

## Two views of linguistic structure: Constituency = phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents.

Basic unit: words

the, cat, cuddly, by, door

Words combine into phrases

the cuddly cat, by the door

Phrases can combine into bigger phrases

the cuddly cat by the door



### Two views of linguistic structure: Constituency = phrase structure grammar = context-free grammars (CFGs)

Phrase structure organizes words into nested constituents. Can represent the grammar with CFG rules

### **Basic unit: words**

the, cat, cuddly, by, door Det N Adj P N

### Words combine into phrases

the cuddly cat,by the doorNP -> Det Adj NPP -> P NP

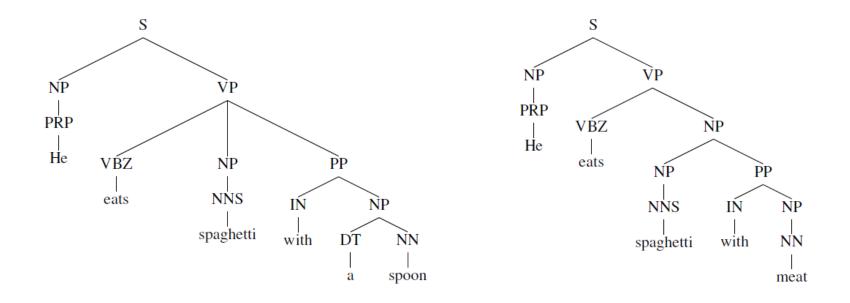
### Phrases can combine into bigger phrases

the cuddly cat by the door NP -> NP PP



### **Example Constituency Trees**

• PP attachment ambiguities in constituency structure





• Dependency structure shows which words depend on (modify or are arguments of) which other words.

Look for the large barking dog by the door in a crate 7



- Dependency structure shows which words depend on (modify or are arguments of) which other words.
  - Determiners, adjectives, and (sometimes) verbs modify nouns

Look for the large barking dog by the door in a crate

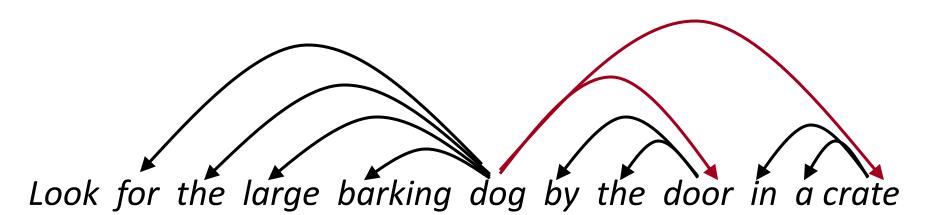


- Dependency structure shows which words depend on (modify or are arguments of) which other words.
  - Determiners, adjectives, and (sometimes) verbs modify nouns
  - We will also treat prepositions as modifying nouns



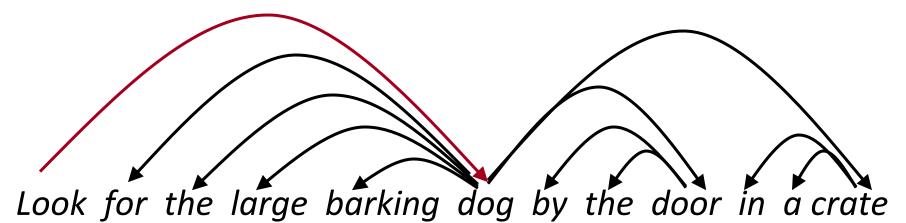


- Dependency structure shows which words depend on (modify or are arguments of) which other words.
  - Determiners, adjectives, and (sometimes) verbs modify nouns
  - We will also treat prepositions as modifying nouns
  - The prepositional phrases are modifying the main noun phrase





- Dependency structure shows which words depend on (modify or are arguments of) which other words.
  - Determiners, adjectives, and (sometimes) verbs modify nouns
  - We will also treat prepositions as modifying nouns
  - The prepositional phrases are modifying the main noun phrase
  - The main noun phrase is an argument of "look"



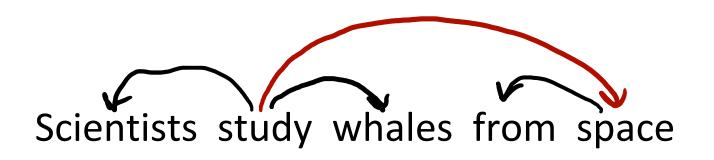


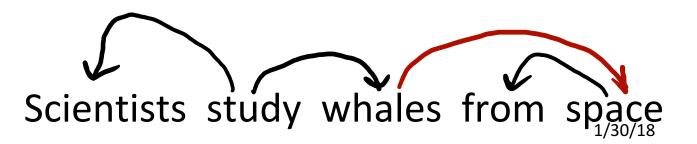
### **Ambiguity: PP attachments**

### Scientists study whales from space



# PP attachment ambiguities in dependency structure







### Attachment ambiguities

- A key parsing decision is how we 'attach' various constituents
  - PPs, adverbial or participial phrases, infinitives, coordinations,

The board approved [its acquisition] [by Royal Trustco Ltd.] [of Toronto]

[for \$27 a share]

[at its monthly meeting].



### **Attachment ambiguities**

- A key parsing decision is how we 'attach' various constituents
  - PPs, adverbial or participial phrases, infinitives, coordinations,

The board approved [its acquisition] [by Royal Trustco Ltd.]

- [of Toronto]
- [for \$27 a share]

[at its monthly meeting].

- Catalan numbers:  $C_n = (2n)!/[(n+1)!n!]$
- An exponentially growing series, which arises in many tree-like contexts
- **4**5 But normally, we assume nesting.

1/30/18

# NLP

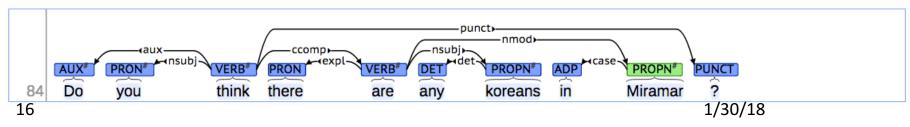
# The rise of annotated data: Universal Dependencies treebanks

[Universal Dependencies: <u>http://universaldependencies.org/</u>; cf. Marcus et al. 1993, The Penn Treebank, *Computational Linguistics*]

#### [context] [conllu] punct ccomp+ <nsubj <COD-<det √ amodconi **VERB**<sup>4</sup> PROPN# VERB# NOUN PUNCT PRON DET\* ADJ\* NOUN NOUN# CON think Miramar 76 something а goat trainer or was famous [context] [conllu] advmod auxpass



#### [context] [conllu]





## The rise of annotated data

Starting off, building a treebank seems a lot slower and less useful than building a grammar

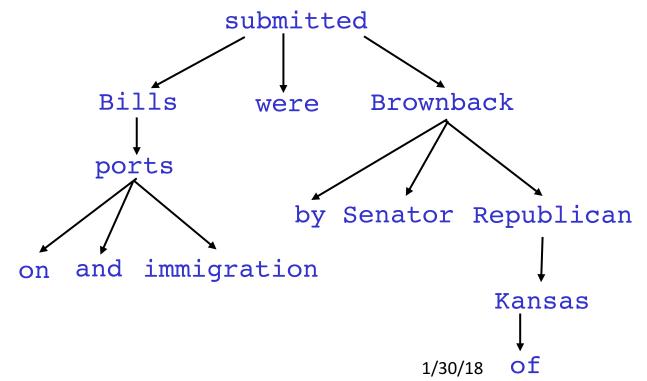
But a treebank gives us many things

- Reusability of the labor
  - Many parsers, part-of-speech taggers, etc. can be built on it
  - Valuable resource for linguistics
- Broad coverage, not just a few intuitions
- Frequencies and distributional information
- A way to evaluate systems



### Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between lexical items, normally binary asymmetric relations ("arrows") called dependencies

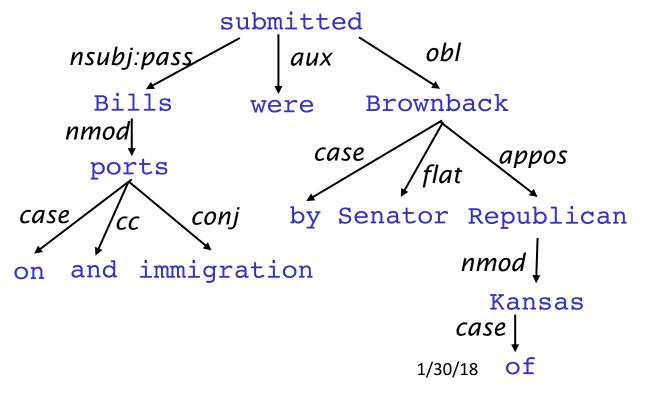




### Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between lexical items, normally binary asymmetric relations ("arrows") called dependencies

The arrows are commonly typed with the name of grammatical relations (subject, prepositional object, apposition, etc.)



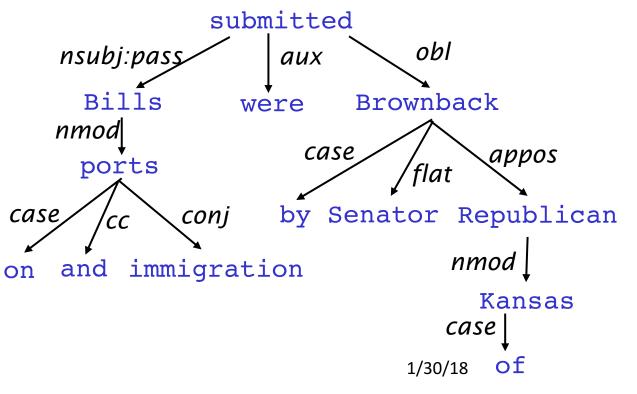


### Dependency Grammar and Dependency Structure

Dependency syntax postulates that syntactic structure consists of relations between lexical items, normally binary asymmetric relations ("arrows") called dependencies

The arrow connects a head (governor, superior, regent) with a dependent (modifier, inferior, subordinate)

Usually, dependencies form a tree (connected, acyclic, single-head)





### **Dependency Relations**

| <b>Clausal Argument Relations</b> | Description                                        |
|-----------------------------------|----------------------------------------------------|
| NSUBJ                             | Nominal subject                                    |
| DOBJ                              | Direct object                                      |
| IOBJ                              | Indirect object                                    |
| ССОМР                             | Clausal complement                                 |
| ХСОМР                             | Open clausal complement                            |
| Nominal Modifier Relations        | Description                                        |
| NMOD                              | Nominal modifier                                   |
| AMOD                              | Adjectival modifier                                |
| NUMMOD                            | Numeric modifier                                   |
| APPOS                             | Appositional modifier                              |
| DET                               | Determiner                                         |
| CASE                              | Prepositions, postpositions and other case markers |
| Other Notable Relations           | Description                                        |
| CONJ                              | Conjunct                                           |
| СС                                | Coordinating conjunction                           |

Selected dependency relations from the Universal Dependency set. (de Marneffe et al., 2014) https://web.stanford.edu/~jurafsky/slp3/14.pdf



# Pāṇini's grammar (c. 5th century BCE)

ल्यामहामिस्वाहिय्रायिः अगुलीमे द्वस्व अस्तिन्त स्वमीर्व ह यगरे मराही नयगरे मरादी हाय के महामार मराकिन इश्र मर्गे हैं। ग लग भग भग संतरण श्रा भीड शलगीड शभनीई मर्म्स्ट्रीरि ग्रेमविल्यन अभवीर अभविष्ठ अभविष्ठः ॥अ चेर्डी संस्कृतांत्रिय। भारतिभारमयति प्राद्यामिने विविष् रूप्य उति प्रखे।।श्राह्नसिमाश्राह्नरेजेस्मिययः तिर्हाग्याश्रहेवडि अर्थित्र्याभेयग्रभः स्नाहीन सुद्रिभ्रभ सुरिह्रयः ॥यभिगमन भरंभ्य किम् वियागिकत्वः यम् अस्ति भर्मिक यभी इरेसीडं ( अध्य क्र अर्वन्ती अर्वे भिन्न रे अर्वे भिन्न ! ॥ सर्वम्युय्रसेग्र,॥ भग १९ मुए उडवंप्रव इसेवर्ड कड्ह प्रचारि राष्ट्रने मुझ्रेयमंग्वार ग्राविवन सङ्घ्याम्ग्वार डड इत्यस्म ग्रायमेगतरा यमवर्षे जन्द्वर्भवाह्वः सिम्र्ठ्यः भूम् भिष्ठ्र राष्ट्र रिडि कि इ शेम्र वर्म अपने मवरा के के है कि क र माक्लियोगलि ति डीठ्र मामकले आ र र मय उम्य भाषाभे उ मायसावा विरुप्पयमना यस तडम्पयसन्वत्रमः १२नः मिम् इयर्विराधाकिस्त्वडि उपयमनयाणिण्यातानी ろうに いろうらってい あまれ ろい ひろうろうか あいえ खनाक्तिवालिसी किवरमना लिएमा लिएमपाठ, जउंच गममल्विडाअवण्ड्रस्तः॥मठलयः॥म्रक्षाडरुः デレシー などはひろみしょうに おすけがあすのないの श्वाण्यः ॥ श्रद्भग्यम् यु २३ र १०० ॥ जरेत्वे चण्यस्तरुव 32322012746444000023: 32104 34104 324

#### सीगामास्त्रभः

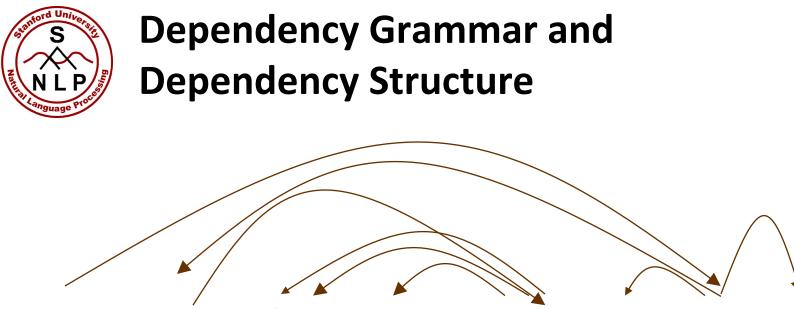
अवणिम् अरेयमालन ७ राइन्यमन खुल अक्रम उभ खुलम उ मवन्रेडिामनारणलिति हजनामिकलियः ।।उद्यमिग्रया। उन्हामिल्ल एभी: 5 अभिन्छ 33 न भीमगः अवसे: भार विरुधाना ना मुउउम्र अमे मुख्या मा निक्र अड कि । या माने !! या ने मायम भाइलिः १९११मन् १४२३ येग्री इत्वारे माने रालमा क्रि गथनाम्रसण्डश्व मनिद्वा द्वायार्वि मायामे (मद्व अयदी लिम्रा)म वस्त्विण्या स्रम्रस्मिम् मलाडग्र्यणमनिः साः॥मलाव 2013: 3340:34 2.2 10:3: 3: 4 4 4 4 13 442: (मेठीविसियणजः॥मृजयुपरणामामनविमः अवियांनम रुख्यः मृयुद्धरे ॥निवम्धवर्त्राम्ननिद्धरे ॥ युक्संवरला シッムる3川北市北北市はまい市山村高、あき、11月1月33 मन्यणम् न्यम्भा अभूमम् का मार्गि कियेगार मलप्ते गाकिडिप्ट्रयार्डः म्राड्य सामगामेन व्रीहमण H: a H 2 TO T 3 2 3 T ( ) 3 7 - 13 7 - 13 7 - 13 うなであいうなみないうないあうなまにいうななるいちのあいちい 44「新去3·2」「市3 いい 42 (市 411 44 (市主: も3) 年3:13 日 १एमम: मुद्र् 15 मूरपीर मूर की मुक्त 45 मूर भी 3 म मर्यार्थात्तम् के अप्यान्तन्तात्त्त्त्वज्ञ्यान् स् क्राम् म्ताभ्या जिन्द्र मार्डयाः अस्ति विभिन्न स्वर्थ स्वरण्यां भरा CFOR KUTMES STUTT IN HILD HIL THAT THE SALE SI +1277िम तमामिर भेदाल अडेम्ये रेने मिकि रिगलियाः

Gallery: http://wellcomeimages.org/indexplus/image/L0032691.html <u>CC BY 4.0</u> File:Birch bark MS from Kashmir of the Rupavatra Welcome L0032691.jpg 1/30/18



# **Dependency Grammar/Parsing History**

- The idea of dependency structure goes back a long way
  - To Pāņini's grammar (c. 5th century BCE)
  - Basic approach of 1st millennium Arabic grammarians
- Constituency/context-free grammars is a more recent invention
  - 20th century (R.S. Wells, 1947)
- Modern dependency work often linked to work of L. Tesnière (1959)
  - Was dominant approach in "East" (Russia, China, ...)
    - Good for free-er word order languages
- Among the earliest kinds of parsers in NLP, even in the US:
  - David Hays, one of the founders of U.S. computational linguistics, built early (first?) dependency parser (Hays 1962)



ROOT Discussion of the outstanding issues was completed .

- Some people draw the arrows one way; some the other way!
  - Tesnière had them point from head to dependent...
  - Ours will point from head to dependent
- Usually add a fake ROOT so every word is a dependent of precisely 1 other node



## **Dependency Conditioning Preferences**

What are the sources of information for dependency parsing?

- **1.** Bilexical affinities [discussion  $\rightarrow$  issues] is plausible
- 2. Dependency distance mostly with nearby words
- 3. Intervening material

Dependencies rarely span intervening verbs or punctuation

4. Valency of heads

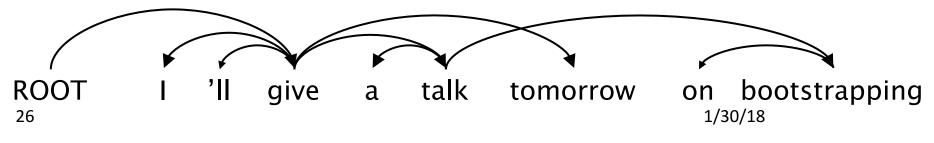
How many dependents on which side are usual for a head?

ROOT Discussion of the outstanding issues was completed.



### **Dependency Parsing**

- A sentence is parsed by choosing for each word what other word (including ROOT) it is a dependent of
  - i.e., find the right outgoing arrow from each word
- Usually some constraints:
  - Only one word is a dependent of ROOT
  - Don't want cycles  $A \rightarrow B, B \rightarrow A$
- This makes the dependencies a tree
- Final issue is whether arrows can cross (non-projective) or not





### **Methods of Dependency Parsing**

- **1**. Dynamic programming
- 2. Graph algorithms

You create a Minimum Spanning Tree for a sentence

McDonald et al.'s (2005) MSTParser scores dependencies independently using an ML classifier (he uses MIRA, for online learning, but it can be something else)

3. Constraint Satisfaction

Edges are eliminated that don't satisfy hard constraints. Karlsson (1990), etc.

4. "Transition-based parsing" or "deterministic dependency parsing"

Greedy choice of attachments guided by good machine learning classifiers MaltParser (Nivre et al. 2008). Has proven highly effective.



# 4. Greedy transition-based parsing [Nivre 2003]



- A simple form of greedy discriminative dependency parser
- The parser does a sequence of bottom up actions
  - Roughly like "shift" or "reduce" in a shift-reduce parser, but the "reduce" actions are specialized to create dependencies with head on left or right
- The parser has:
  - a stack  $\sigma$ , written with top to the right
    - which starts with the ROOT symbol
  - a buffer  $\beta$ , written with top to the left
    - which starts with the input sentence
  - a set of dependency arcs A
    - which starts off empty
  - a set of actions



### **Basic transition-based dependency parser**

Start:  $\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$ 1. Shift  $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$ 2. Left-Arc<sub>r</sub>  $\sigma | w_i | w_j, \beta, A \rightarrow \sigma | w_j, \beta, A \cup \{r(w_j, w_i)\}$ 3. Right-Arc<sub>r</sub>  $\sigma | w_i | w_j, \beta, A \rightarrow \sigma | w_i, \beta, A \cup \{r(w_i, w_j)\}$ Finish:  $\sigma = [w], \beta = \emptyset$ 



### **Arc-standard transition-based parser**

(there are other transition schemes ...) Analysis of "I ate fish"

### Start



### Shift



### Shift



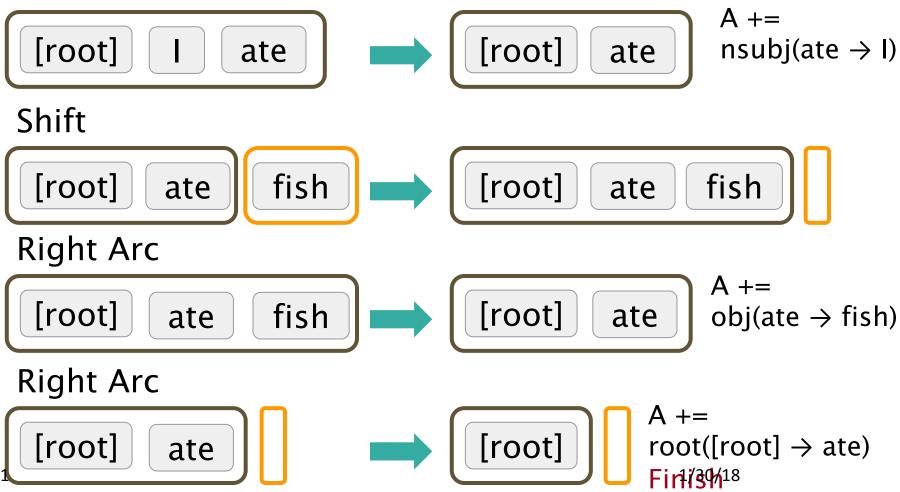
| Stai                        | rt: σ = [ROOT          | ], $\beta = w_1, \ldots, w_n, A = \emptyset$   |  |  |
|-----------------------------|------------------------|------------------------------------------------|--|--|
| 1.                          | Shift                  | $σ, w_i   β, A \rightarrow \sigma   w_i, β, A$ |  |  |
| 2.                          | Left-Arc <sub>r</sub>  | $σ w_i w_i, β, A \rightarrow$                  |  |  |
|                             |                        | $\sigma W_j, \beta, A \cup \{r(W_j, W_i)\}$    |  |  |
| 3.                          | Right-Arc <sub>r</sub> | $\sigma w_i w_j, \beta, A \rightarrow$         |  |  |
|                             |                        | $σ w_i, β, A \cup \{r(w_i, w_j)\}$             |  |  |
| Finish: $\beta = \emptyset$ |                        |                                                |  |  |



# Arc-standard transition-based parser

Analysis of "I ate fish"

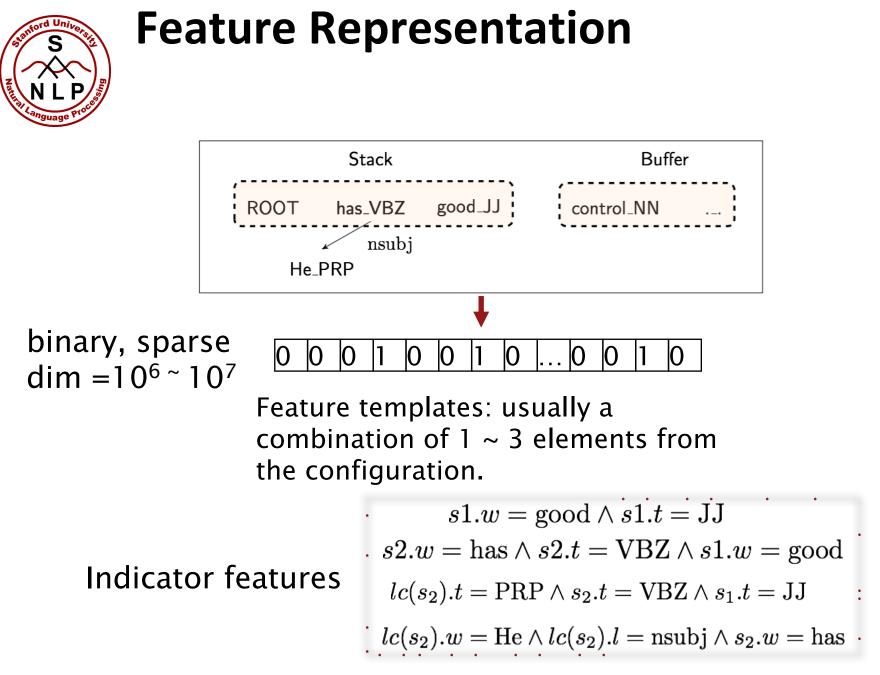
Left Arc



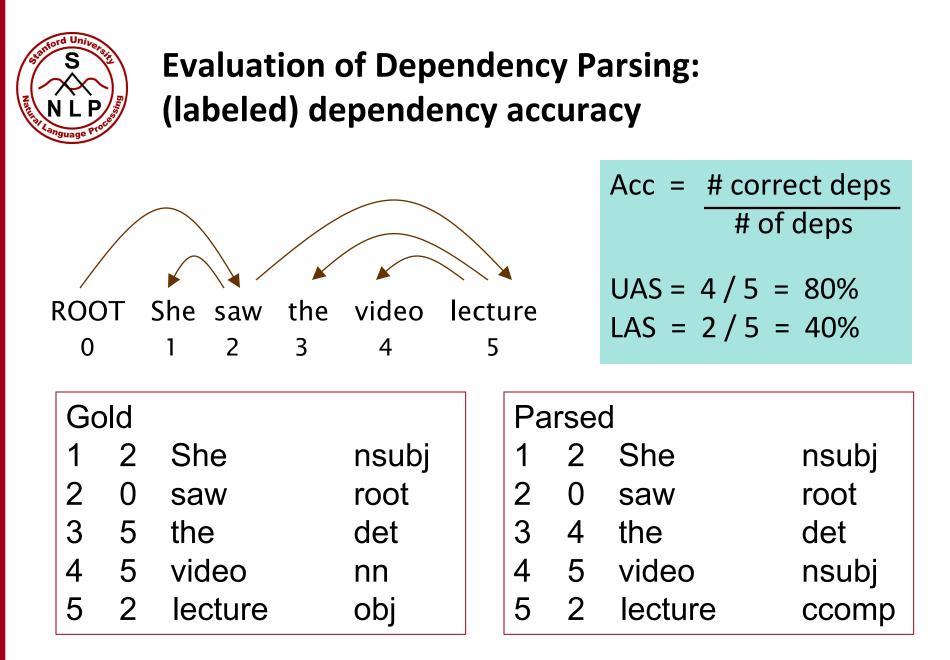


### MaltParser [Nivre and Hall 2005]

- How could we choose the next action?
- Each action is predicted by a discriminative classifier (eg. SVM or logistic regression classifier) over each legal move
  - Features: top of stack word, POS; first in buffer word, POS; etc.
- There is NO search (in the simplest form)
  - But you can profitably do a beam search if you wish (slower but better)
- It provides VERY fast linear time parsing
- The model's accuracy is only *slightly* below the best dependency parsers



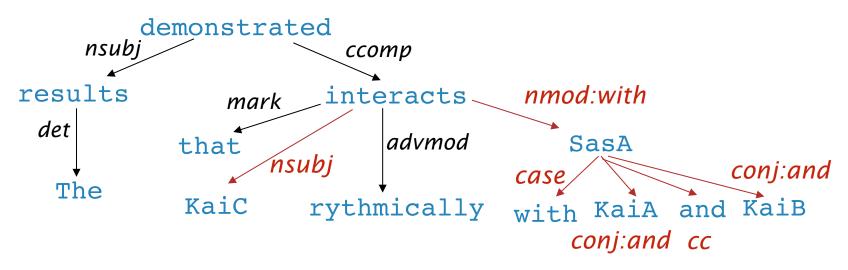
#### 





# Dependency paths identify semantic relations – e.g, for protein interaction

[Erkan et al. EMNLP 07, Fundel et al. 2007, etc.]



KaiC ←nsubj interacts nmod:with → SasA
KaiC ←nsubj interacts nmod:with → SasA conj:and → KaiA
KaiC ←nsubj interacts prep\_with → SasA conj:and → KaiB



# Projectivity

- Dependencies parallel to a CFG tree must be projective
  - There must not be any crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words.
- But dependency theory normally does allow non-projective structures to account for displaced constituents
  - You can't easily get the semantics of certain constructions right without these nonprojective dependencies



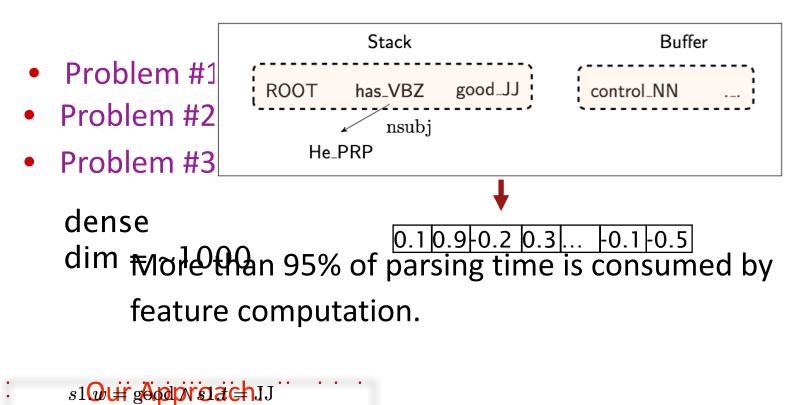


## Handling non-projectivity

- The arc-standard algorithm we presented only builds projective dependency trees
- Possible directions:
  - 1. Just declare defeat on nonprojective arcs
  - 2. Use a dependency formalism which only admits projective representations (a CFG doesn't represent such structures...)
  - 3. Use a postprocessor to a projective dependency parsing algorithm to identify and resolve nonprojective links
  - 4. Add extra transitions that can model at least most non-projective structures (e.g., add an extra SWAP transition, cf. bubble sort)
  - 5. Move to a parsing mechanism that does not use or require any constraints on projectivity (e.g., the graph-based MSTParser)



# Why train a neural dependency parser? Indicator Features Revisited



 $s_{2.w} = has \land s_{2.t} = VBZ \land s_{1.w} = good$ learn a dense and compact feature representation  $lc(s_2).t = PRP \land s_2.t = VBZ \land s_1.t = JJ$ 

 $lc(s_2).w = \operatorname{He} \wedge lc(s_2).l = \operatorname{nsubj} \wedge s_2.w = \operatorname{has}$ 



### A neural dependency parser [Chen and Manning 2014]



- English parsing to Stanford Dependencies:
  - Unlabeled attachment score (UAS) = head
  - Labeled attachment score (LAS) = head and label

| Parser      | UAS   | LAS   | sent. / s |
|-------------|-------|-------|-----------|
| MaltParser  | 89.8  | 87.2  | 469       |
| MSTParser   | 91.4  | 88.1  | 10        |
| TurboParser | 92.3* | 89.6* | 8         |
| C & M 2014  | 92.0  | 89.7  | 654       |
|             |       |       | 1/30/18   |



# **Distributed Representations**

- We represent each word as a *d*-dimensional dense vector (i.e., word embedding)
  - Similar words are expected to have close vectors.
- Meanwhile, part-of-speech tags (POS) and dependency labels are also represented as d-dimensional performs.
  - The smaller discrete sets also exhibit many similarities.

NNS (plural noun) should be close to NN (singular noun).

num (numerical modifier) should be close to amod (adjective modifier).

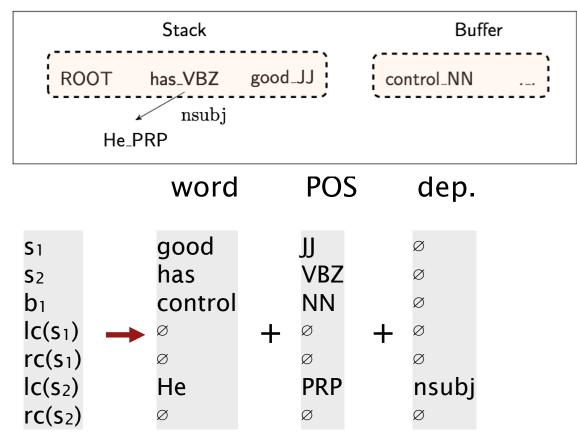
good

come



# Extracting Tokens and then vector representations from configuration

• We extract a set of tokens based on the stack / buffer positions:



We convert them to vector embeddings and concatenate them 41



### **Model Architecture**

### Softmax probabilities

