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Abstract

In this paper we are interested in the semantics of reactive systems. We deal with the family

of priority operators induced by partial orders over the set of actions. We study the compatibility

of these operators with regards to semantic equivalences on labelled transtion systems.

Our main result is that n-nested simulation equivalence is not a congruence for this family of

operators [GV89]. We show that the coarsest congruence contained in this equivalence is strictly

coarser than n + 1-nested simulation equivalence.

Finally ready-simulation equivalence [BIM88, Gla90] is shown to be a congruence for priority

operators.

1 Introduction.

In this paper we are interested in the semantics of reactive systems [Pnu85]. These systems, whose

classic examples are industrial control systems, drivers of computer networks and components of op-

erating systems, are mainly characterized by the fact that they can be described as maintaining an

interaction with their environment.

It is not suitable for these programs to be represented as a function or a relation that can be

calculated, as is the case in many other systems which thus get the name of functional or relational

systems. An example of these are the traditional programs of numeric calculus, compilers and all of

which the interaction with the environment can be seen as a unique point of input and a unique point

of output.

The most commonmodels for reactive systems are based in labelled transition systems (LTS) [Kel76].

These are directed graphs where nodes represent states and edges represent transitions between states,

labelled by actions over which the interaction of the system with the environment is based.

The popularity of the LTS is due to their simplicity, gra�c representation, easiness to de�ne op-

erations which represent the usual constructors of reactive systems (alternative composition, parallel

composition, comunication and priority among others) and the existence of a simple technique, Struc-

tured Operational Semantics [Plo81] to give semantics over the LTSs to a programming language (not

necessarily reactive) [Hen90].
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Many simple languages, called process description languages, have been proposed for reactive sys-

tems. For example CCS [Mil80, Mil89], CSP [BHR84, Hoa85] and ACP [BK85, BW90], all of which

posses semantics based on LTSs.

In general LTS cannot be used directly to give semantics to a language because they are too concrete.

For example they make a distinction between systems a and a+ a, represented in Example 1.1, which

have the same behaviour: both start executing the action a and �nish inmediately after.

Example 1.1

G

1

p

?p

a

a

G

2

p









�

a

p

J

J

JĴ

a

p

a + a

The usual technique to deal with this problem of low level of abstraction is to give the semantics

in two steps. First associate the system to an LTS (its concrete semantics) and then consider the set

of LTS module a relation of equivalence (called semantic equivalence). In this way we associate an

equivalence class of the LTS to the system. This class is the abstract semantics. Numerous semantic

equivalences have been proposed. Within the most popular are traces [OH83], failure [BHR84] and

bisimulation equivalence [Par81]. An extensive study comparing these equivalences can be found

in [Gla90] and [Gla93].

The choice of the semantics in two steps demands a little care when de�ning the operations and

equivalences to be used. This is due to the fact that, in general, the semantics of the constructors of

languages are given as operations over the LTS. For each semantic equivalence it is necessary to ask

whether these constructors continue to have sense in the equivalence classes. In other words, if we

have an operator � over the LTS which adecuately represents a certain construction of a language and

we are interested in the semantic equivalence �: could we lift the operation � from the LTS to the

equivalence class given by �?

It is enough to prove that the equivalence � is a congruence for the operator �, that is: if G

1

� G

2

then �(G

1

) � �(G

2

). This property is also known as compatibility of the operator with the equivalence,

and intuitively tells us that if two LTSs belong to the same equivalence class their images through the

operator remain together. In other words, two equivalent systems should remain equivalent after the

application of the operator.

As we can see, being a congruence for the considered operations is a natural condition and in fact,

necessary to use the equivalence within the LTS as semantic equivalence.

A well known family of operators within the LTS is the family of priority operators. The aplication

of a priority operation consists of, cutting the options of \low priority" in alternative compositions.

Up to our knowledge this family of operators appeared for the �rst time in the literature of reactive

systems in [BBK86]. Formally a priority operator is associated to a partial order, the priority order,

within the set of actions. When applied to an LTS, the labels are considered of all outgoing transitions,

and for each state only the transitions with �-maximal labels are preserved.

It is well known that bisimulation is a congruence for the family of priority operators [BBK86,

BBK85]. It is also known that neither trace equivalence, nor failure equivalence are congruences

for them [BBK85], and that the coarsest congruence for priority contained in these is ready-trace

equivalence [BBK85]. A more extensive study of the relation within the usual semantics and the

family of priority operators can be found in [Per94].

In this paper we are interested in the relation between the priority operators in the LTS and certain



equivalences found between ready-trace and bisimulation equivalence: ready-simulation [BIM88, Gla90]

and the family of n-nested simulation equivalences [GV89].

The n-nested simulations (for n = 0; 1; :::) form a secuence of equivalences which become strictly

�nner when n grows. They extend from simulation, coinciding with 1-nested simulation, to bisim-

ulation: Two �nitely branching LTSs are bisimilar only if they are n-nested similar for an n large

enough. Intuitively two systems are bisimilar when they can succesfully participate of a re�ned game

of imitation (in a very precise sense) which allows the participants to interchange, at any time of the

game and any number of times, the roles of imitator and imited. In the same context, two systems are

n-nested similar when they can participate succesfully of the same game in the case that the number

of interchanging of roles is limited to a maximun of n � 1.

As bisimualtion, n-nested simulations posses a very simple characterization in logic HML [HM85]:

it is easy to prove that two �nitely branching LTSs are n-nested similar if and only if they satisfy

exaclty the same HML formulas with at most n� 1 nested negations [GV89].

Finally, 2-nested simulation plays an important role in the theory of Structured Operatioanl Se-

mantics [Plo81]. In [GV89] this equivalence is shown to be the coarsest congruence with respect to a

large family of operators contained in completed trace equivalence. This operators can be de�ned in

tyft/tyxt format .

In this paper three original results are presented.

The main result is that none of the n-nested simulations are congruences for the priority operators.

This was unexpected to the authors because, from n = 2, these equivalences are �nner than ready-

simulation and thus \posses all the necessary information" to behave correctly with respect to priority.

The second is the study of the coarsest congruences for the priority operators contained in the

n-nested simulations. We show that these n-nested congruences are placed between the n-nested and

the n + 1-nested simulations.

The last result is that ready-simulation equivalence is a congruence for the family of priority oper-

ators.

Some immediate observations can be made from this results. The �rst is that n-nested simulations

cannot be considered semantic equivalences, at least in contexts where priority operations have sense.

The second is related to Structured Operational Semantics: as priority operators are not compatible

with 2-nested simulation, they cannot be represented in tyft/tyxt format . Finally, the place of n-nested

congruences, in the semantic lattice over the LTS, tells us that a new structure exists in this area that

is worth studying.

The structure of this paper is as follows. The section 2 is dedicated to basic notions and presentation

of the notation. It deals with the notion of LTS, the de�nitions of the semantic equivalences, the

characterization of these equivalences in a logical way and the presentation of the family of priority

operators. Also some well known results are mentioned. Section 3 contains the contribution to this

paper. It begins with the result of congruence for ready-simulation. Afterwards shows that n-nested is

not a congruence for the priority operators and �nishes stating the relation of the n-nested congruences

with known equivalences. We conclude in section 4 presenting some consecuences of these results and

perspectives of further work.

2 Notions of LTS, semantic equivalences, formulas and

priority operators.

This section is divided into four parts: the �rst part 2.1, dealing with the de�nition and notation of

the LTS. Part 2.2 recalls the equivalences used. Part 2.3 explains the basics of HML logic. And the

last part 2.4 introduces the priority operators.



2.1 LTS.

We give the semantic model, the Labelled Transition Systems [Kel76]. Over this model we de�ne the

di�erent semantic equivalences.

De�nition 2.1.1 A labelled transition system (LTS) is a structure G = (S; i; Act;�!) where S is a

set of states with inicial state i, Act is the alphabet of actions, and �!� S � Act� S, the transition

relation. Elements (p; a; q) 2�!, notation p

a

�!q, are called transitions.

The set of initial actions of a state is de�ned by: I(p) = fa 2 Act : 9q:p

a

�!qg. An LTS is image

�nite if for all p 2 S and a 2 Act the set fq : p

a

�!qg is �nite. All the LTSs considered through this

paper are image �nite. Let us use C

LTS

to denote the set of LTSs.

In order to provide some examples along the paper it is usefull to have a sintax for LTS. We use a

small part of CCS [Mil80, Mil89], just with combinators nil (0), pre�xing (a: ) and non-deterministic

choice ( + ). 0 represents the LTS with one state and no arrows; a:p adds to p an initial state and an

arrow labelled a to connect to it; p + q identi�es the initial states of the given of p and q into a new

one.

2.2 Equivalences.

Intuitively an LTS simulates another when a strategy can be found that allows the �rst LTS to imitate

the evolution of the second. This strategy, called simulation, is a set of pairs (p; q), implying state p

can imitate the evolutions of state q in a very precise sense.

De�nition 2.2.1 (Simulation) Given G

1

;G

2

2 C

LTS

, where G

1

= (S

1

; i

1

; Act;�!

1

) and G

2

=

(S

2

; i

2

; Act;�!

2

). A simulation R � S

1

� S

2

from G

1

to G

2

, notation R : G

1

�

+

G

2

, is a binary re-

lation satisfying i

1

Ri

2

and

if pRq and p

a

�!

1

p

0

, then 9q

0

: q

a

�!

2

q

0

and p

0

Rq

0

An LTS G

1

is simulated by G

2

, notation G

1

�

+

G

2

if there exists R : G

1

�

+

G

2

. We say that G

1

and G

2

are similar, notation G

1

*

)
G

2

, if G

1

�

+

G

2

and G

2

�

+

G

1

.

That is, two LTSs are similar if a strategy can be found for each LTS to imitate the other. These

two strategies need not be simetric. So the pair (p; q) means that p can imitate q but not necessarily

q can imitate p. In general, the roles of the imitator state (p) and the imited state (q) are not inter-

changable. This is the case only in the initial state of the LTS, where the roles of imitator and imited

are assigned and thus, the strategy to be used is chosen.

Example 2.2.2 In this example we have G
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JĴ

c

pp

?p

d

p

?p

d

p

?p

c

p

?p

d

a(bd+ cd) + acd

G

3

p









�

a

p

J

J

JĴ

a

pp

?p

b

p

?p

d

p

?p

c

p

?p

d

abd+ acd



Allowing the interchangeability of roles at any moment a �nner equivalence, the bisimulation [Par81],

is obtained. This interchange can be done as many times as desired along the imitation game. It is

enough to ask for both simulations to coincide, in the sense that every pair (p; q) means p simulates q

and q simulates p.

De�nition 2.2.3 (Bisimulation) Given G

1

;G

2

2 C

LTS

. A bisimulation R : S

1

� S

2

between G

1

and

G

2

, notation R : G

1

$

G

2

is a binary relation satisfying R : G

1

�

+

G

2

and R

�1

: G

2

�

+

G

1

.

G

1

and G

2

are bisimilar, notation G

1

$

G

2

, if there exists R : G

1

$

G

2

.

It is well known that bisimulation equivalence is strictly �nner than simulation. Note that the

similar LTSs of Example 2.2.2 are not bisimilar. Two bisimilar LTSs are shown in Example 2.2.4.

Example 2.2.4
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An interesting family of equivalences that can be found between simulation and bisimulation are the

n-nested equivalences. These equivalences are de�ned by allowing only a limited number of changes of

roles. For each natural n, arises the notion of n-nested simulation [GV89] where roles can be exchanged

n� 1 times along the imitation game.

De�nition 2.2.5 (n-nested simulation) Given G

1

;G

2

2 C

LTS

, such that G

1

= (S

1

; i

1

; Act;�!

1

)

and G

2

= (S

2

; i

2

; Act;�!

2

). An n-nested simulation R � S

1

�S

2

from G

1

to G

2

, notation R : G

1

�

+

n

G

2

,

is a relation satisfying:

1. R : G

1

�

+

0

G

2

i� i

1

Ri

2

2. R : G

1

�

+

n+1

G

2

i� R : G

1

�

+

G

2

^ 9Q : G

2

�

+

n

G

1

with R

�1

� Q

G

1

is n-nested simulated by G

2

, notation G

1

�

+

n

G

2

, if there exists R : G

1

�

+

n

G

2

.

G

1

and G

2

are n-nested simulation equivalent, notation G

1

*

)

n

G

2

, if G

1

�

+

n

G

2

and G

2

�

+

n

G

1

.

Notice that if we reinforce, in this de�nition, the condition of \being contained" with \coincide"

we obtain bisimulation. Also note that

*

)

1

coincides with

*

)
.

Example 2.2.6 ([GV89]) The following LTSs are 2-nested equivalent.
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Let I be the identity relation. Take R

1

= I [ f(a(a(b + c) + ab); a(a(b + c) + ab) + aa(b + c))g,

R

2

= R

�1

1

[ f(a(b+ c) + ab; a(b+ c))g. And S

1

= R

2

, S

2

= S

�1

1

[ f(b; b+ c)g.

For every n we get di�erent equivalences, �nner when n grows and all of them strictly coarser than

bisimulation (the LTSs in Example 2.2.6 are not bisimilar). The next example generalizes Example 2.2.6

to obtain, for each n, a pair of n-nested equivalent LTSs (in Example 2.3.4 we show that they are not

n+ 1-nested equivalent).

Example 2.2.7 In [GV89] the LTSs of Example 2.2.6 are generalized to G

n

1

and G

n

2

, in order to obtain

G

1

*

)

n

G

2

and G

1

6

*

)

n+1

G

2

for n � 2.

LTSs G

n

1

and G

n

2

are obtained by terms s

n

and t

n

de�ned for m � 0 by:

s

0

= b t

0

= b+ c

s

m+1

= a:t

m

t

m+1

= a:s

m

+ a:t

m

s

m+1

p

Z

Z

Z

Z~p
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p�

�

�

�>

p

a

t

m+1

p
-

a

s

m

p

Z

Z

Z

Z~p

a

p�

�

�

�>

p

a

t

m

p
-

a

: : :

s

2

p

Z

Z

Z

Z~p

a

p�

�

�

�>

p

a

t

2

p
-

a

s

1

p

Z

Z

Z

Z~p
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p�

�
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�>

p

a

t

1

p
-

a

s

0

p -p

p

b

p�

�

�

�>

p

b

t

0

p
-

c

Another equivalence mentioned in the literature is ready-simulation [BIM88]. It is a re�nement of

simulation, where we ask for the preservation of initial actions.

De�nition 2.2.8 (Ready-simulation.) Let G

1

;G

2

2 C

LTS

. A ready-simulation R : S

1

� S

2

from G

1

to G

2

, notation R : G

1

�

+

R

G

2

, is a simulation R : G

1

�

+

G

2

satisfying: if pRq then I(p) = I(q).

An LTS G

1

is ready-simulated by G

2

, notation G

1

�

+

R

G

2

, if there exists R : G

1

�

+

R

G

2

. G

1

and G

2

are

ready-simulation equivalent, notation G

1

*

)

R

G

2

if G

1

�

+

R

G

2

and G

2

�

+

R

G

1

.

Ready-simulation requires the set of inicial actions to be the same on the two simulated processes

but, as simulation, does not allow the interchange of roles.

Ready-simulation equivalence is between simulation (the LTSs G

1

and G

2

in Example 2.2.2 are similar

but not ready-similar) and bisimulation.

Note that for n � 2,

$

�

*

)

n+1

�

*

)

n

�

*

)

R

�

*

)
.

2.3 HML logic.

All the equivalences we already saw can be characterized very simply in the Hennessy and Milner logic.

In this framework is that we base most of our proofs.

De�nition 2.3.1 (HML logic [HM85]) The set L

HML

of Hennessy-Milner logic (HML) formulas

(over a given alphabet set fa; b; : : :g) is given by the grammar: � ::= T j � ^ � j :� j hai�

The satisfaction relation j=� S �L

HML

is de�ned in the standard way:



� p j= T , for every p.

� p j= ' ^  i� both p j= ' and p j=  .

� p j= :' i� p 6j= '.

� p j= hai' i� there exists a p

0

such that p

a

�!p

0

and p

0

j= '.

By L

i

� L

HML

, i � 0 we understand the set of HML formulas which contain at most i�1 (nested)

occurrences of :.

De�nition 2.3.2 (Equivalence relation induced by a logic) Let � be a set of HML formulas.

With �

�

we denote the equivalence relation in C

LTS

induced by �:

G

1

�

�

G

2

def

, (8� 2 � : i

1

j= �, i

2

j= �)

Where i

1

and i

2

correspond to the initial states of G

1

and G

2

.

We call this relation �-formula equivalence.

Using subsets of L

HML

we can characterize the equivalences de�ned in this section.

The �rst result, owed to Hennessy and Milner, was on bisimulation and afterwards extended to the

rest of the equivalences (see [HM80, GV89]).

Theorem 2.3.3 (Equivalences in HML) Given G

1

and G

2

image �nite LTSs. Then: G

1

$

G

2

,

G

1

�

L

HML

G

2

, G

1

*

)

n

G

2

, G

1

�

L

n

G

2

and G

1

*

)
G

2

, G

1

�

L

1

G

2

.

A similar result can be found for ready-simulation using a simple extension of HML [BIM88, Gla90].

Example 2.3.4 Back to the G

n

1

and G

n

2

of Example 2.2.7 we can see that the LTSs are not bisimilar,

not even n+ 1-nested equivalent.

Using f

1

= hciT and f

n+1

= hai:f

n

we have a formula f

n

2 L

n

: G

n

2

j= f

n+1

and G

n

1

6j= f

n+1

.

Thus, G

n

1

6

*

)

n+1

G

n

2

. As f

n+1

2 L

HML

we also have G

n

1

6

$

G

n

2

.

2.4 Priority operators.

The family of priority operators �

�

are well known in the literature of LTS [BBK85, BBK86, BW90].

Each operator �

�

is associated to a partial order � on Act (a > b meaning a has priority over b). The

application of a priority operation consists of cutting transitions of \low priority". That is, for each

state of the LTS the outgoing transitions are considered and only the �-maximal are maintained.

De�nition 2.4.1 (Priority operator) Given an LTS G = (S; i; Act;�!), for each partial order �

on Act, we de�ne a priority operator �

�

: C

LTS

! C

LTS

by:

�

�

(S; i; Act;�!) = (S; i; Act; fp

a

�!q : p

a

�!q ^ 8b:p

b

�! implies b 6> ag)

We use � instead of �

�

when there is no ambiguity.

Example 2.4.2 We show G and �

�

(G), with � de�ned by fa > d; b > c; f > gg.
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JĴ

d

p

p

?p

c

p









�

f

p

A

A

AU

g

p

p

?p

f

p

?p

h

a(b(f + g) + ch+ df)

�(G)

p

?p

a

p









�

b

p

J

J

JĴ
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3 n-nested simulation equivalence is not a congruence for the

priority operator.

This section contains the contributions of this paper. In part 3.1 we prove that ready-simulation is a

congruence for the priority operators and that this is not the case for n-nested simulation. Part 3.2

studies the coarsest congruence for priority operators contained in n-nested simulation.

3.1 Ready-simulation and n-nested simulation.

When introducing operators in a model it is natural to ask for congruence results for the di�erent

semantic equivalences.

De�nition 3.1.1 (Congruence) Given G

1

;G

2

2 C

LTS

, we say that an equivalence � is a congruence

for the operator � : C

LTS

! C

LTS

i� G

1

� G

2

) �(G

1

) � �(G

2

).

It is well known that simulation is not a congruence for the priority operators. On the contrary,

bisimulation is known to be one. The following results show that ready-simulation is also a congruence

for this operators whereas n-nested simulation is not.

Theorem 3.1.2 Let G

1

;G

2

2 C

LTS

and a priority operator �. If R : G

1

�

+

R

G

2

then R : �(G

1

)

�

+

R

�(G

2

).

Corollary 3.1.3 (Ready-simulation is a congruence for the priority operators) Given G

1

;G

2

2 C

LTS

: G

1

*

)

R

G

2

) �(G

1

)

*

)

R

�(G

2

)

Theorem 3.1.4 n-nested is not a congruence for the priority operators

Proof: We take from Example 2.2.7 the LTSs G

n

1

;G

n

2

which are n-nested similar. And � with the

partial order fc > bg. It is easy to see that �(G

n

1

) 6

*

)

n

�(G

n

2

). �(G

n

1

) and �(G

n

2

) correspond to terms s

0

n

and t

0

n

respectively.

s

0

0

= b t

0

0

= c

s

0

n+1

= a:t

0

n

t

0

n+1

= a:s

0

n

+ a:t

0

n

Then we give formulas f

n

2 L

n

such that �(G

n

2

) j= f

n

and �(G

n

1

) 6j= f

n

: f

1

= haihbiT and

f

n+1

= hai:f

n

.

3.2 n-nested congruence.

We study in this section the coarsest congruence for the priority operators included in n-nested simu-

lation.

De�nition 3.2.1 (n-nested congruence) We de�ne the n-nested congruence, notation �

�

n

, as the

coarsest congruence for the priority operators included in n-nested simulation. That is, G

1

�

�

n

G

2

)

�(G

1

) �

�

n

�(G

2

).

From this de�nition and Theorem 3.1.4 we have that �

�

n

�

*

)

n

. Also �

�

n+1

��

�

n

. Theorem 3.2.7 sets

with more precision n-nested congruence in the semantic lattice.

Lemma 3.2.2 (An n-nested simulation R is a ready-simulation) Given G

1

;G

2

2 C

LTS

. If R :

G

1

�

+

n

G

2

, n � 2, then R : G

1

�

+

R

G

2

.

From Theorem 3.1.2 and Lemma 3.2.2 we have:



Lemma 3.2.3 Given G

1

;G

2

2 C

LTS

. R : G

1

�

+

n

G

2

; n � 2) R : �(G

1

)

�

+

R

�(G

2

)) R : �(G

1

)

�

+

�(G

2

).

Theorem 3.2.4 Take G

1

;G

2

2 C

LTS

, such that G

1

�

+

n+1

G

2

. Then for any �: �(G

1

)

�

+

n

�(G

2

), for n � 2.

Proof: We prove even more because we prove: R : G

1

�

+

n+1

G

2

) R : �(G

1

)

�

+

n

�(G

2

).

By induction n: When n = 2 we have R : G

1

�

+

2

G

2

implies R : G

1

�

+

R

G

2

(by Lemma 3.2.2). By

Theorem 3.1.2 R : �(G

1

)

�

+

R

�(G

2

) then R : �(G

1

)

�

+

�(G

2

) (Lemma 3.2.3).

Now suppose n � 2. By hypothesis: R : G

1

�

+

n

G

2

) R : �(G

1

)

�

+

n�1

�(G

2

). R : G

1

�

+

n+1

G

2

def

) 9R

0

�

S

2

� S

1

such that R

0

: G

2

�

+

n

G

1

^ R

�1

� R

0

. By Lemma 3.2.3 R : �(G

1

)

�

+

�(G

2

) and by hypothesis

R

0

: �(G

2

)

�

+

n�1

�(G

1

). Thus R : �(G

1

)

�

+

n

�(G

2

).

Corollary 3.2.5 (Behaviour of � in n-nested) Given G

1

;G

2

2 C

LTS

. For n � 2 : G

1

*

)

n+1

G

2

implies �(G

1

)

*

)

n

�(G

2

).

Remark 3.2.6 (The reverse of Corollary 3.2.5 does not hold) Let G

1

;G

2

2 C

LTS

. �(G

1

)

*

)

n

�(G

2

), for any � does not imply G

1

*

)

n+1

G

2

.

Given G

1

= a(aa + a(aa + a)) and G

2

= aa(aa + a) + a(aa + a(aa + a)), obtained from terms s

2

and t

2

of Example 2.2.7 where we only changed s

0

= b by s

0

= a and t

0

= c by t

0

= aa. G

1

and G

2

are

2-nested similar but not 3-nested similar. It is easy to see that for any �, �(G

1

) = G

1

*

)

2

G

2

= �(G

2

),

but �(G

1

) = G

1

6

*

)

3

G

2

= �(G

2

).

This example can be generalized for n-nested simulation equivalences as done in 2.2.7.

Theorem 3.2.7 (n-nested congruence in the semantic lattice)

*

)

n+1

� �

�

n

�

*

)

n

.

We prove this theorem for a more general set of operators.

De�nition 3.2.8 (F

f

: a family of unary operators) Let H be the set of functions f : P(Act) !

P(Act) satisfying f(X) � X for all X � Act. We de�ne the operator F

f

: C

LTS

! C

LTS

, for all

f 2 H, for cutting branches of an LTS, as:

F

f

((S; i; Act; �!))

def

= (S; i; Act; �!

0

)

where p

a

�!

0

q

def

, p

a

�!q ^ a 2 f(I(p)).

De�nition 3.2.9 (F

f

congruence) We de�ne the F

f

congruence, notation �

F

f

n

, as the coarsest

congruence for the F

f

operators included in n-nested simulation.

Now it is easy to prove:

Lemma 3.2.10 (F

f

congruence in the semantic lattice)

*

)

n+1

� �

F

f

n

�

*

)

n

.

As each � (related to a partial order �) is a particular case of F

f

obtained with f(X) = fa 2 X :

8b 2 X:b 6> ag, we have Theorem 3.2.7 as a corollary of this lemma.

4 Concluding remarks.

In this paper we studied the relationship between the priority operators and some equivalence relations

in the LTS. We were particularly interested in knowing which equivalences are congruences for these

family of operators.

The main results presented are three: in the �rst place, ready-simulation is a congruence for

the priority operators. This was an expected result after the results on traces and ready-traces (see



[BBK85]) saying that demanding equal initial action sets, to an equivalence which is not a congruence,

is enough to obtain a congruence. We include it here because were not able to �nd it in the literature.

In a second place, our most important contribution, the n-nested simulations are not congruences for

the priority operators. Thus, leaving these equivalences out of consideration as semantic equivalences,

at least in contexts where priority operations have sense. This result was rather unexpected because,

for n > 1, n-nested equivalences are strictly �nner than ready-simulation and the \information" about

the inicial action set is \available".

The �rst conclusion we arrive to after this result is that the priority constructors in languages

cannot be supplied of a structured operational semantics within the tyft/tyxt format. This is because

all the constructors to which a semantics can be given in that format are compatible with 2-nested

simulation, as shown in [GV89].

The intuitive presentation of the n-nested simulation in terms of a game of simulation with a

limited number of changes of roles, and its characterization through HML makes us believe that the

family of n-nested is a secuence approaching to bisimulation. We think it is worth to dedicate more

e�ort to understand the behaviour of these equivalences and look for an equivalence, convergent to

bisimulation, with better behaviour.

This idea is reinforced by the third contribution of this paper: the coarsest congruence for priority

operators contained in n-nested simulation is placed between n-nested and n + 1-nested simulation.

Apparently in that area of the semantic lattice exists an interesting structure to study.

Various lines of research are proposed by these results. The �rst is to look for a characterization

of the n-nested congruence in the style of the ones given in 2.2. This kind of de�nition will give us a

better understanding of n-nested simulations.

Another is the search of other operators over the LTS compatible with bisimulation and not with

n-nested simulations. Take as example the broadcast combiner ./ de�ned in [Pnu85]. As for today

we do not know whether the coarsest congruence for this operator contained in n-nested simulation is

n-nested congruence.

An approach to this matter, in which we are working at the moment, deals with the function F

(See de�nition 3.2.8). We know that both � and ./ can be constructed from F for suitable elections

of f . At the moment we are trying to characterize the family of f such that F

f

is compatible with

n-nested simulation. And when this is not the case characterize the coarsest congruences This work

will be subject of publication in the near future [Per94].
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