BPA6t + DC and 
BPA~ + DC. 

T a b l e  3. Axioms for delayed choice (a, b E A) 

DC x T y - - - - x l X l y + z ~ y + y , ~ x + x t - y + y r x  

J1 r  U1 r162 = r 
J2 x M e = &  U2 r 1 6 2  
J3 6 ~ x = &  U3 a x , ~ e = a x  
J4 xM&=& U4 &~x=& 
J5 a x ~ a y : a ( x : : F y )  U5 e ~ & : e  
J6 a e b :=~ ax l~ by = 5 U6 ax ,~& -- ax 
J7 ( x . 4 - y ) ~ z = x l ~ l z - . b y M z  U7 ax,~ay=& 
J8 x ~ l ( y . 4 - z ) - - z M y 4 - x M z  U8 a ~ s  

U9 ( x + y ) , ~ z = x , ~ z + y , ~ z  
U10 x ,~ (y+ z ) = ( x , ~ y ) , a z  

TJ1 r z ~ y = &  TS1 e C x = &  
TJ2 x t ~ r y = &  TS2 6 C X = &  

TS3 a x c y = &  
TU1 r x , ~ y = &  TS4 r x t - y = r ( x T y )  
TU2 x . ~ r y = &  TS5 (x-4-y) t- z = x t "  z + y E  z 

Operators M, ~ and E are needed for a finite axiomatization. The unless 
operator  ,~ is quite similar to the one used in the axiomatization of the priority 
operator  [2], but  our version filters according to equality instead of an ordering 
on observable actions. The r-selecting operator E works in a similar way as the 
left box of [9] when dealing with summands starting with r ,  but  instead, our 
operator does not select summands having an initially observable action. 
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Example 1. We give some simple examples in order to make clear the behaviour 
of the delayed choice. Suppose a, b, c, d, e and f are distinct actions in A, then: 

BPA6t + DC 
BPA~ + DC 
BPA~, + DC 
BPA6~ + DC 
BPA6, + DC 
BPA6~ + DC 
BPA~e + DC 

I- ab ~: a(c + d) = a(b + c + d) 
I- (ab + rac) + de = ab + v(ac + de) 
t- (ab + ac) :t: a(b "-I- c) = a(b + c) 
l- (ab + vac) ~ a(d + e) = a(b + d +  e) + 7"a(c + d +  e) 
I- (ab + ac) + (ad + v f )  = a(b + d) + a(c + d) + v(ab + ac -t- f )  
t- (ab + ac) :t: a(v(b + c) + b) = a(v(b + c) + b) 
~- (ab + ac) + a(~'(b + c) + b) = a(b + c) 

3.2 S t r u c t u r e d  O p e r a t i o n a l  S e m a n t i c s  

The rules in Table 4 define the operational semantics for the delayed choice. 
In some rules, we make use of negative premises (see [18]). Expression y a/.,. 
means that  process y cannot execute action a. Moreover, our system is in pan~h 
formal  [18], which introduces several good properties that  are useful in proving 
completeness of equational theories. 

Our choice was to formulate the equational theory and afterwards state the 
operational rules which we will prove sound and complete. However, as the rule 
system can be simply translated into one in GSOS format  [7] by changing the 

predicate I into the action relation ~/, as done in [12], we could follow the al- 
gorithm proposed by [1] in order to help us on finding a complete axiomatization 
starting from the rules. 

T a b l e  4. Operational semantics for delayed choice (a, b E A) 

a X ,  a a ggt x , u ,u' x , u ? ,  u ' / ,  

a a a a X!  a X !  x q: y ~ x'  T f f  x t~ y ~ x' :q: f f  x q: y , x '  y q: x ~ x 4 y 

X ----.-4 ~ 

x : q : y l  y q : x l  x ' ~ Y l  x ~ y  ~ ' , x ' q : y  y q : x  r ~ y ~ x '  x r ' y  r , x , q : y  

3.3 S o u n d n e s s  a n d  C o m p l e t e n e s s  

In this section we prove soundness and completeness of the term models. In order 
to do that,  we use term rewrite techniques. Axioms A3-A9 in Table 1 and all 
axioms in Table 3 can be observed as rewrite rules, if they are oriented from left 
to right, i.e. for each axiom s = t we consider the rule s --~ t . Nevertheless, this 
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term rewriting system is not confluent, that  is, a term may have two different 
normal forms. This is due to the fact that  e.g. axiom A9 is sometimes needed 
in the opposite direction. So, we complete the term rewriting system by adding 
the rewrite rules in Table 5. Note that each new rewrite rule is derivable from 
the axioms for the delayed choice. Let TRS be the new term rewriting system. 

Tab le  5. Additional rewrite rules (a r b) 

AR1 a M a  --* a 

AR2 a Max -~  a(e  ~= x )  
AR3 a x  M a ~ a ( x  =]= e) 

AR4 a M b  ---* 5 

AR5 a M b x  --* 

AR6 a x  M b --* 

AR7 r M x  -~ ~f 

AR8 x M r -*  

AR9 a r a --* 
AR10 a ~ a x  -*  ~f 
AR11 ax  ,~a -*  

AR12 a,~ b --* a 
AR13 a,~bz --* a 

AR15 e,~a --* 
AR16 a,~e --~ a 
AR17 a , ~  --* a 
AR18 r ,~x  --* 
AR19 x ,~ r --* ~f 
AR20 aE x --~ ~i 

AR14 a x ~ b  --~ ax  AR21 v e x  --* v (e :Fx )  

T h e o r e m 4 .  TRS is s trongly  normal i z ing .  

Proof .  This can be proved by applying the method of the lexicographical path 
ordering [13, 14]. The details can be found in [10]. [] 

D e f i n i t i o n 5  (Bas ic  T e r m s ) .  Let B be the class of basic t e r m s  over the theory 
BPA~t + DC (or BPA~ + DC ), defined as the smallest class satisfying: 

1. r , e , 6  E B , A  C B 

2. a E A ,  t E B ~ a . t E B  

3. t 6 B ~ v . t 6 B  

4. s, t 6 B = ~ s + t E B  

The next theorem states that for every closed BPA6~ + DC term there exists 
a basic term (not containing =]:, M, ,~ and E ) such that they can be proved equal. 
That  is why it is called the e l im ina t ion  theorem.  

T h e o r e m  6 ( E l i m i n a t i o n  T h e o r e m  in BPA6t + DC ).  Le t  t be a closed t e r m  

over  BPA~r + DC.  Then ,  there is a basic t e r m  s such that  BPA~ q- DC [- t --- s. 

Proof .  Because of Theorem 4, t has a normal form s. We prove that  such an s 
is a basic term. Firstly, take into account that it is well known that  rules A3-A9 
rewrite a closed BPA6~ -term into a basic one. Now, if s contains a :F then DC 
can be applied and so s is not in normal form which contradicts our assumption. 
If  s contains M, ,~ or E , take a smallest sub-term containing one of them, say 
sl M s2, now we can assume that  both sub-terms sl and s2 are already basic 
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terms, so one of the rules J1-J8,  T J 1 - T J 2  or AR1-AR8 can be applied. If this 
sub-term is sl ,~ s2, one of the rules of U1-U10, TU1-TU2  or AR8-AR19 can 
be applied. Finally, if this sub-term is sl E s2, then one of the rules TS1-TS5 or 
AR20-AR21 can be applied. This concludes the proof. [3 

C o r o l l a r y  7 ( E l i m i n a t i o n  T h e o r e m  in  BPA~c + DC ). Let t be a closed term 
over BPA~c + DC. Then, there is a basic term s such that BPA~e + DC ~- t = s. 

Let T~  be the set of all closed BPA6c + DC terms. We can immediately 
extend the notion of the several bisimulation equivalences to :T ~: . Now, we have 
the following results. 

Theorem 8 (Congruence) .  __.~ and -.~-rb are congruences for the ~:, ~,  ,~ and 
r operators. 

Proof. 

(___.~) The set of operational rules for BPA6~ + DC satisfies the panth format of 
[18] and it is also well founded. It remains to prove that  it is stratifiable. As 
in [3], define the function S that,  to each step t - - ~ t '  and termination option 
t ~, assigns the number of q: symbols plus the number of ~ symbols in t. It  
is now easy to prove that  S is a strict stratification. 

For proving that  ---~rb is a congruence, we need the following four properties. 
Their  proof is straightforward. 

1. x =:=~z' A y==~ y~ if and only if z T y===~z' =t: Y'. 
2. z r - y  ~, for a l l a r  
3. z t~ y---~. 
4. z ,~ y - ~ .  

Now, it is tedious but  not difficult to prove the following. 

(--~--~rb) Take any rooted branching bisimulation R between z and z ~. Let Id  be 
the identity relation. Then, the following relations are also rooted branching 
bisimulations: 
R1 = {(z e R} URUId R5 - {(z ,~y ,x ' ,~y)}  UR 
R2 = {(ym z,y : e R} U R U I d  R6 - U Id  
R3 = {(Z [~ y, Z' M y)} U R1 R7 -- {(x C y, x'  [- y)} U R1 
R 4 =  { ( y~4z ,  y t ~ z ' ) } U R ~  Rs = { (yE  z,  yE x ' ) } U R 2  [3 

Notice that  ~ is also a congruence for q:. However, this is not the case for 
the other operators. 

Theorem 9 (Soundness) .  

1. :T~/__~ ~ BPA6e + DC 
2. 7-~:I~__~ b ~ BPA~e + DC 



509 

Proof. As usual. For every axiom s = t having free variables in X, we define the 
relation R = {(a(s), a(t)) la substitutes variables in X to closed terms} U Id. It 
is not difficult to prove that R is a bisimulation or rooted branching bisimulation 
according to the soundness property we are proving. [] 

T h e o r e m  10 (Equa t iona l  Conservat ive  Extens ion) .  

1. BPA~c + DC is a conservative extension of BPA6,. 
2. BPA~e + DC is a conservative extension of BPA~. 

Proof. The operational conservativity follows since our rules are in panth for- 
mat, and they are pure and well-founded (see [19]). This implies operational 
conservativity up to ~ and up to ~-%b. Because the axiomatizations of BPA~e 
and BPA~ are sound and complete (Theorem 3), and the axiomatizations of 
BPA6~ + DC and BPA~c + DC are sound (Theorem 9), equational conservativ- 
ity follows from [19, 4]. [] 

T h e o r e m  11 (Comple teness) .  

1. BPA~c + DC is a complete axiomatization for T~: /~..~_. 
2. BPA~e + DC,is a complete axiomatization for T~:/~-,rb. 

Proof. Again, following [19, 4] and considering Theorem 6 and Corollary 7, this 
theorem is a corollary of the previous one. [] 

3.4 P rope r t i e s  

In this section, we prove several properties that hold for the new operators. 
Mainly, we show that q: satisfies common properties of choice operators (commu- 
tativity and associativity) and that ~ is the neutral element for q:. Nevertheless, 
idempotency does not hold for ~=. 

L e m m a  12. The following properties are derivable from BPA6c + DC 

1. ax ~: ay = a(x :F y) 
2. a r  

Proof. 
1. az q= ay = az  t~ ay + az 4 ay + ay ,~ ax + az r- ay + ay r" ax 

= a z M a y + 6 + 6 + b + ~  = a(z=Fy) 
2. Let a r b. Then 

ax q: by = ax t~ by+ ax ~ by+ by ,~ ax + ax r- by+ by E ax 
= 6 + a x + b y + 6 + 6  = a x + b y  

Remark. From now on, we will assume 

X = E aizi + E vxj + E ~ 
i j k 

Y = E b m y m  + E r Y n  + E $  
r n  n I 

O 
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with i E I, j E J ,  k E K,  m E M, n E N and 1 E L; I,  J ,  K,  M, N and L are 
finite disjoint sets; and ai # r ,  bm # r. In particular, we consider ~--~th = ~, or, 

hE~ 
by A6, we omit it. 

The proof of the following lemma is by straightforward calculations. 

L e m m a  13. Let X and Y be as before. Then 

1. x ~ Y =  ~ a~(=~Vm) 
i , ra(  a i = b m  ) 

X '~ Y -- ~_, ai=i + ~ c 
I I 

I 

KVm.a#b=^N---O) k(/V=O) 

3. x E r = ~ ~(=~ ~: Y) 
J 

T h e o r e m  14 ( N e u t r a l  E l e m e n t ) .  Let = be a closed term. Then 

Proof. We prove it by induction on the number of symbols of z, say k. The base 
case (k = 1) is left to the reader. Assume X as in the previous remark. For the 
inductive case we have: 

DC 
X ~ 6  = 

J4, U4._, TS2 

13 

IH 
i k j 

i k i 

The second part of the theorem goes analogously. [] 

D e f i n i t i o n l 5  ( In i t i a l  A c t i o n s ) .  Define the set of initiM action of a given 
term z as follows: 

1(6) = O ' I (az)  = {a} I ( z  + y) = I(x)  U I(y) 
I(e) = 0 I ( r x )  = {r} 

L e r n m a  16. Let x and y be any closed terms. Then 

1. x(= M v) = (z(=) n I(v))\{~} 
I ( x ) \ ( I ( y )  0 {r}) if r ~ I(y) 

2. I(= ,~ y) = 0 otherwise 

s I(= c v) = {~} n z(x) 
I(=) O I(y) if 1- ~ I(=) 0 I(y) 
I(=) if r E I(=) A r ~ I(y) 

4. I ( = ~ V )  = I(y)  i f r r  A r 6 I ( y )  
z(=) n z(v) if ~- ~ z(=) n z(v) 
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Proof. It follows from Definition 15 and Lemma 13. El 

L e m m a  17. Let x, y and z be any closed terms. Then: 

e. ~ ( u ~ z ) = ~ ( u + z ) = ( ~ u ) ~ z  

Proof. Suppose r E I(y) = I(z) ,  then both y and z has a summand with r as 
initial action. Hence 

A1, A2, A3 x ,~y  = x , ~ ( y +  vyj)  U9 (x ,~y) ,~ryj  TU2 

Analogously, x 4 z = 6. Now, suppose r ~ I(y) = I(z) .  Hence, we can write 

Y = E bmym + E r  and z -- E ChZh + E ~" Suppose X as before. Then 
m l h ] 

,3 E E E E X "~ y = aixi + r = aixi + c = X ,~ z 
i(Vrn.aiCbn, ) k i(Vh.aiCet, ) k 

Part  (2) follows from Lemma 16, part (4) and the definition of initial actions 
taking into account whether r is an initial action of y and z or not. rq 

T h e o r e m  18 ( C o m m u t a t i v i t y ) .  For all closed terms x and y, we have: 

1. x N y = y t ~ x  
2. x = F y = y = F x  

Proof. By mutual  induction on the sum of symbols of x and y, we can prove (1); 
(2) follows directly from (1) and DC. 0 

T h e o r e m  19 ( A s s o c l a t l v i t y ) .  For all closed terms x, y and z, we have: 

1. (~Ny) C~=~N(yC z ) = ( ~ c ~ ) M ~ = ( ~ y ) c  ~ = ( ~ C V ) ~ = ~  

s. �9 c (u :F ~) = (~ c u) c z = (~ c z) c u 
4. ~N(UMz)=(~MU)N~ 
5. ~ ( U ~ z ) = ( ~ U ) ~  

Proof, Identities of (1) can be deduced from Lemma 13 

For (2) consider Z and Y as before and Z = y]~ ehZh + ~ rz  a + ~ r Now, 
g ! h 

we have: 

( X t ~ Y ) ' ~ Z  13(=1) (i,m(ai=b,,,)E a i (x lqZYm))  '~Z 13(2) E 
i,rn(ai=b~ 
AVh.aiCeh 

^a=~) 

i(Vh.ai•ehAG=$) k = ) 

in(2) 
M Y  = 

ai(xi =t= Ym) 

( X  ,~ Z)  ~ Y 
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The other equation follows similarly. 
Properties (3), (4) and (5) are proved by mutual induction on the sum k of 

symbols of x, y and z. For details we refer to [10]. [] 

We have already stated that q: is commutative, associative and has 6 as 
neutral element. However, the delayed choice presented here is not idempotent 
and it does not satisfy the several laws of distributivity, just as the delayed choice 
of [3] and the r-angelic choice [9]. We will not repeat the counter examples for 
the following fact given in [3]. 

Fact 20 The following equations are n o t  generally valid in the initial algebra: 
X T X - - X  

(= + y) z = + (y :v z) 

(x ~ y)z  = xz  ~ yz  
z(x =F y) = zz ~ zy 

4 E x a m p l e s  

In [3] the delayed choice operator was used for the composition of Message Se- 
quence Charts. In this section, we will show two more examples of its application. 

4.1 Scenar io  specification 

In communication protocols it is often the case that  one can distinguish one 
main scenario and several alternative behaviours. If, e.g., the main scenario is a 
correct transmission, an alternative scenario could be the occurrence of a channel 
error followed by a retransmission. If both scenarios start with the same initial 
behaviour, the two alternative scenarios should not be combined with the normal 
non-deterministic choice (+). By using the delayed choice instead, the moment 
of choice is put at the point where the scenarios start to differ. In this case the 
benefit of using the delayed choice is not that  it gives a shorter specification, but 
that  it helps in designing and presenting the specification in a more modular 
way. 

Next, we will give an example in which the delayed choice allows for a con- 
siderably shorter specification than without this operator. Consider an access 
control consisting of a digital key pad and a (locked) door. A user can enter 
any sequence of digits. The door may only be opened if the sequence ends in a 
special four digit code (say, 2908). Let 0-9 denote detection of the indicated key 
stroke and let grantaccess stand for offering the user the option to access, then 
the following is a specification of the access control. 

A C = ( O +  l + 2 + 3 + 4 + 5 + 6 +  7 + 8 + 9 ) . A C  q: 2 . 9 . 0 . 8 . g r a n t a c c e s s . A C  

Please notice that this process is executed in parallel with the user behaviour. 
After selecting 2908, the user is not forced to take access. He can also enter 
another digit and lose access permission for that  moment. 
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4.2 Requirements reduction 

A verification in process algebra in general consists of proving r1(S) = R, where 
S is an implementation specification and R is a requirements specification. The 
rl operator ([5]) is the abstraction operator, which renames actions from the set 
I into r. It removes all internal actions, but keeps the internal branching struc- 
ture. It often happens that one has a very simple requirements specification R 
in mind, while after calculating ri(S) an expression with an excess of internal 
choices remains. These internal choices probably represent implementation deci- 
sions. Then, there are two obvious ways to proceed. The first is to simply forget 
about R and consider ~'I(S) as the requirements specification, having to accept 
a more implementation directed requirement. The second way is to discard the 
branching structure and proceed in a linear time semantics, where rl(S) = R 
holds. In this case we lose all information about the branching structure of the 
requirements. 

We propose to use the delayed choice operator. Let D be the operator which 
replaces all occurrences of the non-deterministic choice by the delayed choice, as 
defined in Table 6. 

Table 6. The operator D for removing non-deterministic choices (a E A U {r}) 

DE1 D(e) - e 
DE2 D(~) = 
DE3 D(x + y) = D(x) ~: D(y) 
DE4 D(ay) = a . D(y) 

Now, a mixed linear time/branching time verification consists of proving 

rl, oDor,2(S ) = R 

The set 12 contains all atomic actions which induce only irrelevant choices, while 
the choices between actions from/1 should remain after abstraction. 

We will illustrate this with parts of the verification of a leader election proto- 
col. We call this protocol the Paint Ball protocol, because it is a formalization of 
the popular Paint Ball game, in which people fight each other by shooting paint 
balls. 

Suppose that entities E~ (i E ID,  I D  is the set of identifications IIDI > 1) 
have to elect a leader amongst themselves non-deterministically. Every entity 
can communicate synchronously with every other entity. Initially all entities are 
equal. We have the following quite simple requirements specification. 

R -  r . ~ r . leader( i) 
iEID 
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where leader(i) denotes that  entity i has become leader. Notice that  we prepend 
a silent step r to represent some initial internal activity. 

The Paint Ball protocol is specified as the parallel composition (ll, [5]) of all 
entities. The encapsulation operator OH is applied to enforce successful commu- 
nications only. It renames all atoms from the set H into 6. 

S = OH ([[iEID E / D - { 0 )  

Each entity E v is indexed with a set V. This set contains all other entities that  
have not yet been defeated by i. If this set is empty, it means that  i has defeated 
all other participants and that  i will become the leader (Li). If the set is not 
empty, a choice is made between shooting a paint ball at one of the remaining 
participants (slj), or receiving a paint ball ( r j i )  and entering the failed state (Fi). 
If all but one of the entities have yielded, the leader informs all failed entities 
that  the elections are finished (sreadyij) and finally executes action leader(i). 

EO i = Li 

Li (llSet/~-{i} sreadyij ) . leader(i) 
Fi = E j E I D - { i }  (rsi " Fi + rreadysi) 

We have the obvious communication function (rlj Isis = cij, rreadylj Isreadyis = 
creadyij) and encapsulation set H = {ris,rreadyij,sis, sreadyi,jli, j E ID}. 
Now let I = {cis, creadyij li, j e ID} and consider vr(S). After several calcula- 
tions we obtain a reduced specification such that  r .  r I (S)  = p ip .  

pV = r .  ~'~iev r .  pV-{i} (IV[ > 1) 
p{ i }  = r . leader(i) 

The specification of P shows that  during the execution of the protocol some 
internal choices are made, which denote that  some entity i is removed from the 
list of candidates. This continues until one candidate remains. According to our 
requirements specification we are not interested in these implementation details. 
Using our proposed strategy we calculate (for I9. = {cisli, j E ID}) 

D o 7"I~(S ) ~- 7". E ((IIsEID-{i} ereadyis), leader(i)) 
iEID 

And if we set Ix = {ereadyis li, j ~ 1D} then we get the desired equality. 

7"zl o D o 7-t~(S)=7". E 7".leader(i)= R 
iEID 

5 Conc lus ion  

We have defined the delayed choice operator in process algebra with abstraction. 
Using this operator we can express linear time specifications in a branching 
time setting. We have shown two applications of this operator, namely scenario 
specification and requirements reduction. A sound and complete axiomatization 
with respect to branching bisimulation was obtained. 
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