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Abstract

A general conservative extension theorem for process algebras with inequalities is
stated. General results for proving operational conservative extension up to a semantic
preorder and equational conservative extension of equational specifications with inequali-
ties are proposed. The proof of these facts reduces to check some simple conditions in the
term deduction system of the process theory. A general theorem for proving completeness
in extended process algebras with inequalities is given as a corollary.

1 Introduction

Process theories such as CCS, CSP and ACP have been extended with new features such as
real-time and probabilistics. Hence, it is desirable that any property which has been proved
in the old theory remains valid (for the old part) in the extended theory. That is, an extended
theory should be conservative somehow with respect to the original one.

Conservativity in transition system specifications (or term deduction systems) was studied
in [GV92], [Gro93], [BG91], [Ver94b] and [FV95]. In this setting, (operational) conservativity
means that the provable transitions for an original term are the same both in the original and
in the extended term deduction systems.

Verhoef proposed in [Ver94b] a general conservative extension theorem for equational
specifications. Here, (equational) conservativity means that exactly the same identities be-
tween closed terms in the original framework can be proved both in the original and in the
extended equational specifications. That theorem solves several complications when an equa-
tional specification is extended. For instance, it avoids to deal with term rewriting analysis
which are frequently used to prove equational conservativity. These term rewriting systems
often have no nice properties. Thus, according to [Ver94b], the problem of proving conserva-
tive extension of transition system based equational specifications (namely process algebra)
can be reduced to check operational conservative extension of the associated term deduction
system.

This article extends that work to deal with semantic preorders defined on transition sys-
tems and equational specifications with inequalities or inequational specifications, as they will
be called in this article.

The proposed method involves three steps. The first one is to state conservative extension
of the term deduction systems. In order to do this, an operational conservative extension



theorem is given. It is a simple variation of that introduced in [FV95] that considers term
deduction systems which have a unique well supported model (see also [Gla95]). The second
step states operational conservative extension up to a preorder defined exclusively in terms
of transition relations and predicates. This is proved to be an immediate consequence of the
first step. The last step is to prove conservative extension of the inequational specifications.
With this purpose, a general conservative extension theorem is introduced for inequational
specifications that axiomatize that kind of preorders.

Thus, the proof of inequational conservative extension and operational conservative ex-
tension up to certain preorder reduces to check operational conservative extension of the term
deduction system, which can be done by verifying some simple conditions.

The paper is organized as follows. Section 2 introduces preliminary concepts. The first
paragraph briefly explains the SOS theory. The second paragraph introduces basic notions of
the algebraic treatment of inequational specifications. Section 3 states the results of this paper.
In the first paragraph, operational conservativity results are stated. The second paragraph
deals with inequational conservativity and proves the general conservative extension theorem.
Finally, some examples of application are given.

Acknowledgements. I am grateful to Chris Verhoef for encouraging me to make this
paper, and also for his valuable comments and suggestions. I also thank Twan Basten and
the anonymous referees for their useful suggestions.

2 Preliminaries

This section briefly recalls some notions about SOS theory and inequational specifications.
The first paragraph explains SOS theory following [Ver94a], [Gla95] and [FV95], since they
seem to have the most general treatment. The second paragraph gives some basic notions
about the algebraic treatment of inequational specifications.

Some concepts of SOS

Assume an infinite set V of variables. A (single sorted) signature Σ is a set of functions
symbols together with their arity. The notion of term (over Σ) is defined as expected: x ∈ V
is a term; and, if t1, . . . , tn are terms and if f ∈ Σ is n-ary then f(t1, . . . , tn) is a term. A
term is also called an open term and the set of open terms is denoted by O(Σ). A term
containing no variables is called a closed term and the set of closed terms is denoted by C(Σ).
Let t ∈ O(Σ) then var(t) ⊆ V is the set of all variables occurring in t.

A substitution is a function σ : V → O(Σ). This map can easily be extended to the set of
all terms by substituting for each variable occurring in an open term its σ-image.

Definition 2.1 (Term deduction systems) A term deduction system is a structure (Σ, D)
where Σ is a signature andD is a set of deduction rules. The setD = D(Tp, Tr) is parametrized
with two sets which are called respectively the set of predicate symbols and the set of relation
symbols. Let s, t, u ∈ O(Σ), P ∈ Tp and R ∈ Tr. Expressions Ps, ¬Ps, tRu and t¬R are called
formulas. Formulas Ps and tRu are called positive and ¬Ps and t¬R are called negative.
Let F be a set of formulas. PF (F ) denotes the subset of positive formulas of F and NF (F )
denotes the subset of negative formulas of F .



A deduction rule d ∈ D has the form H
C
; with H a set of formulas, and C a positive

formula. Elements of H are called the hypothesis of d, and C is the conclusion of d. If the set
of hypothesis of a deduction rule is empty, it is called an axiom, and it will be denoted only
by its conclusion provided that no confusion arises. The notions of “substitution”, “var” and
“closed” extend to formulas and deduction rules as expected.

Note that arbitrary many premises are allowed in the set of hypotheses of a deduction
rule.

Example 2.1 As a running example, the operational semantics of the process algebra
PA [BK84, BW90] is presented. The signature contains constants a of a set A of atomic
actions, and four binary operators: the alternative composition (+), the sequential composition
(·), the parallel composition or merge (||) and the left merge (|| ). It is easy to see that the
above signature plus the deduction rules in Table 1 form a term deduction system. This
term deduction system has relations

a−→ and predicates
a−→√

for all a ∈ A. The intended
interpretation of x

a−→y is that a process x executes an action a and then behaves like y. The
intended meaning of x

a−→√
is that x terminates successfully after the execution of a.

a
a−→√ x

a−→x′

x · y a−→x′ · y
x

a−→√

x · y a−→y

x
a−→x′

x+ y
a−→x′ y + x

a−→x′
x

a−→√

x+ y
a−→√

y + x
a−→√

x
a−→x′

x||y a−→x′||y y||x a−→y||x′
x

a−→√

x||y a−→y y||x a−→y

x
a−→x′

x|| y a−→x′||y
x

a−→√

x|| y a−→y

Table 1: Operational rules for PA

In addition, notice that the set of operations ΣBPA = A∪{+, ·} together with the deduction
rules above the line in Table 1 form another term deduction system which will be called
BPA [BW90]. Yet another term deduction system is formed by the signature ΣMRG = A ∪
{+, ·, ||, || } plus the deduction rules below the line in Table 1. It will be called MRG since it
defines the operational semantics of the merge operators.

The following definition tells when a formula is provable from a term deduction system.

Definition 2.2 (Proof of a rule) Let T = (Σ, D) be a term deduction system. A proof of
a rule H

C
from T is a well-founded, upwardly branching tree of which the nodes are labelled

with formulas of T , such that:

1. the root is labelled with C, and



2. if φ is the label of a node q and F is the set of labels of the nodes directly above q, then

- either F = ∅ and φ ∈ H,

- or F
φ
is a substitution instance of a rule d ∈ D.

If a proof of H
C

from T exists, then H
C

is provable from T , notation T ⊢ H
C
.

Definition 2.3 Let T be a term deduction system. Let F (T ) be the set of all closed formulas
of T . Let PF (T ) be the set of all positive closed formulas over T . Let X ⊆ PF (T ) and
φ ∈ F (T ). Then X |= φ (read φ hols in X) is defined according to the form of φ by:

X |= sRt if sRt ∈ X,
X |= Ps if Ps ∈ X,
X |= s¬R if ∀t ∈ C(Σ) : sRt /∈ X,
X |= ¬Ps if Ps /∈ X.

The purpose of a term deduction system is to define a set of positive formulas that can
be deduced using the deduction rules. That is, one wants to talk about models for term
deduction systems. Moreover, one would like to work with the most representative model.
Meaning of transition system specifications was studied by Bol & Groote in [BG91] and more
widely by van Glabbeek in [Gla95]. In this article, the definition of well supported model or
stability is taken from [Gla95] although it was originally introduced in [BG91].

Definition 2.4 (Well supported model) Let T = (Σ, D) be a term deduction system and
let X ⊆ PF (T ) be a set of positive closed formulas. X is a well supported model T if

φ ∈ X ⇐⇒ there exists a closed rule H
φ
without positive hypotheses such that T ⊢ H

φ

and for all h ∈ H, X |= h

If T has a unique well supported model, it is denoted by S(T ).

Definition 2.5 (Source dependence) [Gla93a, FV95] Let d = H
C

be a deduction rule
where C has the form Pt or tRt′. The collection of source dependent variables SV (d) is
defined inductively as follows:

- var(t) ⊆ SV (d); and

- if sR′s′ ∈ H and var(s) ⊆ SV (d), then var(s′) ⊆ SV (d).

d is called source dependent if SV (d) = var(d). A term deduction system is called source
dependent if all of its rules are.

Example 2.2 The operational rules of PA are in path format [BV93] and they are source
dependent. As PA has only positive rules, it has a unique well supported model (see [Gla95]).



Many equivalences are definable in terms of relation and predicate symbols only. A com-
plete survey of interleaving semantics equivalences was made by van Glabbeek in [Gla90] (for
concrete processes) and [Gla93b] (for processes with abstraction). Equivalences for true con-
currency were also defined in that way, for instance, step bisimulation [NP84, Pom86] and
pomset bisimulation [BC88]. Besides, not only equivalences are defined in term of relation and
predicate symbols but also preorders. Examples of preorders are: simulation, n-nested simu-
lations [GV92], ready simulation [BIM88], the preorder for the degree of parallelism based on
pomset bisimulation of [Ace91], the “more distributed than” preorders of [Cas93] and [Yan93],
the preorder for unstable nondeterminism of [VB95] and the preorder of bisimulation with
divergence of [Abr87] and the ones of [Wal90].

Example 2.3 Simulation is defined for the PA terms as an example of preorders defined in
terms of relation and predicate symbols.

A binary relation S on the set of closed PA terms is a simulation if for all (s, t) ∈ S and
for all a ∈ A, the two following transfer properties hold:

- ∀s′ : s a−→s′ =⇒ ∃t′ : t a−→ t′ ∧ (s′, t′) ∈ S,

- s
a−→√

=⇒ t
a−→√

.

If there is a simulation S such that (s, t) ∈ S, then s is simulated by t, notation s⊂⇁t.

Some concepts of inequational specifications

Definition 2.6 (Inequational specifications) An inequational specification is a structure
(Σ, E) where Σ is a signature and E is a set of inequalities of the form s ≤ t where s, t ∈ O(Σ).
Sometimes, E also contains rules or conditional inequalities G ⇒ s ≤ t where G is a set of
inequalities. s = t is often written standing for s ≤ t and t ≤ s. The notion of “substitution”,
“var” and “closed” extend to inequalities as expected.

An inequational specification is indeed an equational specification. I chose such a name to
make clear that inequalities are explicitly managed and to relate the idea that their models
will be based in preorders instead of equivalences.

Definition 2.7 (Derivability) Let L = (Σ, E) be an inequational specification. Let s, t ∈
O(Σ). An inequality s ≤ t can be derived from E, notation E ⊢ s ≤ t, according to the
following definition

1. s ≤ t ∈ E implies E ⊢ s ≤ t;

2. for all substitutions σ : V → O(Σ), E ⊢ s ≤ t implies E ⊢ σ(s) ≤ σ(t);

3. let σ : V → O(Σ) and let G ⇒ s ≤ t ∈ E, if for all u ≤ v ∈ G, E ⊢ σ(u) ≤ σ(v) then
E ⊢ σ(s) ≤ σ(t);

4. for all f ∈ Σ with arity n, E ⊢ si ≤ ti for all i ∈ {1, . . . , n} imply E ⊢ f(s1, . . . , sn) ≤
f(t1, . . . , tn);

5. E ⊢ t ≤ t;

6. E ⊢ s ≤ t and E ⊢ t ≤ u implies E ⊢ s ≤ u.



Notice that the rule for symmetry is not included, and so, the equational specifications
one uses to manage are a particular case of inequational specifications. Actually, 1, 2 and 3
are enough to define derivability. 4, 5 and 6 may be rules (and axioms) in E and, moreover,
they could not be present.

Example 2.4 The signature of PA together with the axioms in Table 2 form an inequational
specification. It will be called PA≤. In addition, two inequational specifications more are con-
sidered: the signature of BPA together with axioms in the left column form the inequational
specification BPA≤, and the signature of MRG together with axioms in the right column form
the inequational specification MRG≤.

A1 x+ y = y + x M1 x||y = x|| y + y|| x
A2 x+ (y + z) = (x+ y) + z M2 a|| x = a · x
A3 x+ x = x M3 a · x|| y = a · (x||y)
A4 (x+ y) · z = x · z + y · z M4 (x+ y)|| z = x|| z + y|| z
A5 (x · y) · z = x · (y · z)

SM x ≤ x+ y MP x · y ≤ x||y

Table 2: Axioms of PA≤

Axioms A1 to A5 and M1 to M4 are the well known axioms for the PA process alge-
bra [BK84, BW90]. SM is the axiom of simulation; it is often used for theoretical reasons in
process algebra theory (for instance it was used for proving completeness of BPA. See [BW90]).
MP stands for “more parallel” and introduces the idea that x||y has a “more parallel be-
haviour” than x · y. For closed terms, MP can be deduced by induction from the other
axioms.

Definition 2.8 (Algebras and axiomatizations) An algebra is a set A of elements to-
gether with certain functions over A of arity n ≥ 0.

Let Σ be a signature. A Σ-algebra A is an algebra within a function for each function
symbol in Σ with the same arity. Such a correspondence is called an interpretation. The notion
of “interpretation” extends to closed terms as expected and for t ∈ C(Σ), [[t]] denotes the
interpretation of t in A. Interpretation extends also to open terms by universally quantifying
the variables.

Let L = (Σ, E) be an inequational specification. Let A be a Σ-algebra with A being the
set of elements. Let � be a preorder on A that preserves all functions in A, i.e., � is a
precongruence on A. E is a sound inequality axiomatization with respect to � of A if for all
s, t ∈ O(Σ),

E ⊢ s ≤ t =⇒ [[s]] � [[t]].

Moreover, if for all closed terms s, t ∈ C(Σ)

E ⊢ s ≤ t ⇐⇒ [[s]] � [[t]]

E is called a complete inequality axiomatization with respect to � for A.



Example 2.5 It is not difficult to see that ⊂
⇁ is a precongruence for PA. In order to prove

that PA≤ is a sound inequality axiomatization with respect to the ⊂
⇁ model induced by the

PA term deduction system, it is enough to prove that for every axiom s ≤ t of PA≤ with free
variables in V , the relation

S = {(σ(s), σ(t))|σ substitutes variables in V to closed terms} ∪ Id

is a simulation.
Moreover, BPA≤ is a complete inequality axiomatization with respect to the ⊂

⇁ model
induced by the BPA term deduction system. The proof of this is quite similar to the proof of
completeness of BPA with respect to bisimulation (see [BW90]).

3 The conservative extension theorems

This section is devoted to states several results of conservative extension. The general con-
servative extension theorem of [Ver94b] is extended to deal with preorders and inequational
specifications.

Definition 3.1 Let Σ0 and Σ1 be two signatures. If for all f ∈ Σ0 ∩ Σ1 the arity of f in Σ0

is the same as the arity of f in Σ1 then Σ0 ⊕ Σ1, called the sum of Σ0 and Σ1, is defined as
the signature Σ0 ∪Σ1. Note that ⊕ is not simply the union of two signatures since sometimes
it is not defined.

Definition 3.2 Let Ti = (Σi, Di) be term deduction systems with predicate and relation
symbols in T i

p and T i
r respectively (i = 0, 1). Let Σ0 ⊕ Σ1 be defined and let T 0

p ∩ T 1
r =

T 0
r ∩ T 1

p = ∅. Then T0 ⊕ T1, called the sum of T0 and T1, is the term deduction system
(Σ0 ⊕ Σ1, D0 ∪D1) with predicate and relation symbols T 0

p ∪ T 1
p and T 0

r ∪ T 1
r .

Example 3.1 ΣBPA ⊕ ΣMRG is defined and equals to the signature of PA which is the same
as ΣMRG. Moreover, the term deduction system PA equals to BPA⊕MRG.

Operational conservativity

This paragraph defines the notions of operational conservative extension and operational
conservative extension up to some preorder which is defined in terms of predicate and relation
symbols.

The following definition is adapted from [BG91] and based on [FV95] which is given below
with the name of weak operational conservative extension.

Definition 3.3 (Operational conservative extension) Let Ti = (Σi, Di) be term deduc-
tion systems with T = (Σ, D) = T0 ⊕ T1 defined and let D = D(Tp, Tr). The term deduction
system T is an operational conservative extension of T0 if it has S(T ) as unique well supported
model and S(T0) = {Ps, sRt ∈ S(T )|s ∈ C(Σ0), P ∈ Tp, R ∈ Tr} is the unique well supported
model of T0.

Definition 3.4 (Weak operational conservative extension) Let Ti = (Σi, Di) be term
deduction systems with T = (Σ, D) = T0 ⊕ T1 defined and let D = D(Tp, Tr). The term
deduction system T is a weak operational conservative extension of T0 if for each well supported
model X of T the set {Ps, sRt ∈ X|s ∈ C(Σ0), P ∈ Tp, R ∈ Tr} is a well supported model of
T0.



Weak operational conservative extension cannot be used in the context of this study since
it does not consider unique model. The problem of multiple models is that a preorder defined
in terms of predicate and relation symbols may relate different closed terms in each model
and this fact can introduce inconsistency of axiomatizations.

The following definition and the next theorem originate in this article. They are the
generalization for preorders of the case of operational conservativity up to an equivalence
given by Verhoef [Ver94b].

Definition 3.5 (Operational conservative extension up to a semantical preorder)
Let Ti = (Σi, Di) be term deduction systems and let T = (Σ, D) = T0⊕T1 defined. Let ξ be a
semantic preorder defined in terms of predicate and relation symbols only. T is an operational
conservative extension of T0 up to ξ preorder if for all s, t ∈ C(Σ0), s �⊕

ξ t ⇐⇒ s �0
ξ t.

Theorem 3.1 (Conservation of operational conservativity) Let Ti = (Σi, Di) be term
deduction systems and let T = (Σ, D) = T0 ⊕ T1 defined. If T is an operational conservative
extension of T0, then it is also an operational conservative extension up to ξ preorder, for any
preorder ξ defined in terms of predicate and relation symbols only.

Proof. (Sketch) Let s, t ∈ C(Σ0). Since T is an operational conservative extension of T0, the
state-transition diagrams (or better: the term-relation-predicate diagrams) of s in both T and
T0 are the same, and so are the term-relation-predicate diagrams of t. Let ξ be a preorder
defined in terms of relation and predicate symbols. Because �⊕

ξ is defined in the same way for

relation and predicate symbols in T0 as �0
ξ , and the term-relation-predicate diagrams of s and

t are the same in both term deduction systems, s �0
ξ t implies s �⊕

ξ t. The counterpositive is
analogously proved.

Groote & Vaandrager [GV92] gave a first theorem for operational conservative extension
in positive transition system specifications. Bol & Groote introduced in [BG91] a set of con-
ditions that ensure conservativity in transition system specifications with negative premises.
Verhoef did the same for stratifiables term deduction systems in [Ver94b]. The next conser-
vative extension theorem was introduced by Fokkink & Verhoef in [FV95].

Theorem 3.2 (Weak operational conservativity) Let T0 = (Σ0, D0) and T1 = (Σ1, D1)
be two term deduction system satisfying:

1. T0 is source dependent, and

2. if there is a conclusion sRs′ or Ps of a rule d ∈ D1 with s = x or s = f(x1, ..., xn)
for an f ∈ Σ0, then, there is a hypotheses of d which has the form P ′t or tR′u where
P ′ /∈ T 0

p , R
′ /∈ T 0

r or u /∈ O(Σ0), t ∈ O(Σ0) and var(t) ⊆ SV (d).

If T0 ⊕ T1 is defined then it is a weak operational conservative extension of T0.

Proof. [FV95]

As a corollary of this theorem, yet another operational conservative extension theorem is
introduced.



Theorem 3.3 (Operational conservativity) Let T0 = (Σ0, D0) and T1 = (Σ1, D1) be two
term deduction systems satisfying statements 1. and 2. of Theorem 3.2 and, in addition,

3. T0 has unique well supported model.

If T0 ⊕ T1 is defined and it has unique well supported model, T0 ⊕ T1 is an operational con-
servative extension of T0.

Proof. Immediate from Definition 3.3 and Theorem 3.2

The theorem is somehow more general than the one of [BG91]. [BG91] requires that
for every rule H

tRu
∈ D1, t is not in O(Σ0), and moreover, T0 ⊕ T1 should be positive after

reduction. Theorem 3.3 is more relaxed about the form of the new rules, and, in addition,
a term deduction system may be not reducible to a positive one but may have a unique
well supported model (see [Gla95]). However, the statement 3 cannot be omitted while no
analogous one is required in [BG91]. I decided to pay this cost for two reasons: first, conditions
1 and 2 are quite more general than that proposed by [BG91], and second, in the context
proposed by this article, one already knows whether condition 3 holds.

Example 3.2 It is easy to see that BPA and MRG satisfy the conditions of theorem 3.3.
Thus PA is an operational conservative extension of BPA. Moreover, because of theorem 3.1,
PA is an operational conservative extension up to simulation preorder.

Inequational conservativity

This last paragraph states the general conservative extension for inequational specifications.

Definition 3.6 Let Li = (Σi, Ei) be inequational specifications (i = 0, 1). Let Σ0 ⊕ Σ1 be
defined. L0 ⊕ L1 is the sum of L0 and L1 defined as the inequational specification (Σ0 ⊕
Σ1, E0 ∪ E1).

Example 3.3 Notice that BPA≤ ⊕MRG≤ forms PA≤.

Definition 3.7 (Inequational conservative extension) Let Li = (Σi, Ei) be inequational
specifications (i = 0, 1) and let L = (Σ, E) = L0 ⊕ L1 be defined. L is an inequational con-
servative extension of L0 if for all s, t ∈ C(Σ0)

E ⊢ s ≤ t ⇐⇒ E0 ⊢ s ≤ t.

If for all s ∈ C(Σ) there is a t ∈ C(Σ0) such that E ⊢ s = t, then L has the elimination
property .

Theorem 3.4 (The general conservative extension theorem) Let Li = (Σi, Ei) be in-
equational specifications and let L = (Σ, E) = L0 ⊕ L1 be defined. Let Ti = (Σi, Di) be term
deduction systems and let T = (Σ, D) = T0 ⊕ T1 be defined. Let ξ be a preorder definable
exclusively in terms of predicate and relation symbols. Let E0 be a complete inequality axiom-
atization with respect to the ξ preorder model induced by T0 and let E be a sound inequality
axiomatization with respect to the ξ preorder model induced by T . If T is an operational con-
servative extension up to ξ preorder of T0, then L is an inequational conservative extension
of L0.

Moreover, if L has the elimination property, E is a complete inequality axiomatization with
respect to the ξ preorder model induced by T .



Proof. The proof that for all s, t ∈ C(Σ0), E0 ⊢ s ≤ t =⇒ E ⊢ s ≤ t is trivial. Now, let
s, t ∈ C(Σ0) and suppose E ⊢ s ≤ t. Since E is sound, s �⊕

ξ t. Because T is an operational

conservative extension up to ξ preorder of T0, s �0
ξ t. Finally, E0 ⊢ s ≤ t since E is complete

with respect to ξ. So E is an inequational conservative extension of E0

Now, suppose moreover that L has the elimination property. Let s, t ∈ C(Σ) such that
s �⊕

ξ t. Then, there are s′, t′ ∈ C(Σ0) such that E ⊢ s = s′ and E ⊢ t = t′. Since E is sound,

s′ ≍⊕
ξ s �⊕

ξ t ≍⊕
ξ t′, where ≍⊕

ξ stands for �⊕
ξ ∩ �⊕

ξ . So, it is enough to prove that E ⊢ s′ ≤ t′,

but T is an operational conservative extension of T0 up to ξ preorder, so s′ �0
ξ t

′ and, because
E0 is complete, E0 ⊢ s′ ≤ t′ which trivially implies E ⊢ s′ ≤ t′.

Example 3.4 Example 2.5 states that BPA≤ is complete with respect to ⊂
⇁ for BPA and

PA≤ is sound with respect to ⊂
⇁ for PA. Since, in addition, PA is an operational conser-

vative extension up to ⊂
⇁ of BPA, PA≤ is an inequational conservative extension of BPA≤.

Moreover, because PA≤ has the elimination property (see [BW90]), it is a complete inequality
axiomatization with respect to ⊂

⇁ of PA.

4 Further remarks

Applications

Voorhoeve & Basten introduced in [VB95] a preorder for unstable nondeterminism. They
dealt with a set of autonomous actions which can be regarded as observable actions that
somehow behaves as the silent step. Several algebras were defined there. BPAδaa

≤ is the
basic process algebra with deadlock and autonomous actions. They used results in this article
to extend BPAδaa

≤ with the parallel operator, obtaining thus ACPaa≤. Moreover, since
ACPaa≤ has the elimination property, completeness was proved using results introduced
below. In addition, they added the binary Kleene star [BBP94] to both theories. Since
BPA⋆

δaa
≤ and ACP⋆aa≤ are sound, and the respective term deduction systems satisfy the

conditions of Theorem 3.3, operational and inequational conservative extension can be also
proved. Figure 1 shows this overview. There, an arrow A ✲ B means that A is both an
operational conservative extension and an inequational conservative extension of B, and that
it can be shown by using results in this article.

BPA⋆
δaa

≤ ACP⋆aa≤

BPAδaa
≤ ACPaa≤

❄ ❄

�
�

�
�

�✠
✛

Figure 1: Conservative extension in algebras for Voorhoeve & Basten’s preorder

Perhaps, the reader expected the arrow BPA⋆
δaa

≤ ✲ ACP⋆aa≤. In this case only op-
erational conservative extension can be proved using results in this articles (and so oper-
ational conservative extension up to the preorder). Since BPA⋆

δaa
≤ is not complete (see

[Sew93, VB95]) Theorem 3.4 cannot be used.



Walker introduced in [Wal90] a complete (but non finite) axiomatization for a preorder
that extends τ bisimulation with divergence. Now, I sketch some proofs of conservativity and
completeness using the results in this article. Let ST be the algebra of synchronization trees
with Milner’s τ laws [Mil89]. The signature of ST has prefixing operators, the alternative
composition and the nil process. Let CCS be the well known calculus of Milner [Mil89] that
extends ST with renaming, restriction and parallel composition, and the expansion laws. Let
ST⊥ and CCS⊥ the respective extensions of ST and CCS including the divergence operator
with the laws for divergence given in [Wal90]. It is worthy to remark that for all CCS term
Walker’s preorder agrees with rooted τ bisimulation [Wal90].

Again, by looking at the term deduction systems and knowing that all the theories are
sound and particularly ST and ST⊥ are complete, theorems of this article can be applied and,
by interpreting arrows as before, Figure 2 is obtained as a result. In addition, since ST is

ST⊥ CCS⊥

ST CCS
❄ ❄

�
�

�
�

�✠

✛

✛

• ••

Figure 2: Conservative extension in algebras for Walker’s preorder

complete for the preorder, CCS is also complete because the new operators can be eliminated.
Similarly, CCS⊥ is complete since ST⊥ is complete and CCS⊥ has the elimination property.
Nevertheless, nor ST⊥ neither CCS⊥ have the elimination property with respect to ST or
CCS.

Moreover, it deserves to notice that the results labelled with a • are new in this article.

Conclusions

This article extended the general conservative results of [Ver94b] with respect to preorders
for transition system based process theories with inequalities. It only required reasonable
and easy-to-check conditions. As a simple corollary, a general completeness theorem for
inequational specifications was proved.

As it was explained above, the results of this article were already applied in [VB95]. Be-
sides, an example was taken from the literature and results of conservativity and completeness
were recreated. In addition, some new results on these examples were quickly proved by means
of the techniques introduced here.

The use of preorders and inequational specifications is not so widely diffused as equiva-
lences and equational specifications; perhaps it is due to the fact that they are more difficult
to manage. However, results presented here above seem to make it easier.

References

[Abr87] Samson Abramsky. Observation equivalence as a testing equivalence. Theoretical Computer
Science, 53:225–241, 1987.



[Ace91] Luca Aceto. On relating concurrency and nondeterminism. In S. Brookes, M. Main,
A. Melton, M. Mislove, and D. Schmidt, editors, Proceedings of Mathematical Foundations
of Programming Semantics, 7th. International Conference, pages 376–402, Pittsburgh, 1991.
LNCS 598, Springer-Verlag.

[BBP94] J.A. Bergstra, I. Bethke, and A. Ponse. Process algebra with iteration and nesting. The
Computer Journal, 37(4):241–258, 1994.

[BC88] G. Boudol and I. Castellani. Concurrency and atomicity. Theoretical Computer Science,
59:25–84, 1988.

[BG91] R.N. Bol and J.F. Groote. The meaning of negative premises in transition system specifica-
tions. In J. Leach Albert, B. Monien, and M. Rodŕıguez Artalejo, editors, Proceedings 18th.
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