
How	to	evaluate	word	vectors?

• Related	to	general	evaluation	in	NLP:	Intrinsic	vs extrinsic
• Intrinsic:

• Evaluation	on	a	specific/intermediate	subtask
• Fast	to	compute
• Helps	to	understand	that	system
• Not	clear	if	really	helpful	unless	correlation	to	real	task	is	established

• Extrinsic:
• Evaluation	on	a	real	task
• Can	take	a	long	time	to	compute	accuracy
• Unclear	if	the	subsystem	is	the	problem	or	its	interaction	or	other	
subsystems

• If	replacing	exactly	one	subsystem	with	another	improves	accuracy	à
Winning!
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Intrinsic	word	vector	evaluation

• Word	Vector	Analogies

• Evaluate	word	vectors	by	how	well	
their	cosine	distance	after	addition	
captures	intuitive	semantic	and	
syntactic	analogy	questions

• Discarding	the	input	words	from	the	
search!

• Problem:	What	if	the	information	is	
there	but	not	linear?

man:woman ::	king:?

a:b	::	c:?

king

man
woman
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Glove	Visualizations
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Glove	Visualizations:	Company	- CEO
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Glove	Visualizations:	Superlatives
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Other	fun	word2vec	analogies
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Details	of	intrinsic	word	vector	evaluation

• Word	Vector	Analogies:	Syntactic	and	Semantic examples	from	
http://code.google.com/p/word2vec/source/browse/trunk/questions-
words.txt

:	city-in-state problem:	different	cities	
Chicago	Illinois	Houston	Texas may	have	same	name
Chicago	Illinois	Philadelphia	Pennsylvania
Chicago	Illinois	Phoenix	Arizona
Chicago	Illinois	Dallas	Texas
Chicago	Illinois	Jacksonville	Florida
Chicago	Illinois	Indianapolis	Indiana
Chicago	Illinois	Austin	Texas
Chicago	Illinois	Detroit	Michigan
Chicago	Illinois	Memphis	Tennessee
Chicago	Illinois	Boston	Massachusetts
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Details	of	intrinsic	word	vector	evaluation

• Word	Vector	Analogies:	Syntactic	and	Semantic examples	from

:	capital-world problem:	can	change
Abuja	Nigeria	Accra	Ghana
Abuja	Nigeria	Algiers	Algeria
Abuja	Nigeria	Amman	Jordan
Abuja	Nigeria	Ankara	Turkey
Abuja	Nigeria	Antananarivo	Madagascar
Abuja	Nigeria	Apia	Samoa
Abuja	Nigeria	Ashgabat	Turkmenistan
Abuja	Nigeria	Asmara	Eritrea
Abuja	Nigeria	Astana	Kazakhstan
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Details	of	intrinsic	word	vector	evaluation

• Word	Vector	Analogies:	Syntactic and	Semantic	examples	from

:	gram4-superlative
bad	worst	big	biggest
bad	worst	bright	brightest
bad	worst	cold	coldest
bad	worst	cool	coolest
bad	worst	dark	darkest
bad	worst	easy	easiest
bad	worst	fast	fastest
bad	worst	good	best
bad	worst	great	greatest
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Details	of	intrinsic	word	vector	evaluation

• Word	Vector	Analogies:	Syntactic and	Semantic	examples	from

:	gram7-past-tense
dancing	danced	decreasing	decreased
dancing	danced	describing	described
dancing	danced	enhancing	enhanced
dancing	danced	falling	fell
dancing	danced	feeding	fed
dancing	danced	flying	flew
dancing	danced	generating	generated
dancing	danced	going	went
dancing	danced	hiding	hid
dancing	danced	hitting	hit
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Analogy	evaluation	and	hyperparameters

• Very	careful	analysis:	Glove	word	vectors	

The total number of words in the corpus is pro-
portional to the sum over all elements of the co-
occurrence matrix X ,

|C | ⇠

X

i j

Xi j =

|X |X

r=1

k

r↵
= kH|X |,↵ , (18)

where we have rewritten the last sum in terms of
the generalized harmonic number Hn,m . The up-
per limit of the sum, |X |, is the maximum fre-
quency rank, which coincides with the number of
nonzero elements in the matrix X . This number is
also equal to the maximum value of r in Eqn. (17)
such that Xi j � 1, i.e., |X | = k

1/↵ . Therefore we
can write Eqn. (18) as,

|C | ⇠ |X |
↵

H|X |,↵ . (19)

We are interested in how |X | is related to |C | when
both numbers are large; therefore we are free to
expand the right hand side of the equation for large
|X |. For this purpose we use the expansion of gen-
eralized harmonic numbers (Apostol, 1976),

Hx,s =
x

1�s

1 � s
+ ⇣ (s) + O(x

�s ) if s > 0, s , 1 ,
(20)

giving,

|C | ⇠
|X |

1 � ↵
+ ⇣ (↵) |X |↵ + O(1) , (21)

where ⇣ (s) is the Riemann zeta function. In the
limit that X is large, only one of the two terms on
the right hand side of Eqn. (21) will be relevant,
and which term that is depends on whether ↵ > 1,

|X | =

(
O(|C |) if ↵ < 1,
O(|C |1/↵ ) if ↵ > 1. (22)

For the corpora studied in this article, we observe
that Xi j is well-modeled by Eqn. (17) with ↵ =
1.25. In this case we have that |X | = O(|C |0.8).
Therefore we conclude that the complexity of the
model is much better than the worst case O(V 2),
and in fact it does somewhat better than the on-line
window-based methods which scale like O(|C |).

4 Experiments

4.1 Evaluation methods

We conduct experiments on the word analogy
task of Mikolov et al. (2013a), a variety of word
similarity tasks, as described in (Luong et al.,
2013), and on the CoNLL-2003 shared benchmark

Table 2: Results on the word analogy task, given
as percent accuracy. Underlined scores are best
within groups of similarly-sized models; bold
scores are best overall. HPCA vectors are publicly
available2; (i)vLBL results are from (Mnih et al.,
2013); skip-gram (SG) and CBOW results are
from (Mikolov et al., 2013a,b); we trained SG†

and CBOW† using the word2vec tool3. See text
for details and a description of the SVD models.

Model Dim. Size Sem. Syn. Tot.
ivLBL 100 1.5B 55.9 50.1 53.2
HPCA 100 1.6B 4.2 16.4 10.8
GloVe 100 1.6B 67.5 54.3 60.3

SG 300 1B 61 61 61
CBOW 300 1.6B 16.1 52.6 36.1
vLBL 300 1.5B 54.2 64.8 60.0
ivLBL 300 1.5B 65.2 63.0 64.0
GloVe 300 1.6B 80.8 61.5 70.3
SVD 300 6B 6.3 8.1 7.3

SVD-S 300 6B 36.7 46.6 42.1
SVD-L 300 6B 56.6 63.0 60.1
CBOW† 300 6B 63.6 67.4 65.7

SG† 300 6B 73.0 66.0 69.1
GloVe 300 6B 77.4 67.0 71.7
CBOW 1000 6B 57.3 68.9 63.7

SG 1000 6B 66.1 65.1 65.6
SVD-L 300 42B 38.4 58.2 49.2
GloVe 300 42B 81.9 69.3 75.0

dataset for NER (Tjong Kim Sang and De Meul-
der, 2003).

Word analogies. The word analogy task con-
sists of questions like, “a is to b as c is to ?”
The dataset contains 19,544 such questions, di-
vided into a semantic subset and a syntactic sub-
set. The semantic questions are typically analogies
about people or places, like “Athens is to Greece
as Berlin is to ?”. The syntactic questions are
typically analogies about verb tenses or forms of
adjectives, for example “dance is to dancing as fly
is to ?”. To correctly answer the question, the
model should uniquely identify the missing term,
with only an exact correspondence counted as a
correct match. We answer the question “a is to b

as c is to ?” by finding the word d whose repre-
sentation wd is closest to wb � wa + wc according
to the cosine similarity.4

2http://lebret.ch/words/
3http://code.google.com/p/word2vec/
4Levy et al. (2014) introduce a multiplicative analogy

evaluation, 3COSMUL, and report an accuracy of 68.24% on
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Analogy	evaluation	and	hyperparameters

• Asymmetric	context	(only	words	to	the	left)	are	not	as	good

• Best	dimensions	~300,	slight	drop-off	afterwards	
• But	this	might	be	different	for	downstream	tasks!

• Window	size	of	8	around	each	center	word	is	good	for	Glove	vectors
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Figure 2: Accuracy on the analogy task as function of vector size and window size/type. All models are
trained on the 6 billion token corpus. In (a), the window size is 10. In (b) and (c), the vector size is 100.

Word similarity. While the analogy task is our
primary focus since it tests for interesting vector
space substructures, we also evaluate our model on
a variety of word similarity tasks in Table 3. These
include WordSim-353 (Finkelstein et al., 2001),
MC (Miller and Charles, 1991), RG (Rubenstein
and Goodenough, 1965), SCWS (Huang et al.,
2012), and RW (Luong et al., 2013).
Named entity recognition. The CoNLL-2003
English benchmark dataset for NER is a collec-
tion of documents from Reuters newswire articles,
annotated with four entity types: person, location,
organization, and miscellaneous. We train mod-
els on CoNLL-03 training data on test on three
datasets: 1) ConLL-03 testing data, 2) ACE Phase
2 (2001-02) and ACE-2003 data, and 3) MUC7
Formal Run test set. We adopt the BIO2 annota-
tion standard, as well as all the preprocessing steps
described in (Wang and Manning, 2013). We use a
comprehensive set of discrete features that comes
with the standard distribution of the Stanford NER
model (Finkel et al., 2005). A total of 437,905
discrete features were generated for the CoNLL-
2003 training dataset. In addition, 50-dimensional
vectors for each word of a five-word context are
added and used as continuous features. With these
features as input, we trained a conditional random
field (CRF) with exactly the same setup as the
CRFjoin model of (Wang and Manning, 2013).

4.2 Corpora and training details

We trained our model on five corpora of varying
sizes: a 2010 Wikipedia dump with 1 billion to-
kens; a 2014 Wikipedia dump with 1.6 billion to-
kens; Gigaword 5 which has 4.3 billion tokens; the
combination Gigaword5 + Wikipedia2014, which

the analogy task. This number is evaluated on a subset of the
dataset so it is not included in Table 2. 3COSMUL performed
worse than cosine similarity in almost all of our experiments.

has 6 billion tokens; and on 42 billion tokens of
web data, from Common Crawl5. We tokenize
and lowercase each corpus with the Stanford to-
kenizer, build a vocabulary of the 400,000 most
frequent words6, and then construct a matrix of co-
occurrence counts X . In constructing X , we must
choose how large the context window should be
and whether to distinguish left context from right
context. We explore the effect of these choices be-
low. In all cases we use a decreasing weighting
function, so that word pairs that are d words apart
contribute 1/d to the total count. This is one way
to account for the fact that very distant word pairs
are expected to contain less relevant information
about the words’ relationship to one another.

For all our experiments, we set xmax = 100,
↵ = 3/4, and train the model using AdaGrad
(Duchi et al., 2011), stochastically sampling non-
zero elements from X , with initial learning rate of
0.05. We run 50 iterations for vectors smaller than
300 dimensions, and 100 iterations otherwise (see
Section 4.6 for more details about the convergence
rate). Unless otherwise noted, we use a context of
ten words to the left and ten words to the right.

The model generates two sets of word vectors,
W and W̃ . When X is symmetric, W and W̃ are
equivalent and differ only as a result of their ran-
dom initializations; the two sets of vectors should
perform equivalently. On the other hand, there is
evidence that for certain types of neural networks,
training multiple instances of the network and then
combining the results can help reduce overfitting
and noise and generally improve results (Ciresan
et al., 2012). With this in mind, we choose to use

5To demonstrate the scalability of the model, we also
trained it on a much larger sixth corpus, containing 840 bil-
lion tokens of web data, but in this case we did not lowercase
the vocabulary, so the results are not directly comparable.

6For the model trained on Common Crawl data, we use a
larger vocabulary of about 2 million words.
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Analogy	evaluation	and	hyperparameters

• More	training	time	helps
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Figure 4: Overall accuracy on the word analogy task as a function of training time, which is governed by
the number of iterations for GloVe and by the number of negative samples for CBOW (a) and skip-gram
(b). In all cases, we train 300-dimensional vectors on the same 6B token corpus (Wikipedia 2014 +
Gigaword 5) with the same 400,000 word vocabulary, and use a symmetric context window of size 10.

it specifies a learning schedule specific to a single
pass through the data, making a modification for
multiple passes a non-trivial task. Another choice
is to vary the number of negative samples. Adding
negative samples effectively increases the number
of training words seen by the model, so in some
ways it is analogous to extra epochs.

We set any unspecified parameters to their de-
fault values, assuming that they are close to opti-
mal, though we acknowledge that this simplifica-
tion should be relaxed in a more thorough analysis.

In Fig. 4, we plot the overall performance on
the analogy task as a function of training time.
The two x-axes at the bottom indicate the corre-
sponding number of training iterations for GloVe
and negative samples for word2vec. We note
that word2vec’s performance actually decreases
if the number of negative samples increases be-
yond about 10. Presumably this is because the
negative sampling method does not approximate
the target probability distribution well.9

For the same corpus, vocabulary, window size,
and training time, GloVe consistently outperforms
word2vec. It achieves better results faster, and
also obtains the best results irrespective of speed.

5 Conclusion

Recently, considerable attention has been focused
on the question of whether distributional word
representations are best learned from count-based

9In contrast, noise-contrastive estimation is an approxi-
mation which improves with more negative samples. In Ta-
ble 1 of (Mnih et al., 2013), accuracy on the analogy task is a
non-decreasing function of the number of negative samples.

methods or from prediction-based methods. Cur-
rently, prediction-based models garner substantial
support; for example, Baroni et al. (2014) argue
that these models perform better across a range of
tasks. In this work we argue that the two classes
of methods are not dramatically different at a fun-
damental level since they both probe the under-
lying co-occurrence statistics of the corpus, but
the efficiency with which the count-based meth-
ods capture global statistics can be advantageous.
We construct a model that utilizes this main ben-
efit of count data while simultaneously capturing
the meaningful linear substructures prevalent in
recent log-bilinear prediction-based methods like
word2vec. The result, GloVe, is a new global
log-bilinear regression model for the unsupervised
learning of word representations that outperforms
other models on word analogy, word similarity,
and named entity recognition tasks.
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Analogy	evaluation	and	hyperparameters

• More	data	helps,	Wikipedia	is	better	than	news	text!

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and

Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size

In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s
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Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X

and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with

word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:
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Extrinsic	word	vector	evaluation

• Extrinsic	evaluation	of	word	vectors:	All	subsequent	tasks	in	this	class

• One	example	where	good	word	vectors	should	help	directly:	named	entity	
recognition:	finding	a	person,	organization	or	location

• Next:	How	to	use	word	vectors	in	neural	net	models!

Table 4: F1 score on NER task with 50d vectors.
Discrete is the baseline without word vectors. We
use publicly-available vectors for HPCA, HSMN,
and CW. See text for details.

Model Dev Test ACE MUC7
Discrete 91.0 85.4 77.4 73.4

SVD 90.8 85.7 77.3 73.7
SVD-S 91.0 85.5 77.6 74.3
SVD-L 90.5 84.8 73.6 71.5
HPCA 92.6 88.7 81.7 80.7
HSMN 90.5 85.7 78.7 74.7

CW 92.2 87.4 81.7 80.2
CBOW 93.1 88.2 82.2 81.1
GloVe 93.2 88.3 82.9 82.2

shown for neural vectors in (Turian et al., 2010).

4.4 Model Analysis: Vector Length and

Context Size

In Fig. 2, we show the results of experiments that
vary vector length and context window. A context
window that extends to the left and right of a tar-
get word will be called symmetric, and one which
extends only to the left will be called asymmet-
ric. In (a), we observe diminishing returns for vec-
tors larger than about 200 dimensions. In (b) and
(c), we examine the effect of varying the window
size for symmetric and asymmetric context win-
dows. Performance is better on the syntactic sub-
task for small and asymmetric context windows,
which aligns with the intuition that syntactic infor-
mation is mostly drawn from the immediate con-
text and can depend strongly on word order. Se-
mantic information, on the other hand, is more fre-
quently non-local, and more of it is captured with
larger window sizes.

4.5 Model Analysis: Corpus Size

In Fig. 3, we show performance on the word anal-
ogy task for 300-dimensional vectors trained on
different corpora. On the syntactic subtask, there
is a monotonic increase in performance as the cor-
pus size increases. This is to be expected since
larger corpora typically produce better statistics.
Interestingly, the same trend is not true for the se-
mantic subtask, where the models trained on the
smaller Wikipedia corpora do better than those
trained on the larger Gigaword corpus. This is
likely due to the large number of city- and country-
based analogies in the analogy dataset and the fact
that Wikipedia has fairly comprehensive articles
for most such locations. Moreover, Wikipedia’s
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Figure 3: Accuracy on the analogy task for 300-
dimensional vectors trained on different corpora.

entries are updated to assimilate new knowledge,
whereas Gigaword is a fixed news repository with
outdated and possibly incorrect information.

4.6 Model Analysis: Run-time

The total run-time is split between populating X

and training the model. The former depends on
many factors, including window size, vocabulary
size, and corpus size. Though we did not do so,
this step could easily be parallelized across mul-
tiple machines (see, e.g., Lebret and Collobert
(2014) for some benchmarks). Using a single
thread of a dual 2.1GHz Intel Xeon E5-2658 ma-
chine, populating X with a 10 word symmetric
context window, a 400,000 word vocabulary, and
a 6 billion token corpus takes about 85 minutes.
Given X , the time it takes to train the model de-
pends on the vector size and the number of itera-
tions. For 300-dimensional vectors with the above
settings (and using all 32 cores of the above ma-
chine), a single iteration takes 14 minutes. See
Fig. 4 for a plot of the learning curve.

4.7 Model Analysis: Comparison with

word2vec

A rigorous quantitative comparison of GloVe with
word2vec is complicated by the existence of
many parameters that have a strong effect on per-
formance. We control for the main sources of vari-
ation that we identified in Sections 4.4 and 4.5 by
setting the vector length, context window size, cor-
pus, and vocabulary size to the configuration men-
tioned in the previous subsection.

The most important remaining variable to con-
trol for is training time. For GloVe, the rele-
vant parameter is the number of training iterations.
For word2vec, the obvious choice would be the
number of training epochs. Unfortunately, the
code is currently designed for only a single epoch:
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