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Abstract

The � -angelic choice is an operator that captures the behaviour of the external choice

of CSP in a branching time setting. The idea of the � -angelic choice is to delay any choice

until an observable action happens. In this way, this new operator avoids preemption

introduced by internal actions (� actions). It is studied in theories with abstraction, more

precisely, branching bisimulation and � -bisimulation and failure semantics. In addition,

an ilustrative example of application is given.

Keywords: theory of concurrency, semantics of reactive systems, process algebra, non-

determinism, speci�cation and veri�cation methodologies

1 Introduction

The aim of this article is to introduce a new choice operator for process algebras [BW90] in

order to deal with preemptive contexts. This operator is called � -angelic choice and denoted

by 2. The � -angelic choice is strongly based in the external choice of CSP [BHR84, Hoa85]

which was presented in a failure model. I showed in [D'A94] that external choice preserves

several bisimulation equivalences. It motivates the study of such operator into a branching

time setting. Since some characteristical properties of the external choice do not hold in �ner

equivalences, I decided to change its name to avoid confusion. So, in this article, the � -angelic

choice is axiomatizatized in the context of process algebras considering bismulation [Par81],

branching bismulation [GW89] and � -bismulation [Mil89] semantics. Besides, it is also studied

in the context of failure semantics in order to compare with the CSP external choice.

Preemption is the property of forbidding activity (see [Mil89]). Sometimes, one needs to

describe a behaviour which always allows the environment to choose. In this case, preemption

is not a good factor. The choice operator introduced in this article avoids preemption. Since

this phenomenon is a consequence of internal activity, which is represented by � , 2 behaves

angelically when a � is around it, that is, the choice is delayed while internal activity is

performed.

Consider, for instance, the process P = left + right, where + is the usual choice of CCS

and ACP. When running P , one can observe that either left or right are able to be executed.

Hence, each one of them can be chosen to execute. Now, suppose � � left+ � � right is running.

Since � represents the internal (and so, non-observable) activity, after some time, one can
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observes that left is about to execute or that right is about to execute, but not both at the

same time. This fact is caused by the preemption introduced by � . On the contrary, the

process � � left 2 � � right allows to choose between left and right as in the case of P , even when

internal activity is present.

Following this concepts, an example of application of the � -angelic choice in veri�cation is

given. A veri�cation in process algebra consists of a proof that the actual behaviour of a system

equals to its intended behaviour . The actual behaviour is represented by the implementation

speci�cation, and the intended behaviour is modelled by the requirements speci�cation. Often,

the structure of the implementation speci�cation is quite complex due to the presence of

internal choices that shows implementations details, part of which may be irrelevant to prove

correctness. These less interesting choices among internal actions can be �ltered by mean of

the � -angelic choice.

This paper is organized as follows. Section 2 brie
y explains preliminary concepts of

process algebra and semantics of processes. Section 3 introduces the � -angelic choice in

the above mentioned settings. Several properties are studied in section 4. Associativity,

commutativity and neutrality of the inaction are stated among others. Finally, an application

example is developed in section 5.

Acknowledgements. I would like to thank Jos Baeten for his helpful technical suggestions

that make this work improve considerably, and Juan Echag�ue for his careful reading and

suggestions of earlier versions of this article. I also would like to acknowledge suggestions and

helps given by Javier Blanco, Sussan Doniz, Sjouke Mauw and Jan Joris Vereijken.

2 Basic process algebra with empty process

This section introduces the algebra of sequential processes [BW90], more precisely the basic

process algebra with empty processes (BPA

�"

). Concrete processes and several characteriza-

tions of abstraction will be considered: branching bisimulation [GW89], � bisimulation [Mil89]

and failure equivalence [BHR84, BKO86].

2.1 The equational theories

The signature of the several algebras is parametrized by a set of constantsA = fa; b; : : :g called

atomic actions . There are three distinguished constants not belonging toA: �, called deadlock

or inaction, that denotes a process that stopped executing action and cannot proceed; ", the

empty process , that denotes the process that does nothing but terminates succesfully; and � ,

the silent action that is a special action having the meaning of internal activity. Besides, the

signature has two binary operators: the alternative composition (+) that, in x+ y, executes

x or y but not both; and the sequential composition (�) that, given x � y, �rst executes x

and, upon completion, starts with the execution of y. The sequential composition is usually

omited, writing xy instead of x �y. Furthermore, it is used the convention that � binds stronger

than all other operators in this article while + binds weaker. The set of closed terms in this

signature is denoted by T .

Equations for BPA

�"

, the basic proces algebra with empty process for concrete proces, are

given in Table 1. It is worthwhile to notice that in this article the silent action belongs to the
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signature of BPA

�"

(which is not included in the original de�nition, see [BW90]) but, in this

case, it is managed as any other action.

A1 x+ y = y + x A6 � + x = x

A2 (x+ y) + z = x+ (y + z) A7 �x = x

A3 x+ x = x

A4 (x+ y)z = xz + yz A8 "x = x

A5 (xy)z = x(yz) A9 x" = x

Table 1: Axioms for BPA

�"

Abstraction will be consider up to diferent view points (see subsection 2.2). By adding

equation BE in Table 2 to those in Table 1, the set of equations for BPA

�

�"

[BW90] is obtained.

The set of equations for BPA

�"�

[BK85, BW90] is de�ned by adding instead axioms in Table 3.

Finally, the set of equations for BPA

F

�"

[BKO86] is de�ned by adding axioms in Table 4 to

those in Table 1. Notice that BPA

F

�"

` fT2;T3g and BPA

�"�

` BE.

BE a(�(x+ y) + x) = a(x+ y)

Table 2: Additional axiom for BPA

�

�"

(a 2 A [ f�g)

T1 a� = a

T2 �x+ x = �x

T3 a(�x+ y) = a(�x+ y) + ax

Table 3: Additional axioms for BPA

�"�

(a 2 A [ f�g)

R a(bx+ u) + a(by + v) = a(bx+ by + u) + a(bx+ by + v)

T1 a� = a

TF �x+ y = �x+ �(x+ y)

Table 4: Additional axioms for BPA

F

�"

(a; b 2 A [ f�g)
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2.2 Structured operational semantics

Table 5 de�nes the operational semantics of BPA

�"

terms following the structured style of

Plotkin [Plo81], that is, predicates of a term are stated in function of the predicates of its

sub-terms. In this case, two kind of predicates are considered. Predicate # (� T ) expresses

that a process may terminate succesfully. For every action a 2 A [ f�g, predicate

a

�!

(� T � T ) expresses that the �rst argument can perform action a and becomes the second

argument.

" #

x #

x+ y # y + x #

x # y #

x � y #

a

a

�!"

x

a

�!x

0

x+ y

a

�!x

0

y + x

a

�!x

0

x

a

�!x

0

x � y

a

�!x

0

� y

x # y

a

�!y

0

x � y

a

�!y

0

Table 5: Operational semantics for the basic operators (a 2 A [ f�g)

The re
exive transitive closure of

�

�! is denoted by =) . For every � 2 A

�

the relation

�

=) 2 T � T is de�ned by

p

�

=)q

def

() � � a

1

: : : a

n

and p=)

a

1

�!=) � � � =)

a

n

�! =)q:

Furthermore, p 6

a

�! means that for no q 2 T , p

a

�!q.

As it was expresed above, predicates give the idea of a certain executed operation that

takes a system from some state to another. Now, a criterion to state whether two systems

show the same behaviour is needed. Such a criterion is de�ned by means of the so-called

semantic equivalences , which vary according to the way of observation of those systems (see

[Gla90] and [Gla93]). The semantic equivalences used in this article are de�ned below. They

are slight modi�cations of the original ones.

De�nition 2.1 (Bisimulation semantics) [Par81] A bisimulation is a symmetric relation

S � T � T satisfying, for all a 2 A [ f�g:

- if pSq and p

a

�!p

0

, then 9q

0

2 T : q

a

�!q

0

and p

0

Sq

0

; and

- if pSq then p # () q #.

Two processes p and q are bisimilar (notation p

$

q), if there exists a bisimulation S with pSq.

De�nition 2.2 (Branching bisimulation semantics) [GW89] A branching bisimulation

is a symmetric relation S � T � T satisfying, for all a 2 A [ f�g:

- if pSq and p

a

�!p

0

, then

(

a = � and p

0

Sq; or

9q

00

; q

0

2 T : q=)q

00

a

�!q

0

with pSq

00

and p

0

Sq

0

; and

- if pSq and p # then 9q

0

2 T : q=)q

0

# and pSq

0

.
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Two processes p and q are branching bisimilar (notation p

$

b

q), if there exists a branching

bisimulation S with pSq.

Two processes p and q are rooted branching bisimilar , (notation p

$

rb

q) if for all a 2

A [ f�g:

- p

a

�!p

0

implies 9q

0

: q

a

�!q

0

and p

0

$

b

q

0

;

- q

a

�!q

0

implies 9p

0

: p

a

�!p

0

and p

0

$

b

q

0

; and

- p # () q #.

De�nition 2.3 (�-bisimulation semantics) [Mil80, Mil89] A � -bisimulation is a symmet-

ric relation S � T � T satisfying:

- for all a 2 A, if pSq and p

a

�!p

0

, then 9q

0

2 T : q=)

a

�! =)q

0

and p

0

Sq

0

;

- if pSq and p

�

�!p

0

, then 9q

0

2 T : q=)q

0

and p

0

Sq

0

; and

- if pSq and p # then 9q

0

2 T : q=)q

0

#.

Two processes p and q are � -bisimilar (notation p

$

�

q), if there exists a � -bisimulation S with

pSq.

Two processes p and q are rooted � -bisimilar , (notation p

$

r�

q) if p

$

�

q and:

- p

�

�!p

0

implies 9q

00

; q

0

2 T : q

�

�!q

00

=)q

0

and p

0

$

�

q

0

;

- q

�

�!q

0

implies 9p

00

; p

0

2 T : p

�

�!p

00

=)p

0

and p

0

$

�

q

0

;

De�nition 2.4 (Failure semantics) [BHR84, Hoa85] Let I(p) = fa 2 Aj 9q 2 T : p=)

a

�!=) qg [ f

p

j 9q 2 T : p=) q #g be the set of initial actions of p 2 T . De�ne the set

F (p) � (A

�

�

}

(A [ f

p

g))[ f�

p

j � 2 A

�

g [ f�g of failures of p as the least set satisfying:

- (�;X) 2 F (p) if 9q 2 T : p

�

=) q 6

�

�! and X \ I(q) = ;; and

- �

p

2 F (p) if 9q 2 T : p

�

=)q #; and

- � 2 F (p) if 9q 2 T : p

�

�!q.

Two processes p and q are failure equivalent (notation p �

F

q) if F (p)nf�g = F (q)nf�g. They

are failure congruent (notation p =

F

q) if F (p) = F (q).

The relations above are ordered by set inclusion as follows:

�

$

rb

�

$

r�

� =

F

$

\ \ \

�

$

b

�

$

�

� �

F

The following results are standard (see [BK85, BKO86, BW90])

Theorem 2.1 (The term models)

1. BPA

�"

is a complete axiomatization for T =

$

.

2. BPA

�

�"

is a complete axiomatization for T =

$

rb

.

3. BPA

�"�

is a complete axiomatization for T =

$

r�

.

4. BPA

F

�"

is a complete axiomatization for T =

=

F

.
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3 The � angelic choice

3.1 Equational theory

This subsection introduces a new choice operator where the choice of the process to be per-

formed is uniquely made by means of observable actions. Thus, the selection is always delayed

until an observable action may engage. Because of its behaviour with respect to the silent

action, this new operator is called � -angelic choice.

The � -angelic choice is denoted by the operator 2 in order to keep Hoare's notation (see

[BHR84, Hoa85]), and its de�nition is given in Table 6. In order to give a �nite axiomatization,

BX x2y = x y + y x

LB1 " x = " LB3 ax y = ax

LB2 �x y = �(x2y) LB4 (x+ y) z = x z + y z

Table 6: Additional axioms for the � -angelic choice (a 2 A [ f�g)

the auxiliar operator (left box) is introduced. x y choose to execute process x if it can

terminate or do some observable action. If x executes instead some silent action, such an

action is executed and then, a choice between y and the remaining execution of x is made.

Now, x2y considers two cases: the �rst one observes the initial actions of x and decides what

will be executed (x y); the second one do the same but observing y (y x).

Adding the set of equations in Table 6 to BPA

�"

, BPA

�

�"

, BPA

�"�

and BPA

F

�"

the equational

speci�cations BPA

�"

+2, BPA

�

�"

+2, BPA

�"�

+ 2 and BPA

F

�"

+ 2 are respectively obtained.

Let B

2

= fBPA

�"

+ 2;BPA

�

�"

+2;BPA

�"�

+2;BPA

F

�"

+2g. Furthermore, the set of closed

term in the new (extended) signature are denoted by T

2

.

Example 3.1 Some simple examples are introduced in order to make clear the behaviour of

the � -angelic choice. Let a, b and c be distinct actions in A.

BPA

�"

+ 2 ` �(a+ b)2�(a+ c) = �(a+ b+ �(a+ b+ c)) + �(a+ c+ �(a+ b+ c))

BPA

�

�"

+ 2 ` �(a+ b)2�(a+ c) = �(a+ b+ c)

BPA

�

�"

+ 2 ` (�(a+ b) + c)2(�(a+ c) + a+ b) = �(a+ b+ c) + a+ b+ c

BPA

�"�

+2 ` (�(a+ b) + c)2(�(a+ c) + a+ b) = �(a+ b+ c)

BPA

�"�

+2 ` (�a+ �b)2�c = �(�(a+ b) + �(a+ c))

BPA

F

�"

+ 2 ` (�a+ �b)2�c = �(a+ b) + �(a+ c)

3.2 Structured operational semantics

Predicates # and

a

�! are extended to the set T

2

. Rules in Table 7 de�ne the operational

semantics for the � -angelic choice. The whole rule system (Tables 5 and 7) is in path for-
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mat [BV93]. It is clear that the notions of equivalences introduced in the previous pargraph

x #

x2y # y2x #

x

a

�!x

0

x2y

a

�!x

0

y2x

a

�!x

0

x

�

�!x

0

x2y

�

�!x

0

2y y2x

�

�!y2x

0

x #

x y #

x

a

�!x

0

x y

a

�!x

0

x

�

�!x

0

x y

�

�!x

0

2y

Table 7: Operational semantics for the � -angelic choice (a 2 A)

can be easily extended to T

2

.

3.3 Soundness and Completeness

The aim of this section is to prove that the extended equational theories are sound and

complete axiomatization of the several semantics equivalences. In order to do that term

rewriting techniques are used. So, consider axioms A3 to A9 in Table 1 and all axioms in

Table 6 with the left-to-right orientation as rewrite rules, i.e., if s = t is one of those axioms,

the respective rewrite rule will be s ! t . Nevertheless, this term rewriting system is not

con
uent (modulo A1, A2) since axiom A9 is sometimes needed in the opposite direction. So,

the term rewriting system is completed with rules in Table 8 and it will be called TRS. Note

that each new rewrite rule is derivable from BPA

�"

axioms.

LB2' � x ! �("2x) LB3' a x ! a

Table 8: Additional rewrite rules (a 2 A [ f�g)

Theorem 3.1 TRS is strongly normalyzing.

Proof. This can be proved by appliyng the method of the lexicographical path order-

ing [KL80, Klo92]. There is a complication: in the reduction of 2, the operator appears,

but when reducing �x y it happens the other way around. The solution is to weigh these

operators by using semantic labelling [BK85, Zan93].

Thus, the operators are ordered as follow:

A [ f�; "; �g < + < � <

1

< 2

1

< � � � <

n

< 2

n

<

n+1

< � � �

Besides, � has the lexicographical status for the left argument. What remains is routine

calculations.
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De�nition 3.1 (Basic terms) Let B be the class of basic terms over any of the algebras in

B

2

de�ned as the smalest class satisfying:

1. �; "; � 2 B, A � A

2. a 2 A; t 2 B =) a � t 2 B and � � t 2 B

3. t; s 2 B =) s+ t 2 B

The next theorem states that for every closed term in the extended signature there exists

a basic term (not containing 2 or ) such that they can be proved equal in all algebras in

B

2

.

Theorem 3.2 (Elimination theorem) Let BPA

�"

�

+2 be one of the equational theories in

B

2

. Let t be a closed BPA

�"

�

+2 term. Then, there is a basic term s such that BPA

�"

�

+2 `

t = s.

Proof. Due to Theorem 3.1, t has normal form s. Moreover, such an s is a basic term as it

is shown in the following.

Firstly, take into account that rules A3{A9 rewrite a closed BPA

�"

into a basic one (see

[BW90]). Now, if s contains a 2 then rule BX can be applied and so s is not in normal form

which contradicts the assumption. If s contains a , take a smallest sub-term containing it,

say s

1

s

2

. Since s

1

and s

2

do not contains 2 and , they are already basic terms and hence,

one of the rules LB1{LB4, LB2' or LB3' can be applied. This concludes the proof.

Theorem 3.3 (Congruence)

$

,

$

rb

,

$

r�

and =

F

are congruences for 2 and .

Proof. Since the rule system is in path format, the case of

$

follows immediately from

[BV93]. In other cases, the proof for 2 follows the same lines of the proof of the external

choice of CSPin [D'A94] and proof for is quite similar.

In addition, 2 also preserves

$

b

,

$

�

and �

F

, although it is not the case of . For

instance, we know that a

$

b

�a, but a = a b 6�

F

�a b = �(a+ b).

Theorem 3.4 (Soundness)

T

2

=

$

j= BPA

�"

+2 T

2

=

$

r�

j= BPA

�"�

+2

T

2

=

$

rb

j= BPA

�

�"

+2 T

2

=

=

F

j= BPA

F

�"

+2

Proof. As usual. For every axiom s = t having free variables in X , de�ne the relation R =

f(�(s); �(t))j � substitutes variables in X to closed termsg [ Id. It is not di�cult to prove

that R is a bisimulation, rooted branching bisimulation or rooted � bisimulation according to

the soundness property one wants to prove.

In order to prove soundness in the case of failure congruence, it is enough to prove that

for every axiom s = t having free variables in X , for every substitution � from X to closed

terms, F (�(s)) = F (�(t)).
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Theorem 3.5 (Conservative extension)

1. BPA

�"

+ 2 is a conservative extension of BPA

�"

.

2. BPA

�

�"

+ 2 is a conservative extension of BPA

�

�"

.

3. BPA

�"�

+2 is a conservative extension of BPA

�"�

.

4. BPA

F

�"

+ 2 is a conservative extension of BPA

F

�"

.

Proof. The proof applies general results of conservative extension of [Ver94] (see also

[BV95]). The operational conservative extension follows since the rules are pure, well founded

and positive, and no new rule for an old operator is introduced. This implies operational

conservative extension up to

$

,

$

rb

,

$

r�

and =

F

. Since BPA

�"

, BPA

�

�"

, BPA

�"�

and BPA

F

�"

are complete axiomatizations (Theorem 2.1), and BPA

�"

+ 2, BPA

�

�"

+2, BPA

�"�

+2 and

BPA

F

�"

+2 are sound (Theorem 3.4), equational conservative extension follows from [Ver94,

BV95].

Theorem 3.6 (Completeness)

1. BPA

�"

+ 2 is a complete axiomatization of T

2

=

$

.

2. BPA

�

�"

+ 2 is a complete axiomatization of T

2

=

$

rb

.

3. BPA

�"�

+2 is a complete axiomatization of T

2

=

$

r�

.

4. BPA

F

�"

+ 2 is a complete axiomatization of T

2

=

=

F

.

Proof. Again, following [Ver94, BV95] and considering Theorem 3.2, this theorem is a

corollary of the previous one.

4 Properties

4.1 Expansion laws

The aim of an expansion theorem is to break down expression containing 2 and to deal

with the immediate context to be executed. Two expansion theorems are given following two

difernt syles.

Theorem 4.1 (The expansion theorem)

a) For all terms p

1

; : : : ; p

n

, in all equational theories in B

2

, it holds that

p

1

2 : : :2p

n

=

n

X

i=1

p

i

(p

1

2 : : : p

i�1

2p

i+1

: : :2p

n

)

b) Assume p =

P

i

a

i

p

i

+

P

j

�p

j

+

P

k

" and q =

P

m

b

m

q

m

+

P

n

�q

n

+

P

l

" where a

i

6= �

and b

m

6= � for all i and m. Then, in all equational theories in B

2

, it holds that

p q =

P

i

a

i

p

i

+

P

j

�(p

j

2q) +

P

k

"

p2q =

P

i

a

i

p

i

+

P

m

b

m

q

m

+

P

j

�(p

j

2q) +

P

n

�(p2q

n

) +

P

k+l

"
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Proof. a) In order to avoid notation

n

2

i=1

p

i

will be written instead of p

1

2 : : :2p

n

. Induction

on n is applied. Thus, if n = 2 the theorem follows from axiom BX. If k > 2 then

p

1

2 : : :2p

n+1

= (

n

2

i=1

p

i

)2p

n+1

BX

= (

n

2

i=1

p

i

) p

n+1

+ p

n+1

(

n

2

i=1

p

i

)

IH

=

0

@

n

X

j=1

p

j

(

n

2

i=1;i 6=j

p

i

)

1

A

p

n+1

+ p

n+1

(

n

2

i=1

p

i

)

A4

=

0

@

n

X

j=1

�

p

j

(

n

2

i=1;i 6=j

p

i

)

�

p

n+1

1

A

+ p

n+1

(

n

2

i=1

p

i

)

T.4.3

=

n

X

j=1

p

j

�

(

n

2

i=1;i 6=j

p

i

)2p

n+1

�

+ p

n+1

(

n

2

i=1

p

i

)

T.4.2, T.4.3

=

n

X

j=1

p

j

(

n+1

2

i=1;i 6=j

p

i

) + p

n+1

(

n

2

i=1

p

i

)

A1, A2

=

n+1

X

j=1

p

j

(

n+1

2

i=1;i 6=j

p

i

)

b) Straightforward from the BPA

�"

+2 axioms.

4.2 Choice laws

2 satis�es some classical properties of choice operators, especially, commutativity and asso-

ciativity. Besides, � is the neutral element for 2. These properties will be proved in the

following.

Theorem 4.2 (Commutativity) For all terms x and y, in all equational theories in B

2

,

it holds that x2y = y2x

Proof. x2y

BX

= x y + y x

A1

= y x+ x y

BX

= y2x.

Theorem 4.3 (Associativity) For all closed terms p,q and r, in all equational theories in

B

2

, it holds that:

1. (p q) r = p (q2r), and

2. (p2q)2r = p2(q2r).

Proof. Since p, q and r are closed, without lost of generality it will be assumed they are

basic term (see Theorem 3.2). 1. and 2. will be proved simultaneously by induction on the

sum k of the number of symbols of p, q and r. Case k = 3 is left to the reader.

Suppose k > 3. Suppose p =

P

i

a

i

p

i

+

P

j

�p

j

+

P

l

" with a

i

2 A. Then

1: (p q) r

T.4.1.b

= (

P

i

a

i

p

i

+

P

j

�(p

j

2q) +

P

l

") r

T.4.1.b

=

P

i

a

i

p

i

+

P

j

�((p

j

2q)2r) +

P

l

"

IH

=

P

i

a

i

p

i

+

P

j

�(p

j

2(q2r)) +

P

l

"

T.4.1.b

= (

P

i

a

i

p

i

+

P

j

�p

j

+

P

l

") (q2r)

= p (q2r)

10



2: (p2q)2r

BX

= (p2q) r + r (p2q)

BX

= (p q + q p) r + r (p2q)

LB4, T.4.2

= (p q) r + (q p) r + r (q2p)

(1)

= p (q2r) + q (p2r) + (r q) p

T.4.2

= p (q2r) + q (r2p) + (r q) p

(1)

= p (q2r) + (q r) p+ (r q) p

LB4

= p (q2r) + (q r + r q) p

BX

= p (q2r) + (q2r) p

BX

= p2(q2r)

Theorem 4.4 (� is the neutral element for 2) For all closed term p, in all equational

theories in B

2

, it holds that:

1. p � = p, and

2. p2� = �2p = p.

Proof. As before, suppose p is a basic term. 1. and 2. are proved by simultaneous induction

on the number of symbols of p. Case k = 1 is straightforward.

Suppose k > 1 and assume p =

P

i

a

i

p

i

+

P

j

�p

j

+

P

l

" with a

i

2 A. Then

1.

p �

T.4.1.b

=

P

i

a

i

p

i

+

P

j

�(p

j

2�) +

P

l

"

IH

=

P

i

a

i

p

i

+

P

j

�p

j

+

P

l

" = p

2.

p2�

BX

= p � + � p

(1), A9, LB3

= p+ �("2p)

A7, A6

= p

Finally �2p = p holds by Theorem 4.2

It was already stated that 2 is commutative and associative and has � as neutral element.

However, the � angelic choice is not idempotent in BPA

�"

+ 2, BPA

�

�"

+2 and BPA

�"�

+ 2.

Furthermore, the several distributivity laws do not hold in none of the equational speci�cations

introduced here.

Fact 4.5 The following equation does not hold in none of the initial algebras of BPA

�"

+ 2,

BPA

�

�"

+2 and BPA

�"�

+2:

x = x2x

Proof. (� + a)2(� + a) = �("+ �"+ a) + a but �("+ �"+ a) + a 6

$

r�

� + a. The fact follows

by the relation of the semantic equivalences and Theorem 3.6.

Fact 4.6 The following equations do not hold in the initial algebras of every equational spec-

i�cation in B

2

:

1. (x+ y)2z = (x2z) + (y2z)

2. (x2y) + z = (x+ z)2(y + z)

3. (x2y)z = xz2yz

4. z(x2y) = zx2zy

11



Proof. In every case it is proved that the equations do not hold in BPA

F

�"

+ 2 taking into

account the term model. The fact follows from the relation among the semantic equivalences

and Theorem 3.6.

1. Lf = (a+ �b)2�c = a+ �(b+ �(b+ c)) + �(a+ c+ �(b+ c))

= �(a+ c+ �(b+ c)) = �(b+ c) + �(a+ b+ c)

while Rt = (a2�c) + (�b2�c) = a+ �(a+ c) + �(b+ �(b+ c)) + �(c+ �(b+ c))

= �(a+ c) + �(b+ c).

Now, the pair (hi; fbg) is in F (Rt) but not in F (Lf ) (hi is the empty sequence).

2. Lf = (a2�b) + c = a+ �(a+ b) + c = �(a+ b) + �(a+ b+ c)

while Rt = (a+ c)2(�b+ c) = a+ c+ �(a+ b+ c) = �(a+ b+ c).

Now, (hi; fcg) is in F (Lf ) but not in F (Rt).

3. Lf = (a2")� = (a+ ")� = a� + "� = a+ �

while Rt = a�2"� = a2� = a+ �("+ a) = �("+ a).

Then, (hi; fag) is in F (Rt) but not in F (Lf ).

4. Lf = a(b2c) = a(b+ c)

while Rt = ab2ac = ab+ ac,

and (hai; fcg) is in F (Rt) but not in F (Lf ).

4.3 Other properties

This paragraph introduces properties mainly related with the operational behaviour of the

processes.

A term x may terminate immediately in a process algebra if it can be proved that x = x+"

in such an algebra. Thus, the following theorem states that if one of the terms involved in a

� -angelic composition may terminate, so does the whole term.

Theorem 4.7 (Termination of a �-angelic composition) Let BPA

�"

�

+ 2 2 B

2

. For

all BPA

�"

�

+2 terms x and y, if x may terminate immediately in BPA

�"

�

+ 2, so does x2y

and y2x.

Proof. Straightforward calculations using BPA

�"

+2 axioms.

I decided to include this theorem because it is not always true that a choice composition

preserves immediate termination; consider for instance, the internal choice of CSP [Hoa85] or

the static choice of [BB94].

As it was shown before, 2 is not generally idempotent. Nevertheles, the following theorem

can be easily proved.

Theorem 4.8 In all equational speci�cations in B

2

it holds that x2x = x x.

12



A process has local deadlock if it can reach an inaction state without performing any

visible action. Formally:

De�nition 4.1 (Local deadlock) p 2 T

2

has local deadlock if and only if there exisits a q

such that p=)q, q 6

a

�! for all a 2 A [ f�g and it is not the case that q #.

Because of completness of the term models, it is not di�cult to prove the following theorem:

Theorem 4.9 Let p 2 T

2

. p has local deadlock if and only if in any equational theory in B

2

it can be proved that p = � or p = p+ �:q for some q which has local deadlock.

Notice that p+q has local deadlock if at least one of the summands has local deadlock. On

the contrary, p2q requires both operands has local deadlock. That is, 2 avoids local deadlock

whenever it is possible.

Theorem 4.10 (Local deadlock avoidance) Let p; q 2 T

2

. p2q has local deadlock if and

only if p and q have local deadlock.

Proof. It is enough to prove that p=) p

0

and q=) q

0

() p2q=) p

0

2q

0

. Recalling that

=) =

�

�!

�

, it is an straightforward induction on the amount of �s.

Preemption is an immediate consequence of internal activity. This phenomenon introduces

\unstability" of processes. A process p is said to be stable if p 6

�

�!, or, similarly, if p does not

have a summand �p

0

. Thus, the following theorem can be easily proved:

Theorem 4.11 (2 is idempotent for stable processes) Let p 2 T

2

be a stable process.

In all equational theories in B

2

, it holds that

1. p = p x, for all x, and

2. p = p2p.

4.4 Choice laws in BPA

F

�"

+2

There are some choices laws that only hold in BPA

F

�"

+2. They are: idempotency and

distributivity of 2 in preemptive contexts.

The next proposition is a simple corollary of results in [Bro83].

Proposition 4.12 For all unstable closed term p, there exists a closed term q having the

form

P

i

� � q

i

, where each q

i

is stable, such that BPA

F

�"

+ 2 ` p = q.

Theorem 4.13 (Idempotency in BPA

F

�"

+2) For all closed term p, p2p = p holds in

BPA

F

�"

+2.

Proof. If p is stable, it is the case of Theorem 4.11. On the other hand, since theorem 4.8,

it is enough to prove that p p = p. Because of Proposition 4.12, assume p =

P

i

�p

i

, where

each p

i

is stable. In addition, it can be proved that:

BPA

F

�"

+ 2 ` �(x+ �y) = �(x+ y) + �y (?)

BPA

F

�"

+ 2 ` �x+ �y + �(x+ y) = �x+ �y (??)

13



Consider that i and i

0

range over the same index set, then

p p

T.4.1.b

=

P

i

� � (p

i

2p)

BX

=

P

i

� � (p

i

p+ p p

i

)

T.4.11

=

P

i

� � (p

i

+ p p

i

)

T.4.1.b

=

P

i

� � (p

i

+

P

i

0

� � (p

i

0

2p

i

))

BX, T.4.11

=

P

i

� � (p

i

+

P

i

0

� � (p

i

0

+ p

i

))

(?)

=

P

i

(� � (p

i

+

P

i

0

(p

i

0

+ p

i

)) +

P

i

0

� � (p

i

0

+ p

i

))

A3

=

P

i

(� � (

P

i

0

p

i

0

) +

P

i

0

� � (p

i

0

+ p

i

))

A3

=

P

i

(� � (

P

i

0

p

i

0

) +

P

i

0

�p

i

0

+

P

i

0

� � (p

i

0

+ p

i

))

(??)

=

P

i

(� � (

P

i

0

p

i

0

) +

P

i

0

�p

i

0

)

(??)

=

P

i

P

i

0

�p

i

0

A3

=

P

i

0

�p

i

0

= p

Another property that holds on BPA

F

�"

+2 is that 2 is distributive with respect to pre-

emptive contexts.

Theorem 4.14 (Distributivity of 2 w.r.t. preemptive contexts in BPA

F

�"

+2) For all

closed term p, BPA

F

�"

+2 ` (�x+ �y)2p = �(x2p) + �(y2p).

Proof. It will be proved by induction on the size of p. Suppose p is a basic term. If k = 1

then, if p = � the proof follows by Theorem 4.4. If p = ", the prove is a bit di�cult. Notice

that axiom T2 is provable from A6 and TF. Thus,

(�x+ �y)2"

T.4.1.a

= �(x2") + �(y2") + "

BX, LB1

= �(x2") + �(y "+ ") + "

T2, A3

= �(x2") + �(y "+ ")

LB1, BX

= �(x2") + �(y2")

The case of p = a follows the same lines. Case of p = � is as follows

(�x+ �y)2�

T.4.1.a

= �(x2�) + �(y2�) + �("2(�x+ �y))

Case "

= �(x2�) + �(y2�) + �(�("2x) + �("2y))

A3,R,T1

= �(x2�) + �(y2�) + �("2x) + �("2y)

BX,A9,LB2

= �((x �) + �("2x)) + �((y �) + �("2x)) + �("2x) + �("2y)

T2,A3

= �((x �) + �("2x)) + �((y �) + �("2x))

LB2,A9,BX

= �(x2�) + �(y2�)
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If k > 1, suppose p �

P

i

a

i

p

i

+

P

j

�p

j

+

P

l

". Then:

(�x+ �y)2p

T.4.1.a

= �(x2p) + �(y2p) +

P

i

a

i

p

i

+

P

j

�(p

j

2(�x+ �y)) +

P

l

"

IH

= �(x2p) + �(y2p) +

P

i

a

i

p

i

+

P

j

�(�(p

j

2x) + �(p

j

2y)) +

P

l

"

BX, T.4.1.b

= �

�

x p+

P

i

a

i

p

i

+

P

j

�(p

j

2x) +

P

l

"

�

+�

�

y p+

P

i

a

i

p

i

+

P

j

�(p

j

2y) +

P

l

"

�

+

P

i

a

i

p

i

+

P

j

�(�(p

j

2x) + �(p

j

2y)) +

P

l

"

T2

= �

�

x p+

P

i

a

i

p

i

+

P

j

�(p

j

2x) +

P

l

"

�

+�

�

y p+

P

i

a

i

p

i

+

P

j

�(p

j

2y) +

P

l

"

�

+

P

j

�(�(p

j

2x) + �(p

j

2y))

A3, R, T1

= �

�

x p+

P

i

a

i

p

i

+

P

j

�(p

j

2x) +

P

l

"

�

+�

�

y p+

P

i

a

i

p

i

+

P

j

�(p

j

2y) +

P

l

"

�

+

P

j

(�(p

j

2x) + �(p

j

2y))

A1, A2

= �

�

x p+

P

i

a

i

p

i

+

P

j

�(p

j

2x) +

P

l

"

�

+

P

j

�(p

j

2x)

+�

�

y p+

P

i

a

i

p

i

+

P

j

�(p

j

2y) +

P

l

"

�

+

P

j

�(p

j

2y)

T2, A3

= �

�

x p+

P

i

a

i

p

i

+

P

j

�(p

j

2x) +

P

l

"

�

+�

�

y p+

P

i

a

i

p

i

+

P

j

�(p

j

2y) +

P

l

"

�

T.4.1.b, BX

= �(x2p) + �(y2p)

5 An example

This section introduces a simple but representative example. It is borrow from [DM95] where

it was introduced to show the use of the delay choice in context with abstraction. I made some

simple modi�cations that show that the � -angelic choice is a bit more versatile in this kind of

applications. Proofs in this section will be done using the BPA

�

�"

+ 2 equational speci�cation.

It is immediate that the obtained results also hold in BPA

�"�

+2 and BPA

F

�"

+2. It has no

sense to use BPA

�"

since it has no criteria to manage abstraction. In addition, operators and

axioms of ACP

�

"

will be considered (see [BW90]).

A veri�cation in process algebra consists of proving that the requirement speci�cation Spec

equals to the observable part of the implementation speci�cation Imp, i.e., Spec = �

I

(Imp),

where �

I

is the abstraction operator [BW90] that renames actions from the set I into � .

However, �

I

only removes internal actions and keeps the branching structure of a process. It

often happens that one wants to check a very simple speci�cation requirement Spec while, after

the calculation of Spec = �

I

(Imp), an expression with an excess of internal choices is obtained.

Most of this internal choices represent implementation decisions that may be not relevant for

the designer view. At this point, there are two ways to proceed. The �rst one may be to simply
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forget about Spec and accept a more implementation directed requirement speci�cation. The

second one may be to change for a coarser ponit of view, i.e., a linear time semantics, but it

makes one loose all information about branching structure of the requeriments.

I propose to use the � -angelic choice in order to reduce only the internal branching structure

which is irrelevant. Let S

�

be the operator that skips all internal choices until an observable

action appears by replacing all occurrences of the alternative composition by the � -angelic

ST1 S

�

(") = "

ST2 S

�

(�) = �

ST3 S

�

(x � y) = S

�

(x) � S

�

(y)

ST4 S

�

(x+ y) = S

�

(x) + S

�

(y)

Table 9: The S

�

operator to skip internal choices

choice as it is de�ned in Table 9. Now, a mixed linear time/branching time veri�cation consist

of proving the equation

Spec = �

I

2

� S

�

� �

I

1

(Imp)

where the set I

1

contains all atomic actions which induce non-interesting internal choices,

while choices made by actions in I

2

should remain after abstraction.

The example is based in the veri�cation of a leader election protocol called Paint Ball

protocol [DM95].

Suppose that entities E

i

(i 2 ID) have to elect a leader among themselves. A simple

speci�cation of this fact could be say that after certain internal activity a leader is chosen

non-deterministically, i.e.,

Spec = � �

X

i2ID

� � leader(i)

The Paint Ball protocol is speci�ed as the parallel composition of all entities:

Imp = @

H

 

jj

i2ID

E

i

!

An entity should defeat all the others to become a leader. Thus, each entity E

i

is indexed by

a set V that contains all other entities which have not yet been defeated by E

i

. The entity E

i

may send a message (s

ij

) to defeat one of the other participants, or receive a message (r

ji

) that

defeats it, entering thus in a fail state (F

i

). When all except one entities have been defeated,

the leader (L

i

) informs all failed entities that the election has �nished by broadcasting a

message (sready), and �nally proclaming itself the leader (leader(i)).

E

i

= E

ID�fig

i

E

V

i

=

P

j2V

�

s

ij

� E

V�fjg

i

+ r

ji

� F

i

�

(V 6= ;)

E

;

i

= L

i

F

i

=

P

j2ID�fig

(r

ji

� F

i

+ rready)

L

i

=

�

jj

j2ID�fig

sready

�

� leader(i)
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The comunication function and the encapsulation set are de�ned as usual: r

ij

js

ij

= c

ij

,

rreadyjsready = cready and H = fr

ij

; s

ij

ji; j 2 IDg [ frready; sreadyg. Clearly, the set of

internal action is I = fc

ij

ji; j 2 IDg[fcreadyg. After several calculations the implementation

speci�cation is reduced to �

I

(Imp) = P

ID

where

P

V

=

P

i2V

� � P

V�fig

(jV j > 1)

P

fig

= leader(i)

which cannot be further reduced. In this speci�cation, some internal choices denote that some

entity i is removed from the list of candidates during the execution of the protocol. This goes

on until only one candidate remains. According to the original requirements speci�cation,

these implementation details are not required. Hence, using the strategy above proposed, one

can consider that the actions of defeating an entity are not relevant. So, de�ne I

1

= fc

ij

ji; j 2

IDg. Then

S

�

� �

I

1

(Imp) = � �

X

i2ID

  

jj

j2ID�fig

cready

!

� leader(i)

!

Now, let I

2

= fcreadyg. Finally,

�

I

2

� S

�

� �

I

1

(Imp) = � �

X

i2ID

� � leader(i) = Spec

which proves the desired equality.

6 Concluding remarks

The CSP external choice has been rede�ned in a branching time setting. Complete axiomatiza-

tions for bisimulation, rooted branching bisimulation and rooted � -bisimulation equivalences

were given. It was also proved that the � -angelic choice satis�es standard properties for

choice operators (e.g. commutativity, associativity, existence of neutral element) as well as

some other relevant properties as local deadlock avoidance. Moreover, several properties have

been studied in the failure setting. They showed that in this context, the � -angelic choice

behaves exactly as the CSP external choice. In addition an interesting application case in

veri�cation was presented.

However, the � -angelic choice is not totally angelic. An angelic choice [MO91] (say @)

delays the choice as far as possible; thus, it tries to avoid deadlock even after performing

visible actions. For instance, the process a� has deadlock but not local deadlock. So, for

any process p, a�2p, may deadlock after performing a. Particularly a�2a", may deadlock,

although the process a�@a" does not have dedlock at all. An study of the angelic choice in a

branching and concrete setting was made by Baeten & Mauw in [BM95]. There, it receives

the more appropriate name of delayed choice. Mauw & I [DM95] extend the delayed choice

to deal with abstraction by borrowing the treatment given by the � -angelic choice. Baeten &

Bergstra [BB94] de�ned an operator similar to the � -angelic choice in the context of concrete

process algebras. They called it dynamic sum and also observed that idempotency does not

generally hold for the dynamic sum.

I showed in [D'A94] that the external choice of CSP can be mapped to the � -angelic choice

preserving bisimulation equivalence.
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