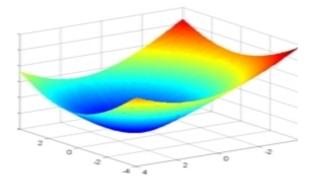
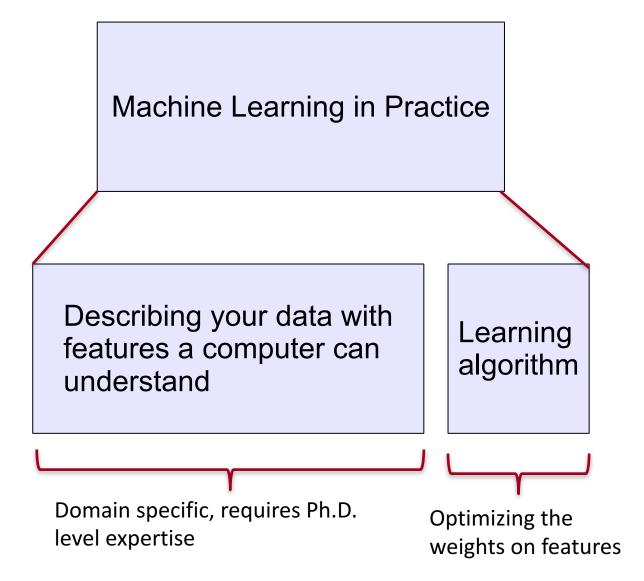
2. What's Deep Learning (DL)?

- **Deep learning** is a subfield of **machine learning**
- Most machine learning methods work well because of human-designed representations and input features
 - For example: features for finding named entities like locations or organization names (Finkel et al., 2010):
- Machine learning becomes just optimizing weights to best make a final prediction

Feature	NER
Current Word	\checkmark
Previous Word	\checkmark
Next Word	\checkmark
Current Word Character n-gram	all
Current POS Tag	\checkmark
Surrounding POS Tag Sequence	\checkmark
Current Word Shape	\checkmark
Surrounding Word Shape Sequence	\checkmark
Presence of Word in Left Window	size 4
Presence of Word in Right Window	size 4



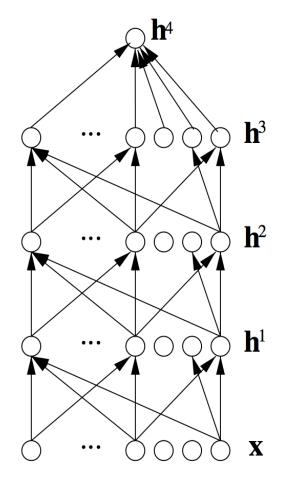
Machine Learning vs. Deep Learning



What's Deep Learning (DL)?

- In contrast to standard machine learning,
- Representation learning attempts to automatically learn good features or representations
- Deep learning algorithms attempt to learn (multiple levels of) representations (here: h¹,h²,h³) and an output (h⁴)
- From "raw" inputs x

 (e.g. sound, pixels, characters, or words)



On the history of "Deep Learning"

- We will focus on different kinds of **neural networks**
- The dominant model family inside deep learning
- Only clever terminology for stacked logistic regression units?
 - Maybe, but interesting modeling principles (end-to-end) and actual connections to neuroscience in some cases.
 - Recently: Differentiable Programming becomes clear later
- We will not take a historical approach but instead focus on methods which work well on NLP problems now
- For a long history of deep learning models (starting ~1960s), see: <u>Deep Learning in Neural Networks: An Overview</u> by Jürgen Schmidhuber

Reasons for Exploring Deep Learning

- Manually designed features are often over-specified, incomplete and take a long time to design and validate
- Learned Features are easy to adapt, fast to learn
- Deep learning provides a very flexible, (almost?) universal, learnable framework for representing world, visual and linguistic information.
- Deep learning can learn unsupervised (from raw text) and supervised (with specific labels like positive/negative)

Reasons for Exploring Deep Learning

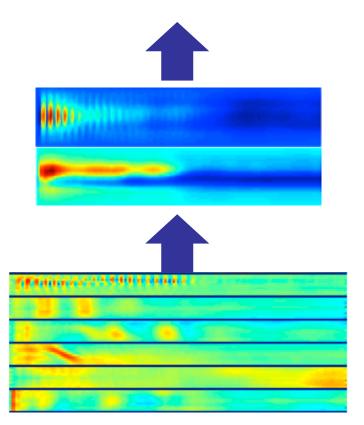
- In ~2010 deep learning techniques started outperforming other machine learning techniques. Why this decade?
- Large amounts of training data favor deep learning
- Faster machines and multicore CPU/GPUs favor Deep Learning
- New models, algorithms, ideas
 - Better, more flexible learning of intermediate representations
 - Effective end-to-end joint system learning
 - Effective learning methods for using contexts and transferring between tasks
 - Better regularization and optimization methods
- → Improved performance (first in speech and vision, then NLP)

Deep Learning for Speech

- The first breakthrough results of "deep learning" on large datasets happened in speech recognition
- Context-Dependent Pre-trained Deep Neural Networks for Large Vocabulary Speech Recognition Dahl et al. (2010)

Acoustic model and WER	RT03S FSH	Hub5 SWB
Traditional features	27.4	23.6
Deep Learning	18.5 (-33%)	16.1 (-32%)

Phonemes/Words



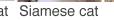
Deep Learning for Computer Vision

First major focus of deep learning groups was computer vision

The breakthrough DL paper: ImageNet Classification with Deep **Convolutional Neural Networks by** Krizhevsky, Sutskever, & Hinton, 2012, U. Toronto. 37% error red.

quail

tabbv



partridge

lvnx

Zeiler and Fergus (2013) 1/9/18

17

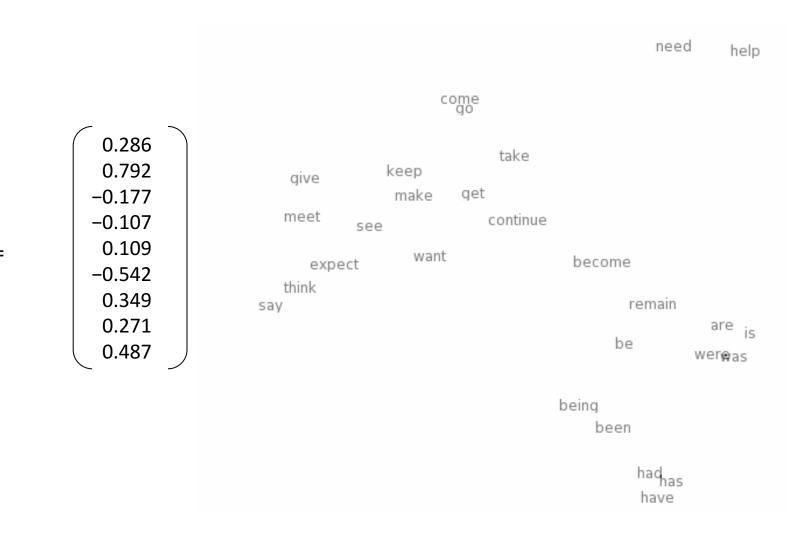
5. Deep NLP = Deep Learning + NLP

Combine ideas and goals of NLP with using representation learning and deep learning methods to solve them

Several big improvements in recent years in NLP

- Linguistic levels: (speech), words, syntax, semantics
- Intermediate tasks/tools: parts-of-speech, entities, parsing
- Full applications: sentiment analysis, question answering, dialogue agents, machine translation

Word meaning as a neural word vector – visualization



1/9/18

expect =

Word similarities

Nearest words to frog:

- 1. frogs
- 2. toad
- 3. litoria
- 4. leptodactylidae
- 5. rana
- 6. lizard
- 7. eleutherodactylus

litoria

leptodactylidae

rana

eleutherodactylus

Physical stanford.edu/projects/glove/

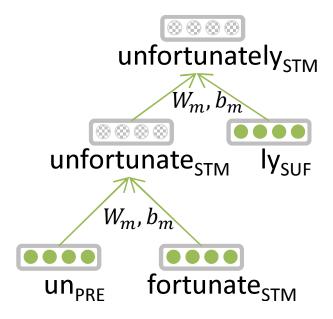
1/9/18

Representations of NLP Levels: Morphology

 Traditional: Words are made of morphemes prefix stem suffix un interest ed

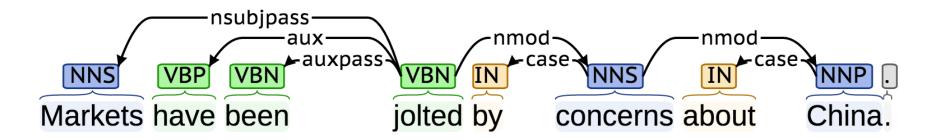
• DL:

- every morpheme is a vector
- a neural network combines two vectors into one vector
- Luong et al. 2013



NLP Tools: Parsing for sentence structure

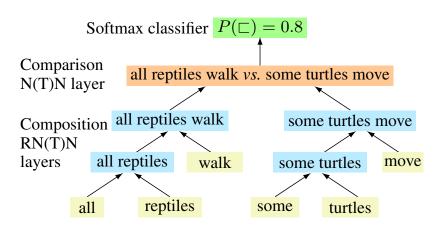
- Neural networks can accurately determine the grammatical structure of sentences
- This supports interpretation and may help in disambiguation



Representations of NLP Levels: Semantics

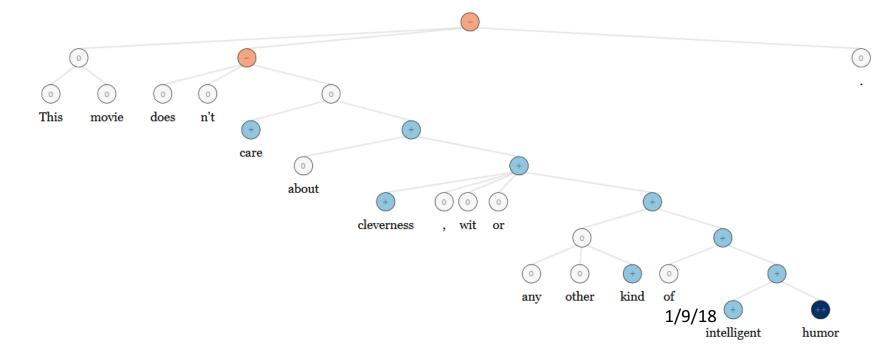
- Traditional: Lambda calculus
 - Carefully engineered functions
 - Take as inputs specific other functions
 - No notion of similarity or fuzziness of language
- DL:
 - Every word and every phrase and every logical expression is a vector
 - a neural network combines two vectors into one vector
 - Bowman et al. 2014





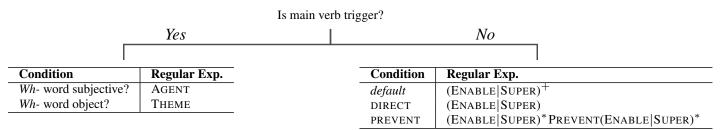
NLP Applications: Sentiment Analysis

- Traditional: Treat sentence as a bag-of-words (ignore word order); consult a curated list of "positive" and "negative" words to determine sentiment of sentence. Need hand-designed features to capture negation! --> Ain't gonna capture everything
- Same deep learning model that could be used for morphology, syntax and logical semantics → RecursiveNN (aka TreeRNNs)

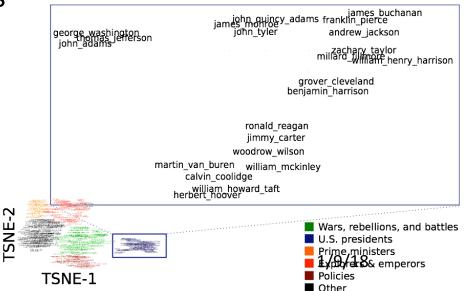


Question Answering

 Traditional: A lot of feature engineering to capture world and other knowledge, e.g., regular expressions, Berant et al. (2014)

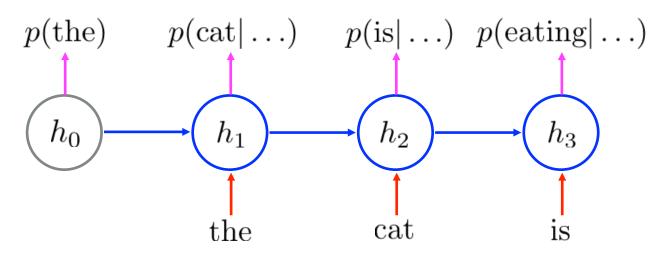


- DL: Again, a deep learning architecture can be used!
- Facts are stored in vectors



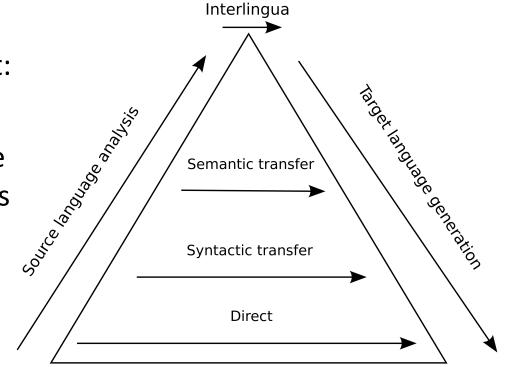
Dialogue agents / Response Generation

- A simple, successful example is the auto-replies available in the Google Inbox app
- An application of the powerful, general technique of Neural Language Models, which are an instance of Recurrent Neural Networks



Machine Translation

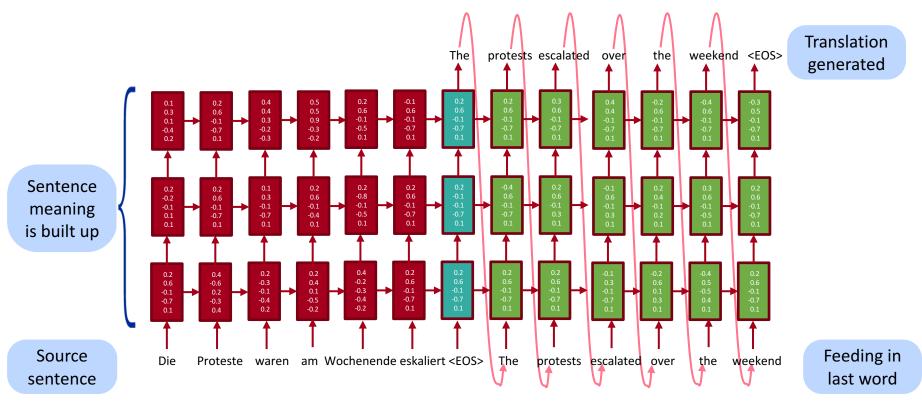
- Many levels of translation have been tried in the past:
- Traditional MT systems are very large complex systems



• What do you think is the interlingua for the DL approach to translation?

Neural Machine Translation

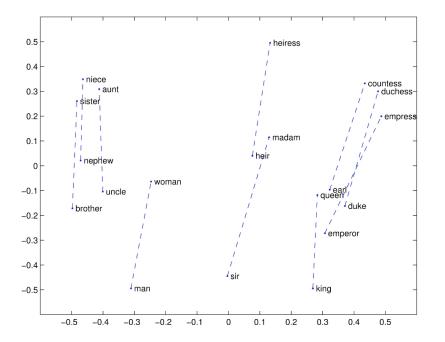
Source sentence is mapped to **vector**, then output sentence generated [Sutskever et al. 2014, Bahdanau et al. 2014, Luong and Manning 2016]



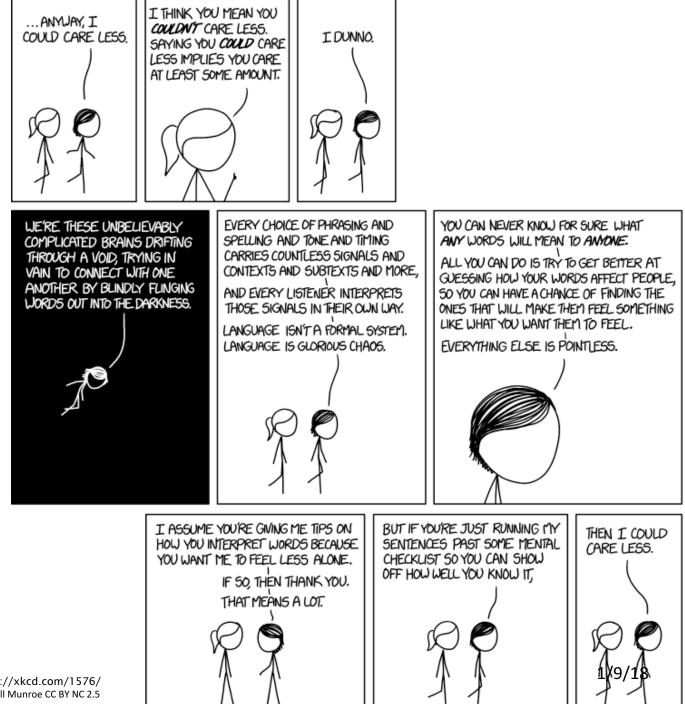
Now live for some languages in Google Translate (etc.), with big error reductions!

Conclusion: Representation for all levels? Vectors

We will study in the next lecture how we can learn vector representations for words and what they actually **represent**.



Next week: how neural networks work and how they can use these vectors for all NLP levels and many different applications



https://xkcd.com/1576/ Randall Munroe CC BY NC 2.5